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ABSTRACT: Bayesian confirmation theory is rife with confirmation measures. Many of 
them differ from each other in important respects. It turns out, though, that all the 
standard confirmation measures in the literature run counter to the so-called “Reverse 
Matthew Effect” (“RME” for short). Suppose, to illustrate, that H1 and H2 are equally 
successful in predicting E in that p(E | H1)/p(E) = p(E | H2)/p(E) > 1. Suppose, further, 
that initially H1 is less probable than H2 in that p(H1) < p(H2). Then by RME it follows 
that the degree to which E confirms H1 is greater than the degree to which it confirms H2. 
But by all the standard confirmation measures in the literature, in contrast, it follows that 
the degree to which E confirms H1 is less than or equal to the degree to which it confirms 
H2. It might seem, then, that RME should be rejected as implausible. Festa (2012), 
however, argues that there are scientific contexts in which RME holds. If Festa’s 
argument is sound, it follows that there are scientific contexts in which none of the 
standard confirmation measures in the literature is adequate. Festa’s argument is thus 
interesting, important, and deserving of careful examination. I consider five distinct 
respects in which E can be related to H, use them to construct five distinct ways of 
understanding confirmation measures, which I call “Increase in Probability”, “Partial 
Dependence”, “Partial Entailment”, “Partial Discrimination”, and “Popper 
Corroboration”, and argue that each such way runs counter to RME. The result is that it is 
not at all clear that there is a place in Bayesian confirmation theory for RME. 
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1 Introduction 
 
Bayesian confirmation theory is rife with confirmation measures (a small sampling of 
which is given below in Section 2).1 Many of them differ from each other in important 
respects. It turns out, though, that all the standard confirmation measures in the literature 
run counter to the so-called “Reverse Matthew Effect” (“RME” for short). Suppose, to 
illustrate, that H1 and H2 are equally successful in predicting E in that: 
 

p(E | H1)/p(E) = p(E | H2)/p(E) > 1 
 
(I am assuming here and throughout the paper that all lettered propositions have non-
extreme unconditional probabilities, i.e., unconditional probabilities greater than 0 and 
less than 1.) Suppose, further, that initially H1 is less probable than H2 in that: 
 

p(H1) < p(H2) 
 
Then by RME it follows that the degree to which E confirms H1 is greater than the degree 
to which it confirms H2. But by all the standard confirmation measures in the literature, in 
contrast, it follows that the degree to which E confirms H1 is less than or equal to the 
degree to which it confirms H2. Is this a problem for RME? 

Festa (2012) answers in the negative. He argues that there are scientific contexts in 
which RME holds. First, he describes a case from the history of science: 
 

In 1695 the English astronomer Edmond Halley (1656-1742) applied Newton’s 
theory N to the observed characteristics of a comet observed in 1682 and deduced 
from N that the comet would return every 76 years. In particular, he deduced the 
prediction E that the comet would return in December 1758. Although Halley himself 
did not live to see the comet’s return, having died in 1742, his prediction proved to be 
correct, since the comet—afterwards baptized as Halley’s comet—appeared again on 
25 December 1758. (Festa 2012, p. 99) 

 

																																																								
1 Here and throughout the sense of confirmation at issue is such that E confirms H if and 
only if p(H | E) > p(H), or equivalently p(H | E) > p(H | ¬E), or equivalently p(E | H) > 
p(E), or equivalently p(E | H) > p(E | ¬H). This sense of confirmation stands in contrast 
to so-called “absolute confirmation”. The latter, unlike the former, is a matter of high 
probability. See Douven (2011), Roche (2012, 2015), and Roche and Shogenji (2014) for 
further discussion of different senses of confirmation (or evidential support). 
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Second, he notes that E was commonly perceived to be a great success of N (where 
success here is a matter of degree of confirmation): 
 

The return of the comet, i.e., the verification of prediction E, was commonly 
perceived as a great success for the Newton’s theory. In our terminology, E is a 
deductive success of N, while the widespread perception that E was a great success of 
N can be seen as the attribution to N of a very high degree of confirmation c(N, E). 
(Festa 2012, p. 99, emphasis original) 

 
Third, he asks readers to imagine some fictional additions to the case. He writes: 
 

Now let us imagine that a scientist X claimed that N was a too bold hypothesis—since 
it applies to any body in the universe—and suggested the more modest “restricted” 
theory R according to which Newton’s laws apply to the objects near to our solar 
system, i.e., to the sun, the planets and their satellites, and the comets orbiting around 
the sun. (Festa 2012, p. 99) 

 
Fourth, and finally, he notes in effect that his intuition runs counter to X’s (intuition that 
E was a greater success for R than for N): 
 

We feel that X’s intuition is wrong while the widespread perception that the return of 
the comet was a great success for Newton’s theory—but not for the plenty of all the 
possible weakened versions of such theory—was correct. (Festa 2012, p. 100) 

 
The conclusion is that, as RME implies, the degree to which E confirms N is greater than 
the degrees to which it confirms weaker theories such as R. 

It should be noted that Festa’s argument is not meant to be decisive (see Festa 2012, 
p. 100). It is best seen as a step in the direction of a more decisive discussion of RME and 
related conditions. 

By “related conditions” here I have in mind the so-called “Matthew Effect” (“ME” 
for short) and “Matthew Independence” (“MI” for short). Return to the illustration above 
where: 
 

p(E | H1)/p(E) = p(E | H2)/p(E) > 1 
 

p(H1) < p(H2) 
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By ME it follows that the degree to which E confirms H1 is less than the degree to which 
it confirms H2. By MI, in turn, it follows that the degree to which E confirms H1 is equal 
to the degree to which it confirms H2. So, in cases where two hypotheses are equally 
successful in predicting a given piece of evidence, RME favors the hypothesis with the 
lower initial probability, whereas ME favors the hypothesis with the higher initial 
probability and MI favors neither hypothesis. 

Where do the names “Matthew Effect”, “Matthew Independence”, and “Reverse 
Matthew Effect” come from? Festa (referencing Kuipers 2000) writes: 
 

Kuipers … introduces the concept of Matthew effect for confirmation just w.r.t. [ME 
restricted to cases where the hypothesis logically implies the piece of evidence]. In 
fact, [ME thus restricted] “may be seen as a methodological version of the so-called 
Matthew effect, according to which the rich profit more than the poor” …, in 
agreement with the sentence—made famous by the Gospel according to St. 
Matthew—that “unto every one that hath shall be given”. (Festa 2012, p. 95, 
emphasis original) 

 
So, in cases of equal predictive success, ME favors the rich (the hypothesis with the 
higher initial probability) over the poor (the hypothesis with the lower initial probability), 
MI favors neither the rich (the hypothesis with the higher initial probability) nor the poor 
(the hypothesis with the lower initial probability), and RME favors the poor (the 
hypothesis with the lower initial probability) over the rich (the hypothesis with the higher 
initial probability). Thus the names “Matthew Effect”, “Matthew Independence”, and 
“Reverse Matthew Effect”. 

If Festa’s argument is sound, it follows that there are scientific contexts in which 
none of the standard confirmation measures in the literature is adequate. Festa’s argument 
is thus interesting, important, and deserving of careful examination. 

I want to assume a pluralistic approach to confirmation on which there are different 
respects in which E can be related (evidentially) to H and on which different confirmation 
measures are appropriate for different such respects.2 This allows that there are respects 
in which E can be related to H such that certain of the standard confirmation measures in 
the literature are appropriate while, at the same time, there are additional respects in 
which E can be related to H such that certain measures meeting RME are appropriate. I 
aim to show that, even on this pluralistic approach, it is not at all clear that there is a 
place in Bayesian confirmation theory for RME. 

																																																								
2 This approach is on display in Hajek and Joyce (2008) and Joyce (1999, Ch. 6, sec. 6.4, 
2008). A very different approach—a monistic approach—is on display in Milne (1996). 
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The remainder of the paper is organized as follows. In Section 2, I set out ME, MI, 
and RME more precisely. I also set out a small sampling of confirmation measures—
some standard and some non-standard—and relate them to ME, MI, and RME. In the 
next five sections, I consider five distinct respects in which E can be related to H, use 
them to construct five distinct ways of understanding confirmation measures, which I call 
“Increase in Probability”, “Partial Dependence”, “Partial Entailment”, “Partial 
Discrimination”, and “Popper Corroboration”, and argue that each such way runs counter 
to RME. I address Increase in Probability in Section 3, Partial Dependence in Section 4, 
Partial Entailment in Section 5, Partial Discrimination in Section 6, and Popper 
Corroboration in Section 7. In Section 8, I conclude. 
 
 
2 ME, MI, and RME 
 
ME, MI, and RME can be put as follows: 
 

Matthew Effect (ME): If (i) p(E1 | H1)/p(E1) = p(E2 | H2)/p(E2) > 1 and (ii) p(H1) < 
p(H2), then c(H1, E1) < c(H2, E2). 

 
Matthew Independence (MI): If (i) p(E1 | H1)/p(E1) = p(E2 | H2)/p(E2) > 1 and (ii) 
p(H1) < p(H2), then c(H1, E1) = c(H2, E2). 

 
Reverse Matthew Effect (RME): If (i) p(E1 | H1)/p(E1) = p(E2 | H2)/p(E2) > 1 and (ii) 
p(H1) < p(H2), then c(H1, E1) > c(H2, E2). 

 
These conditions are identical in their antecedents and differ just in their consequents. 
ME’s consequent should be read as “the degree to which E1 confirms H1 is less than the 
degree to which E2 confirms H2”. MI’s and RME’s consequents should be read 
similarly.3 

I noted above in Section 1 that Bayesian confirmation theory is rife with confirmation 
measures. Here is a small sampling: 
 

c1(H ,E) = p(H | E)− p(H )  

																																																								
3 ME, MI, and RME can be reformulated in terms of a single hypothesis and a single 
piece of evidence (see Festa 2012 and Roche 2014). ME, for example, can be 
reformulated like this: If (i) p(E | H)/p(E) > 1 and (ii) p(E | H)/p(E) is held fixed, then 
c(H, E) is an increasing function of p(H). 
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c2 (H ,E) =
p(H | E)
p(H )  

 
c3(H ,E) = p(H | E)− p(H |¬E)  

 

c4 (H ,E) =
p(H | E)
p(H |¬E)  

 
c5 (H ,E) = p(E |H )− p(E)  

 

c6 (H ,E) =
p(E |H )
p(E)  

 
c7 (H ,E) = p(E |H )− p(E |¬H )  

 

c8 (H ,E) =
p(E |H )
p(E |¬H )

 

 
c2 and c6 are equivalent to each other in that c2(H, E) = c6(H, E) for all E and H. But no 
two of c1, c2/c6, c3, c4, c5, c7, and c8 are ordinally equivalent to each other.4,5 It turns out, 
though, that none of c1-c8 meets RME.6 

Are there confirmation measures meeting RME? Consider: 
 

c9 (H ,E) =
p(H | E)− p(H )

p(H | E)+ p(H )+ (2)p(H | E)p(H )  

																																																								
4 Let c and c* be confirmation measures. Then c and c* are ordinally equivalent to each 
other if and only if the following holds for any ordered pairs of propositions <H1, E1> and 
<H2, E2>: c(H1, E1) > / = / < c(H2, E2) if and only if c*(H1, E1) > / = / < c*(H2, E2). 
5 This is prima facie problematic. Many, if not all of, c1, c2/c6, c3, c4, c5, c7, and c8 have 
some intuitive plausibility. But certain results in Bayesian confirmation theory involving 
some such measures fail to carry over to at least some of the others. This is “the problem 
of measure sensitivity”. See Brössel (2013) and Fitelson (1999) for helpful discussion. 
6 Each of c1 and c8 meets ME whereas each of c2 and c6 meets MI. This is noted in Festa 
(2012) and Roche (2014). None of c3, c4, c5, and c7 meets ME, MI, or RME. This can be 
verified on Mathematica using PrSAT (developed by Branden Fitelson in collaboration 
with Jason Alexander and Ben Blum). See Fitelson (2008) for discussion of PrSAT. 
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c10 (H ,E) =
p(H | E)+ (2)p(H )p(H | E)
p(H )+ (2)p(H )p(H | E)  

 

c11(H ,E) =
p(H | E)− p(H )
p(H | E)p(H )

 

 
These measures are like c1-c8 in that there is a neutral value n such that c(H, E) > / = / < n 
if and only if p(H | E) > / = / < p(H). The neutral value for c9 and c11 is 0. The neutral 
value for c10 is 1. But c9-c11, unlike c1-c8, all meet RME (see Festa 2012 and Roche 
2014). 

I turn now to Increase in Probability (the first of five distinct ways of understanding 
confirmation measures to be discussed in the next five sections) and the issue of whether 
it runs counter to RME. 
 
 
3 Increase in Probability 
 
A first respect in which E can be related to H is this: 
 

E increases H’s probability. 
 
This leads to a first way of understanding c(H, E): 
 

Increase in Probability (IP): c(H, E) measures the degree to which E increases H’s 
probability. 

 
How is IP to be understood? What conditions, that is, should be met by any adequate 
measure of increase in probability? 

I take it that, at a minimum, any adequate measure of increase in probability should 
meet each of the following conditions: 
 

IP1 c(H, E) is a function of p(H | E) and p(H). 
 

IP2 If (i) p(H1 | E1) > p(H2 | E2) and (ii) p(H1) ≤ p(H2), then c(H1, E1) > c(H2, 
E2). 

 
IP3 If (i) p(H1 | E1) ≥ p(H2 | E2) and (ii) p(H1) < p(H2), then c(H1, E1) > c(H2, 

E2). 
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Henceforth when I speak of “IP” I have in mind IP understood at least in part in terms of 
IP1-IP3.	

It might seem that IP3 is too strong. Suppose that: 
 

p(H1 | E1) = 1 = p(H2 | E2) 
 

p(H1) = 0.01 < 0.99 = p(H2) 
 
It follows by IP3 that c(H1, E1) > c(H2, E2). It might seem that this is the wrong result, for 
it might seem that since p(H1 | E1) = 1 = p(H2 | E2), each of c(H1, E1) and c(H2, E2) should 
be maximal in which case c(H1, E1) = c(H2, E2). I would agree if the context were partial 
entailment (as explained below in Section 5). But here the context is increase in 
probability and in this context, it seems, prior probabilities always matter. 

The expressions “at a minimum” and “at least in part” in the paragraph immediately 
before the prior paragraph are crucial. I am not claiming that IP1, IP2, and IP3 together 
provide an adequate formalization of IP. I am claiming, rather, that IP1, IP2, and IP3 
should be included in any adequate formalization of IP. I thus leave it open that there are 
conditions in addition to IP1, IP2, and IP3 such that they too should be included in any 
adequate formalization of IP. 

Is it the case, though, that IP1, IP2, and IP3 run counter to RME? Consider c11. This 
measure meets RME (as noted above in Section 2). It also meets each of IP1, IP2, and 
IP3. This can be seen by reformulating it as follows: 
 

c11(H ,E) =
1

p(H )
− 1
p(H | E)

  

 
Hence, as at least some measures meeting RME also meet each of IP1, IP2, and IP3, it is 
not the case that IP1, IP2, and IP3 run counter to RME.7 

This is good news for RME in the context of IP. I have some concerns however. It is 
far from clear to me, and in fact seems implausible to me, that RME should be accepted 
in the context of IP. 

My first concern has to do with the following probability distribution: 
 

																																																								
7 This is also true with respect to (a) RME and conditions (P0), (P1), and (P3) in Crupi 
(2016, sec. 3), (b) RME and conditions (IFPD), (FPI), (IPI), and (E) in Festa (2012, sec. 
2), and (c) RME and conditions P1, P2, and P3 in Festa and Cevolani (forthcoming, sec. 
2). 
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Distribution D 
 

E H1 H2  p 

T T T  1
10000000000  

T T F  99999
10000000000  

T F T  0  
T F F  0  
F T T  0  
F T F  0  
F F T  0  
F F F  99999

100000  
 
It can be readily verified that on this distribution: 
 

p(H1 | E) = 1 > 0.00001 = p(H1) 
 

p(H2 | E) = 0.00001 > 0.0000000001 = p(H2) 
 

p(E | H1)/p(E) = 100000 = p(E | H2)/p(E) 
 
It follows by RME that c(H1, E) < c(H2, E).8 This strikes me as the wrong result (or at 
least not obviously the right result). H1’s increase in probability is from a value very close 
to the minimum value of 0 to the maximum value of 1. H2’s increase in probability, in 
contrast, is from a value very close to the minimum value of 0 to another value very close 
to the minimum value of 0. Hence H1’s increase in probability, it seems, is closer than 

																																																								
8 It is worth noting in this regard that: 
 

c9(H1, E) ≈ 0.99996 < 0.99998 ≈ c9(H2, E) 
 

c10(H1, E) = 33334 < 99998 ≈ c10(H2, E) 
 

c11(H1, E) = 99999 < 9999900000 = c11(H2, E) 
 
So by c9 the degree to which E confirms H1 is slightly less than the degree to which E 
confirms H2 whereas both by c10 and by c11 the degree to which E confirms H1 is much 
less than the degree to which E confirms H2. 
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H2’s increase in probability to an increase in probability from the minimum value of 0 to 
the maximum value of 1 (which if possible would be an increase in probability of the 
highest degree). Hence H1’s increase in probability, it seems, is greater than H2’s increase 
in probability.9 

I do not mean for this argument to be decisive. I am simply registering a concern. I 
turn now to a second concern. 

Suppose that the background information codified in p includes the information that 
Tweety is a raven and the information that Smith is highly but not perfectly reliable at 
color detection in the relevant conditions. Let E be the proposition that Tweety is black, 
H1 be the proposition that all ravens are black, and H2 be the proposition that Smith 
testified that Tweety is dark brown. Then, given the background information codified in 
p, it follows that H1 entails E and thus so does H1 & H2. It further follows (given certain 
rather natural ways of filling in the details) that: 
 

p(E | H1)/p(E) = p(E | H1 & H2)/p(E) > 1 
 

p(H1) > p(H1 & H2) 
 
By RME the result is that c(H1, E) < c(H1 & H2, E). This, it seems, is not the right result. 
Yes, E increases H1 & H2’s probability. But since, in part, E decreases H2’s probability, 
the degree to which E increases H1 & H2’s probability is less than the degree to which it 
increases H1’s probability.10 

This point can be generalized as follows: 
 

IP4 If (i) H1 entails E and (ii) p(H2 | E) < p(H2), then c(H1, E) > c(H1 & H2, E). 
 

																																																								
9 It is not essential that p(H1 | E) equals unity on Distribution D. Any value very close to 
unity would suffice. 
10 Festa (2012, sec. 3.3) considers the so-called “Problem of Irrelevant Conjunction” in 
the context of evaluating ME, MI, and RME. His main point can be put as follows: If H1 
is a “genuine” hypothesis and H2 is an “irrelevant” or “nonsensical” hypothesis such as 
the hypothesis that the moon is made of green cheese, then H1 & H2 is not a genuine 
hypothesis and thus should be set aside when evaluating ME, MI, and RME. I take it that 
this point has no application in the case above (where H1 is the proposition that all ravens 
are black and H2 is the proposition that Smith testified that Tweety is dark brown). For, in 
that case, H2 is neither irrelevant nor nonsensical. 
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If IP is understood at least in part in terms of IP4, then IP runs counter to RME.11 
I find IP4 to be highly plausible in the context of increase in probability. If you do as 

well (or would if “>” in IP4’s consequent were changed to “≥”), then you should steer 
clear of RME in the context of increase in probability. 

Recall that Festa argues that there are scientific contexts in which RME holds. He 
describes a case from the history of science and then, commenting on that case, writes: 
 

We feel that X’s intuition is wrong while the widespread perception that the return of 
the comet was a great success for Newton’s theory—but not for the plenty of all the 
possible weakened versions of such theory—was correct. (Festa 2012, p. 100) 

 
Nothing in what I have argued implies that Festa is mistaken here. It could be that RME 
should be rejected in the context of IP but not in the context of some alternative way of 
understanding confirmation measures. 
 
 
4 Partial Dependence 
 
A second respect in which E can be related to H is this: 
 

H’s probability partially depends on whether E is true. 
 
This leads to a second way of understanding c(H, E): 
 

Partial Dependence (PDe): c(H, E) measures the degree to which H’s probability 
partially depends on whether E is true. 

 
How is PDe to be understood? What conditions, that is, should be met by any adequate 
measure of partial dependence? 

I am taking the idea of partial dependence from Joyce (1999, Ch. 6, sec. 6.4, 2008, 
sec. 3) and Hajek and Joyce (2008, p. 122).12 They distinguish (in effect) between the 
idea of increase in probability and the idea of partial dependence. They take increase in 
probability to be a matter of the degree to which p(H | E) is greater than p(H). They take 

																																																								
11 The same is true with respect to MI. 
12 The expression “partial dependence”, though, is mine. Joyce (2008, sec. 3) speaks in 
terms of “effective evidence”. Hajek and Joyce (2008, p. 122) speak in terms of 
“probative evidence”. 
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partial dependence, in turn, to be a matter of the degree to which p(H | E) is greater than 
p(H | ¬E). Suppose that: 
 

p(H | E) = 0.99 > 0.01 = p(H | ¬E) 
 
Here it is rather significant for H’s probability whether E is true and so the degree of 
partial dependence is high. Suppose instead that: 
 

p(H | E) = 0.99 > 0.98 = p(H | ¬E) 
 
Here it is rather insignificant for H’s probability whether E is true and so the degree of 
partial dependence is low. 

I take it that, at a minimum, any adequate measure of partial dependence should meet 
each of the following conditions: 
 

PDe1 c(H, E) is a function of p(H | E) and p(H | ¬E). 
 

PDe2 If (i) p(H1 | E1) > p(H2 | E2) and (ii) p(H1 | ¬E1) ≤ p(H2 | ¬E2), then c(H1, 
E1) > c(H2, E2). 

 
PDe3 If (i) p(H1 | E1) ≥ p(H2 | E2) and (iv) p(H1 | ¬E1) < p(H2 | ¬E2), then c(H1, 

E1) > c(H2, E2). 
 
Henceforth when I speak of “PDe” I have in mind PDe understood at least in part in 
terms of PDe1-PDe3. (That PDe is distinct from IP is shown in Appendix A.) 

Does PDe run counter to RME? It follows on Distribution D (from the prior section) 
that: 
 

p(H1 | E) = 1 > 0.00001 = p(H2 | E) 
 

p(H1 | ¬E) = 0 = p(H2 | ¬E) 
 
By PDe2 it follows that c(H1, E) > c(H2, E). This runs counter to RME, since the latter 
entails that c(H1, E) < c(H2, E).13 
 
 
																																																								
13 MI entails that c(H1, E) = c(H2, E). So PDe also runs counter to MI. 
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5 Partial Entailment 
 
A third respect in which E can be related to H is this: 
 

E partially entails H. 
 
This leads to a third way of understanding c(H, E): 
 

Partial Entailment (PE): c(H, E) measures the degree to which E partially entails H. 
 
How is PE to be understood? What conditions, that is, should be met by any adequate 
measure of partial entailment? 

It will help here to appeal to a recent discussion of the following confirmation 
measure: 
 

c12 (H ,E) =

p(H | E)− p(H )
1− p(H )

 if p(H | E) ≥ p(H )

p(H | E)− p(H )
p(H )

 if p(H | E) < p(H )

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

 
Crupi and Tentori (2013, 2014) put forward c12 as a measure of confirmation in the sense 
of partial entailment. Consider the following passage (where notation has been modified): 
 

To appreciate this conceptual unity, note that in case of positive inductive support or 
confirmation c12(H, E) expresses the relative reduction of the initial distance from 
certainty of H being true as yielded by E, i.e., it measures how far upward the 
posterior p(H | E) has gone in covering the distance between the prior p(H) and 1. 
Similarly, in the case of negative inductive support or disconfirmation, c12(H, E) 
reflects the relative reduction of the initial distance from certainty of H being false as 
yielded by E, i.e., it measures how far downward the posterior p(H | E) has gone in 
covering the distance between the prior p(H) and 0. Accordingly, c12(H, E) measures 
the extent to which the initial probability distance from certainty concerning the truth 
(falsehood) of H is reduced by the confirming (disconfirming) statement E. Or, put 
otherwise, how much of such distance is “covered” by the upward (downward) jump 
from p(H) to p(H | E). Thus, c12(H, E) is a measure of the relative reduction of the 
distance from certainty that a conclusion/hypothesis of interest is true or false—or, 
with a slight abuse of language, a relative distance measure. (Crupi and Tentori 2013, 
p. 366, emphasis original) 
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There is no explicit mention in this passage of partial entailment. But, focusing on the 
case where E confirms H, the idea of “the relative reduction of the initial distance from 
certainty of H being true as yielded by E” is meant to express the idea of partial 
entailment.14 The degree to which E partially entails H is simply the degree to which E 
reduces the distance between H’s probability and 1 relative to the case where E entails H 
and thus reduces the distance between H’s probability and 1 to nil. 

It will help to consider an example. Suppose that: 
 

p(H1 | E1) = 1 > 0.1 = p(H1) 
 

p(H2 | E2) = 1 > 0.9 = p(H2) 
 
The absolute reduction in distance between H1’s probability and 1 is greater than the 
absolute reduction in distance between H2’s probability and 1. But the relative reductions 
are the same. This is because in each case the degree to which the evidence reduces the 
distance between the hypothesis’s probability and 1 relative to the case where that 
distance is reduced to nil is maximal. Hence by PE it follows that c(H1, E1) = c(H2, E2). 

I take it that, at a minimum, any adequate measure of partial entailment should meet 
each of the following conditions: 
 

PE1 c(H, E) is a function of p(H | E) and p(H). 
 

PE2 If (i) p(H1 | E1) > p(H2 | E2) and (ii) p(H1) ≤ p(H2), then c(H1, E1) > c(H2, 
E2). 

 
PE3 If (i) 1 > p(H1 | E1) ≥ p(H2 | E2) and (ii) p(H1) < p(H2), then c(H1, E1) > 

c(H2, E2). 
 

PE4 c(H, E) is maximal if and only if p(H | E) = 1 > p(H). 
 
Henceforth when I speak of “PE” I have in mind PE understood at least in part in terms 
of PE1-PE4. (That PE is distinct from IP and PDe is shown in Appendix B.) 

Does PE run counter to RME? Recall that on Distribution D (from Section 3) it 
follows that: 
 

																																																								
14 The title of Crupi and Tentori (2013) is “Confirmation as partial entailment: A 
representation theorem in inductive logic”. 



 15 

p(H1 | E) = 1 > 0.00001 = p(H1) 
 

p(H2 | E) = 0.00001 > 0.0000000001 = p(H2) 
 
Given that p(H1 | E) = 1 > p(H1) whereas p(H2 | E) < 1, it follows by PE4 that c(H1, E) > 
c(H2, E). This runs counter to RME, since the latter entails that c(H1, E) < c(H2, E).15 
 
 
6 Partial Discrimination 
 
A fourth respect in which E can be related to H is this: 
 

E partially discriminates between H and ¬H. 
 
This leads to a fourth way of understanding c(H, E): 
 

Partial Discrimination (PDi): c(H, E) measures the degree to which E partially 
discriminates between H and ¬H. 

 
How is PDi to be understood? What conditions, that is, should be met by any adequate 
measure of partial discrimination? 

Imagine a case where there are diseases D1 and D2. Suppose that there is a test T1 for 
D1 and a test T2 for D2. Take some subject S. Let H1 be the proposition that S has D1, E1 
be the proposition that T1 says that S has D1, H2 be the proposition that S has D2, and E2 
be the proposition that T2 says that S has D2. Suppose that T1 and T2 are such that: 
 

p(E1 | H1) = 1 > 0 = p(E1 | ¬H1) 
 

p(E2 | H2) = 0.99 > 0.01 = p(E2 | ¬H2) 
 
T1 is maximally good qua test of D1 in that no test of D1 could do better than T1 in terms 
of discriminating between the presence and absence of D1. T1 thus makes it such that E1 
fully discriminates between H1 and ¬H1. T2, in contrast, is good but not maximally good 
qua test of D3. T2 partially but not fully discriminates between the presence and absence 

																																																								
15 MI entails that c(H1, E) = c(H2, E). So PE also runs counter to MI. 



 16 

of D2. T2 thus makes it such that E2 partially but not fully discriminates between H2 and 
¬H2.16 

I take it that, at a minimum, any adequate measure of partial discrimination should 
meet each of the following conditions: 
 

PDi1 c(H, E) is a function of p(E | H) and p(E | ¬H). 
 

PDi2 If (i) p(E1 | H1) > p(E2 | H2) and (ii) p(E1 | ¬H1) ≤ p(E2 | ¬H2), then c(H1, 
E1) > c(H2, E2). 

 
PDi3 If (i) p(E1 | H1) ≥ p(E2 | H2) and (ii) p(E1 | ¬H1) < p(E2 | ¬H2), then c(H1, 

E1) > c(H2, E2). 
 
Henceforth when I speak of “PDi” I have in mind PDi understood at least in part in terms 
of PDi1-PDi3. (That PDi is distinct from IP, PDe, and PE is shown in Appendix C.) 

Does PDi run counter to RME? It follows on Distribution D (from Section 3) that: 
 

p(E | H1) = 1 = p(E | H2) 
 

p(E | ¬H1) = 0 < 0.00001 ≈ p(E | ¬H2) 
 
By PDi3 it follows that c(H1, E) > c(H2, E). This runs counter to RME, since the latter 
entails that c(H1, E) < c(H2, E).17 
 
 
7 Popper Corroboration 
 
A fifth respect in which E can be related to H is this: 
 

E Popper corroborates H. 
 
This leads to a fifth way of understanding c(H, E): 
 

																																																								
16 See Roche (2016) for an argument to the effect that c8 (the so-called “likelihood 
measure”) is perhaps best understood as a measure of confirmation in the sense of partial 
discrimination. See also Roush (2005, Ch. 5). 
17 MI entails that c(H1, E) = c(H2, E). So PDi also runs counter to MI. 
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Popper Corroboration (PC): c(H, E) measures the degree to which E Popper 
corroborates H. 

 
How is PC to be understood? What conditions, that is, should be met by any adequate 
measure of Popper corroboration? 

It will help to begin with some of Popper’s informal remarks on corroboration. Here, 
first, he links degree of corroboration to testability and notes in effect that degree of 
corroboration is a matter of the degree to which a hypothesis has been tested and has 
stood up to its tests: 
 

Degree of corroboration is closely related to the testability of a theory. The fact itself 
is fairly obvious: a more testable theory can be better tested; and what we are looking 
for is a mark, or degree, expressing how severely the theory was tested, and how well 
it has stood up to its tests. (Popper 1983, pp. 230-231, emphasis original) 

 
Here, second, he links testability to content and improbability: 
 

Since testability in its turn can be measured by the content of the theory, and since 
content, in its turn, can be measured by the absolute logical improbability of the 
theory, content and improbability stand in the same close relation to degree of 
corroboration as does testability itself. (Popper 1983, p. 231, emphasis original) 

  
Here, third, he notes in effect that stronger hypotheses are greater in testability than 
weaker hypotheses (where the former entail the latter but not vice versa): 
 

Corroboration cannot possibly be a probability, since it is more closely related to the 
improbability of a theory than to its probability: a strong theory (such as Maxwell’s 
electromagnetic wave theory of light) can be tested more widely and more severely 
than a weaker theory entailed by it (such as Fresnel’s wave theory of light). Every test 
of the latter theory is also a test of the former, but not vice versa. (Popper 1983, p. 
231) 

 
There is a clear sense in which Popper, like RME, favors the less probable over the more 
probable. Suppose that H1 is stronger than H2 in that H1 entails H2 but not vice versa. 
Then, though p(H1) < p(H2), H1 is greater in testability than H2 and so can be greater in 
corroboration than H2. 

Popper (1983, Ch. 4, sec. 32) goes on to set out a number of adequacy conditions on 
corroboration measures. They can be put as follows: 
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PC1 -1 ≤ c(H, E) ≤ p(¬H) ≤ +1. 
 

PC2 -1 = c(H & ¬H, E) = c(H, ¬H) ≤ c(H, E) ≤ c(H, H) = p(¬H) ≤ +1. 
 

PC3 c(H ∨ ¬H, E) = 0. 
 

PC4 If H entails E, then c(H, E) is an increasing function of p(¬E). 
 

PC5 If H1 entails H2 but not vice versa, then there is an E such that c(H1, E) > 
c(H2, E). 

 
PC6 If (i) H1 entails H2 but not vice versa and (ii) p(E | H1) ≤ p(E | H2), then 

c(H1, E) < c(H2, E). 
 
Some clarification is in order here. First, PC2 should be understood so that c(H, E) = -1 if 
E entails ¬H and so that c(H, E) = p(¬H) if E entails H. Second, PC3 should be 
understood so that c(H, E) = 0 if p(H) = 1. Third, PC6 should be understood so that it is 
tacit in its antecedent that E confirms each of H1 and H2.18 Henceforth when I speak of 
“PC” I have in mind PC understood at least in part in terms of PC1-PC6.19 (That PC is 
distinct from IP, PDe, PE, and PDi is shown in Appendix D.) 

Are PC1-PC6 consistent as a set? Consider the following measure: 
 

c13(H ,E) =
p(E |H )− p(E)

p(E |H )− p(H & E)+ Pr(E)
  

 
Popper (1983, p. 251) notes that this measure meets each of PC1-PC6 and that, thus, 
PC1-PC6 are consistent as a set.20 
																																																								
18 If PC6 were not so understood, then Popper would be wrong that his preferred 
corroboration measure (c13 below) meets PC6. Further, it is clear from the surrounding 
discussion that Popper has in mind cases where E confirms each of H1 and H2. 
19 See Popper (1954) for a different but similar set of adequacy conditions on 
corroboration measures (though there Popper speaks in terms of “confirmation” as 
opposed to “corroboration”). One notable difference is that PC5 is not included in the 
earlier set of adequacy conditions. See Díez (2011) and Sprenger (forthcoming) for 
discussion of the earlier set of adequacy conditions. 
20 Popper (1954) initially suggests a different measure. It can be put as follows: 
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Does PC run counter to RME? Suppose that H1 entails H2 but not vice versa. Suppose 
that H2 entails E and thus so too does H1. Then it follows that: 
 

p(E | H1) = 1 = p(E | H2) 
 

p(H1) < p(H2) 
 
Hence: 
 

p(E | H1)/p(E) = p(E | H2)/p(E) > 1 
 

p(H1) < p(H2) 
 
By PC6 it follows that c(H1, E) < c(H2, E). This runs counter to RME, since the latter 
entails that c(H1, E) > c(H2, E).21 

It is worth noting that PC6 and ME are logically distinct from each other and that, 
therefore, the mere fact that c13 meets the former leaves it open that it does not meet the 
latter. It turns out, though, that c13 meets ME as well. This can be seen by noting that: 
 

c13(H1,E1) =
p(E1 |H1)− p(E1)

p(E1 |H1)− p(H1 & E1)+ p(E1)

=

p(E1 |H1)
p(E1)

−1

p(E1 |H1)
p(E1)

1− p(H1)( ) +1

 

 

																																																																																																																																																																					

c14 (H ,E) =
p(E |H )− p(E)
p(E |H )+ Pr(E)

⎡
⎣⎢

⎤
⎦⎥
1+ p(H )p(H | E)[ ]  

 
This measure is not ordinally equivalent to c13 in that there are cases where c13(H1, E1) > 
c13(H2, E2) but c14(H1, E1) ≤ c14(H2, E2). It can be shown, though, and is noted by Popper 
(1983, p. 251), that c14, as with c13, meets each of PC1-PC6. 
21 MI entails that c(H1, E) = c(H2, E). So PC also runs counter to MI. 
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c13(H2,E2 ) =
p(E2 |H2 )− p(E2 )

p(E2 |H2 )− p(H2 & E2 )+ p(E2 )

=

p(E2 |H2 )
p(E2 )

−1

p(E2 |H2 )
p(E2 )

1− p(H2 )( ) +1

 

 
It follows that if p(E1 | H1)/p(E1) = p(E2 | H2)/p(E2) > 1 and p(H1) < p(H2), then c13(H1, 
E1) < c13(H2, E2). Hence c13 meets ME.22 

It might seem puzzling that PC runs counter to RME. What about Popper’s preference 
for the less probable over the more probable? 

Consider the following passage (where notation has been modified): 
 

Take … a hypothesis H1 from which a weaker hypothesis H2 is deducible. (We may 
again take H1 to be Maxwell’s and H2 to be Fresnel’s theory.) Now assume that we 
have tested H2 by the test E (Fizeau’s experiment, or double refraction) but not that 
part of H1 which goes beyond H2. In this case we shall say that c(H1, E) < c(H2, E), in 
spite of the greater corroborability of H1. For H1 contains a part, not yet tested, which 
may be refuted at the first test we undertake. But if E tests this latter part also (as does 
Herz’s experiment) then we have c(H1, E) > c(H2, E), provided the test was 
successful, and sufficiently severe. (Popper 1983, p. 250) 

  
It is true that there are cases where Popper prefers the stronger and thus less probable 
hypothesis over the weaker and thus more probable hypothesis. But, as is suggested by 
																																																								
22 Sober (2015, p. 96) notes in effect that this is true in the special case where (a) H1 
entails H2 but not vice versa and (b) each of H1 and H2 entails E. Festa (2012, sec. 3, p. 
97) goes farther and notes that it is true in general and thus not just in special cases. His 
argument, though, contains a minor mistake (which is perhaps merely typographical). He 
(2012, sec. 2, p. 93) claims that: 
 

p(H | E)− p(H )
p(H | E)+ p(H )− p(H | E)p(H )

=

p(E |H )
p(E)

−1

p(E |H )
p(E)

− p(H )+1
 

 

This is wrong. The denominator on the right should be 
p(E |H )
p(E)

1− p(H )( ) +1.  
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the passage above, the cases in question are not cases where the evidence is entailed by 
both the stronger hypothesis and the weaker hypothesis. The cases in question, rather, are 
cases where the evidence is entailed by the stronger hypothesis but not by the weaker 
hypothesis (where, that is, the evidence tests the part of the stronger hypothesis that goes 
beyond the weaker hypothesis). Let H1 be the stronger hypothesis and H2 be the weaker 
hypothesis. Popper has in mind cases where p(E | H1) = 1 > p(E | H2) and thus where p(E | 
H1)/p(E) > p(E | H2)/p(E). But no such case is a case where the antecedents of ME, MI, 
and RME hold. This means that Popper’s preference for the less probable over the more 
probable, when properly understood, in no way requires RME.23 
 
 
8 Conclusion 
 
Is RME plausible as an adequacy condition on confirmation measures when c(H, E) is 
understood as measuring the degree to which E increases H’s probability, or when c(H, 
E) is understood as measuring the degree to which H’s probability partially depends on 
whether E is true, or when c(H, E) is understood as measuring the degree to which E 
partially entails H, or when c(H, E) is understood as measuring the degree to which E 
partially discriminates between H and ¬H, or when c(H, E) is understood as measuring 
the degree to which E Popper corroborates H? I have argued that the answer is negative. 
Perhaps there is still a place in Bayesian confirmation theory for RME. But, if so, what is 
it? 
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Appendix A 
 
Is PDe distinct from IP? Suppose that: 

																																																								
23 The same is true with respect to “Weak Informativity” and “Strong Informativity” in 
Sprenger (2016, p. 10). For further discussion of PC, and for references, see Rowbottom 
(2011). 
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p(H1 | E1) = 0.99 > p(H1) = 0.98 > p(H1 | ¬E1) = 0.01 
 

p(H2 | E2) = 0.99 > p(H2) = 0.03 > p(H2 | ¬E2) = 0.02 
 
It follows by IP3 that c(H1, E1) < c(H2, E2). It follows by PDe3, in contrast, that c(H1, E1) 
> c(H2, E2). Hence PDe is distinct from IP. QED 
 
 
Appendix B 
 
Is PE distinct from IP and PDe? Suppose that: 
 

p(H1 | E1) = 1 > p(H1) = 0.98 > p(H1 | ¬E1) = 0.01 
 

p(H2 | E2) = 1 > p(H2) = 0.03 > p(H2 | ¬E2) = 0.02 
 
It follows both by IP3 and by PDe3 that c(H1, E1) ≠ c(H2, E2). But since p(H1 | E1) = 1 > 
p(H1) and p(H2 | E2) = 1 p(H2), it follows by PE4, in contrast, that c(H1, E1) = c(H2, E2). 
Hence PE is distinct from IP and PDe. QED 
 
 
Appendix C 
 
Is PDi distinct from IP, PDe, and PE? Suppose, first, that: 
 

p(H1 | E1) = 1 = p(H2 | E2) 
 

p(H1) = 0.5 > 0.49 = p(H2) 
 

p(E1 | H1) = 1 > 0.25 = p(E2 | H2) 
 

p(E1 | ¬H1) = 0 = p(E2 | ¬H2) 
 
It follows by IP3 that c(H1, E1) < c(H2, E2) and by PE4 that c(H1, E1) = c(H2, E2). It 
follows by PDi2, in contrast, that c(H1, E1) > c(H2, E2). Suppose, second, that: 
 

p(H1 | E1) = 0.01 < 0.99 = p(H2 | E2) 
 



 23 

p(H1 | ¬E1) = 0 = p(H2 | ¬E2) 
 

p(E1 | H1) = 1 = p(E2 | H2) 
 

p(E1 | ¬H1) = 0.001 < 0.002 = p(E2 | ¬H2) 
 
It follows by PDe2 that c(H1, E1) < c(H2, E2). It follows by PDi3, in contrast, that c(H1, 
E1) > c(H2, E2). Hence PDi is distinct from IP, PDe, and PE. QED. 
 
 
Appendix D 
 
Is PC distinct from IP, PDe, PE, and PDi? Suppose, first, that E1 entails ¬H1, that E2 
entails ¬H2, and that: 
 

p(H1) = 1/101 < 49/2599 = p(H2) 
 
It follows by IP3 that c(H1, E1) > c(H2, E2). It follows by PC2, in contrast, that c(H1, E1) = 
-1 = c(H2, E2). Suppose, second, that: 
 

p(H1 | E1) = 1 = p(H2 | E2) 
 

p(H1) = 0.5 > 0.49 = p(H2) 
 

p(H1 | ¬E1) = 0 = p(H2 | ¬E2) 
 

p(E1 | H1) = 1 = p(E2 | H2) 
 

p(E1 | ¬H1) = 0 = p(E2 | ¬H2) 
 
It follows by PDe1 that c(H1, E1) = c(H2, E2), by PE4 that c(H1, E1) = c(H2, E2), and by 
PDi1 that c(H1, E1) = c(H2, E2). It follows by PC2, in contrast, that c(H1, E1) = 0.5 < 0.51 
= c(H2, E2). Hence PC is distinct from IP, PDe, PE, and PDi. QED 
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