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The uncertainty of demand has led production systems to become increasingly complex; this can affect the availability of the
machines and thus their maintenance. Therefore, it is necessary to adequately manage the information that facilitates decision-
making. This paper presents a system for making decisions related to the design of customized maintenance plans in a production
plant. This paper addresses this tactical goal and aims to provide greater knowledge and better predictions by projecting reliable
behavior in the medium-term, integrating this new functionality into classic Balance Scorecards, and making it possible to extend
their current measuring function to a new aptitude: predicting evolution based on historical data. In the proposed Custom Balance
Scorecard design, an exploratory data phase is integrated with another analysis and prediction phase using Principal Component
Analysis algorithms and Machine Learning that uses Artificial Neural Network algorithms. This new extension allows better control
over the maintenance function of an industrial plant in the medium-term with a yearly horizon taken over monthly intervals which
allows the measurement of the indicators of strategic productive areas and the discovery of hidden behavior patterns in work orders.
In addition, this extension enables the prediction of indicator outcomes such as overall equipment efficiency and mean time to

failure.

1. Introduction

In business and engineering, decision-making approaches
and models are developed in response to the uncertainty
of technological and demand conditions. In business, it is
possible to identify a strategic [1] or operational [2] approach
or a more particularly focused approach for suppliers [3]; in
the engineering field, it is possible to identify cases regarding
manufacturing conditions [4], product design [5], or aspects
relating to civil engineering [6]. In the context of the current
market, in which delivery times are continually reduced and,
more importantly, responses to orders are increasingly imme-
diate, the production response in the industrial environment
is faster, and quality and time affect both the complexity and
the flexibility of the system [7]. Considering that the capacity
of the machines is limited, we consider those productive
areas with identified bottlenecks as strategic productive areas
of the factory. Using this capacity as an invariant value,

the system attempts to maintain the maximum availability
of the machines that comprise a strategic productive area.
Moreover, if continuous production occurs in this context,
for example, in papermaking, downtime caused by damage
is irrecoverable.

Another characteristic of the market context is a wider
range of products, resulting in the transformation of man-
ufacturing from mass production to flexibility; in the latter
case, this versatility leads to greater wear and fatigue on
machines because of the high rate of change in the configura-
tion, potentially resulting in a loss of reliability. This finding
means that it is necessary to consider more extreme measures
in terms of both the prediction and the anticipation of failure.
Thus, predictive maintenance engineering has developed and
perfected technologies for condition monitoring and pre-
dicting failures before breakage occurs [8-10]. Although this
approach is more operational and requires more resources
and investments than following the scheme [11], it cannot
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be established in an entire strategic productive area without
critical equipment, facilities, or machine parts. To respond
to this problem, a methodology has been considered for a
productive area designated as strategic that offers knowledge
extraction and the prediction of availability indicators. Thus,
the maintenance department can provide a timely response
with minimal resources to maintain the required reliability.

In maintenance field, when the decisions-making is
related to strategies or policies, in the long term, the consider-
ations of fuzzy uncertainty are convenient. Thus, the literature
review, carried out by Mardani et al. [12] about the fuzzy
multiple criteria decision-making techniques, found that, in
maintenance environments, the fuzzy approach is utilized
in strategic framework, in the long term as, for example,
in the selection of the maintenance strategy [13-15] or the
maintenance policy [16]. This could be extensible to projects
[17, 18] or in civil engineering [19] environments where
there is more uncertainty due to the different conditions
of each event. However in industrial environments and
with continuous process as papermaking, where the same
machines are used in the manufacturing despite product
variety, the risks in the predictions are lower.

The integration of Principal Component Analysis (PCA)
and Machine Learning (ML) techniques can facilitate
decision-making in these environments. PCA is a very
efficient method to find attributes that are influential in
explaining the greater variation of a data set characterized
by many explanatory variables in many registers [20]. This
algorithm is used extensively in the literature, particularly for
predictive maintenance, as a method of reducing dimensions
[21]. According to Alpaydin [22], ML is a branch of artificial
intelligence whose goal is to programmatically automate a
computer’s learning process, similar to how humans and
animals naturally learn through experience; the algorithms of
ML directly employ the data without previously establishing
an equation as a model. In addition, these algorithms improve
their efficiency as the quantity of data used as examples
increases during the learning. ML finds natural patterns
in the data and helps make better decisions and establish
predictions. Because of its versatility, ML has been used
in many fields, including construction [23]. However, this
approach is not habitually combined with the PCA and ML
techniques. The grouping of data facilitated by PCA allows
a better interpretation of complex systems such as those in
which ML is applied; this interpretability is considered a
characteristic of achievement through ML methods [24].

This work consists of a segment of a global and modular
framework for Maintenance Decision Support Systems [25],
whose general objective is to propose a system that assists
an expert in decision-making to design customized mainte-
nance programs in a productive plant [26]. This system begins
with the alignment of the company’s strategic objectives,
followed by the tactical and operational maintenance.

This paper addresses that tactical goal and has the
objective of providing better knowledge and predictions
by projecting reliability behavior in a medium-term future
(yearly horizon taken over monthly intervals), integrating
this new functionality into the classic Balance Scorecard
(BSC) and making it possible to extend its current function of
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measuring the current situation to a new aptitude: predicting
evolution based on historical data [27]. For this objective,
techniques such as PCA and ML are used.

2. Methodology

In the proposed Custom Balance Scorecard design, Matlab©
[28] is used to integrate an exploratory phase of data using
PCA algorithms and another phase of discovery and pre-
diction that uses ML; we will use Artificial Neural Network
(ANN) algorithms. The beginning data used to evaluate
the results were obtained from productive area records
composed of two main papermaking machines coded in the
Computerized Maintenance Management System (CMMS)
as M1 and M2, respectively. The data have been divided into
two parts. The first part will be used in the exploratory phase,
which reflects the maintenance work orders received in the
productive area in one year. The other part will be used in
the analysis phase, in which production values and machine
responses are represented as efficiency variables and failure
times; this part also considers a period of one year. Because
of the continuous improvement process that characterizes the
papermaking industry, the maintenance function’s influence
on productive efficiency and sustainability is more sensitive
than in other types of industrial plants [29-31]; therefore,
this study focuses on indicators, overall equipment efficiency
(OEE), and mean time to failure (MTTF) [32].

The PCA algorithm has been used in the exploratory
phase. In the analysis phase using ML techniques, ANN
is used for its versatility as algorithms for supervised and
unsupervised learning and for its suitable behavior against
other ML techniques that are used for prediction [33]. In
unsupervised learning, two types of algorithms are used
to extract the knowledge of the data structure through
clustering. Hierarchical clustering is used, as is Neuronal
Network of Self-Organizing Map (SOM). Both algorithms
identify groups of individuals by similar behaviors from
individual data and have been used effectively both to identify
the stages of wear in industrial environments [34] and to
characterize the energy in electrical supply networks [23].
Hierarchical clustering makes it possible to show the natural
grouping structure of the data as a function of the metric that
is set as a criterion of proximity, whereas SOM decomposes
the data into a set number of groups. Supervised learning
will use ANN regression algorithms for the suitable predictive
behavior of machine maintenance variables [35].

The production plant presents in its management sys-
tem a clear division between maintenance and production,
occurring equally for its databases; therefore, there is no
single database where we can access all the information
jointly in an integral manner. Because of this, we have to
access maintenance and production data separately, so we
have two distinct tables identified as dataWO, Figure 1(a),
corresponding to the maintenance database, and dataWOEF,
Figure 1(b), corresponding to production database. Both
tables will be defined in more depth later, nevertheless,
to clarify the following two phases: dataWO will contain
the input data for the PCA and clustering algorithms cor-
responding to the unsupervised learning technique, while
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FIGURE 1: Imported data from CMMS: (a) table dataWO; (b) dataWOE

dataWOF will serve as input information for the regression
algorithm according to the supervised learning technique.
The separation of maintenance and production departments
at the level of database management leads to separate analysis
and the use of different techniques in terms of the knowledge
extraction process.

2.1. Exploratory Data Phase. There is a first preparatory,
preliminary data step in which the starting data correspond to
the work orders, WOs, which have received the papermaking
machines, M1 and M2, during a calendar year. These data
have been extracted from a CMMS database; Figure 1(a)
shows the treatment of these data once they have been
imported; these are defined in the table dataWO. The data
obtained present 46 attributes and 1080 instances of WOs
after a prior filtering. The work order is a document that
in its original format presents 46 fields that represent the
46 original attributes (see Table 1), which can be grouped
into descriptive fields of problem and resolution, with free
text of alphanumeric type, and other categorical variables of
numeric type to accommodate the kind of work order, such
as order type, requester, repair shop, repair type, urgency
type, asset condition, and implication of failure. Numeri-
cal categorical variables that hold classes are order status,
homogeneous family, section, and installation, type of fixed
assets, type of work, and operative sequences. The remaining
qualitative variables are of date type that record dates and
times of request and programming of the intervention and
completion. However, it is permissible to perform a PCA
on all data for the 46 attributes, applying it only on the 7
numerical types (4 associated costs of totals, orders, parts, and
workforce, 2 repair times, and 1 of the number of operators)
which are shown in Table 1, as input variables for the PCA,
discarding the rest of the original variables since they are used
to obtain context information, as they document the problem
and its physical location; that is why they will serve as prefilter
variables for location and situation in which the maintenance
intervention is located.

In the exploratory data phase, the statistical technique of
PCA has been used to reduce the data dimension and find the
principal axes that best represent the variation of data. These
axes are orthogonal to each other and are calculated using a
linear base change application by choosing a new coordinate

system for the original set of data in which the largest
variance of the dataset is captured on the first axis (called the
first component); the second-largest variance is the second
axis, and so on. This methodology reduces to a problem of
eigenvalues and eigenvectors on the covariance matrix of the
data, obtaining a reduction of the dimensionality of the data
on those axes that make a more substantial contribution to its
variance in general; therefore, many principal axes are used
whose sum represents approximately 80% of the variation of
the original data [20].

The PCA parts of a data set are tabulated such that each
line represents an observation, instance, or individual and
each column represents an attribute or variable. Consider that
a data set consisting of n observations with k attributes is
available. In matrix notation, we will express A (nk)> Where

A is the matrix representing the table with the coefficients
(aij) as the ith observation of the jth variable; hence, the

matrix of observations A is formed by k vectors of variables,
X, sorted by columns, and each vector has n components
corresponding to its n observations, as shown in

X1 o X
Sx)= o e

Xin " Xkn

i@

To reduce the size of the variables, one must find another
vector subspace that is aligned with those vector components
that involve more variation, and one must form a basis for
these components to be represented in an orthogonal, that
is, a linearly independent system. This problem is reduced
to finding a vector space whose vectors, v, represent the
variation of the data, that is, a system in which (2) is satisfied:

Av=1-v. ©)

However, in this case, the variation is not reduced but
is used to find the principal components and axes or their
own values and vectors of the data. In accordance with this
philosophy, we will attempt to find those components and
principal axes that explain the maximum variation of the
data. Thus, instead of matrix A, its covariance matrix is
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TaBLE I: Original attributes of the maintenance work order.

STATE_-WO Numerical categorical

TYPE.-WO Word categorical

WO_NUMBER Alpha numerical

REQUESTING_DEPT
REQUESTING_DATE
REQUESTING_HOUR
WORKSHOP

URGENCY

TERM_DATE
WORK_DESCRIPT_1
WORK_DESCRIPT_2
HOMOGENEOUS_GROUP
LOCATION
ELECTRIC_CODE
SECTION

INSTALLATION
DEVICE_DESCRIPTION
PRINCIPAL-WO
ENROLLMENT
TYPE_REPAIR
SEQUENCE_NUMBER
TYPE_INMOBILIZED
OPERATORS_NUMBER
ESTIMATED_REPAIR_TIME
ASSET_CONDITION
TYPE_-WORK
SCHEDULED_DATE
SCHEDULED_HOUR
WORK_DESCRIPT_1_FINAL_1
WORK_DESCRIPT_1_FINAL_2
IMPLICATION_FAULT
ELEMENT_FAULT
CAUSE_FAULT
SUBSTITUTION
ID_SUBSTITUTE_ENROLLMENT
ID_SUBSTITUTED_ENROLLMENT
START_DATE
START_HOUR
FINAL_DATE
FINAL_.HOUR
REPAIR_TIME
WORKFORCE_COST
PARTS_COST
ORDER_COST
TOTAL_COST
REPAIR_DATE

Word categorical
Date
Date
Word categorical
Word categorical
Date
Alpha numerical
Alpha numerical
Numerical categorical
Alpha numerical
Alpha numerical
Numerical categorical
Numerical categorical
Alpha numerical
Alpha numerical
Alpha numerical
Word categorical
Numerical categorical
Numerical categorical
Numerical
Numerical
Word categorical
Numerical categorical
Date
Date
Alpha numerical
Alpha numerical
Word categorical
Alpha numerical
Alpha numerical
Alpha numerical
Alpha numerical
Alpha numerical
Date
Date
Date
Date
Numerical
Numerical
Numerical
Numerical
Numerical
Date
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FIGURE 2: Machine learning techniques.

obtained, C, which is then normalized with a mean of zero
and a standard deviation of one. The result is then used to
obtain the values and eigenvectors of C. That is, the result is
used to solve the following equations:

|6 - AT| =0 3)
(C-\I)% =0. (4)

Once the principal components are obtained, A;, along
with the principal axes, ¥;, they together explain the variation
of the data, which are ordered as a Pareto diagram, selecting
exclusively that set of components p that explain at least
80% of the variation in the data. Thus, a reduction in the
dimensions of the data of k original variables to p < k
variables is obtained. In general, the matrix of observations
projected onto the main axes, Y, contains # observations of
the variables that are obtained by (5), where P is the matrix
formed by columns with the eigenvectors v;, obtained from

(4).
Yooty = Atupy - Py- (5)

This transformation expresses the original data in axes
that coincide with the natural variation. One aspect to be
considered in this analysis is that this transformation is
linear; therefore, it is not suitable for representing nonlinear
problems. In cases of nonlinearity, it is advisable to use ML
clustering algorithms, as will be observed later.

2.2. Phase of Analysis through Machine Learning. In this
phase, the preparatory data step uses as input data, in
addition to the previous data, the production values and
their responses as efficiency variables and failure times for
an operational year for both papermaking machines (Ml and
M2). Data are extracted and grouped from two databases:
maintenance and production. The data obtained present 35
attributes and 12 instances corresponding to each month for
each machine (identified as M1 and M2). Figure 1(b) shows
the treatment of these data once they have been imported;
they are defined in the table dataWOE The manufacturing
report is a document that in its original format presents
35 fields that represent the original attributes (see Table 2),
which can be grouped in identifying fields of the machine
in question, of alphanumeric type, and numerical cate-
gorical variables record the natural month. The remaining

attributes are of numeric type and record the values of time,
cost, interventions, and production. For each papermaking
machine, 3 predictor variables associated with production
parameters, shown in Table 2 (daily production in tons of
paper per day, average paper weight in grams per square
meter, and average speed in meters per second), are selected,
with the objective of obtaining a target of two simultaneous
predictive responses (OEE in the percentage of machine
utilization and MTTF). Answers that evaluate the aptitude of
the maintenance function applied to the productive area are
provided by both machines. The three predictive variables are
those that, from experience, characterize production better.
Although a PCA could be performed as in the exploratory
phase for the dataWoO, it was not considered in this occasion
due to the few instances, 12, which we had for each machine.
Since PCA is a statistical analysis, it has been considered
that the few instances are not sufficient to carry out such an
analysis, considering at this point a selection based on criteria
based on experience. However, as more productive data and
more instances are obtained, a PCA can be performed on
all or those productive attributes of Table 2 to reduce the
dimension and select those that represent the most influence
in the variation of data.

ML is divided into two techniques [27]: supervised learn-
ing, which is training a model on known input and output
data to predict future outputs, and unsupervised learning,
which is finding hidden patterns and intrinsic structures in
the input data. Figure 2 provides an illustration of ML. For
each technique, different algorithms can be used in which
choosing the ideal is performed by trial and error.

Supervised learning uses classification and regression
techniques to develop predictive models. The difference
between these techniques is that the classification predicts
responses in discrete or categorical variables, whereas regres-
sion predicts responses in a continuous variable [36]. Unsu-
pervised learning uses the clustering technique commonly
used in exploratory data analysis to find hidden patterns as
clusters in data.

From the algorithms of ML (Support Vector Machine,
Discriminant Analysis, Naive Bayes, Nearest Neighbor, Deci-
sion Trees, K-means, Hierarchical, Gaussian Mixture, Hid-
den Markov Model, and ANN), we will use algorithms
modeled with ANN for their versatility for both nonsuper-
vised techniques (clustering) and supervised techniques
(regression). The former groups the input data to recognize
patterns and define the natural groups present in the data;
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TABLE 2: Original attributes of the manufacturing report (production database).

ID_MACHINE Alpha numerical

MONTH Numerical categorical

NON_PLASTERED_PRODUCTION
PLASTERED_PRODUCTION
VOLUME_PLASTERED_PRODUCTION
TOTAL_PRODUCTION
WORKS_DAYS
DAILY_PRODUCTION_TON
CUTOUT_PRODUCTION

DAILY _ CUTOUT_PRODUCTION_TON
DECREASE_MACHINE_ %
AVAILABLE_HOURS
IDLE_TIME_EXTERNAL_CAUSES
MAINTENANCE

SCHEDULED

BREAKS

PRODUCTION_REST
TOTAL_IDLE

DAILY_IDLE_TIME

OEE

START_NUMBERS
CUTOUT_TIME_CHANGES
AVERAGE_PAPER_WEIGHTS
AVERAGE_REAL_WIDTH
AVERAGE_SPEED

AVERAGE BUDGETED WIDTH
WIDTH_DECREASE_CMS
WIDTH_DECREASE_-TON
CAPE_PRODUCTION

COST

COST/TON
INTERVENTIONS_NUMBER
MEAN TIME BETWEEN FAILURES
MEAN TIME TO REPAIR

MEAN TIME TO FAILURE

Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical
Numerical

the latter’s purpose is to establish correspondence or mapping
between input values or predictors and the output variables or
objectives to predict. Thus, the model is trained (or adjusted)
by a knowledge base formed by historical examples of known
inputs and outputs.

According to Rumelhart et al. [37], the process of the
back-propagation training of ANN is used for regression
techniques such as supervised learning. The ANN back-
propagation training process is divided into two stages:
forward and backward propagation. A network configuration
consisting of multiperceptron layers, as shown in Figure 3,
and an activation function of the output layer range and [0, 1]
is used before an input x, which is expressed by

eX

(1+e¥)

y(x) = (6)

In the forward propagation stage, we select an input data
set for training (x;, x,, . . ., x;_;) and apply it to the network to

obtain the outputs y,. For each neuron j of the hidden layer,
the value of each nucleus #; is given by

1
i=1

n; = Z (wj,,- . ai) +b, (7)

where each input value of the previous layer g; is weighted by
w;; and the output of the hidden layer is expressed by

a; = f(n;)- (8)

This is a nucleus activation function and is performed
iteratively for each output layer until the final output, y,, as
in

Mz

va=f(nya)=f ( (- ak)> : ©)

The backward propagation stage consists of measuring
the error committed as the difference between the calculated

j=1
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FIGURE 3: ANN regression trained with back-propagation perceptron multilayer.

value, y,, and the real value, y,. We recalculate the weights
w, attempting to minimize the error in the reverse, first
obtaining the new weights of the layer of exit w; 40 based on
the old, o, equation

w;d,k = w;d,k +a [ya- (L=ya) (0 = 2a)]s (10)
and later the new weights of the hidden layer w;"i,
wiy = wi v wli g [ay- (1-a) - (wif" = 6;)], (D)

wherg d; is obtained by applying (9) on the following
equation:

a-(1=y4) - (3 = ya)] = 0ya- (12)

This process is repeated for n observations until a pre-
determined acceptable value of the error is achieved, usually
using the mean square error (MSE), which is defined in (13).
To ensure a rapid convergence of the iterative method, we
usually use mathematical optimization methods; in this case,
we use Bayesian Regularization [38].

n

1 2
MSE == (3, - ya) -
ni=

(13)

3. Results

It is possible to integrate new functionalities into a custom
control panel of the industrial plant. In this case, predictive
analysis was added for the expected availability response of a
productive area, considering the main core of the industrial

plant; thus, it is possible to anticipate the information. The
future availability in the medium-term (at monthly intervals)
of both machines allows the maintenance department to
correct possible deviations that are out of tolerance before
they occur, improving their response. In the first phase,
which is exploratory, we use PCA to discover the smallest
dimensions that explain the variation of the data. Applying
the PCA to the set of WOs of productive area 2 (composed of
M1 and M2), principal components or axes, PCi, are found;
these are sufficient to explain the variation of the original
data contained in the WOs of the productive area. As a result
of the PCA, 5 components are identified that would explain
100% of the variation; therefore, 2 linearly dependent vectors
are detected among the input variables, reducing in two the
original dimension; on the other hand, from 5 principal
components 3 would account for 78.6% of the variation in
data. This work aims at the number of interventions, costs,
and maintenance times and will represent the results of PCA
on the first 3 principal components. In Figure 4(a), it is
observed that the first three principal components represent
78.6% variation of the data, reason why it is decided to
represent the data using these three components as principal
axes of representation; this is visualized in Figure 4(b),
with projections of the original data on the three principal
components. Previously the data were normalized with mean
0 and standard deviation L.

Table 3 shows the values obtained in the PCA of the
maintenance metrics, where the projections are obtained on
the three principal components of the maintenance numeri-
cal variables selected from Table 1 (total costs, orders, parts,
and workforce cost, estimated repair time, repair time, and
number of operators). From the seven maintenance variables
studied, it can be observed that the ones that gain more



Complexity

TABLE 3: PCA results. Principal components values.

Metrics PC1 PC2 PC3 Metrics modulus
TOTAL_COST 0.4696 0.476 0.036 0.6697
ORDER_COST 0.1598 0.5714 0.6089 0.8502
PARTS_COST 0.2323 0.3913 -0.5737 0.7323
WORKFORCE_COST 0.5234 —0.2668 —0.0987 0.5957
REPAIR_TIME 0.5235 —-0.2668 —0.0987 0.5957
ESTIMATED _REPAIR_TIME 0.3793 —-0.2661 0.2076 0.5077
OPERATORS_NUMBER 0.09 —-0.2839 0.4861 0.5701

Variance explained

Principal components

()

(%)

Third principal component

(b)

FIGURE 4: (a) Principal components variance; (b) projected data on principal components.

relevance in principal axes are from greater to less: order cost,
total cost, and part cost; this has been considered extracting
the Euclidean modulus or norm of each variable in the
three principal axes, which is shown in the last column of
Table 3. The rest of the four remaining variables have a more
or less similar amplitude, so they are considered of equal
importance.

In the second phase, ML, the clustering technique is used
to discover patterns hidden in the data, such as the natural
grouping. For this technique, from the data stored in the
dataWO table shown in Figure 1(a), only two attributes are
used: total cost and repair time. Both attributes can be key
indicators for the maintenance department, and the repair
time can be key also for the production department because
of downtime. Therefore, after knowing their influence on
the principal components, it is important to deepen their
relationship.

For the clustering technique, two algorithms have been
used. The first technique, hierarchical clustering, allows the
creation of a dendrogram, which is a tree diagram that mea-
sures the number of natural groups, or clusters, depending
on the distance criterion that is fixed between data. In this
case, by setting a distance value on the ordinate axis, the tree
is trimmed by a horizontal line that cuts the dendrogram in
as many intersections as natural groups appear. In this case,
Figure 5(a), it is observed that, for Euclidean mean distances
of 6000 to 7000, the tree presents two natural groups; from

3000 to 5500, it presents three groups; from 2000 to 3000, it
presents four groups; and below 1000, the number of groups
increases considerably. Because of this compression, a value
of 900 is used; by pruning the tree into 7 natural groups, the
different groups of color data can be illustrated in Figure 5(b).
As can be seen, the hierarchical clustering technique allows
an overview of the number of clusters that can be obtained
as a function of the chosen distance value. There are several
distance metrics, you can even define as a custom; in this case
Euclidean distance has been used as a metric.

The clustering technique is again used, performing a
second algorithm of an SOM, ANN, on the subset of total cost
data and repair time as the chosen variables reflecting costs
and times of the plant’s intervention maintenance. An SOM
or Kohonen consists of a competitive layer that can classify
a set of vector data with any number of dimensions into as
many classes as neurons have a layer [39-41]. Neurons are
arranged in a two-dimensional topology of the data set. The
trained network with 2 variables and 1080 input data is shown
in Figure 5(¢); its two-dimensional topology with data impact
is shown in Figure 5(d).

The network is configured by 2 dimensions, 2 x 4,
discovering a pattern of 8 natural groups in the data; these
are distributed with a clear linear relationship between them.
In addition, there are discrepant data that have no linear
relationship and reveal an unconventional repair; this is
extraordinary and realized in one of the machines, and it
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was not cataloged like normal repair. This finding reveals
an error in the introduction of the information in the
CMMS. This event was also revealed by the green dot (single
group) of the hierarchical clustering figure (see Figure 5(c)).
Figure 6(a) shows the original data in the two variables
(cost, time), and Figure 6(b) shows the 7 natural groups
and the linear relationship between them. This figure also
shows that group 8 has no linear relationship, as previously
discussed. The interpretation of these results, under the
maintenance approach, shows that the linear relationship
between the groups comes to reflect the following analysis
on the distribution of the groups, observing that the first
four groups for costs between 0 and 1000 € are very close
to each other, while the centroids of 2000 €, 3000 €, and
5000 € present greater distance. With this, it is inferred that
the majority of the interventions cost less than 1000 €, with a
smaller number of interventions at intervals of 1000 €.
Finally, the regression technique enables prediction of
the future availability values of both main papermaking
machines (M1 and M2) using the OEE indicators of each

papermaking machine and its MTTE such as average runtime
before failure. In addition, these values are calculated simulta-
neously in the trained ANN model. A trained neural network
with input data (predictors) is used that combines the three
production variables and the two target output variables,
which are the overall efficiency of each OEE machine and
average time to MTTF failure, measured for 12 months of
the year for each machine. For this technique, from the data
stored in the dataWOF table shown in Figure 1(b), only three
production attributes are used: daily production in tons of
paper per day, average paper weight in grams per square
meter, and average speed in meters per second.

For the papermaking machines M1 and M2, 3 input vari-
ables, a 10-layer feed-forward network with hidden neurons,
and 2 layers of linear output neurons can adjust arbitrarily
suitable multidimensional mapping problems, given consis-
tent data and sufficient neurons in their hidden layer. The
network will be trained with 70% of the data using the back-
propagation algorithm of Bayesian Regularization; 15% of the
data will be used for validation, and the remaining 15% will
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be used for the test. An MSE performance function is used, as
shown in Figures 7(a) and 8(a), for M1 and M2, respectively.
The result of the trained network is suitably provided accord-
ing to the regression adjustment coeflicients that are shown
in Figures 7(b) and 8(b), for M1 and M2, respectively.

For each machine that forms the productive area, the
result of the adjustment is observed by comparing the output
variables OEE and MTTF (in blue) measured with the output
variables foreseen by the OEEp and MTTFp model (in red).
The results of M1 are shown in Figure 9(a), and those of M2
are shown in Figure 9(b). In short, this network can predict
the maintenance behavior of the production area of the plant
in availability terms (efficiency and operating times), feeding
the model with the predictive values of production. As more
instances of input/output data are introduced, the network
will be retrained and more reliable, since it will be adjusted
with a greater number of real examples that have occurred;
therefore, the greater quantity will lead to the acquisition of
more experience and knowledge. In maintenance terms, it is
necessary to make predictions of availability and operating
times according to three characteristic values of production,
and the model established in this way allows to predict
the OEE and MTTF observing a nonlinear behavior in the
time, as is shown in Figure 9. In this sense, the responses
for M1 are observed where the OEE oscillates between an
average value of 94% with a low dispersion of +0.66%, thus
not happening with MTTF values of mean 81.07h of high
dispersion +25.82 h. As for M2, the OEE has an average value
of 95.52% with a low dispersion of +1.12%, despite MTTF
values of 118.03 h mean with very high dispersion +59.35h,
concluding that the regression model can accurately predict
high and low amplitude oscillation values over time.

It is noted that the fit is acceptable for training, which
is provided by the global adjustment regression coeflicient R
values, as shown in Figure 7(b), for both machines.

For machine M1, discrepant values are observed in the
validation setting for month 10 and for both OEE and MTTF
indicators; there are two reasons for this reason. First, there is

overadjustment when the data have not been prepared well,
and there are data with erroneous or poorly conditioned input
information. Second, there are a low number of observations
or minimal historical information. In this paper, it has been
verified that the input data for the ANN did not present poor
conditioning; therefore, the overadjustment problem is dis-
carded, and the few data (i.e., the few observations) available
are considered the main cause of discordance of the inputs for
validation. The problem of feeding the network with few data
to train and validate the ANN is due to unavailability of more
data for reasons of good performance in the industrial plant,
a fact that would undoubtedly improve the learning of the
network and therefore its efficiency and accuracy. However,
this fact highlights another very interesting aspect of the
ANN; the network is easily adaptable and configurable given
a low number of observations. Here, this adaptability makes
it possible to accurately predict 11 hits of 12 possibilities; thus,
there is a 91.67% probability of success in this case.

For machine M2, there is a nearly total adjustment for
the OEE indicator but not for the MTTF indicator, for which
it is evident that, in month 6, there is a discrepancy in the
prediction, as in M1; the minimal data (observations) used
for the validation obtain the same precision as M1.

Another relevant aspect of the result is the acceptable
precision in the prediction of availability indicators, which
are based exclusively on time, by simply using as input
three productive variables as predictor variables (daily paper
mass, paper surface density, and machine speed). In addition
to the two output variables, OEE and MTTF indicators as
objectives to be predicted are calculated simultaneously, a
fact that reflects an additional value of this type of networks
and greater computational efficiency, by obtaining in a single
simulation the prediction of more than one objective variable.

4. Conclusions

A PCA-ML model has been developed such that it can be
integrated into scorecards with a traditional focus, BSC,
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thus including a tactical definition of longer-term strategic
approaches such as a scorecard based on BSC. This new exten-
sion allows better control over the maintenance function of an
industrial plant in the medium-term, with a monthly interval,
in such a manner that allows the measurement of certain
indicators of those productive areas that were previously con-
sidered strategic. This model of PCA and an ML algorithm
using ANN can be integrated very easily into any traditional
control panel by converting the developed source code to
packages of different programming languages and including
them in a library to be used as a function in a spreadsheet
or a standalone executable application. In addition, at the
control panel, this model is provided with ML to discover
structures and behavior patterns that are relatively hidden in
WOs. By utilizing a clustering or clustering technique, natural
groups are determined in the cost variables and maintenance
workforce; in addition, predictions about the availability of
the productive area are made through the indicators OEE

and MTTE Thus, the scorecard model on a paper production
plant has been validated.

As possible future works, this methodology could be
applied to civil engineering and in this case applying a fuzzy
uncertainty due to particular characteristics of this sector.
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