MANUFACTURING A CARTESIAN CLOSED CATEGORY WITH EXACTLY TWO OBJECTS OUT OF A C-MONOID

P.H. Rodenburg
Department of Philosophy, Rijksuniversiteit te Utrecht

F.J. van der Linden
Philips Research Labs, Eindhoven

Logic Group Preprint Series No. 37
June 1988

Department of Philosophy University of Utrecht Heidelberglaan 2 3584 CS Utrecht The Netherlands

MANUFACTURING A CARTESIAN CLOSED CATEGORY WITH EXACTLY TWO OBJECTS OUT OF A C-MONOID

P.H. Rodenburg
Department of Philosophy, Rijksuniversiteit te Utrecht
F.J. van der Linden
Philips Research Labs, Eindhoven

Abstract

A construction is described of a cartesian closed category \mathscr{A} with exactly two elements out of a C-monoid \mathcal{M} such that \mathcal{M} can be recovered from \mathcal{A} without reference to the construction.

Note: The first author was partially supported by the Dutch government through the SPIN project PRISMA; the second author was partially supported by the EEC through Esprit project 415.

We answer a question of Lambek and Scott (see [LS] p.99) by proving the following:
Theorem. Let \mathscr{M} be a C-monoid, with C-structure ($\left.\pi, \pi^{\prime}, \varepsilon,\left(_\right)^{*},<_{-},>\right)$. Then there exists a cartesian closed category \mathscr{A} with exactly two objects U and T, such that $\operatorname{End}(U)=\mathscr{M}$.

The construction of \mathcal{A} is entirely by hand. The intuitive idea is as follows. \mathcal{M} may be viewed as a collection of endomorphisms of a set U. Let $T \equiv\{*\}$ be a one-point set; then $u \mapsto \lambda * . u$ is a one-to-one correspondence between U and the set of all functions from T to U. Now if \mathcal{A} is a cartesian closed category with just U and T for its objects, where T is terminal, then in \mathcal{A} we must have

$$
\operatorname{Hom}(U, U) \cong \operatorname{Hom}(T \times U, U) \cong \operatorname{Hom}\left(T, U^{U}\right) \cong \operatorname{Hom}(T, U)
$$

so if we put $\operatorname{Hom}(U, U)=\mathcal{M}$, and like to think of $\operatorname{Hom}(T, U)$ as $\operatorname{Hom}_{S e t s}(\{*\}, U)$, we must have $\mathcal{M} \cong U$, as sets. Since it does not matter much what the elements of U are, we take $\mathcal{M}=U$. Then we have functions $f^{\dagger} \equiv \lambda * . f:\{*\} \rightarrow U$ for every $f \in U$. Composing with $0 \equiv$ $\lambda u . *: U \rightarrow\{*\}$, we have

$$
(\lambda * . f) \circ(\lambda u . *)=\lambda u . f: U \rightarrow U .
$$

This we identify with the arrow $\lambda_{u} f \equiv\left(f \pi^{\prime}\right) *$ in \mathcal{M}, described in [LS] §15. The longer definitions (notably, those of $g \circ f^{\dagger}$ and $\left\{g^{\dagger}, h^{\dagger}\right\}$) were forced upon us by this identification. The rest were the simplest at first sight.

Remark. By [LS] §16, the Karoubi envelope $K(\mathcal{M})$ of \mathcal{M} has a full cartesian closed subcategory $K_{0}(\mathcal{M})$ consisting of all objects isomorphic to U (the unit of \mathscr{M}) or the terminal object T. Taking one representative from either isomorphism class, one gets another full subcategory,
which is easily shown to be cartesian closed; and since the monoid End (U) of endomorphisms of U is isomorphic to \mathcal{M}, \mathscr{M} can now be recovered.

This method is unsatisfactory since we are not told how to identify U in $K(\mathscr{M})$. With the approach set out below, it is not necessary for the recovery of \mathfrak{M} that we know which of the objects of \mathcal{A} is U. We have a constructive criterion: take the object that is not terminal. If both objects are terminal, the choice is free.

We use the notation of [LS], but for one exception: we write $f^{\prime} a$ for " f applied to a ".
Proof of the theorem. Let U be the object of \mathscr{M}. Take some thing T distinct from U. We form \mathcal{A} from \mathcal{M} in a number of steps. First we add the object T to \mathcal{M} as a terminal object, i.e. we also add arrows $\mathrm{O}: U \rightarrow T$ and $1_{T}: T \rightarrow T$, and specify

$$
\begin{aligned}
& \circ f=\bigcirc \text { for all arrows } f \text { in } \mathcal{M} ; \\
& 1_{T} \bigcirc=\bigcirc, 1_{T}{ }^{1} T=1_{T} .
\end{aligned}
$$

Moreover, for each f in \mathcal{M} we take a distinct new arrow $f^{\dagger}: T \rightarrow U$ with

$$
\begin{aligned}
& f^{\dagger} \circ=\left(f \pi^{\prime}\right)^{*}, \circ f^{\dagger}=1_{T}, f^{\dagger} 1_{T}=f^{\dagger} \text {, and } \\
& g f^{\dagger}=\left(g^{‘} f\right)^{\dagger}\left(=\left(\varepsilon<g \circ\left(f \pi^{\prime}\right) *, 1>\right)^{\dagger}\right) \text { for all arrows } g \text { in } \mathcal{M} .
\end{aligned}
$$

The category \mathcal{A} has now been defined. To be sure that \mathcal{A} is indeed a category, the axioms for categories must be checked. The unit axioms are easy; in particular, $1_{U^{\circ} f^{\dagger}}=\left(1^{\prime} f\right)^{\dagger}=f^{\dagger}$ by C 12 ([LS] p. 96). Associativity of composition dissolves into sixteen cases

$$
A \rightarrow B \rightarrow C \rightarrow D
$$

with each of A, B, C, D either U or T. We write out the four least trivial.
(i) Suppose we have

Then $f^{\dagger} \circ(\mathrm{O} g)=f^{\dagger} \mathrm{O}=\left(f \pi^{\prime}\right)^{*}=\left(f \pi^{\prime}\right) * g$ by C9, [LS] p. 96

$$
=\left(f^{\dagger} 0\right) g .
$$

(ii) If we have

$$
\begin{aligned}
& \mathrm{U} \xrightarrow{\circ} \mathrm{~T} \xrightarrow{\mathrm{f}^{\dagger}} \mathrm{U} \xrightarrow{\mathrm{G}} \mathrm{U} \\
& g \circ\left(f^{\dagger} \mathrm{O}\right)=g \circ\left(f \pi^{\prime}\right)^{*}=\left(\varepsilon<g \circ\left(f \pi^{\prime}\right)^{*} \pi, \pi^{\prime}>\right)^{*}=\left(\varepsilon<g \circ\left(f \pi^{\prime}\right)^{*}, 1>\pi^{\prime}\right)^{*} \quad \text { (using C9) } \\
&=\left(\left(g^{\prime} f\right) \pi^{\prime}\right)^{*}=\left(g^{\prime} f\right)^{\dagger} O=\left(g f^{\dagger}\right) 0 .
\end{aligned}
$$

(iii) Given

we find $h \circ\left(g f^{\dagger}\right)=h \circ\left(g^{‘} f\right)^{\dagger}=\left(h^{‘}\left(g^{‘} f\right)\right)^{\dagger}=\left((h g)^{‘} f\right)^{\dagger}$ by C10, [LS] p. 96

$$
=(h g) f^{\dagger} .
$$

(iv) In a diagram

$$
\mathrm{T} \xrightarrow{\mathrm{f}^{\dagger}} \mathrm{U} \xrightarrow{\mathrm{O}} \mathrm{~T} \xrightarrow{\mathrm{~g}^{\dagger}} \mathrm{U},
$$

we have $g^{\dagger} \circ\left(\circ f^{\dagger}\right)=g^{\dagger}=\left(\left(\lambda_{u} g\right)^{‘} f\right)^{\dagger}$ (cf. [LS] Cor. 15.3)

$$
\left.\left.=\left(\left(g \pi^{\prime}\right)\right)^{‘} f\right)^{\dagger}=\left(g \pi^{\prime}\right) * f^{\dagger}=\left(g^{\dagger}\right)\right) f^{\dagger} .
$$

The next step is to define the cartesian structure.

$$
\begin{array}{ll}
U \times U=U, U \times T=T \times U=U, T \times T=T . \\
\pi_{U, U}=\pi, & \pi_{U, U}^{\prime}=\pi^{\prime}, \\
\pi_{U, T}=1_{U}, & \pi_{U, T}^{\prime}=0, \\
\pi_{T, U}=0, & \pi_{T, U}^{\prime}=1_{U}, \\
\pi_{T, T}=1_{T}, & \pi_{T, T}^{\prime}=1_{T} .
\end{array}
$$

We write $\{f, g\}$ for the pair of f and g in \mathcal{A}, and set

$$
\begin{aligned}
& \{f, g\}=\langle f, g\rangle \text { if } f, g \text { belong to } \mathcal{M} ; \\
& \{f, \circ\}=f,\{O, f\}=f \text { for } f \text { in } \mathcal{M} ; \\
& \{O, \circ\}=\left\{1_{T}, \circ\right\}=\left\{O, 1_{T}\right\}=O,\left\{1_{T}, 1_{T}\right\}=1_{T} ; \\
& \left\{f^{\dagger}, g^{\dagger}\right\}=\left(\left\langle\lambda_{u} f, \lambda_{u} g\right\rangle^{‘} 1\right)^{\dagger},\left\{1_{T} f^{\dagger}\right\}=f^{\dagger},\left\{f^{\dagger}, 1_{T}\right\}=f^{\dagger} .
\end{aligned}
$$

We must check if these definitions satisfy the additional axioms for a cartesian category, the equations E3 of [LS] p. 52. A number of these checks are trivial. We shall write out one case of E3a, and three cases of E3c.

$$
\begin{aligned}
\left(\text { ad E3a.) } \pi_{U, U}\left\{f^{\dagger}, g^{\dagger}\right\}\right. & =\pi \circ\left(\left\langle\lambda_{u} f, \lambda_{u} g\right)^{‘} 1\right)^{\dagger}=\left(\pi^{‘}\left(\left\langle\lambda_{u} f, \lambda_{u} g\right)^{`} 1\right)\right)^{\dagger} \\
& =\left(\left(\pi<\lambda_{u} f, \lambda_{u} g\right)^{‘} 1\right)^{\dagger} \text { by C10 }([\mathrm{LS}] \text { p. } 96) \\
& =\left(\left(\lambda_{u} f\right)^{‘} 1\right)^{\dagger}=f^{\dagger}, \text { by [LS] Cor. 15.3. }
\end{aligned}
$$

(ad E3c.) (i) If $k: U \rightarrow T \times U$, then in fact $k: U \rightarrow U$, and

$$
\left\{\pi_{T, U} k, \pi_{T, U}^{\prime} k\right\}=\{O k, k\}=\{O, k\}=k
$$

(ii) Let g, h be arrows of \mathfrak{M}. Then
(*) $\quad \lambda_{u} \cdot g^{\prime} h=\left(\left(g^{\prime} h\right) \pi^{\prime}\right)^{*}=\left(\varepsilon<g \circ\left(h \pi^{\prime}\right)^{*}, 1>\pi^{\prime}\right)^{*}=g \circ\left(h \pi^{\prime}\right)^{*}$,
since by C9 $\left(h \pi^{\prime}\right)^{*} \pi^{\prime}=\left(h \pi^{\prime}\right)^{*}=\left(h \pi^{\prime}\right)^{*} \pi$. Now if $k: T \rightarrow U \times U$, then in fact $k=f^{\dagger}: T \rightarrow U$ for some $f: U \rightarrow U$, and we have

$$
\begin{aligned}
\left\{\pi_{\left.U, U^{k}, \pi_{U, U}^{\prime} k\right\}}\right. & =\left\{\pi f^{\dagger}, \pi^{\prime} f^{\dagger}\right\}=\left\{\left(\pi^{‘} f\right)^{\dagger},\left(\pi^{\prime} f\right)^{\dagger}\right\}=\left(\left\langle\lambda_{u} \cdot \pi^{\prime} f, \lambda_{u} \cdot \pi^{\prime} f f\right\rangle{ }^{\prime} 1\right)^{\dagger} \\
& \left.=\left(\varepsilon \ll \lambda_{u} \cdot \pi^{\prime} f, \lambda_{u} \cdot \pi^{\prime} f f\right\rangle\left(\pi^{\prime}\right)^{*}, 1>\right)^{\dagger}=\left(\varepsilon \ll \pi \circ\left(f \pi^{\prime}\right)^{*}, \pi^{\prime} \circ\left(f \pi^{\prime}\right) *>, 1>\right)^{\dagger} \text { by }\left(^{*}\right) \\
& =\left(\varepsilon<\left(f \pi^{\prime}\right)^{*}, 1>\right)^{\dagger}=\left(1^{‘} f\right)^{\dagger}=f^{\dagger}=k, \text { using C12 ([LS] p. 96). }
\end{aligned}
$$

(iii) If $k: T \rightarrow T \times U$, then $k=f^{\dagger}$ for some $f: U \rightarrow U$, and

$$
\left\{\pi_{T, U} k, \pi_{T, U}^{\prime} k\right\}=\left\{O f^{\dagger}, f^{\dagger}\right\}=\left\{1_{T} f^{\dagger}\right\}=f^{\dagger}=k
$$

The last step is the specification of exponents and evaluation. We define

$$
\begin{aligned}
& U^{U}=U^{T}=U, T^{U}=T^{T}=T \\
& \varepsilon_{U, U}=\varepsilon ; \varepsilon_{T, T}=1_{T} ; \varepsilon_{T, U}=0 ; \varepsilon_{U, T}=1_{U}
\end{aligned}
$$

Cartesian closed categories associate to each $f: A \times B \rightarrow C$ an arrow $\Lambda_{C, B}^{A}(f): A \rightarrow C^{B}$. Usually one writes f^{*} for $\Lambda_{C, B}^{A}(f)$, since the indices A, B, C tend to be clear from the context. In our category \mathcal{A}, however, many products cannot be distinguished (recall $U \times U=U \times T=T \times U$), and because of this the type of f does not contain enough information. Thus we must specify the operations $\Lambda_{C, B}^{A}$ instead of just (_)*.

$$
\begin{gathered}
\Lambda_{U, U}^{U}(f)=f^{*} \\
\Lambda_{U, U}^{T}(f)=f^{\dagger} \\
\Lambda_{T, U}^{U}(0)=0 \\
\Lambda_{U, T}^{U}(f)=f \\
\Lambda_{T, T}^{U}(0)=0 \\
\Lambda_{U, T}^{T}\left(f^{\dagger}\right)=f^{\dagger} \\
\Lambda_{T, U}^{T}(0)=1_{T} \\
\Lambda_{T, T}^{T}\left(1_{T}\right)=1_{T}
\end{gathered}
$$

We finish by checking a few cases of the evaluation laws E4 ([LS] p. 53).
(ad E4a.) (i) $\varepsilon_{U, U}\left\{\Lambda_{U, U}^{T}(f) \pi_{T, U}, \pi_{T, U}^{\prime}\right\}=\varepsilon<f^{\dagger} \circ, 1_{U^{\prime}}=\varepsilon<\left(f \pi^{\prime}\right) *, 1_{U^{\prime}}=f$
by the corollary to the functional completeness theorem, [LS] 15.3.
(ii)

$$
\varepsilon_{U, T}\left\{\Lambda_{U, T}^{U}(f) \pi_{U, T}, \pi_{U, T}^{\prime}\right\}=1_{U}\{f, \circ\}=f
$$

(iii)

$$
\varepsilon_{U, T}\left\{\Lambda_{U, T}^{T}\left(f^{\dagger}\right) \pi_{T, T}, \pi_{T, T}^{\prime}\right\}=1_{U}\left\{f^{\dagger}, 1_{T}\right\}=f^{\dagger}
$$

(iv)

$$
\varepsilon_{T, U}\left\{\Lambda_{T, U}^{T}(\mathrm{O}) \pi_{T, U}, \pi_{T, U}^{\prime}\right\}=O\left\{0,1_{U}\right\}=0
$$

(ad E4b.) (i) Suppose $k: T \rightarrow U^{U}$, then $k=f^{\dagger}$ for some $f: U \rightarrow U$. Then

$$
\begin{aligned}
\Lambda_{U, U}^{T}\left(\varepsilon_{U, U}\left\{k \pi_{T, U} \pi_{T, U}^{\prime}\right\}\right) & =\Lambda_{U, U}^{T}\left(\varepsilon\left\{f^{\dagger} \circ, 1_{U}\right\}\right)=\Lambda_{U, U}^{T}\left(\varepsilon<\left(f \pi^{\prime}\right)^{*}, 1>\right) \\
& =\Lambda_{U, U}^{T}(f)=k \quad \text { (cf. (i) ad E4a.). }
\end{aligned}
$$

(ii) Suppose $k: T \rightarrow U^{T}$, again k is of the form f^{\dagger}, and

$$
\Lambda_{U, T}^{T}\left(\varepsilon_{U, T}\left\{k \pi_{T, T}, \pi_{T, T}^{\prime}\right\}\right)=\Lambda_{U, T}^{T}\left(\left\{f^{\dagger}, 1_{T}\right\}\right)=\Lambda_{U, T}^{T}\left(f^{\dagger}\right)=k
$$

(iii) If $k: T \rightarrow T^{U}$, then $k=1$, and

$$
\Lambda_{T, U}^{T}\left(\varepsilon_{T, U}\left\{k \pi_{T, U}, \pi_{T, U}^{\prime}\right\}\right)=\Lambda_{T, U}^{T}\left(\circ\left\{0,1_{U}\right\}\right)=\Lambda_{T, U}^{T}(0)=k
$$

The proof is complete.

Acknowledgements

Comments by C.P.J. Koymans and F.J. de Vries on an earlier version have led to substantial improvements in the exposition.

Reference

[LS] J. Lambek, P.J. Scott, Introduction to higher order categorical logic. Cambridge, 1986.

Logic Group Preprint Series

Department of Philosophy
University of Utrecht
Heidelberglaan 2
3584 CS Utrecht
The Netherlands
nr. 1 C.P.J. Koymans, J.L.M. Vrancken, Extending Process Algebra with the empty process: September 1985.
nr. 2 J.A. Bergstra, A process creation mechanism in Process Algebra, September 1985.
nr. 3 J.A. Bergstra, Put and get, primitives for synchronous unreliable message passing, October 1985.
nr. 4 A.Visser, Evaluation, provably deductive equivalence in Heyting's arithmetic of substitution instances of propositional formulas, November 1985.
nr. 5 G.R. Renardel de Lavalette, Interpolation in a fragment of intuitionistic propositional logic, January 1986.
nr. 6 C.P.J. Koymans, J.C. Mulder, A modular approach to protocol verification using Process Algebra, April 1986.
nr. 7 D. van Dalen, F.J. de Vries, Intuitionistic free abelian groups, April 1986.
nr. 8 F. Voorbraak, A simplification of the completeness proofs for Guaspari and Solovay's R, May 1986.
nr. 9 H.B.M. Jonkers, C.P.J. Koymans \& G.R. Renardel de Lavalette, A semantic framework for the COLD-family of languages, May 1986.
nr. 10 G.R. Renardel de Lavalette, Strictheidsanalyse, May 1986.
nr. 11 A. Visser, Kunnen wij elke machine verslaan? Beschouwingen rondom Lucas' argument, July 1986.
nr. 12 E.C.W. Krabbe, Naess's dichotomy of tenability and relevance, June 1986.
nr. 13 Hans van Ditmarsch, Abstractie in wiskunde, expertsystemen en argumentatie, Augustus 1986
nr. 14 A.Visser, Peano's Smart Children, a provability logical study of systems with built-in consistency, October 1986.
nr. 15 G.R.Renardel de Lavalette, Interpolation in natural fragments of intuitionistic propositional logic, October 1986.
nr. 16 J.A. Bergstra, Module Algebra for relational specifications, November 1986.
nr. 17 F.P.J.M. Voorbraak, Tensed Intuitionistic Logic, January 1987.
nr. 18 J.A. Bergstra, J. Tiuryn, Process Algebra semantics for queues, January 1987.
nr 19 F.J. de Vries, A functional program for the fast Fourier transform, March 1987.
nr. 20 A. Visser, A course in bimodal provability logic, May 1987.
nr .21 F.P.J.M. Voorbraak, The logic of actual obligation, an alternative approach to deontic logic, May 1987.
nr. 22 E.C.W. Krabbe, Creative reasoning in formal discussion, June 1987.
nr. 23 F.J. de Vries, A functional program for Gaussian elimination, September 1987.
nr. 24 G.R. Renardel de Lavalette, Interpolation in fragments of intuitionistic propositional logic, October 1987.(revised version of no. 15)
nr. 25 F.J. de Vries, Applications of constructive logic to sheaf constructions in toposes, October 1987.
nr. 26 F.P.J.M. Voorbraak, Redeneren met onzekerheid in expertsystemen, November 1987.
nr. 27 P.H. Rodenburg, D.J. Hoekzema, Specification of the fast Fourier transform algorithm as a term rewriting system, December 1987.
nr. 28 D. van Dalen, The war of the frogs and the mice, or the crisis of the Mathematische Annalen, December 1987.
nr. 29 A. Visser, Preliminary Notes on Interpretability Logic, January 1988.
nr. 30 D.J. Hoekzema, P.H. Rodenburg, Gauß elimination as a term rewriting system, January 1988.
nr. 31 C. Smorynski, Hilbert's Programme, January 1988.
nr. 32 G.R. Renardel de Lavalette, Modularisation, Parameterisation, Interpolation, January 1988.
nr. 33 G.R. Renardel de Lavalette, Strictness analysis for POLYREC, a language with polymorphic and recursive types, March 1988.
nr. 34 A. Visser, A Descending Hierarchy of Reflection Principles, April 1988.
nr. 35 F.P.J.M. Voorbraak, A computationally efficient approximation of Dempster-Shafer theory: April 1988.
nr. 36 C. Smorynski, Arithmetic Analogues of McAloon's Unique Rosser Sentences, April 1988.
nr. 37 P.H. Rodenburg, F.J. van der Linden, Manufacturing a cartesian closed category with exactly two objects, May 1988.
nr. 38 P.H. Rodenburg, R.J. van Glabbeek, An interpolation theorem in equational logic, May 1988.

