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Abstract: We conceptualize observation selection effects (OSEs) by considering how a shift from 
one process of observation to another affects discrimination-conduciveness, by which we mean 
the degree to which possible observations discriminate between hypotheses, given the 
observation process at work. OSEs in this sense come in degrees and are causal, where the cause 
is the shift in process, and the effect is a change in degree of discrimination-conduciveness. We 
contrast our understanding of OSEs with others that have appeared in the literature. After 
describing conditions of adequacy that an acceptable measure of degree of discrimination-
conduciveness must satisfy, we use those conditions of adequacy to evaluate several possible 
measures. We also discuss how the effect of shifting from one observation process to another 
might be measured. We apply our framework to several examples, including the ravens paradox 
and the phenomenon of publication bias. 
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1 Introduction 

It is widely recognized that the process used to make observations often has a significant effect 
on how hypotheses should be evaluated in light of those observations. Arthur Stanley Eddington 
(1939, Ch. II) provides a classic example.1 You’re at a lake and are interested in the size of the 
fish in it. You know, from testimony, that at least some of the fish in the lake are big (i.e., at least 
10 inches long), but beyond that you’re in the dark. You devise a plan of attack: get a net and use 
it to draw a sample of fish from the lake. You carry out your plan and observe: 

O100: 100% of the fish in the net are big. 

                                                             
1 Here we introduce some minor modifications to Eddington’s example. 
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You think that O100 is helpful evidence, since it discriminates between at least the following two 
hypotheses of interest: 

H100: 100% of the fish in the lake are big. 

H50: 50% of the fish in the lake are big. 

In particular, O100 seems to you to discriminate between these two hypotheses because it favors 
H100 over H50. But then you see that these first impressions are wrong because you notice that the 
holes in your net are so big that it can’t hold fish that are medium-sized (i.e., at least 5 inches 
long but less than 10 inches long) or small (i.e., less than 5 inches long). You realize, 
furthermore, that had you used a net with small holes, the situation would have been different.2 
Then O100 would discriminate between H100 and H50, since the observation really would favor the 
first hypothesis over the second. 

Your using one net rather than the other makes an epistemic difference. Given your epistemic 
goal of wanting to test the two hypotheses against each other, you are better off using one net 
rather than the other. This is a paradigm case of an observation selection effect (an OSE). 

The net with big holes has a deficiency, but this is only because you are considering 
hypotheses about the size of the fish in the lake. Had you been interested in the color of the big 
fish in the lake, the net with big holes would have worked just fine. Your “interests” can be taken 
out of the picture by putting the point like this: 

Relativity: Whether an observational process p induces an OSE is relative to a set of 
competing hypotheses Ghyp = {H1, H2, …, Hn}. 

In the initial fish example, the OSE involved is extreme. A net with big holes is totally 
useless, whereas a net with small holes works perfectly, given that you observe O100 and are 
considering hypotheses H100 and H50. However, there are plenty of observation processes that fall 
in between. To illustrate the existence of non-extreme cases, we move to a slightly more 
complicated example. Instead of focusing on just two nets (one with big holes, the other with 
small), let’s add a third – a net with medium holes. It retains fish that are medium and large, but 
not fish that are small. And we’ll now consider three possible observations. Each involves 
catching a single fish, which can be big, medium, or small. Call these Ob, Om, and Os; they 
comprise a three-membered set of possible observations Gobs = {Ob, Om, Os}. And, finally, in this 
new example, we’ll set H100 and H50 aside and consider two new hypotheses, namely: 

H50-50-0: 50% of the fish in the lake are big, 50% are medium, and 0% are small. 

H5-5-90: 5% of the fish in the lake are big, 5% are medium, and 90% are small. 

                                                             
2 In saying that the net has “small” holes, we mean that it holds onto fish that are small, medium, 
and large, once they swim into the net. 
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There’s a clear sense in which the net with small holes is better than the net with medium holes, 
which in turn is better than the net with large holes. If you use the net with small holes, all three 
possible observations can occur and each discriminates between the two hypotheses. But use a 
net with medium holes, and only two of the possible observations can occur. Each of these favors 
H50-50-0 over H5-5-90, but the third possible observation, Os, cannot occur. The net with medium-
size holes therefore has a defect, but it is better than the net with large holes, since the latter 
allows only one observation, and that observation fails to discriminate between the two 
hypotheses. This leads to the following conclusion: 

Degree: An observation process p has a degree of discrimination-conduciveness, by which 
we mean the degree to which possible observations discriminate between hypotheses, given 
that p is the process at work. 

This concept of discrimination-conduciveness has the following characteristic: 

Three-Place Relation: Discrimination-conduciveness is a relation among an observation 
process p, a set of hypotheses Ghyp, and a set of possible observations Gobs. 

Discrimination-conduciveness comes in degrees, denoted by “DDC(Ghyp, Gobs | p),” which allows 
us to state a formal point about the character of OSEs: 

Contrastive: The OSE that an observational process p induces on hypotheses Ghyp and      
possible observations Gobs should be understood by comparing DDC(Ghyp, Gobs | p) and 
DDC(Ghyp, Gobs | p*), for some p* ¹ p. 

OSE is a causal concept, and its causal character is captured by the idea that shifting from one 
observation process to another can make a difference in the degree to which possible 
observations discriminate between hypotheses. Here we are using a familiar fact about causal 
claims. To say that C caused E is often shorthand for saying that it was C rather than C* that 
caused E rather than E*.3 What was the effect of using a net with medium holes in the fishing 
example just discussed? This question is under-specified. Do you mean the effect of using a net 
with medium holes rather than a net with large holes? Or do you mean the effect of using a net 
with medium holes rather than a net with small holes? If the former, using the net with medium 
holes improved discrimination-conduciveness. If the latter, using that net reduced discrimination-
conduciveness. 

When there is an OSE, the presence of one observation process rather than another makes a 
difference in discrimination-conduciveness. However, observations can fail to discriminate 
between competing hypotheses even though the use of one observation process rather than 
another makes no difference. Suppose hypotheses H and H* are observationally equivalent to 
each other. You observe that O, and then notice the inevitable: O fails to discriminate between H 

                                                             
3 For discussion of “contrastive causation,” and for references, see Schaffer (2005). 
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and H*. However, this is not an effect, strictly speaking, of whatever observation process led to 
O.4 For, if H and H* are observationally equivalent to each other, no alternative observation 
process could have done any better. Even so, the OSE concept and the concept of observational 
equivalence both address cases in which DDC(Ghyp, Gobs | p) takes the minimum possible value. 

Because discrimination-conduciveness comes in degrees, it will be important to figure out 
how discrimination-conduciveness should be measured. We need to be able to say how much the 
shift from observation process p to observation process p* affects the ability of observations to 
discriminate between hypotheses. This quantitative question is not only theoretically important; 
it also may have important practical applications. For example, nets with small holes are more 
discrimination-conducive than nets with medium holes, which in turn are more discrimination-
conducive than nets with big holes. If the first type of net is more expensive than the second, and 
the second is more expensive than the third, is it worth your while to buy a more expensive net? 
It will help answer this question if you can characterize how discrimination-conducive each type 
of net is. 

For the reader’s convenience, we state definitions in the accompanying table of the three 
main abbreviations we use in what follows. Each represents a concept that stands in need of 
clarification. Later items on the list build on earlier ones. 

 

Abbreviations 

d(H1, H2, O | P) 

the degree to which an observation proposition O 
discriminates between hypotheses H1 and H2, 
given that P is a true appropriate description of the 
observer’s observation process p 

DDC(Ghyp, Gobs | p) 

the degree to which the members of a set Gobs of 
observation propositions discriminate between the 
members of a set Ghyp of hypotheses, given that the 
observer’s observation process is p 

OSE(Ghyp, Gobs | p1 rather 
than p2) 

the degree to which the observer’s using 
observation process p1 rather than p2 affects the 
degree to which the members of the observation 

                                                             
4 We will often write as though observation processes yield propositions as outputs as opposed to 
perceptual beliefs with propositional contents. But, strictly speaking, they don’t do that; they 
yield perceptual beliefs, not propositions, as outputs. 
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set Gobs discriminate between the members of the 
hypothesis set Ghyp 

 

We will proceed as follows. In Section 2, we describe three alternative conceptions of OSEs 
and compare them to the one we endorse. In Section 3, we clarify the idea of hypothesis 
discrimination, and propose an adequacy condition on measures of degree of discrimination-
conduciveness. We call our proposed condition “Minimality.” In Section 4, we consider three 
candidate measures of degree of discrimination-conduciveness. Two are inspired by conceptions 
of OSEs described in Section 2, and the third is inspired by yet another conception in the 
literature. We argue that each of these three candidate measures fails to meet Minimality and so 
is inadequate.5 In Section 5, we describe a schema for measuring degree of discrimination-
conduciveness, and show that any instance of it meets Minimality. We also provide two prima 
facie plausible measures, and compare them to several alternatives. In Section 6, we turn to the 
related issue of how degree of OSE should be measured. In Section 7, we put our general 
framework to work, applying it to an old chestnut in Bayesian confirmation theory − the ravens 
paradox. In Section 8, we do the same but for a newer topic – publication bias.6 In Section 9, we 
offer some concluding comments. 

 

2 Alternative Conceptions of OSEs 

We use the term “OSE” to denote cases in which the presence of one observation process rather 
than another makes a difference in the degree to which observations discriminate between 
competing hypotheses. However, the term has sometimes been used with different meanings. 

For example, Nick Bostrom (2002) uses “OSE” to refer to a bias due to an observer’s mere 
existence. He writes: 

In these examples, a selection effect is introduced by the fact that the instrument you use to 
collect data (a fishing net, a mail survey, preserved trading records) samples only from a 
proper subset of the target domain. Analogously, there are selection effects that arise not 
from the limitations of some measuring device but from the fact that all observations require 

                                                             
5 Since, in part, the measures in question are merely inspired by, as opposed to taken from, 
various writings in which “OSE” is used, our objections to them aren’t meant to tell against 
anything in the writings in question. 
6 These are just two of many potential applications of our general framework. For other potential 
applications, see, for example, Roush (2003) on Kant’s “Copernican revolution,” Ćirković, 
Sandberg, and Bostrom (2010) on estimating the risk of human extinction, Titelbaum (2010) on 
“no-lose” epistemologies, and Dawid (1976) on data-bases and medical diagnosis. 
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the existence of an appropriately positioned observer. Our data is filtered not only by 
limitations in our instrumentation but also by the precondition that somebody be there to 
“have” the data yielded by the instruments (and to build the instruments in the first place). 
The biases that occur due to that precondition—we shall call them observation selection 
effects—are the subject matter of this book. (Bostrom 2002, p. 2, emphasis added) 

Another use of “OSE” that differs from ours comes from Darren Bradley (2011), who uses the 
term to refer to an effect of a sampling procedure on the inferences that can be drawn on the 
basis of samples obtained via that procedure. He writes: 

Whenever a sample is drawn from a population, some particular method must be used. This 
method is the selection procedure. The effect this has on the inference is the (observation) 
selection effect. Eddington's ([1939]) classic example involves fishing with a net. If we catch 
a sample of fish from a lake, and all the fish in the sample are bigger than six inches, this 
appears to confirm the hypothesis that all the fish in the lake are bigger than six inches. But if 
we then find out that the net used cannot catch anything smaller than six inches due to the 
size of its holes, the hypothesis is no longer confirmed. So the inference depends on the 
method of obtaining the sample, i.e. on the selection procedure. (Bradley 2011, p. 324, 
emphasis added) 

A third construal is presented by Manson (2003, 2009) and White (2003), who think that OSEs 
arise precisely when the observation process ensures that some possible observation cannot 
occur. 

We see no substantive disagreement among Bostrom, Bradley, Manson, and White and 
ourselves if each is simply stipulating what he means by “OSE.” They have their usages and we 
have ours. However, even if stipulation is the name of the game,7 it is important to be clear on 
how our OSE concept differs from these others. 

When you fish with a net that has big holes, the OSE derives from the net used, not from the 
mere existence of an observer. For us, this example is a paradigm case of an OSE; according to 
Bostrom’s stipulation, it is nothing of the kind. 

To see how our picture differs from Bradley’s, suppose you enter a room and want to find out 
whether the walls are red or white. You carefully scan each wall in its entirety and note that the 
walls look red. You take this datum to favor the hypothesis that the walls are red over the 

                                                             
7 An alternative to stipulation is explication (see Carnap 1950, Maher 2007, Olsson 2015, and 
Schupbach forthcoming); here you revise a concept already in use with the goal of making it 
clearer and more precise. Explications can be undertaken for concepts that are part of a widely 
used natural language, but they also have their place for concepts used by narrower populations – 
e.g. groups of scientists or philosophers. We think it makes sense to explicate the OSE concept, 
but won’t defend the claim that our account of OSEs is a good explication. 
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hypothesis that they are white. But then you learn that the walls are lit by red lights in such a way 
that the walls would look red whether they were red or white. Call this case “RED LIGHTS.” It 
does not involve a literal sampling of objects from a population of objects (as was true in the 
fishing examples), so it does not involve an OSE in Bradley’s sense.8 However, it is an OSE in 
our sense, since the fact that there are red lights (rather than normal lighting) diminishes the 
ability of your sense impressions (or propositions describing them) to discriminate between 
competing hypotheses. 

Turning now to Manson and White, we note that our three fish stories align well with their 
usage. If the fish in the lake come in three categories – big, medium, and small – and you’re 
going to catch just one fish, then there are three possible observations if you use a net with small 
holes, two possible observations if you use a net with medium holes, and just one possible 
observation if you use a net with large holes. Increasingly severe OSEs reflect more and more 
possible observations receiving a probability of zero. 

Even so, there are other examples of OSEs in our sense in which shifting from one 
observation process to another leaves unchanged the number of possible observations that can 
occur. Suppose you’re a doctor, and Joe is your patient. You want to test him for tuberculosis, so 
you use your tuberculosis test kit k. There are two hypotheses about Joe (he has tuberculosis, or 
he does not) and two possible observational outcomes (positive and negative). Suppose this test 
kit has small error probabilities. This means that if Joe has tuberculosis, he’ll almost certainly 
have a positive test result, and if he doesn’t have tuberculosis, he’ll almost certainly have a 
negative test result. Now let’s compare test kit k with an alternative test kit k*. When the latter is 
used on a given patient, a randomizing device inside the kit flips a fair coin. If the coin comes up 
heads, k* says that the patient has tuberculosis. If the coin doesn’t come up heads, k* says that 
the patient does not have tuberculosis. Call this case “TUBERCULOSIS.” Shifting from test kit 
k to test kit k* induces an OSE in our sense, but neither of the possible observations has its 
probability plunge to zero.9 

                                                             
8 We don’t deny that there are models of this example according to which your experience is the 
result of sampling from a population of possible experiences (see Bradley 2011). However, these 
are mere models and shouldn’t be taken literally. 

9 Here’s another example that leads to the same conclusion. People with normal binocular vision 
can detect the presence of objects in a visual field of about 180 degrees when their heads are 
stationary. Strokes and other injuries can cause peripheral blindness so that the chance of 
detecting objects in the periphery (i.e., outside of, say, 150 degrees) goes to zero. This would 
induce an OSE both in our sense and in the sense of ruling out possible observations. But now 
imagine a less extreme case where a stroke or other injury merely lowers the probability of 
detecting objects in the periphery to some value close to but greater than zero. This would induce 
an OSE in our sense but not in the sense of ruling out possible observations. 
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Although our usage of “OSE” isn’t universal, it isn’t entirely idiosyncratic, either. In fact, it 
is inspired by the meaning that Eddington (1939) assigns to “selective effect” (and “selection”). 
He doesn’t restrict selective effects in his sense to effects of a sampling procedure, as is clear 
from the following passages: 

It seems appropriate to call the philosophical outlook that we have here reached selective 
subjectivism. “Selective” is to be interpreted broadly. I do not wish to assert that the 
influence of the procedure of observing on the knowledge obtained is confined to simple 
selection, like passing through a net. (Eddington 1939, p. 26, emphasis added) 

In introducing subjective selection (p. 16), I attributed it to “the sensory and intellectual 
equipment” used in obtaining observational knowledge. The inclusion of intellectual 
equipment may have seemed surprising. It is easy to see that our sensory equipment has 
a selective effect—that the nature and extent of our knowledge of the external world must be 
largely conditioned by its lines of communication with consciousness, provided by our sense 
organs. … (Eddington 1939, p. 114, emphasis added) 

By “subjective” he seems to mean something like “dependent on an observation process.”10 
Eddington (1939, Ch. II) also notes that selective effects are relative to hypothesis sets. Our 
usage of “OSE” is identical to his usage of “selective effect” on each of these two fronts. 

    If you think that nets with big holes can induce OSEs, that there is an OSE in the case of 
RED LIGHTS, and that the same is true in TUBERCULOSIS, then you’ll be inclined to 
conclude that the stipulated meanings that Bostrom, Bradley, Manson, and White introduce for 
their OSE concepts are too narrow. But perhaps you have no preconceptions concerning how this 
terminology should be used. In that case, you perhaps will grant that OSEs in Bostrom’s, 
Bradley’s, Manson’s, and White’s senses are epistemically interesting. It’s crucial to note, 
however, that observation processes have effects on hypothesis discrimination additional to the 
ones they identify. OSEs in our sense cover effects of exactly that sort, and are worthy of careful 
consideration in and of themselves. We now turn to the task of fleshing out the idea that OSEs 
are matters of degree and that they involve shifts from one observation process to another that 
affect discrimination-conduciveness. 

 

 

 

                                                             
10 See, for example, Eddington (1939, p. 66). This way of understanding “subjective” is 
compatible with what we say in Section 3 about “true” descriptions of observation processes and 
about “objective” probabilities. 
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3 Minimality 

In describing our three examples of net fishing, we used the terms “favoring” and 
“discrimination,” but we did not explain what we mean by these terms. It now is time for us to 
put some cards on the table. 

When you fish with a net that has big holes (FISH-B), O100 fails to discriminate between H100 
and H50 in that 

(3.1) Pr(O100 | PB & H100) = Pr(O100 | PB & H50). 

Here “PB” is a true appropriate description of your observation process in FISH-B.11 In contrast, 
when you fish with a net that has small holes (FISH-S), O100 discriminates between H100 and H50 
in that 

(3.2) Pr(O100 | PS & H100) > Pr(O100 | PS & H50), 

where “PS” is a true appropriate description of your observation process in FISH-S. There’s a 
likelihood equality in FISH-B and a likelihood inequality in FISH-S. 

We are assuming here that hypothesis discrimination is to be understood as follows: 

(3.3) For any hypotheses H1 and H2, observation O, and observation process p, where P 
is a true appropriate description of p, O discriminates between H1 and H2 given P 
precisely when Pr(O | P & H1) ¹ Pr(O | P & H2).12 

This condition is inspired by the law of likelihood: 

(3.4) For any hypotheses H1 and H2, observation O, and observation process p, where P 
is a true appropriate description of p, O favors H1 over H2 given P precisely when 
Pr(O | P & H1) > Pr(O | P & H2).13 

                                                             
11 We explain below what we mean by “appropriate.” 

12 This is distinct from the following: 

For any hypotheses H1 and H2, and observation O, O discriminates between H1 and H2 
precisely when Pr(O | H1) ¹ Pr(O | H2). 

Here there’s no explicit mention of an observation process, though the probability function may 
take that relevant fact into account. But then again, it may not. It’s clear from cases like FISH-B 
and FISH-S that the role of observation processes should be made explicit. This can also be done 
by subscripting the probability function, like this: Prp(-). 

13 This is our preferred formulation of the law of likelihood. Hacking (1965) uses a simpler 
formulation. Tricky issues sometimes arise when the law is used in a given case. See Weisberg 
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Propositions (3.3) and (3.4) together entail that if O favors H1 over H2 given P, then O 
discriminates between H1 and H2 given P, but not conversely. Note that a key difference between 
discrimination and favoring is that the former but not the latter is symmetric. O discriminates 
between H1 and H2 given P only if O discriminates between H2 and H1 given P. However, 
favoring is asymmetric in that O favors H1 over H2 given P only if O does not favor H2 over H1 
given P.14,15 

The reader may wonder why we use (3.3) to characterize discrimination rather than say that 
O discriminates between H1 and H2 given P precisely when Pr(H1 | P & O) ¹ Pr(H2 | P & O). The 
reason is that the posterior probabilities in this last inequality typically depend on the prior 
probabilities of the hypotheses mentioned, whereas the likelihoods used in (3.3) typically do not. 
For example, a tuberculosis test kit has error probabilities that do not depend on how common or 
rare the disease is. 

When is P an “appropriate” description of p? This is a delicate question, but there are clear 
examples of inappropriate descriptions. In FISH-S, if the hypothesis set is Ghyp = {H100, H50}, and 
the observation set is Gobs = {O100, O50}, each observation discriminates between the two 
hypotheses, and this marks a difference between FISH-S and FISH-B. But suppose you use a net 
with small holes, learn O100, and then describe the process of observation like this: “sampling 
fish from the lake with a net with small holes and catching 10 fish each of which is big.” Given 
this description of the process, the two hypotheses confer the same probability on the 
observation. The lesson here is that the process outcome (the observation yielded) shouldn’t be 
“packed into” the process description, on pain of entailing the nihilistic thesis that observations 
never discriminate between hypotheses.16,17 

We require that P be a true description of p because we are interested in the discrimination-
conduciveness of your actual observation process, and not the discrimination-conduciveness of 
what you believe your process to be. If, for example, your net has big holes but you believe 

                                                             
(2005) and Kotzen (2012) for discussion. We believe that each issue can be adequately resolved, 
but this isn’t the place to work out the details. See Sober (2009, 2018) for relevant discussion. 

14 The term “favoring” is sometimes used with a meaning that differs from the one used in 
(3.4). See Sober (2008, p. 36) for discussion. 
15 Discrimination is also distinct from “confirmation” in the sense of increase in probability. We 
return to this point in Section 5.3. 

16 There are other, and more subtle, caveats concerning when a process description is 
appropriate. See Sober (2009, 2018) for discussion. See also Eddington (1939, Ch. II, p. 20). 
17 A similar point has been made about the appropriate description of a system’s state at a given 
time in the context of defining determinism (see Berofsky 1971 and Earman 1986). 
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otherwise, the fact remains that the members of Gobs fail to discriminate between the members of 
Ghyp (where the hypotheses concern the size of the fish in the lake), given your actual observation 
process.18 So P should be a true description of p.19 

We mean for the likelihoods that describe p’s degree of discrimination-conduciveness to be 
understood as objective probabilities in that they’re independent of the observer’s (and everyone 
else’s) actual credences. For example, even if, in FISH-B, your credence in O100 given P and H100 
is greater than your credence in O100 given P and H50, this wouldn’t change the fact that your 
observation process is not at all discrimination-conducive.20 

How is degree of discrimination to be measured? We use “d(H1, H2, O | P)” to denote the 
degree to which, given P, O discriminates between hypotheses H1 and H2. We assume that any 
adequate measure of degree of discrimination should meet each of the following conditions: 

(3.5) For any hypotheses H1 and H2, observation O, and observation process p, where P 
is a true appropriate description of p, d(H1, H2, O | P) = d(H2, H1, O | P). 

(3.6) For any hypotheses H1 and H2, observation O, and observation process p, where P 
is a true appropriate description of p, d(H1, H2, O | P) is minimal (i.e., takes the 
minimum possible value) precisely when Pr(O | P & H1) = Pr(O | P & H2). 

At this point, we don’t assume any particular measure meeting these conditions.21 

It’s important to distinguish between cases of “fragile non-discrimination” and cases of 
“robust non-discrimination.” The former are cases in which 

                                                             
18 Compare: there can be cases where an observer’s perceptual belief-forming processes are 
unreliable, and yet her information suggests otherwise. 

19 The issues discussed in this and the prior paragraph concern the “right-hand” sides (the 
conditioning sides) of the likelihoods in (3.3). There are also issues concerning the “left-hand” 
sides. For example, there’s the issue of whether, as per the Requirement of Total Evidence, O 
should be the logically strongest true description of what you observed. See Barrett and Sober 
(forthcoming) and Epstein (2017) for a recent exchange on this issue. 

20 There are several interpretations of objective probability. These include propensity 
interpretations, frequency interpretations, and rational-credence interpretations. For helpful 
discussion, see Hájek (2012). We do not assume any particular interpretation. Indeed, we do not 
even assume that a reductive interpretation is needed; see Sober (2000, Ch. 3, sec. 3.2) on the 
“no-theory theory of probability.” 

21 We will return to this issue in Section 5.2. 
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(3.7) Pr(Oa | P & Hj) = Pr(Oa | P & Hk) for all j and k where Oa is the actual 
observation yielded by p, but Pr(Oi | P & Hj) ¹ Pr(Oi | P & Hk) for some j and k 
where i ¹ a. 

The latter are cases where: 

(3.8) Pr(Oi | P & Hj) = Pr(Oi | P & Hk) for all i, j, and k. 

Fragile non-discrimination is an unfortunate fact of experimental life. Sometimes perfectly good 
observation processes yield a non-discriminating observation, as when random sampling from an 
urn yields 50% green balls and the two hypotheses are “52% of the balls in the urn are green” 
and “48% of the balls in the urn are green.” Robust non-discrimination is a horse of a different 
color. Here the actual observation yielded is non-discriminating, and so too is every other 
member of the observation set at issue. 

We now can state our first adequacy condition on measures of degree of discrimination-
conduciveness: 

Minimality: For any hypothesis set Ghyp = {H1, H2, …, Hn}, observation set Gobs = {O1, O2, 
…, Om}, and observation process p, where P is a true appropriate description of p, DDC(Ghyp, 
Gobs | p) is minimal precisely when d(Hi, Hj, Ok | P) is minimal for all i, j, and k. 

In other words, the minimum possible degree of discrimination-conduciveness arises precisely 
when there’s robust non-discrimination. Notice that “d(-)” denotes the degree of discrimination 
that a single observation provides whereas “DDC(-)” denotes the degree of discrimination 
provided by a set of possible observations. In addition d(-) concerns two hypotheses, whereas 
DDC(-) concerns sets of hypotheses that may be larger. 

We aren’t assuming that hypothesis sets or observation sets must be partitions (i.e., sets of 
mutually exclusive and jointly exhaustive propositions), though we are assuming that they are 
sets of mutually exclusive propositions.22 However, if Ghyp is a partition, then it follows from 
Minimality that DDC(Ghyp, Gobs | p) is minimal precisely when: 

(3.9) Pr(Oi | P & Hj) = Pr(Oi | P) for all i and j.23 

                                                             
22 It’s straightforward to turn non-partitions into partitions. Take Ghyp = {H1, H2, …, Hn}, and 
suppose it’s not a partition. Now add to Ghyp the “catch-all” hypothesis ~(H1 Ú H2 Ú … Ú Hn). 
The result is a partition: G*hyp = {H1, H2, …, Hn, ~(H1 Ú H2 Ú … Ú Hn)}. However, this 
procedure for constructing a partition often runs into the problem that likelihoods for catch-all 
hypotheses are unavailable (perhaps even undefined). For this reason, we want to allow for cases 
where the hypothesis sets of interest aren’t partitions. 

23 This is shown in Appendix A. 
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This means that p “takes over” and completely shuts out each member of Ghyp; P “screens off” 
Ghyp from Gobs in that, given P, no member of Ghyp has any impact on the probability of any 
member of Gobs.24 It doesn’t follow from Minimality, though, that DDC(Ghyp, Gobs | p) is minimal 
precisely when (3.9) holds. In fact, there are cases where Ghyp is not a partition, d(Hi, Hj, Ok | P) 
is minimal for all i, j, and k, and (3.9) is false.25 

We considered a case in Section 1 where the hypotheses of interest are observationally 
equivalent to each other. Any such case is a case of robust non-discrimination and so by 
Minimality is a case where DDC(Ghyp, Gobs | p) is minimal. This is the right result. The issue 
here is degree of discrimination-conduciveness as opposed to degree of OSE. When two 
hypotheses are observationally equivalent, no observation can discriminate between them, even 
though the situation would be the same if some alternative observation process were used. 

 

4 How Not to Measure Degree of Discrimination-Conduciveness 

Here we construct three candidate measures of degree of discrimination-conduciveness and 
address the question of whether they meet Minimality. All are inspired by the extant literature 
on OSE concepts. We say “inspired by” rather than “found in” because the authors whose work 
we use here do not provide a measure; they treat OSEs as an on/off phenomenon. We argue that 
each of these candidate measures fails to meet Minimality and thus is inadequate. We then offer 
a brief diagnosis and suggest a way forward. 

 

4.1 DDCROO*, DDCBSP*, and DDCCLV* 

We noted in Section 2 that our usage of the expression “OSE” differs from usages that others 
have employed. Here we want to examine whether those alternative usages, or usages inspired by 
them, can be fashioned into an adequate measure of degree of discrimination-conduciveness. 

First there’s the suggestion that OSEs occur precisely when p rules out at last one member of 
Gobs: 

ROO(Ghyp, Gobs | p): Pr(Oi | P) = 0 for some i. 

                                                             
24 There are different ways of talking about screening-off. Our claim could instead be put like 
this: P screens off each member of Ghyp from each member of Gobs in that, given P, no member of 
Ghyp has any impact on the probability of any member of Gobs. This is just a terminological 
matter. 

25 This is shown in Appendix B. 
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Second there’s the suggestion that OSEs occur precisely when there is a biased sampling 
process: 

BSP(Ghyp, Gobs | p): p is a biased (non-random) sampling process with respect to the 
population at issue in the hypotheses in Ghyp. 

There’s a third proposal in the literature to the effect that OSEs occur precisely when a “simple” 
likelihood value changes when p is taken into account: 

CLV(Ghyp, Gobs | p): Pr(Oi | P & Hj) ¹ Pr(Oi | Hj) for some i and j.26 

By “simple” we mean “not conditioned on P.” Can any of ROO, BSP, and CLV be used to 
develop an adequate measure of degree of discrimination-conduciveness?27 

An initial difficulty is that none of ROO, BSP, and CLV is a matter of degree. Each either 
holds in a given case or does not; there is no middle ground. This difficulty can be remedied by 
constructing the following variants: 

ROO*(Ghyp, Gobs | p): the percentage of Oi in Gobs such that Pr(Oi | P) = 0. 

BSP*(Ghyp, Gobs | p): the extent to which p is a biased sampling process with respect to the 
population at issue in the hypotheses in Ghyp. 

CLV*(Ghyp, Gobs | p): the average degree of change from Pr(Oi | Hj) to Pr(Oi | P & Hj) for all i 
and j. 

It’s not immediately clear how exactly to measure BSP* or CLV*. But clearly they come in 
degrees, and so does ROO*. 

This is a start, but a patch is needed. As stated, each of ROO*, BSP*, and CLV* is 
inadequate when understood as a measure of degree of discrimination-conduciveness. Take 
ROO* for example, and suppose that: 

(4.1.1) Pr(Oi | P) = 0 for all i. 

It follows that ROO*(Ghyp, Gobs | p) is maximal at 1. Given (4.1.1), though, it follows that: 

(4.1.2) Pr(Oi | P & Hj) = 0 = Pr(Oi | P & Hk) for all i, j, and k. 

Hence by Minimality it follows that DDC(Ghyp, Gobs | p) is minimal and thus not maximal. 

There’s an easy fix here. Consider: 

                                                             
26 See, e.g., Sober (2003, 2009) and Roberts (2012). 
27 We don’t see a way to turn Bostrom’s OSE concept into a matter of degree, which is why we 
don’t try to do so here. 
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DDCROO*(Ghyp, Gobs | p): 1 - ROO*(Ghyp, Gobs | p). 

DDCBSP*(Ghyp, Gobs | p): 1 - BSP*(Ghyp, Gobs | p). 

DDCCLV*(Ghyp, Gobs | p): 1 - CLV*(Ghyp, Gobs | p). 

Here DDCROO*(Ghyp, Gobs | p) is a decreasing function of ROO*(Ghyp, Gobs | p), DDCBSP*(Ghyp, 
Gobs | p) is a decreasing function of BSP*(Ghyp, Gobs | p), and DDCCLV*(Ghyp, Gobs | p) is a 
decreasing function of CLV*(Ghyp, Gobs | p). So, for example, when (4.1.1) holds, DDCROO*(Ghyp, 
Gobs | p) is minimal at 0, which is just as it should be. 

Each of DDCROO*, DDCBSP*, and DDCCLV* has some prima facie plausibility as a measure 
of degree of discrimination-conduciveness. This is because lower degrees of discrimination-
conduciveness often come with higher values of ROO*, higher values of BSP*, and higher 
values of CLV*. However, do DDCROO*, DDCBSP*, and DDCCLV* satisfy the requirement of 
Minimality? 

 

4.2 DDCROO* and Minimality 

Here we draw on the tuberculosis example from Section 2. Let Ghyp = {Ht, H~t} and Gobs = {Ot, 
O~t}, where: 

Ht: Joe has tuberculosis. 

H~t: Joes does not have tuberculosis. 

Ot: k* says that Joe has tuberculosis. 

O~t: k* says that Joe does not have tuberculosis. 

Recall that k* isn’t much of a test kit. When used on a given patient, a randomizing device inside 
of k* flips a fair coin. If the coin comes up heads, k* says that the patient has tuberculosis. If the 
coin doesn’t come up heads, k* says that the patient doesn’t have tuberculosis. Suppose you use 
k* on Joe, and it tells you that he has tuberculosis. It follows that neither Ot nor O~t discriminates 
between Ht and H~t:  

(4.2.1) Pr(Ot | P & Ht) = ½ = Pr(Ot | P & H~t) 

(4.2.2) Pr(O~t | P & Ht) = ½ = Pr(O~t | P & H~t) 

But it also follows that neither Ot nor O~t is ruled out by p: 

(4.2.3) Pr(Ot | P) = ½ = Pr(O~t | P) 

Given (4.2.3), DDCROO*(Ghyp, Gobs | p) is maximal. But given (4.2.1) and (4.2.2), it follows by 
Minimality that DDC(Ghyp, Gobs | p) is minimal. DDCROO* therefore fails to meet Minimality.  
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4.3 DDCBSP* and Minimality 

Now let’s return to RED LIGHTS from Section 2. You’re about to enter a room. Let Ghyp = {Hr, 
Hw} and Gobs = {Or, Ow}, where: 

Hr: The walls in the room are red. 

Hw: The walls in the room are white. 

Or: The walls in the room look red to you. 

Ow: The walls in the room look white to you. 

You carefully scan each wall in its entirety and come to learn that Or. But, unbeknownst to you, 
the walls in the room are lit by red lights in such a way that the walls would look red whether 
they were red or white. It follows (given natural assumptions) that this is a case of robust non-
discrimination: 

(4.3.1) Pr(Or | P & Hr) = 1 = Pr(Or | P & Hw) 

(4.3.2) Pr(Ow | P & Hr) = 0 = Pr(Ow | P & Hw) 

Hence by Minimality it follows that DDC(Ghyp, Gobs | p) is minimal. However, your observation 
process isn’t a sampling process and thus it isn’t a biased sampling process. There’s no literal 
population from which you’ve extracted member objects. Given this, DDCBSP*(Ghyp, Gobs | p) is 
either maximal or undefined. Thus DDCBSP*, like DDCROO*, fails to meet Minimality.  

 

4.4 DDCCLV* and Minimality 

Imagine a variant of TUBERCULOSIS where it’s a matter of chance which test kit you will use 
on Joe. You are going to flip a fair coin. If it comes up heads, you will use k (the good test kit) 
on Joe, where k is such that: 

(4.4.1) Pr(Ot | Pk & Ht) = 0.99 

(4.4.2) Pr(O~t | Pk & H~t) = 0.95 

If, instead, the coin doesn’t come up heads, you will use the totally useless kit k* (the bad test 
kit, as described in Section 2) on Joe. It follows that: 

  

  

(4.4.3) Pr(Ot | Ht )= Pr(Pk | Ht )Pr(Ot | Pk & Ht )+ Pr(Pk* | Ht )Pr(Ot | Pk* & Ht )
= (0.5)(0.99)+ (0.5)(0.5)
= 0.745
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Suppose you flip the coin and it comes up heads. You then use k* on Joe, and it says that he has 
tuberculosis. Call this case “TUBERCULOSIS-FLIP.” DDCCLV*(Ghyp, Gobs | pk*) is given by the 
average of the following: 

(4.4.5) the degree of change from Pr(Ot | Ht) = 0.745 to Pr(Ot | Pk* & Ht) = 0.5 

(4.4.6) the degree of change from Pr(O~t | Ht) = 0.255 to Pr(O~t | Pk* & Ht) = 0.5 

(4.4.7) the degree of change from Pr(Ot | H~t) = 0.275 to Pr(Ot | Pk* & H~t) = 0.5 

(4.4.8) the degree of change from Pr(O~t | H~t) = 0.725 to Pr(O~t | Pk* & H~t) = 0.5 

We noted in Section 4.1 that it’s not immediately clear how to measure CLV*. It’s clear, though, 
that this is not a case where CLV* is maximal.28 Hence DDCCLV*(Ghyp, Gobs | pk*) isn’t minimal. 
Now consider just the second probabilities in (4.4.5)-(4.4.8). Since the second probabilities in 
(4.4.5) and (4.4.7) are equal to each other, and the same is true of the second probabilities in 
(4.4.6) and (4.4.8), it follows by Minimality that DDC(Ghyp, Gobs | pk*) is minimal. This means 
that DDCCLV*, like the first two candidate measures, fails to meet Minimality.29  

 

4.5 Diagnosis 

DDCROO*, DDCBSP*, and DDCCLV* sometimes violate Minimality because each measures 
something that isn’t fully determined by the various degrees to which, given P, the members of 
Gobs discriminate between the members of Ghyp. For example, DDCROO* measures the percentage 
of ruled-out observations, but the percentage of ruled-out observations isn’t fully determined by 

                                                             
28 If TUBERCULOSIS-FLIP were changed so that, say, Pr(Ot | Pk & Ht) = 0.999 and Pr(O~t | Pk 
& H~t) = 0.995, then each of the four degrees of change at issue would be greater, and so the 
average degree of change would be greater. It follows that TUBERCULOSIS-FLIP isn’t a case 
where CLV* is maximal. 
29 It might be insisted that DDCCLV* should be understood so that Pr(Oi | Hj) is elliptical for 

Pr(Oi | P* & Hj), 

where P* is what the observer takes to be a true appropriate description of p. But this wouldn’t 
help. To see why, return to RED LIGHTS, and suppose you’re aware of the red lights so that P* 
= P. It follows by DDCCLV* on this new way of understanding it that the degree of 
discrimination-conduciveness is maximal. This isn’t the right result. 

  

(4.4.4) Pr(Ot | H~t ) = Pr(Pk | H~t )Pr(Ot | Pk & H~t )+ Pr(Pk* | H~t )Pr(Ot | Pk* & H~t )
= (0.5)(0.05)+ (0.5)(0.5)
= 0.275
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the various degrees to which, given P, the members of Gobs discriminate between the members of 
Ghyp. This follows from the fact that some cases of robust non-discrimination, for example, 
FISH-B and TUBERCULOSIS-FLIP, differ from each other in terms of the percentage of ruled 
out observations. What’s needed, we suggest, is a measure of degree of discrimination-
conduciveness that directly measures something that’s fully determined by the various degrees to 
which, given P, the members of Gobs discriminate between the members of Ghyp. 

 

5 How to Measure Degree of Discrimination-Conduciveness 

This section is divided into four subsections. In Section 5.1, we develop a schema for measuring 
degree of discrimination-conduciveness, and argue that any instance of it meets Minimality. In 
Section 5.2, we describe two prima facie plausible instances of our schema. In Section 5.3, we 
consider some alternative measures of discrimination-conduciveness, and argue that they are 
inferior to the two measures from Section 5.2. In Section 5.4, we give a brief summary of our 
main findings. 

 

5.1 Average Degree of Discrimination 

Consider: 

    

Here Ghyp = {H1, H2, …, Hn} is some hypothesis set, Gobs = {O1, O2, …, Om} is some observation 
set, p is some observation process, where P is a true appropriate description of p, and d(Hi, Hj, 
Ok | P) is some measure of degree of discrimination. DDCADD(Ghyp, Gobs | p) is the average degree 
to which, given P, the members of Gobs discriminate between the members of Ghyp. The subscript 
in “DDCADD” is short for Average Degree of Discrimination. 

An illustration is in order. Let Ghyp = {H1, H2, H3} and Gobs = {O1, O2, O3}. Then: 

 

Notice that the sum on the right includes d(H1, H2, O1 | P) but not d(H2, H1, O1 | P). This is 
because degree of discrimination is symmetric (as noted in Section 3), and so it would be double 
counting to include both. 

DDCADD(Γhyp ,Γobs | p) :
d(Hi,H j,Ok | P)i<j∑
(m) (i)

i=1

i=n−1

∑

   
DDCADD(Γhyp ,Γobs | p) =

d(H1,H2,O1 | P)+ d(H1,H3,O1 | P)+ d(H2,H3,O1 | P)+

d(H1,H2,O2 | P)+ d(H1,H3,O2 | P)+ d(H2,H3,O2 | P)+

d(H1,H2,O3 | P)+ d(H1,H3,O3 | P)+ d(H2,H3,O3 | P)
9
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DDCADD isn’t itself a measure of degree of discrimination-conduciveness. Rather, it’s just a 
schema for measuring degree of discrimination-conduciveness. There are different ways of 
measuring degree of discrimination d(-), and different such measures lead to different instances 
of DDCADD. 

We assume here and throughout that any instance of DDCADD is such that the underlying 
measure of degree of discrimination meets both (3.5) and (3.6) from Section 3. The former is the 
symmetry condition that d(H1, H2, O | P) = d(H2, H1, O | P); the latter is the condition that d(H1, 
H2, O | P) is minimal precisely when Pr(O | P & H1) = Pr(O | P & H2). 

It’s easy to see that every instance of DDCADD (so understood) meets Minimality. Let 
DDCADD-X be some arbitrary instance of DDCADD, where degree of discrimination is measured 
by dX. First, suppose that dX(Hi, Hj, Ok | P) is minimal for all i, j, and k. Then since DDCADD-

X(Ghyp, Gobs | p) is an average of degrees of discrimination where each degree is minimal, it 
follows that DDCADD-X(Ghyp, Gobs | p) itself is minimal. Second, suppose that DDCADD-X(Ghyp, 
Gobs | p) is minimal. Since DDCADD-X(Ghyp, Gobs | p) is an average of degrees of discrimination, it 
is minimal only if each degree of discrimination is minimal. Thus dX(Hi, Hj, Ok | P) is minimal 
for all i, j, and k. In conformity with Minimality, DDCADD-X(Ghyp, Gobs | p) is minimal precisely 
when dX(Hi, Hj, Ok | P) is minimal for all i, j, and k. 

Now let’s return to our diagnosis of why DDCROO*, DDCBSP*, and DDCCLV* sometimes 
violate Minimality, and our suggestion that what’s needed is a measure of degree of 
discrimination-conduciveness that directly measures something that’s fully determined by the 
various degrees to which, given P, the members of Gobs discriminate between the members of 
Ghyp. Every instance of DDCADD is a measure of exactly that sort. This is why no instance of 
DDCADD has trouble with Minimality. 

It’s hardly surprising, on reflection, that every instance of DDCADD meets Minimality. We 
don’t mean to suggest otherwise. The important point is that, whether surprising or not, every 
instance of DDCADD satisfies this condition of adequacy. 

It won’t suffice, though, to rest content with DDCADD. There’s still the issue of how to 
measure degree of discrimination. We turn to that issue now. 

 

5.2 DDCADD-AD and DDCADD-SD 

There are numerous measures of degree of discrimination in logical space. We want to focus on 
these: 

 

dAD(H1,H2,O | P)= Pr(O | P&H1)−Pr(O | P&H2)

   
dSD(H1,H2,O | P) = Pr(O | P & H1)−Pr(O | P & H2 )⎡

⎣
⎤
⎦
2
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The subscript in “dAD” is short for “Absolute Difference.” The subscript in “dSD” is short for 
“Squared Difference.” 

Do dAD and dSD meet (3.5) and (3.6)? They meet (3.5) since absolute differences and squared 
differences are order-invariant. And they meet (3.6) because absolute differences and squared 
differences are minimal at zero precisely when the two values in question are equal to each other. 

Each of dAD and dSD can be used to flesh out DDCADD. If dAD is substituted for d in 
DDCADD, the result is: 

 

If, instead, dSD is substituted for d in DDCADD, the result is: 

 

Each of these measures has a range of [0, 1].30  Since every instance of DDCADD meets 
Minimality, it follows immediately that DDCADD-AD and DDCADD-SD both meet Minimality. 

                                                             
30 If Pr(Ok | P & Hi) = Pr(Ok | P & Hj) for all i, j, and k, then DDCADD-AD(Ghyp, Gobs | p) and 
DDCADD-SD(Ghyp, Gobs | p) are both equal to 0. If Pr(Ok | P & Hi) ¹ Pr(Ok | P & Hj) for some i, j, 
and k, then DDCADD-AD(Ghyp, Gobs | p) and DDCADD-SD(Ghyp, Gobs | p) are both greater than 0. If 
each of Ghyp and Gobs has exactly two members and each member of Ghyp confers a probability of 
1 on a different member of Gobs, then both DDCADD-AD(Ghyp, Gobs | p) and DDCADD-SD(Ghyp, Gobs | 
p) equal 1. If either of Ghyp and Gobs has more than two members, then each of DDCADD-AD(Ghyp, 
Gobs | p) and DDCADD-SD(Ghyp, Gobs | p) is less than 1. If, for example, Ghyp = {H1, H2}, Gobs = {O1, 
O2, O3}, and H1 and H2 maximally disagree on O1 and O2 in that Pr(O1 | H1) = 1 > 0 = Pr(O1 | H2) 
and Pr(O2 | H1) = 0 < 1 = Pr(O2 | H2), then H1 and H2 maximally agree on O3 in that Pr(O3 | P & 
H1) = 0 = Pr(O3 | P & H2) and thus both DDCADD-AD(Ghyp, Gobs | p) and DDCADD-SD(Ghyp, Gobs | p) 
are less than 1. 

DDCADD-AD(Γhyp ,Γobs | p) :
dAD(Hi,H j,Ok | P)i<j∑
(m) (i)

i=1

i=n−1

∑
=

Pr(Ok | P &Hi)−Pr(Ok | P &H j)i<j∑
(m) (i)

i=1

i=n−1

∑

DDCADD-SD(Γhyp ,Γobs | p) :
dSD(Hi,H j,Ok | P)i<j∑
(m) (i)

i=1

i=n−1

∑
=

Pr(Ok | P &Hi)−Pr(Ok | P &H j)⎡
⎣⎢

⎤
⎦⎥
2

i<j∑
(m) (i)

i=1

i=n−1

∑



21 
 

Now consider: 

Dominance: For any hypothesis set Ghyp = {H, ~H}, observation set Gobs = {O, ~O}, and 
observation processes p and p*, where P is a true appropriate description of p, and P* is a 
true appropriate description of p*, if Pr(O | P & H) > Pr(O | P* & H) > Pr(O | P* & ~H) > 
Pr(O | P & ~H), then DDC(Ghyp, Gobs | p) > DDC(Ghyp, Gobs | p*). 

If Pr(O | P & H) > Pr(O | P* & H) > Pr(O | P* & ~H) > Pr(O | P & ~H), then p dominates p* with 
respect to Ghyp and Gobs in that regardless of which member of Gobs is true, the degree to which it 
discriminates between H and ~H given P is greater than the degree to which it discriminates 
between H and ~H given P*. Dominance says that if p dominates p* with respect to Ghyp and 
Gobs, then p’s degree of discrimination-conduciveness with respect to Ghyp and Gobs is greater than 
p*’s degree of discrimination-conduciveness with respect to Ghyp and Gobs. 

It turns out that DDCADD-AD and DDCADD-SD both meet Dominance (in addition to meeting 
Minimality). Take some case where: 

(5.2.1) Pr(O | P & H) > Pr(O | P* & H) > Pr(O | P* & ~H) > Pr(O | P & ~H). 

It follows that: 

(5.2.2) Pr(~O | P & ~H) > Pr(~O | P* & ~H) > Pr(~O | P* & H) > Pr(~O | P & H) 

Given (5.2.1) and (5.2.2), it follows that: 

(5.2.3) dAD(H, ~H, O | P) > dAD(H, ~H, O | P*) 

(5.2.4) dAD(H, ~H, ~O | P) > dAD(H, ~H, ~O | P*) 

(5.2.5) dSD(H, ~H, O | P) > dSD(H, ~H, O | P*) 

(5.2.6) dSD(H, ~H, ~O | P) > dSD(H, ~H, ~O | P*) 

Hence, as per Dominance, DDCADD-AD(Ghyp, Gobs | p) is greater than DDCADD-AD(Ghyp, Gobs | p*), 
and DDCADD-SD(Ghyp, Gobs | p) is greater than DDCADD-SD(Ghyp, Gobs | p*). 

There’s more. DDCADD-AD and DDCADD-SD are ordinally equivalent if the hypothesis sets of 
interest have exactly two members and the observation sets at issue are two-membered 
partitions: 

(5.2.7) For any hypothesis sets Ghyp = {H1, H2} and G*hyp = {H*1, H*2}, observation sets 
Gobs = {O, ~O} and G*obs = {O*, ~O*}, and observation processes p and p*, 
where P is a true appropriate description of p, and P* is a true appropriate 
description of p*, DDCADD-AD(Ghyp, Gobs | p) > / = / < DDCADD-AD(G*hyp, G*obs | 
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p*) if and only if DDCADD-SD(Ghyp, Gobs | p) > / = / < DDCADD-SD(G*hyp, G*obs | 
p*).31 

This is significant, since in many contexts the crucial questions concern relative degrees of 
discrimination-conduciveness as opposed to absolute degrees of discrimination-conduciveness. 

However, ordinal equivalence fails in the general case where the hypothesis sets and the 
observation sets can have more than two members and don’t need to be partitions. There are 
cases, for instance, where Ghyp = {H1, H2}, Gobs = {O1, O2, O3}, G*obs = {O*1, O*2, O*3}, and 
DDCADD-AD(Ghyp, Gobs | p) is less than DDCADD-AD(Ghyp, G*obs | p), whereas DDCADD-SD(Ghyp, Gobs 
| p) is greater than DDCADD-SD(Ghyp, G*obs | p).32 

We see no clear reason at this point for preferring one of our two target measures over the 
other. But that’s okay for our purposes. It isn’t essential here that we defend some particular 
measure of degree of discrimination-conduciveness as superior to all rival measures. We return 
to this issue in Section 9. 

 

5.3 Other Measures of Degree of Discrimination-Conduciveness 

There are numerous measures of degree of discrimination in addition to dAD and dSD. Here is 
one: 

 
The subscript in “dR” is short for “Ratio.” This measure is clearly inadequate. If, say, Pr(O | P & 
H1) > Pr(O | P & H2), then dR(H1, H2, O | P) > dR(H2, H1, O | P). Hence it fails to meet (3.5). If, 
instead, Pr(O | P & H1) = Pr(O | P & H2) > 0, then dR(H1, H2, O | P) = 1, which is greater than its 
minimal value of 0. It thus fails to meet (3.6).33 

                                                             
31 This is shown in Appendix C. 
32 This is shown in Appendix D. 

33 It doesn’t follow that no ratio-based measure of degree of discrimination meets both (3.5) and 
(3.6). Consider: 

 

dR (H1,H2,O | P)=
Pr(O | P&H1)
Pr(O | P&H2)

dR*(H1,H2,O | P)= log
Pr(O | P&H1)
Pr(O | P&H2)
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This result has implications for how degree of discrimination-conduciveness should be 
understood. Consider: 

 

This resembles DDCADD-AD and DDCADD-SD except that the underlying measure of degree of 
discrimination is dR as opposed to dAD or dSD. But DDCADD-R, unlike DDCADD-AD and DDCADD-

SD, fails to meet Minimality. Any case of robust non-discrimination where none of the 
probabilities equals 0 is a case where DDCADD-R(Ghyp, Gobs | p) equals 1. However, DDCADD-

R(Ghyp, Gobs | p) can be less than 1.34  

Now consider the following variant of dAD: 

 

This measure, like dAD and unlike dR, meets both (3.5) and (3.6).35 It is thus at least minimally 
adequate. 

If dAD* is plugged in for d in DDCADD, then the result is: 

                                                             
This is a ratio-based measure. But, unlike dR, it meets both (3.5) and (3.6). The key here is that 

 equals log Pr(O | P & H1) minus log Pr(O | P & H2). 

34 Let Ghyp = {H, ~H} and Gobs = {O, ~O}, and suppose that Pr(O | P & H) = 0 and Pr(O | P & 

~H) = 0.01. Then DDCADD-R(Ghyp, Gobs | p) equals  which is approximately 0.505. 

35 We’re assuming here, for the sake of argument, that Pr(O | P) > 0. If this assumption is 
dropped, then dAD* fails to meet (3.6). For, there are cases where Pr(O | P & H) = 0 = Pr(O | P & 
~H) and thus Pr(O | P) = 0. (3.6) implies that dAD*(H, ~H, O | P) is minimal in such cases. But 
dAD*(H, ~H, O | P) is undefined and thus fails to be minimal. 

DDCADD-R (Γhyp ,Γobs | p) :
dR (Hi,H j,Ok | P)i<j∑
(m) (i)

i=1

i=n−1

∑
=

Pr(Ok | P &Hi)
Pr(Ok | P &H j)

i<j∑

(m) (i)
i=1

i=n−1

∑

   
dAD*(H1,H2,O | P) =

Pr(O | P & H1)−Pr(O | P & H2 )
Pr(O | P)

log
Pr(O | P&H1)
Pr(O | P&H2)

0
0.01
+

1
0.99

2
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This is an instance of DDCADD. So, since every instance of DDCADD meets Minimality, it 
follows that it too meets Minimality.36 Why, then, do we prefer DDCADD-AD and DDCADD-SD 
over DDCADD-AD*? 

Our preference here is based in part on the following: 

Likelihoods: For any hypothesis set Ghyp = {H1, H2, …, Hn}, observation set Gobs = {O1, O2, 
…, Om}, and observation process p, where P is a true appropriate description of p, DDC(Ghyp, 
Gobs | p) is fully determined by Pr(Oi | P & Hj) for all i and j. 

Both DDCADD-AD and DDCADD-SD meet Likelihoods, but DDCADD-AD* does not.37 Given this, 
and given that we want a measure of degree of discrimination-conduciveness on which 
Likelihoods holds, we prefer DDCADD-AD and DDCADD-SD over DDCADD-AD*. 

To explain why we want a measure of degree of discrimination-conduciveness on which 
Likelihoods holds, we return to TUBERCULOSIS, where k (the good test kit) is such that 

(5.3.1) Pr(k says that S has tuberculosis | P & S has tuberculosis) = 0.99 

(5.3.2) Pr(k says that S has tuberculosis | P & S does not have tuberculosis) = 0.05 

Here S is a random member of the population. It follows both by DDCADD-AD and DDCADD-SD 
that DDC(Ghyp, Gobs | p) is high. This is because it follows both by dAD and by dSD that each 
member of Gobs discriminates between the two members of Ghyp to a high degree: 

(5.3.3) dAD(Ht, H~t, Ot | P) = dAD(Ht, H~t, O~t | P) = 0.94 

(5.3.4) dSD(Ht, H~t, Ot | P) = dSD(Ht, H~t, O~t | P) » 0.884 

But things are different with DDCADD-AD*, since whether dAD*(Ht, H~t, Ot | P) and dAD*(Ht, H~t, 
~Ot | P) are high depends on Pr(Ot | P) and thus depends indirectly on Pr(Ht | P) along with the 

                                                             
36 This claim and the prior claim that DDCADD-AD* is an instance of DDCADD are based on the 
assumption noted in footnote 35. Neither claim holds if this assumption is dropped. 

37 This is shown in Appendix E. 

DDCADD-AD*(Γhyp ,Γobs | p) :
dAD*(Hi,H j,Ok | P)i<j∑
(m) (i)

i=1

i=n−1

∑
=

Pr(Ok | P &Hi)−Pr(Ok | P &H j)
Pr(Ok | P)

i<j∑

(m) (i)
i=1

i=n−1

∑
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base-rate of tuberculosis in the population as given by Pr(S has tuberculosis | P). If, say, Pr(S has 
tuberculosis | P) equals 0.1 and so Pr(Ht | P) equals 0.1, then: 

(5.3.5) dAD*(Ht, H~t, Ot | P) » 6.528 > 1.098 » dAD*(Ht, H~t, O~t | P) 

(5.3.6) DDCADD-AD*(Ghyp, Gobs | p) » 3.813 

If, instead, Pr(S has tuberculosis | P) equals 0.5 and thus Pr(Ht | P) equals 0.5, then: 

(5.3.7) dAD*(Ht, H~t, Ot | P) » 1.810 < 1.958 » dAD*(Ht, H~t, O~t | P) 

(5.3.8) DDCADD-AD*(Ghyp, Gobs | p) » 1.883 

This kind of sensitivity to priors seems out of place in the context of degree of discrimination 
(and degree of discrimination-conduciveness). As mentioned earlier (Section 3), a tuberculosis 
test kit’s ability to discriminate between “S has tuberculosis” and “S does not have tuberculosis” 
does not depend on whether tuberculosis is common or rare. Of course the success rate of a 
tuberculosis test kit depends on the frequency of tuberculosis in the population in question. 
However, these relevant features are extrinsic to the test kit. 

It’s important to note that discrimination is distinct from confirmation, where the latter is 
understood so that, given P, O confirms H precisely when Pr(H | P & O) is greater than Pr(H | P). 
This difference is evident from the fact that there are cases where, given P, O discriminates 
between H1 and H2, but confirms neither of them, because Pr(H1 | P & O) is less than Pr(H1 | P), 
and Pr(H2 | P & O) is less than Pr(H2 | P).38 We leave it open that sensitivity to priors is a virtue, 
not a vice, in the context of degree of confirmation (and degree of “confirmation-
conduciveness”). 

This is not the end of the story on alternatives to DDCADD-AD and DDCADD-SD, but we want to 
move forward, using the supposition that DDCADD-AD and DDCADD-SD are preferable to their 
alternatives. 

                                                             
38 Consider a case where a card is randomly drawn from a standard well-shuffled deck of cards. 
Let H1 be the proposition that the card drawn is a Diamond, H2 be the proposition that the card 
drawn is a Heart, and O be the proposition that the card drawn is a Club, a Spade, the Ace of 
Diamonds, the Ace of Hearts, or the King of Hearts. Let P be a true appropriate description of 
your observation process. It follows that: 

Pr(O | P & H1) = 1/13 ¹ 2/13 = Pr(O | P & H2) 

Pr(H1 | P & O) = 1/29 < 1/4 = Pr(H1 | P) 

Pr(H2 | P & O) = 2/29 < 1/4 = Pr(H2 | P) 

Hence, given P, O discriminates between H1 and H2, but confirms neither of them. 
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5.4 Section Summary 

We proposed a framework for measuring degree of discrimination-conduciveness, and set out 
two prima facie plausible instances of it, the absolute difference measure (DDCADD-AD) and the 
squared difference measure (DDCADD-SD). Each satisfies Minimality, Dominance, and 
Likelihoods. Given this, and given that we now see no clear reason for choosing between them, 
we keep both on the table and leave for the future the investigation of whether either is 
preferable to the other (and also whether either is preferable to alternative measures that obey 
Minimality, Dominance, and Likelihoods). 

It will help, though, for ease of presentation in what follows, to focus on just one of them. 
Henceforth when we talk about “DDCADD” we’ll mean DDCADD-AD. None of our main points 
below hinges on this choice between the two measures, this despite the fact that DDCADD-AD and 
DDCADD-SD are not ordinally equivalent. 

We turn now to the related issue of how to measure degree of OSE. 

 

6 How to Measure Degree of OSE 

Recall from Section 1 that there’s a distinction between degree of discrimination-conduciveness 
and degree of OSE. The latter, but not the former, is causal. OSEs arise when changing the 
observation process changes the degree of discrimination-conduciveness. Discrimination-
conduciveness is to the size of a balloon as OSEs are to the amount of air you put into the 
balloon. We have constructed a framework for measuring degree of discrimination-
conduciveness. The task now is to use it as a basis for constructing a measure of degree of OSE. 

A natural idea is to measure degree of OSE in a particular case by taking the difference 
between the two degrees of discrimination-conduciveness in question: 

OSED(Ghyp, Gobs, p1 rather than p2): DDCADD(Ghyp, Gobs | p1) – DDCADD(Ghyp, Gobs | p2) 

If, for instance, you found yourself in FISH-B, and the alternative observation process on hand 
was the one in FISH-S, then the degree of OSE would be given by: 

OSED(Ghyp, Gobs, pB rather than pS): DDCADD(Ghyp, Gobs | pB) – DDCADD(Ghyp, Gobs | pS) 

If, instead, you found yourself in FISH-M, not FISH-B, and the alternative observation process 
on hand was the one in FISH-S, then the degree of OSE would be given by: 

OSED(Ghyp, Gobs, pM rather than pS): DDCADD(Ghyp, Gobs | pM) – DDCADD(Ghyp, Gobs | pS) 

Given that DDCADD(Ghyp, Gobs | pB) is minimal and thus is less than DDCADD(Ghyp, Gobs | pM), it 
follows that though both OSED(Ghyp, Gobs | pB rather than pS) and OSED(Ghyp, Gobs | pM rather than 
pS) are negative, the former is less than the latter. This is just as it should be. The negative effect 
of using pB rather than pS is greater than the negative effect of using pM rather than pS. 
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Another natural idea is to measure degree of OSE in a particular case by taking the ratio of 
the two degrees of discrimination-conduciveness in question: 

 

The right-hand side here is greater than 1 precisely when the right-hand side of OSED is positive. 
However, OSED and OSER are not ordinally equivalent.39 

We see no clear basis for choosing between OSED and OSER. But, as with the fact that 
DDCADD-AD and DDCADD-SD aren’t ordinally equivalent, this is okay for our purposes. We return 
to this issue in Section 9. 

 

7 The Ravens Paradox 

The ravens paradox can be understood in terms of the following three theses: 

Nicod’s Condition: For any object a, and predicates F and G, ("x)(Fx É Gx) is confirmed by 
Fa & Ga. 

Equivalence Condition: For any propositions E, H, and H*, if (i) H and H* are logically 
equivalent to each other and (ii) E confirms H, then E confirms H*. 

Ravens Condition: ("x)(Rx É Bx) is not confirmed by ~Ba & ~Ra, where “Rx” means “x is a 
raven” and “Bx” means “x is black.” 

The alleged paradox is that each of these three theses is prima facie plausible in isolation, but 
they are inconsistent as a set. 

A standard Bayesian response is to reject RC in favor of one or both of the following: 

(7.1) c(("x)(Rx É Bx), ~Ba & ~Ra) = e > n 

(7.2) c(("x)(Rx É Bx), Ra & Ba) >> c(("x)(Rx É Bx), ~Ba & ~Ra) 

Here n is the neutral point between confirmation and disconfirmation (where the evidence 
neither increases nor decreases the probability of the hypothesis), and e is some value very close 
to n. (7.1) says that the degree to which ("x)(Rx É Bx) is confirmed by ~Ba & ~Ra is negligible. 

                                                             
39 This is shown in Appendix F. 

   
OSER (Γhyp ,Γobs | p1 rather than p2 ) :

DDCADD(Γhyp ,Γobs | p1)

DDCADD(Γhyp ,Γobs | p2 )
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(7.2) says that the degree to which ("x)(Rx É Bx) is confirmed by Ra & Ba is much greater than 
the degree to which it is confirmed by ~Ba & ~Ra.40 

Our preferred measures of degree of discrimination-conduciveness and degree of OSE don’t 
bear directly on (7.1) or (7.2), and don’t indicate what to do in light of the fact that the three 
raven theses are jointly inconsistent. However, there is a connection. 

Suppose you want to test the following hypotheses against each other: 

H100: 100% of all ravens are black. 

H50: 50% of all ravens are black. 

Suppose, further, you want to do this by drawing a random sample and determining whether it 
includes any non-black ravens. Should your sample be drawn from the population of ravens? 
Should it instead be drawn from the population of non-black things? Should it instead be drawn 
from some third population? 

Our framework for measuring degree of discrimination-conduciveness can help here. Let p 
be the process of sampling at random from the class of ravens, and p* be the process of sampling 
at random from the class of non-black things. Suppose that if p is used, the observation set is Gobs 
= {O1, O2}, where: 

O1: Ba 

O2: ~Ba 

and suppose that if p* is used, the observation set is G*obs = {O*1, O*2}, where: 

O*1: Ra 

O*2: ~Ra 

It follows that: 

(7.3) Pr(O1 | P & H100) = 1 > 1/2 = Pr(O1 | P & H50) 

(7.4) Pr(O2 | P & H100) = 0 < 1/2 = Pr(O2 | P & H50) 

Given that the class of non-black things is much larger than the class of ravens, it further follows 
that: 

(7.5) Pr(O*1 | P* & H100) = 0 » Pr(O*1 | P* & H50) 

(7.6) Pr(O*2 | P* & H100) = 1 » Pr(O*2 | P* & H50) 

                                                             
40 See Fitelson and Hawthorne (2010) for helpful discussion of Bayesian defenses of (7.1) and 
(7.2). 
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But then: 

(7.7) d(H100, H50, O1 | P) > d(H100, H50, O*1 | P*) 

(7.8) d(H100, H50, O1 | P) > d(H100, H50, O*2 | P*) 

(7.9) d(H100, H50, O2 | P) > d(H100, H50, O*1 | P*) 

(7.10) d(H100, H50, O2 | P) > d(H100, H50, O*2 | P*) 

Hence: 

(7.11) DDCADD(Ghyp, Gobs | p) > DDCADD(Ghyp, G*obs | p*) 

This captures the intuitive idea that p is a better observational process than p* in the context of 
testing H100 and H50 against each other.41 

Sampling at random from the ravens and sampling at random from the non-black things are 
the two obvious observation processes to consider, but there are other possible processes, and 
they also can be evaluated by using our framework.42 It is interesting that the ravens paradox 
provides an example in which it makes sense to compare different observational processes and 
different observation sets relative to a single set of competing hypotheses.43 

Eddington’s fishing example may seem worlds away from the ravens paradox, but they are 
connected by the fact that an observation process can diminish (or enhance!) the extent to which 
observations discriminate between competing hypotheses. 

 

                                                             
41 See Forster (1994) for a similar treatment of the ravens paradox, which is formulated in terms 
of predictive accuracy. 

42 In his discussion of the ravens paradox, Royall (1997, pp. 177-179) considers several sampling 
schemes, but he doesn’t consider sampling at random from the non-black things, nor does he 
consider possible but nonactual observations. 

43 Unsurprisingly, our treatment of the ravens paradox carries over straightforwardly to the grue 
paradox. Let H1 be the hypothesis that all emeralds are green and H2 be the hypothesis that all 
emeralds are grue (where an object is grue at time t precisely when it is green and t < 2050 or it 
is blue and t ≥ 2050). You are going to sample 100 emeralds. In Situation 1, you do your 
sampling before 2050. In Situation 2, you do your sampling at or after 2050. In Situation 1, your 
observation process (described by proposition P) takes over in that Pr(O100 | P & H1) = 1 = p(O100 
| P & H2) where O100 is the claim that 100% of the emeralds sampled are green, and Pr(Oi | P & 
H1) = 0 = Pr(Oi | P & H2) for each i < 100. In Situation 2, your observation process (described by 
propositions P*) does not take over, since Pr(O100 | P* & H1) = 1 > 0 = Pr(O100 | P* & H2). 
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8 Publication Bias 

The ravens paradox is an old standby in philosophy of science, but the topic of this section is 
something more contemporary. Various sciences, including medicine and psychology, have 
recently been overtaken by a “replication crisis,” wherein a large proportion of results reported in 
refereed journals fail to be replicated.44 One possible explanation that has been discussed is 
publication bias. One type of publication bias occurs when researchers obtain negative results but 
don't try to publish them, and then they “try and try again” until they come up with a positive 
result, which they then submit to a journal. Another type of publication bias occurs when journal 
editors are disinclined to accept papers that report negative results though they are happy to do so 
for submitted papers that report positive findings.45 

To illustrate how our account of OSEs applies to publication bias, suppose that journal 
Positive-and-Negative publishes every well-designed and properly run study submitted to it 
regardless of the results, and that journal Positive-Only publishes every well-designed and 
properly run study submitted to it in which the results are positive but none in which the results 
are negative. Consider two scenarios: 

Scenario 1: Smith reads Positive-and-Negative (and no other journal), and observes that the 
results are positive in every study published there on the effectiveness of drug D. 

Scenario 2: Smith reads Positive-Only (and no other journal), and observes that the results 
are positive in every study published there on the effectiveness of drug D. 

It seems clear here that: 

(8.1) Pr(the results are positive in every published study that Smith has read on the 
effectiveness of drug D | PS1 & D is more effective than a placebo) >> Pr(the 
results are positive in every published study that Smith has read on the 
effectiveness of drug D | PS1 & D is not more effective than a placebo) 

(8.2) Pr(the results are positive in every published study that Smith has read on the 
effectiveness of drug D | PS2 & D is more effective than a placebo) = Pr(the 
results are positive in every published study that Smith has read on the 
effectiveness of drug D | PS2 & D is not more effective than a placebo) 

Here PS1 and PS2 describe Smith’s observation processes ps1 and ps2 (but not the observational 
outcomes!) in Scenario 1 and Scenario 2, respectively. If Smith shifts from pS1 to pS2, a 
regrettable OSE has occurred; if Smith shifts in the opposite direction, an OSE has also occurred, 
but this time it is all to the good. 

                                                             
44 See Bird (forthcoming) for discussion and references. 

45 For discussion of, and references on, publication bias in medical science, see Stegenga (2018). 
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This example does not require us to quantify how much of an OSE occurs in the shift, but the 
example can be modified to make that pertinent. All that is needed is the supposition that 
journals differ in their degrees of publication bias where these are characterized by providing the 
values of the probabilities in (8.1) and (8.2). 

In the fishing examples discussed at the start of this paper, we spoke of “your” using a 
fishing net and “your” observing the fish caught in the net. The experimenter and the observer of 
the outcome are one and the same person. However, in the case just described, Smith reads the 
studies, but she is not the scientist who carried out the trials. This allows for the possibility that 
the scientists carrying out their studies did flawless work, and yet others are entitled to look with 
jaundiced eye on these same studies when they read them. 

 

9 Concluding Comments 

In this paper, we conceptualized OSEs by considering how a shift from one process of 
observation to another affects discrimination-conduciveness – the degree to which possible 
observations discriminate between hypotheses, given the observation process at work. This OSE 
concept is causal. The cause is the shift in process. The effect is a change in degree of 
discrimination-conduciveness. We described conditions of adequacy that an acceptable measure 
of degree of discrimination-conduciveness must satisfy, and used those conditions of adequacy 
to evaluate several possible measures. We then defined two measures of how much of an OSE 
the shift from one process to another induces. 

We were driven to consider choices of measure by the fact that discrimination-conduciveness 
and OSEs are matters of degree. If they are matters of degree, one is obliged to say degrees of 
what. Although it turned out that each choice of measure faces a problem of measure sensitivity, 
our goal was not to solve that pair of problems. The situation here is rather similar to the one that 
Bayesians face when they talk about confirmation. They all agree that O confirms H precisely 
when Pr(H | O) > Pr(H), but they disagree about how degree of confirmation should be 
understood. The disagreement is substantive, since several measures fail to be ordinally 
equivalent (Fitelson 1999, Brössel 2013). But even if no uniquely correct measure of degree of 
confirmation can be defended, Bayesian confirmation theory still has its uses. 

In the theory of confirmation, rarely is it important to be able to compare c(H1, O1 | P) with 
c(H2, O2 | P), where c(-) is a measure of degree of confirmation, and H1 and H2 are on completely 
different subject matters, as are O1 and O2. More often, the interesting questions concern whether 
c(H1, O | P) > c(H2, O | P), and whether c(H, O1 | P) > c(H, O2 | P). Similar points apply to  
degrees of discrimination conduciveness. Rarely is it important to be able to decide whether 
DDC(Ghyp, Gobs | p) > DDC(G*hyp, G*obs | p*). More often, the interesting questions concern 
whether DDC(Ghyp, Gobs | p) > DDC(Ghyp, Gobs | p*). However, the problem of measure-sensitivity 
arises even in this restricted context. 



32 
 

Perhaps, in many cases of interest, the ordering of processes in terms of their discrimination-
conduciveness is the same regardless of which of several “reasonable” measures you choose. In 
cases where this unanimity does not arise, it is interesting that different choices of measure lead 
to different answers. That is a discovery worth making, not a cause for despair. On the other 
hand, maybe a single best measure of discrimination-conduciveness can be found. There are 
questions here that merit further investigation. 

A locus classicus for discussion of OSEs is the fine-tuning argument; since we have not 
discussed that argument to this point, a few comments are in order. Some have argued that an 
OSE completely vitiates this argument; they contend that the observation that a physical constant 
has a value that falls in a very narrow window of life-permitting values fails to discriminate 
between the competing hypotheses, since the observation was made by beings who are 
themselves alive (see, e.g., Sober 2009, 2018). Critics of that negative assessment respond that a 
proper understanding of the epistemology of OSEs reveals that no such vitiation arises (see, e.g., 
Leslie 1989, Monton 2006, Collins 2009, and Kotzen 2012 for discussion). Much of this 
disagreement concerns how an “appropriate” description of the process of observation should be 
formulated, a topic we mentioned earlier but did not explore. The present paper, therefore, does 
not by itself resolve the controversy about the fine-tuning argument. We hope, however, that it 
does contribute to this discussion, in that it makes precise how an observation process’s effect on 
the ability of observations to discriminate between hypotheses should be understood. 

One such contribution that we see derives from the fact that OSEs, understood in terms of 
discrimination-conduciveness, depend on the space of possible observations considered. The 
fine-tuning argument is usually formulated by considering a dichotomous property – our 
universe either permits life to exist, or it does not. The question is then asked what the 
probability is that our universe is life-permitting according to this or that cosmological or theistic 
hypothesis. However, recent work on the physics of fine-tuning suggests that this dichotomous 
characterization of the problem may be too crude. Instead of saying whether or not our universe 
is life-permitting, we might describe how life-friendly our universe is. The possibilities range 
from life’s being impossible to life’s being inevitable, with lots of other possibilities in 
between.46 Suppose our universe is such that life is possible, but is very improbable. When living 
observers determine how life-friendly our universe is, that fact about the observers isn’t enough 
to settle what degree of life-friendliness our universe must manifest. This means that even if a 
massive OSE arises when we consider the dichotomous property, it doesn’t follow that a massive 
shut-down also occurs when more fine-grained characteristics are considered (Sober 2018). 

Since our OSE concept applies to net-fishing, RED LIGHTS, TUBERCULOSIS, the ravens 
paradox, publication bias, stroke-impaired visual acuity, and the fine-tuning argument, the worry 
may arise that the account we have given is too broad to be of much use. We disagree. We think 

                                                             
46 See Lewis and Barnes (2016, Ch. 3) for helpful discussion. 
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our account unifies these examples, and explains why OSEs often (but not always) impose 
epistemic costs. 

Our OSE concept, though broad, is not a vacuous catch-all that encompasses all forms of bad 
research practice. This can be seen by noting that research has at least five distinct (but related) 
stages: 

(9.1) formulating a question or problem 

(9.2) formulating competing hypotheses 

(9.3) choosing a method of gathering observations 

(9.4) making observations 

(9.5) interpreting how the observations bear on the competing hypotheses, given the 
observation process used 

Our OSE framework comes into play at the stage of choosing a method of gathering 
observations, but flawed research practices also can be found at the other stages. An obvious 
example is the use of a fallacious mode of inference at stage five (e.g., the base-rate fallacy).47 
Our OSE framework is a tool, not for evaluating research practices as a whole, but for evaluating 
a limited though central part of that variegated totality. 
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discussion. 

 

Appendix A 

We aim to show: 

(A.1) If Ghyp is a partition, then it follows from Minimality that DDC(Ghyp, Gobs | p) is 
minimal precisely when Pr(Oi | P & Hj) = Pr(Oi | P) for all i and j. 

Take some Ghyp, Gobs, and p such that Ghyp is a partition. Suppose, first, that: 

                                                             
47 Additional examples include: (a) ignoring a relevant alternative hypothesis, (b) failing to take 
proper account of imprecision in an observation instrument, (c) giving a spurious burden of proof 
argument, (d) making a facile application of Ockham’s razor, (e) using an indefensible prior 
probability, and (f) using a rejectionist significance test. 
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(A.2) Pr(Oi | P & Hj) = Pr(Oi | P) for all i and j. 

It follows from (A.2) that: 

(A.3) Pr(O1 | P & H1) = Pr(O1 | P) = Pr(O1 | P & H2) = … = Pr(O1 | P & Hn). 

Pr(O2 | P & H1) = Pr(O2 | P) = Pr(O2 | P & H2) = … = Pr(O2 | P & Hn). 

… 

Pr(Om | P & H1) = Pr(Om | P) = Pr(Om | P & H2) = … = Pr(Om | P & Hn). 

Hence: 

(A.4) Pr(Oi | P & Hj) = Pr(Oi | P & Hk) for all i, j, and k. 

Hence by Minimality it follows that DDC(Ghyp, Gobs | p) is minimal. Suppose, second, that by 
Minimality it follows that DDC(Ghyp, Gobs | p) is minimal. Then: 

(A.5) Pr(Oi | P & Hj) = Pr(Oi | P & Hk) for all i, j, and k. 

The law of total probability implies that: 

(A.6) Pr(Oi | P) = Pr(H1 | P)Pr(Oi | P & H1) + Pr(H2 | P)Pr(Oi | P & H2) + … + Pr(Hn | 
P)Pr(Oi | P & Hn). 

(A.5) and (A.6) together imply: 

(A.7) Pr(Oi | P) = Pr(Oi | P & H1)[Pr(H1 | P) + Pr(H2 | P) + … + Pr(Hn | P)]. 

Hence, since Ghyp is a partition, it follows that the sum on the right-hand side of (A.7) equals 1 
and thus: 

(A.8) Pr(Oi | P) = Pr(Oi | P & H1). 

Given (A.5), it follows that: 

(A.9) Pr(Oi | P & Hj) = Pr(Oi | P) for all i and j. 

Hence (A.1). QED. 

 

Appendix B 

The aim is to show: 

(B.1) There are cases where Ghyp is not a partition, d(Hi, Hj, Ok| P) is minimal for all i, j, 
and k, and it’s not the case that Pr(Oi | P & Hj) = Pr(Oi | P) for all i and j. 
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Let Ghyp = {H1, H2}, G*hyp = {H1, H2, H3}, and Gobs = {O1, O2, O3}. Suppose that G*hyp is a 
partition but Ghyp isn’t. Take the following (partially displayed) probability distribution: 

O1 O2 O3 H1 H2 H3 Pr(- | P) 

T F F T F F  

T F F F T F  

T F F F F T  

F T F F F T  

It follows that: 

(B.2) Pr(O1 | P & H1) = 1 = Pr(O1 | P & H2) 

(B.3) Pr(O2 | P & H1) = 0 = Pr(O2 | P & H2) 

(B.4) Pr(O3 | P & H1) = 0 = Pr(O3 | P & H2) 

(B.5) Pr(O1 | P & H1) = 1 > 2/3 = Pr(O1 | P) 

Hence (B.1). QED 

 

Appendix C 

The aim is to show: 

(C.1) For any hypothesis sets Ghyp = {H1, H2} and G*hyp = {H*1, H*2}, observation sets 
Gobs = {O, ~O} and G*obs = {O*, ~O*}, and observation processes p and p*, 
where P is a true appropriate description of p, and where P* is a true appropriate 
description of p*, DDCADD-AD(Ghyp, Gobs | p) > / = / < DDCADD-AD(G*hyp, G*obs | 
p*) if and only if DDCADD-SD(Ghyp, Gobs | p) > / = / < DDCADD-SD(G*hyp, G*obs | p*). 

Take some hypothesis sets Ghyp = {H1, H2} and G*hyp = {H*1, H*2}, observation sets Gobs = {O, 
~O} and G*obs = {O*, ~O*}, and observation processes p and p*, where P is a true appropriate 
description of p, and where P* is a true appropriate description of p*. It follows that: 
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But: 

  

Hence: 

(C.5) DDCADD-AD(Ghyp, Gobs | p) > / = / < DDCADD-AD(G*hyp, G*obs | p*) if and only if 
DDCADD-SD(Ghyp, Gobs | p) > / = / < DDCADD-SD(G*hyp, G*obs | p*). 

Hence (C.1). QED 

 

(C.2) DDCADD-AD(Γhyp ,Γobs | p)> /= /<DDCADD-AD(Γ*hyp ,Γ*obs | p*) iff

Pr(O | P & H1)−Pr(O | P & H2 ) +

Pr(~ O | P & H1)−Pr(~ O | P & H2 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2
> /= /<

Pr(O* | P*& H*1)−Pr(O* | P*& H*2 ) +

Pr(~ O* | P*& H*1)−Pr(~ O* | P*& H*2 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2
 iff

Pr(O | P & H1)−Pr(O | P & H2 ) > /= /<

Pr(O* | P*& H*1)−Pr(O* | P*& H*2 )

(C.3) DDCADD-SD(Γhyp ,Γobs | p)> /= /<DDCADD-SD(Γ*hyp ,Γ*obs | p*) iff

Pr(O | P & H1)−Pr(O | P & H2 )( )2+
Pr(~ O | P & H1)−Pr(~ O | P & H2 )( )2
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2
> /= /<

Pr(O* | P*& H*1)−Pr(O* | P*& H*2 )( )2+
Pr(~ O* | P*& H*1)−Pr(~ O* | P*& H*2 )( )2
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2
 iff

Pr(O | P & H1)−Pr(O | P & H2 )( )2 > /= /<

Pr(O* | P*& H*1)−Pr(O* | P*& H*2 )( )2

(C.4) Pr(O | P & H1)−Pr(O | P & H2 ) > /= /<

Pr(O* | P*& H*1)−Pr(O* | P*& H*2 )  iff

Pr(O | P & H1)−Pr(O | P & H2 )( )2 > /= /<

Pr(O* | P*& H*1)−Pr(O* | P*& H*2 )( )2
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Appendix D 

The aim is to show: 

(D.1) There are cases where Ghyp = {H1, H2}, Gobs = {O1, O2, O3}, G*obs = {O*1, O*2, 
O*3}, and DDCADD-AD(Ghyp, Gobs | p) is less than DDCADD-AD(Ghyp, G*obs | p), 
whereas DDCADD-SD(Ghyp, Gobs | p) is greater than DDCADD-SD(Ghyp, G*obs | p). 

Let Ghyp = {H1, H2}, Gobs = {O1, O2, O3}, and G*obs = {O*1, O*2, O*3}. Consider the following 
(partially displayed) probability distribution: 

O1 O2 O3 O*1 O*2 O*3 H1 H2 Pr(- | P) 

T F F F T F T F  

T F F F F T T F  

T F F F F T F T  

F T F T F F T F  

F T F F T F T F  

F T F F F T F T  
F F T T F F F T  
F F T F T F T F  
F F T F T F F T  
F F T F F T F T  

It follows that: 

(D.2) DDCADD-AD(Ghyp, Gobs | p) = 0.375 < 0.3754 » DDCADD-AD(Ghyp, G*obs | p) 

(D.3) DDCADD-SD(Ghyp, Gobs | p) » 0.174 > 0.160 » DDCADD-SD(Ghyp, G*obs | p) 

Hence (D.1). QED 

 

Appendix E 

The aim is to show: 

(E.1) DDCADD-AD* doesn’t meet Likelihoods. 

Let Ghyp = {H1, H2, H3} and Gobs = {O, ~O}. Consider, first, the following (partially displayed) 
probability distribution: 
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O H1 H2 H3 Pr(- | P) 

T T F F  

T F T F  

T F F T  

F T F F  

F F T F  

F F F T  

It follows that: 

(E.2) Pr(O | P & H1) = 0.75 > 0.25 = Pr(~O | P & H1) 

(E.3) Pr(O | P & H2) = 0.5 = Pr(~O | P & H2) 

(E.4) Pr(O | P & H3) = 1/3 < 2/3 = Pr(~O | P & H3) 

(E.5) DDCADD-AD*(Ghyp, Gobs | p) » 0.561 

Consider, second, the following alternative (partially displayed) probability distribution: 

O H1 H2 H3 Pr(- | P) 

T T F F  

T F T F  

T F F T  

F T F F  

F F T F  

F F F T  

Here (E.2), (E.3), and (E.4) hold but: 

(E.6) DDCADD-AD*(Ghyp, Gobs | p) » 0.579 

Hence DDCADD-AD* fails to meet Likelihoods. Hence (E.1). QED 

 

Appendix F 

The aim is to show: 

(F.1) OSED and OSER are not ordinally equivalent. 
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Let Ghyp = {H, ~H} and Gobs = {O1, O2, O3}, and consider the following (partially displayed) 
probability distribution: 

O1 O2 O3 H Pr(- | P1) Pr(- | P2) Pr(- | P3) Pr(- | P4) 
T F F T     

T F F F     

F T F T     

F T F F     

F F T T     

F F T F     

It follows that: 

(F.2) OSED(Ghyp, Gobs | p1 rather than p2) » 0.354 > 0.306» OSED(Ghyp, Gobs | p3 rather 
than p4) 

(F.3) OSER(Ghyp, Gobs | p1 rather than p2) = 18 < 30.4 = OSER(Ghyp, Gobs | p3 rather than 
p4) 

Hence (F.1). QED 
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