
PETER ROEPER

FIRST- AND SECOND-ORDER LOGIC OF MASS TERMS

Received in revised version on 21 February 2003

ABSTRACT. Provided here is an account, both syntactic and semantic, of first-order and
monadic second-order quantification theory for domains that may be non-atomic. Although
the rules of inference largely parallel those of classical logic, there are important differ-
ences in connection with the identification of argument places and the significance of the
identity relation.
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The logic of mass terms is a generalisation of standard predicate logic. It
allows for domains of quantification which have parts, but do not consist
of individuals. The rules of inference are largely those of normal predicate
logic. The main point of divergence concerns the identification of argument
places (reflexivisation). As there may be no individuals, the idea that dis-
tinct occurrences of the same variable always refer to the same individual
cannot be applied in specifying the semantics.

The first-order system is developed syntactically in Section 1, the
second-order system in Section 2. Formal semantics for the logic of mass
terms1 are arrived at indirectly by first translating the statements of the
logic of mass terms into a standard first-order calculus, whose domain of
quantification is the totality of quantities, i.e. the totality of parts of the
domain of mass quantification.

Soundness and completeness results for the first-order logic of mass
terms are obtained in Section 3, for second-order logic in Section 4.

1. FIRST-ORDER LOGIC OF MASS TERMS

Informal Grammar and Semantics

Mass Terms and Quantity Terms
The basic statements of L1 are quantified statements. They have the form
of ‘All snow is white’ and are written

(∀ p ε µ)Fp.
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µ is a mass term, F a predicate letter, p a quantificational variable. Mass
terms are treated as referring expressions. There is a significant parallelism
between mass terms and the more familiar kind of general term, repre-
sented by count nouns like ‘horse(s)’, ‘number(s)’, etc. I will refer to this
more familiar type of general term as general count terms. Unlike singular
terms, it is not an individual object that a mass term like ‘milk’ or a count
noun like ‘horse(s)’ refers to. Rather, ‘horse(s)’ refers to all (and only)
horses and ‘milk’ refers to all (and only) milk.

Still, there are individuals in the semantic neighbourhood of mass terms,
namely quantities. E.g., there is the quantity of all milk and there is the
quantity of milk in a particular glass. Quantities are related to mass terms
in the same way as classes, e.g., the class of all horses or the class of horses
in a particular stable, are related to general count terms. From a general
count term G one obtains the singular term ‘the class of Gs’ and from a
class term C the general term ‘members of C’. Analogously, if µ is a mass
term ‘the quantity of (all) µ’ refers to an individual quantity, and if κ is a
singular term referring to a quantity, then ‘of κ’ can in many cases be used
as a mass term referring to all of κ . (‘All of the quantity κ is . . .’, ‘Some of
the quantity κ is . . .’.)

The semantic difference between mass terms and quantity terms can
also be described in this way: quantity terms refer to quantities collectively,
mass terms distributively, just as class terms refer to classes collectively,
general count terms distributively. For to refer to a class distributively is to
refer to its members, i.e. each and every one of its members.

Having emphasised the semantic difference between mass terms and
quantity terms, I now proceed to ignore this distinction in the formal lan-
guage. It will be left open whether a Greek letter like “µ” is to be read as
a mass term or as a quantity term. The significance of whole sentences is
not affected by the ambiguity, as long as “∀”, “∃”, “ε” and relative clauses
are systematically re-interpreted. E.g.,

(∀ p ε µ) . . . p . . .

can be read indifferently as “All / milk . . .” or as “All of / the quantity of
milk . . .”. In some contexts one way of resolving the systematic ambiguity
may be more natural than the other.

For any general count term G there is a related predicate ‘is a G’ which
is true of everything that G refers to and of nothing else. Similarly, for
every mass term µ there is a related predicate ‘is µ’ that is true of all that
µ refers to and only of what µ refers to; e.g., ‘is water’ is true of all water
and only of water. In the formal language the expression ‘p ε µ’ represents
the predicate ‘is µ’, derived from the mass term µ.
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One further aspect of the parallelism between mass terms and general
count terms is the existence of a device that restricts the reference of the
term to what satisfies a certain predicate. Complex mass terms like ‘milk
that was exported to the EU in 1998’ consist of a mass term plus relative
clause. The expression ‘{µ p | A}’ is intended to refer to all µ that is A.

A predicate letter F is interpreted as a characteristic that may apply
here and there in the domain.

(∀ p ε µ)Fp

counts as true under an interpretation, if the characteristic associated with
F obtains everywhere in the extension of µ; or, in other words, if all of the
quantity that µ refers to has the characteristic associated with F , i.e. all µ

is F .
This account of universal quantification differs from the familiar ac-

count for a sentence like ‘All canaries are yellow’ (‘(∀ x ε G)Fx’) only
in the way in which the general term, i.e. either mass term or general
count term, refers. The sense of the generality conveyed by the quantifier
appears to be the same whether the range of quantification is the extension
of a mass term or of a general count term; the form of words – ‘all of
the extension of . . . has the characteristic F ’ – can serve in either case.
Therefore it is appropriate to use the same symbol ‘∀’ in both cases.

Quantificational variables are used to tie quantifiers to argument places
in complex predicates. While they do not really have a role in the basic
statements of L1, they are required, since the language allows also for
relations and for multiple quantification (‘Some wood is denser than all
water’). Predicates may also be truth-functionally complex. In short, in all
these respects L1 is like a first-order language with restricted quantifiers.

Reflexivisation
It would seem therefore that the logic of mass terms does not differ from
standard first-order logic. This is not the case, though. The differences
emerge in connection with reflexivisation, the identification of argument
places. I write p

{q
r Rqr to indicate the predicate obtained by identifying

the argument places of the relation R. In general, writing p
{q
r A amounts

to reflexivising the open sentence A by identifying the argument places
indicated by the free variables q and r, respectively; the resulting single
argument place is now indicated by p.

Among the possible interpretations that are intended to be covered are
domains of quantification, such as spaces and intervals of time, that do
not have minimal, or atomic, parts. An example will help clarify how
reflexivisation works when the domain is thus infinitely divisible. Where
there are atomic parts, however, these parts can play the role of individuals
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of classical logic. (∀ p ε µ) p
{q
r Rqr then signifies that every atomic

part of µ is R-related to itself. This interpretation is clearly not feasible
when the domain is infinitely divisible so that there are no atomic parts.
For example, take as the domain of quantification a line λ, i.e. a contin-
uous 1-dimensional space, not understood as a collection of points but as
infinitely divisible. Let S be the relation is less than 1 mm distant from.
Then

(∀ p ε λ) p
{q
r Sqr

is true because it is true everywhere in λ that there is less than 1 mm distant
from there itself. In this case we can find intervals κ that are sufficiently
small for it to be true that

(∀ q ε κ)(∀ r ε κ) Sqr

i.e. everywhere in κ is less than 1 mm distant from anywhere in κ , and the
line λ can be completely covered with these intervals.

On the other hand, let L be the relation is to the left of ‘and R its
converse is to the right of. Then

(∀ p ε λ) p
{q
r Lqr

and

(∃ p ε λ) p
{q
r Lqr

are false since it is not true anywhere in λ that there is to the left of there
itself. The example illustrates that for

(∃ p ε µ) p
{q
r Rqr

to be the case there has to be at least one part κ of µ for which it is true
that

(∀ q ε κ)(∀ r ε κ) Rqr.

Hence if

(∀ q ε κ)(∀ r ε κ) Rqr

is false whatever part κ of µ is considered, then

(∃ p ε µ) p
{q
r Rqr

is false.
The usual method of reflexivisation, namely to replace the occurrences

of q and of r by p, is not sufficiently scope sensitive. The reflexivisa-
tion device does not commute with negation. To illustrate, consider
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again the line λ. We have seen that (∃ p ε λ) p
{q
r Lqr is false. Therefore

(∀ p ε λ) ∼p
{q
r Lqr is true. On the other hand, a fortiori, (∀ p ε λ) p

{q
r Lqr

and (∀ p ε λ) p
{q
r Rqr are false. But since λ is infinitely divisible,

the converse of L, namely R is the same as the negation of L. Hence
(∀ p ε λ) p

{q
r ∼Lqr is false, while (∀ p ε λ) ∼p

{q
r Lqr is true.

The Language L1

Symbols
1. Denumerably many first-order variables: p1, p2, . . . ;
2. Denumerably many atomic mass terms: κ, κ ′, . . . , and �;
3. Countably many predicate letters;
4. Countably many 2-place relation letters;
5. ∼ & ⊃ ∨ ≡ ∀ ∃ | { ( ) { }.

Formation Rules

Formulae
(L1.i) An expression consisting of a predicate letter followed by a first-

order variable is a formula;
(L1.ii) An expression consisting of a relation letter followed by two, not

necessarily distinct, first-order variables is a formula;
(L1.iii) If p is a first-order variable and µ a mass term, then p ε µ is a

formula;
(L1.∼) If A is a formula, then ∼A is a formula;
(L1.&) If A and B are formulae then (A & B) is a formula;
(L1.R) If A is a formula and p is not free in A, unless p is identical with

q or r, then p
{q
r A is a formula;

(L1.∀) If A is a formula, µ a mass term, and p a first-order variable, then
(∀ p ε µ) A is a formula.

Mass Terms
(L1.iv) Atomic mass terms are mass terms;

(L1.C) If µ is a mass term and A a formula with no free first-order variable
besides p, then {µ p | A} is a (complex) mass term.

The expressions (A ∨ B), (A ⊃ B) and (A ≡ B) are defined in the
usual way; (∃ p ε µ) A is defined as ∼(∀ p ε µ)∼A. The notion of a free
occurrence of a variable is also defined in the usual way, with the additional
stipulation that the free variables in p

{q
r A are p plus any free variables in

A other than q and r. A closed formula or statement is a formula without
free occurrences of variables.
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A variable q is free for p in a formula A if and only if the variable p

has no free occurrences in A which lie within the scope of a quantifier
(∀ q ε µ), or of a reflexivisation operator pi

{pj

pk
, where q is pj or pk.

Provability in L1

The following clauses are counterparts of rules of natural deduction, with
� and � sets of formulae of L1. They are like the usual clauses except
where reflexivisation is involved. And since (Refl A) merely records a
syntactic convention, justifications are needed only for (Refl I) and (Refl E).

(Refl I) allows us to infer that all of a quantity is A-related to itself from
the premise that all of the quantity is A-related to all of the quantity. The
inference is valid in first-order logic and it is intuitively also valid in the
logic of mass terms. For example, suppose a certain volume V of space is
small enough for it to be true that everywhere in V is less than 1 m distant
from anywhere in V. It then follows that everywhere in V is less than 1 m
distant from there itself.

(Refl E) is less transparent. The premise here is that for every non-null
subquantity κ of µ it is not true that all of κ is A-related to all of κ . The
conclusion that can be drawn according to (Refl E) is that it is nowhere true
in µ that there is A-related to there itself. For illustration recall the line λ,
a continuous 1-dimensional space, and let A be the relation to the left of.
Since λ is continuous and the mass quantifier does not range over points,
we recognise as true the statement that nowhere in λ is to the left of there
itself. (Refl E) allows us to infer this statement from the fact that however
small an interval on λ one chooses, it is false that all of the interval is to
the left of all of the interval.

Inference Rules
(Reiteration) � � A for any member A of �

(Thinning) If � � A, then �,� � A

(Cut) If � � A and �,A � B, then �,� � B

(∼I) If �,A � B and �,A � ∼B, then � � ∼A

(DN) If � � ∼∼A, then � � A

(&I) If � � A and � � B, then � � A & B

(&E) If � � A & B, then � � A and � � B

(Refl I) If � � (∀ q ε µ)(∀ r ε µ) A, then � � (∀ p ε µ) p
{q
r A,

provided that if p is different from q and from r then p is
not free in A.

(Refl E) If �, (∃ p ε κ)p ε κ , (∀ p ε κ)p ε µ � ∼(∀ q ε κ)(∀ r ε κ)A,
then � � (∀ p ε µ)∼p

{q
r A, provided that κ does not occur

in �, µ, or A.
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(Refl A) p
{q
r Rqr 	� Rpp

(∀I) If �, q ε µ � A(q/p), then � � (∀ p ε µ)A, provided that

(a) q is free for p in A

(b) A(q/p) results from A by replacing every free occur-
rence of p by q

(c) there are no free occurrences of q in (∀ p ε µ) A

(d) there are no free occurrences of q in �

(∀E) If � � (∀ p ε µ) A, then �, q ε µ � A(q/p), provided that

(a) q is free for p in A

(b) A(q/p) results from A by replacing every free occur-
rence of p by q

(c) there are no free occurrences of q in (∀ µ p) A

(The rationale of condition (c) is to avoid applying reflexivi-
sation simultaneously with quantifier elimination.)

(�I) � p ε �

(Compl I) If � � p ε µ and � � A, then � � p ε {µ q | A(q/p)}
provided that there is no free variable in A besides p, and q

is free for p in A

(Compl E) If � � p ε {µ q | A(q/p)}, then � � p ε µ and � � A.
provided that there is no free variable in A besides p, and q

is free for p in A

Derived Rules
(⊃I) If �,A � B, then � � A ⊃ B

(⊃E) If � � A ⊃ B and � � A, then � � B

(∃I) If � � q ε µ and � � A(q/p), then � � (∃ p ε µ)A, provided that

(a) q is free for p in A

(b) A(q/p) results from A by replacing every free occurrence of p

by q

(c) there are no free occurrences of q in (∃ p ε µ)A

(∃E) If � � (∃ p ε µ)A and �, q ε µ,A(q/p) � C, then � � C, provided
that

(a) q is free for p in A

(b) A(q/p) results from A by replacing every free occurrence of p

by q

(c) there are no free occurrences of q in (∃ µ p)A

(d) there are no free occurrences of q in �.
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Consequences of the Derivation Rules

LEMMA 1.1. (a) (∃ p ε µ)p ε µ, (∀ p ε µ) A � (∃ p ε µ) A

(b) (∃ p ε µ)p ε µ � A ≡ (∀ µ p) A, if p is not free in A.

LEMMA 1.2. (a) � (∀ p ε µ)p ∈ µ

(b) (∀ p ε µ) ∼(p ε µ′) 	� (∀ p ε µ′) ∼(p ε µ)

(c) (∀ p ε µ)p ε µ′, (∀ p ε µ′)A � (∀ p ε µ)A

(d) (∀ p ε µ)p ε µ′, (∀ p ε µ′)p ε µ′′ � (∀ p ε µ)p ε µ′′
(e) (∀ p ε µ)A, (∀ p ε µ′) ∼A � (∀ p ε µ) ∼(p ε µ′)
(f) (∀ p ε µ)p ε µ′′, (∀ p ε µ′) ∼(p ε µ′′) � (∀ p ε µ) ∼(p ε µ′)

LEMMA 1.3. Suppose q is free for p in A. Then

(a) � (∀ p ε {µ q | A(q/p)})A
(b) � (∀ p ε {µ q | A(q/p)})p ε µ

(c) (∃ p ε µ)A 	� (∃ p ε {µ q | A(q/p)})p ε{µ q | A(q/p)}
Proof by (Compl I), (Compl E), (∃I), and (∃E). �

LEMMA 1.4. Suppose q is free for p in A. Then

(a) (∀ p ε {µ q | A(q/p)})B 	� (∀ p ε µ)(A ⊃ B)

(b) (∃ p ε {µ q | A(q/p)})B 	� (∃ p ε µ)(A & B)

If all µ is µ′, i.e. if (∀ p ε µ)p ε µ′, µ is a part of µ′. If µ and µ′ are
parts of one another they are the same quantity. It is useful to introduce the
following abbreviations.

DEFINITION 1.1. (a) µ ⊆ µ′ for: (∀ p ε µ)p ε µ′
(b) µ = µ′ for: (∀ p ε µ)p ε µ′ &(∀ p ε µ′)p ε µ

LEMMA 1.5. (a) � µ ⊆ �

(b) � µ = {� q | q ε µ}
(c) � {� q | q ε µ & A} = {µ q | A}
Proof by (�I) and Lemma 1.3. �

LEMMA 1.6. If �, (∃ p ε κ)p ε κ, (∀ p ε κ)p ε µ � ∼(∀ p ε κ)A, then
� � (∀ p ε µ)∼A, provided that κ does not occur in �, µ, or A.

Proof. Assume �, (∃ p ε κ)p ε κ, (∀ p ε κ)p ε µ � ∼(∀ p ε κ)A and
that κ does not occur in �, µ, or A. Then

�, (∃ p ε {µ q | A(q/p)})p ε {µ q | A(q/p)},
(∀ p ε {µ q | A(q/p)})p ε µ � ∼(∀ p ε {µ q | A(q/p)})A.
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By Lemma 1.3(a) and Lemma 1.3(b)

� � ∼(∃ p ε {µ q | A(q/p)})p ε {µ q | A(q/p)}
and by Lemma 1.3(c)

� � (∀ p ε µ)∼A. �
LEMMA 1.7. If

�, (∃ pi1 ε κj1)pi1 ε κj1, . . . , (∃pin ε κjn
)pin ε κjn

,

(∀ pi1 ε κj1)pi1 ε µ1, . . . , (∀ pin ε κjn
)pin ε µn

� ∼(∀ pi1 ε κj1) . . . (∀ pin ε κjn
)A

and κj1, . . . , κjn
are distinct atomic mass terms not occurring in �,

µ1, . . . , µn, µ, or A, then

� � (∀ pi1 ε µ1) . . . (∀ pin ε µn)∼A.

Proof by repeated use of Lemma 1.6. �
LEMMA 1.8. If

�, (∃ pi1 ε κj1)pi1 ε κj1, . . . , (∃ pin ε κjn
)pin ε κjn

,

(∃ pi ε κ)pi ε κ, (∀ pi1 ε κj1)pi1 ε µ1, . . . ,

(∀ pin ε κjn
)pin ε µn, (∀ pi ε κ)pi ε µ

� ∼(∀ pi1 ε κj1) . . . (∀ pin ε κjn
)(∀ pj ε κ)(∀ pk ε κ)A

and κj1, . . . , κjn
are distinct atomic mass terms not occurring in �, µ1, . . . ,

µn, or A, then

� � (∀ pi1 ε µ1) . . . (∀pinεµn)(∀ pi ε κ)∼pi

{pj

pk
A.

Proof by (Refl E) and Lemma 1.7. �
The discussion of formal semantics will be postponed until second-

order quantification theory has been described. It will turn out that for
every statement of the first-order logic of mass terms there is an equivalent
statement of the second-order logic of mass terms of a certain kind (basi-
cally, without first-order quantifiers). The details of the formal semantics
then naturally flow from this equivalence.
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2. MONADIC SECOND-ORDER LOGIC OF MASS TERMS

The second-order logic of mass terms is of interest for two reasons. Firstly,
there does not seem to be much use for first-order theories by themselves.
Interesting theories, such as topology, require second-order logic, at least
the monadic part of second-order logic. Moreover, monadic second-order
logic of mass terms is frequently appealed to in the philosophical literature
under the title of mereology. It appears to be of some interest therefore to
identify the proper place of mereology in the space of logical theories.

The second reason for investigating the second-order logic of mass
terms is to arrive at semantics for the first-order logic of mass terms. It can
be shown that first-order statements can in a sense be reduced to second-
order statements. For every first-order statement there exists an equivalent
second-order statement that is pure in the sense of containing first-order
quantifiers only attached to atomic predicates. This means that the seman-
tics for first-order logic can be derived from second-order semantics, the
latter being straightforwardly classical.

Only the monadic part of second-order logic will be developed. The
basic second-order statements have the form

(� α ⊆ µ) A and (	 α ⊆ µ) A.

The variables α, β etc. belong to the same category as mass terms or
as quantity terms, depending on what µ is taken to be. This means that
the systematic ambiguity explicated in Section 1 is carried over into the
second-order language L2. Evidently, the ambiguity does not affect the
truth conditions of statements.

The intended meaning of (� α ⊆ µ) A (of (	 α ⊆ µ) A) is
that A is true of every (of some) non-null sub-quantity of the quantity µ.
It is undoubtedly easier to convey this intention in the language of
quantity terms rather than mass terms. For if in ordinary language
first-order mass quantification is rare, second-order mass quantification
is rarer. The examples below may well look contrived. First existential
quantification: The word ‘some’, attached to a mass term, appears at times
to indicate first-order quantification, at other times second-order quantifi-
cation. In

Some sand is wet

‘some’ has the role of the first-order ‘∃’ and the sentence is symbolised

(∃ p ε sand) wet p.
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But the sentence

Some sand is, all of it, wet

which has the same content, has to be construed differently. The word ‘all’
must indicate first-order quantification and ‘it’ must be a pronoun standing
in for a mass term. For the sentence to be true,

(∀ p ε µ) wet p

has to be true, where µ is some sand. If we take α to be a variable in the
grammatical category of mass terms, we can write

Some sand α: (∀ p ε α) wet p

and here ‘some’ must be a second-order and not a first-order quantifier.
Hence

(	 α ⊆ sand)(∀ p ε α) wet p.2

The Language L2

L2 is an extension of L1 which provides for second-order variables and for
second-order quantifiers which bind those variables.

Symbols
1. Denumerably many second-order variables: α1, α2, . . . ;
2. the second-order quantifiers � and 	, the latter a defined symbol.

Formation Rules
The following rules (L2.�) and (L2.v) are added to the formation rules
(L1.i)–(L1.C) of L1.

(L2.�) If A is a formula, µ a mass term, and α a second-order variable,
then (� α ⊆ µ) A is a formula.

(L2.v) Second-order variables are mass terms.

(	 α ⊆ µ) A is introduced as an abbreviation of ∼(� α ⊆ µ) ∼A. A free
occurrence of a second-order variable is one not bound by a second-order
quantifier. A formula of L2 counts as closed (as a statement) if it does not
contain free occurrences of first-order or second-order variables. A closed
mass term is one that does not contain free occurrences of second-order
variables.3

Pure Statements
The main result to be proved in this section is that any statement of L2 is
equivalent in L2 to what is to be called a pure statement of L2.
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DEFINITION 2.1. A pure statement is a closed formula of L2 which

(a) does not contain complex mass terms;
(b) is such that within the scope of a first-order quantifier (∀ p ε µ)

there are no connectives or operators except, possibly, other first-order
quantifiers.

Provability in L2

To the clauses in Section 1 we add second-order quantifier introduction
and elimination clauses.

(�I) If �, (∃ p ε κ)p ε κ, (∀ p ε κ)p ε µ � A(κ/α),
then � � (� α ⊆ µ) A, provided that

(a) A(κ/α) results from A by replacing every free occurrence of α

by κ;
(b) κ does not occur in (� α ⊆ µ) A;
(c) κ does not occur in �.

(�E) If � � (� α ⊆ µ)A,
then �, (∃ p ε µ′)p ε µ′, (∀ p ε µ′)p ε µ � A(µ′/α), provided that

(a) µ and µ′ are closed mass terms;
(b) A(µ′/α) results from A by replacing every free occurrence of

α by µ′.

Derived Rules for the Second-Order Existential Quantifier
(	I) If � � (∀ p ε µ′)p ε µ,� � (∃ p ε µ′)p ε µ′, and � � A(µ′/α),

then � � (	 α ⊆ µ)A, provided that

(a) µ and µ′ are closed mass terms;
(b) A(µ′/α) results from A by replacing every free occurrence of

α by µ′.

(	E) If � � (	 α ⊆ µ)A and �, (∃ p ε κ)p ε κ, (∀ p ε κ)p ε µ,A(κ/α) �
C,
then � � C, provided that

(a) A(κ/α) results from A by replacing every free occurrence of α

by κ;
(b) κ does not occur in (	 α ⊆ µ) A;
(c) κ does not occur in �.
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Comprehension Principle
Characteristic of higher-order logic are comprehension principles, which
bring complex predicates into the range of second-order quantifiers. Given
the present understanding of the second-order quantifiers, the appropriate
principle for the logic of mass terms is

(Compr) � (∃ p ε µ)A ⊃ (	 α ⊆ µ)(∀ p ε µ)(p ε α ≡ A)

If A has no more than one free variable then the appropriate instance of
this schema is a theorem of the second-order logic of mass terms because
of the presence of complex mass terms in the languages L1 and L2. By
(Compl I) and (Compl E) one obtains

� (∀ p ε µ)(p ε {µ q | A(q/p)} ≡ A)

The instance of the Comprehension Principle then follows by (	I).
The next theorem lists important consequences of the Comprehension

Principle.

THEOREM 2.1. (a) (∃ p ε µ)A 	� (	α ⊆ µ)(∀ p ε α)A

(b) (∀ p ε µ)A 	� (� α ⊆ µ)(∃ p ε α)A

(c) (∃ p ε µ)A 	� (	 α ⊆ µ)(� β ⊆ α)(∃ p ε β)A

(d) (∀ p ε µ)A 	� (� α ⊆ µ)(	 β ⊆ α)(∀ p ε β)A

By Theorem 1.2 and the second-order quantifier rules one obtains the
following theorem.

THEOREM 2.2. (a) (∀ p ε µ)A 	� (� α ⊆ µ)(∀ p ε α)A

(b) (∃ p ε µ)A 	� (	 α ⊆ µ)(∃ p ε α)A

(c) (� α ⊆ µ)(	 β ⊆ α)A 	� (� α ⊆ µ)(	 β ⊆ α)(� γ ⊆ β)

(	 δ ⊆ γ )A(δ/β)

(d) (� α ⊆�)(∃ q ε α)(∃ r ε α)A	� (� α ⊆�)(	 β ⊆ α)(� γ ⊆ β)

(∃ q ε γ )(∃ r ε γ )A.

Second-order quantification also helps to clarify the significance of reflex-
ivisation.

THEOREM 2.3. (a) (∃ p ε µ)p
{q
r A � (	 α ⊆ µ)(∀ q ε α)(∀ r ε α)A

(b) (	 α ⊆ µ)(∀ q ε α)(∀ r ε α)A � (∃ p ε µ) p
{q
r A

Proof. (a) By (Refl E) and second-order quantifier rules.
(b) By (Refl I) and Theorem 2.1. �

THEOREM 2.4 (Substitution of co-referential mass terms). If � �µ= µ′,
then � � A(µ′//µ) ≡ A.
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First-Order, Second-Order Equivalences

LEMMA 2.5. Suppose q is free for p in A. Then

(a) (� α ⊆ {µ p | A})B 	� (� α ⊆ µ)((∀ p ε α)A ⊃ B)

(b) (	 α ⊆ {µ p | A})B 	� (	 α ⊆ µ)((∀ p ε α)A & B)

THEOREM 2.6. Let B and C be formulae of L2, not containing complex
mass terms. Then

(a) (∀ p ε µ)∼B 	� (� α ⊆ µ)∼(∀ p ε α)B

(b) (∀ p ε µ)(B & C) 	� (∀ p ε µ)B &(∀ p ε µ) C

(c) (∀ p ε µ)(B ⊃ C) 	� (� α ⊆ µ)((∀ p ε α)B ⊃ (∀ p ε α) C)

(d) (∀ p ε µ)p
{q
r B 	� (� α ⊆ µ)(	 β ⊆ α)(∀ q ε β)(∀ r ε β)B

(e) (∀ p ε µ)(∀ q ε µ′)B 	� (∀ q ε µ′)(∀ p ε µ)B

(f) (∀ p ε µ)(� α ⊆ µ′)B 	� (� α ⊆ µ′)(∀ p ε µ)B, provided α is not
free in µ.

Proof. (a) By Theorem 2.1(b).
(c) By Theorem 2.2(a), and by Theorem 2.1(b) and Lemma 1.1.
(d) By Theorem 2.1(b) and Theorem 2.3. �

The equivalences of Theorem 2.6 imply the following generalisations from
one universal mass quantifier to a sequence of such quantifiers.

THEOREM 2.7. Let B and C be formulae of L2, not containing complex
mass terms. Then

(a) (∀ pi1 ε µj1) . . . (∀ pin ε µjn
)∼B 	�

(� αk1 ⊆ µj1) . . . (� αkn
⊆ µjn

)∼(∀ pi1 ε αk1) . . . (∀ pin ε αkn
)B,

where αk1, . . . , αkn
do not occur in B.

(b) (∀ pi1 ε µj1) . . . (∀ pin ε µjn
)(B & C) 	�

(∀ pi1 ε µj1) . . . (∀ pin ε µjn
)B & (∀ pi1 ε µj1) . . . (∀ pin ε µjn

)C.
(c) (∀ pi1 ε µj1) . . . (∀ pin ε µjn

)(B ⊃ C) 	� (� αk1 ⊆ µj1) . . .

(� αkn
⊆ µjn

)((∀ pi1 ε αk1) . . . (∀pinεαkn
)B

⊃ (∀ pi1 ε αk1) . . . (∀ pin ε αkn
)C),

where αk1, . . . , αkn
do not occur in B or C.

(d) (∀ pi1 ε µj1) . . . (∀ pin ε µjn
)pi1

{pj

pk
B 	� (� αk1 ⊆ µj1) . . .

(� αkn
⊆ µjn

)(	 αl1 ⊆ αk1) . . . (	 αln ⊆ αkn
)

(∀ pj ε αl1)(∀ pk ε αl1)(∀ pi2 ε αl2) . . . (∀ pin ε αln)B,
where αk1, . . . , αkn

and αl1, . . . , αln do not occur in B.
(e) (∀ pi1 ε µj1) . . . (∀ pin ε µjn

)(∀ q ε µ′)B 	�
(∀ q ε µ′)(∀ pi1 ε µj1) . . . (∀ pin ε µjn

)B.
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(f) (∀ pi1 ε µj1) . . . (∀ pin ε µjn
)(� α ⊆ µ)B 	�

(� α ⊆ µ)(∀ pi1 ε µj1) . . . (∀ pin ε µjn
)B,

provided α is not free in µj1 , . . . , µjn
.

Identity

As in standard predicate logic, the second-order quantifiers permit defini-
tion of the first-order identity relation.

DEFINITION 2.2. p = q for: (� α ⊆ �)(p ε α ≡ q ε α).

The identity relation has the usual higher-order properties of symmetry and
transitivity,

p = q � q = p

and

p = q, q = r � p = r.

Reflexivity, however, does not necessarily obtain. The usual proof of re-
flexivity from symmetry and transitivity or directly from the definition is
not available, since it involves identification of argument places. In fact,
the identity relation is reflexive in a domain �, i.e.

(∀ p ε �)p = p,

only if that domain is atomic. If � is non-atomic (infinitely divisible), then

(∀ p ε �)∼(p = p).

In order to prove these assertions it is necessary to express divisibil-
ity, atomicity, and non-atomicity in terms of the formal concepts at hand.
Quantity µ is divisible if, for some part α of the domain �, some of µ is
in α and some is not. Hence

(A1) µ is divisible iff (∃ q ε µ)(∃ r ε µ)(	 α ⊆ �)∼(q ε α ≡ r ε α)

(A2) µ is indivisible iff (∀ q ε µ)(∀ r ε µ)(� α ⊆ �)(q ε α ≡ r ε α)

And � is infinitely divisible if each one of its parts is divisible, while � is
atomic if every part of � has itself an indivisible part.

(A3) � is non-atomic (infinitely divisible) iff

(� β ⊆�)(∃ q ε β)(∃ r ε β)(	 α ⊆�)∼(q ε α ≡ r ε α)
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(A4) � is atomic iff

(� β ⊆�)(	γ ⊆ β)(∀ q ε γ )(∀ r ε γ )(� α ⊆�)

(q ε α ≡ r ε α)

On the other hand,

(∀ p ε �)∼(p = p),

i.e.

(∀ p ε �)∼p
{q
r (� α ⊆ �)(q ε α ≡ r ε α)

is, by virtue of Theorem 2.6, equivalent to

(� β ⊆ �)∼(� γ ⊆ β)(	 δ ⊆ γ )(∀ q ε δ)(∀ r ε δ)

(� α ⊆ �)(q ε α ≡ r ε α)

and hence to

(� β ⊆ �)(	 γ ⊆ β)(� δ ⊆ γ )(∃ q ε δ)(∃r ε δ)

(	 α ⊆ �)∼(q ε α ≡ r ε α),

which by Theorem 2.2(d) is equivalent to

(� β ⊆ �)(∃ q ε β)(∃ r ε β)(	 α ⊆ �)∼(q ε α ≡ r ε α),

i.e. as claimed, to the infinite divisibility of �.
Similarly,

(∀ p ε �)p = p

is equivalent by definition to

(∀ p ε �)p
{q
r (� α ⊆ �)(q ε α ≡ r ε α)

and hence by Theorem 2.6 to

(� β ⊆ �)(	 γ ⊆ β)(∀ q ε γ )(∀ r ε γ )(� α ⊆ �)

(q ε α ≡ r ε α),

i.e. as claimed, to the atomicity of �.
In sum,

(∀ p ε �)∼(p = p)

characterises the domain as non-atomic, and

(∀ p ε �)(p = p)

as atomic.4
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Representation by Pure Statements of L2

It is now possible to prove that every statement of L2 is equivalent in L2

to a pure statement of L2. As explained before, a pure statement of L2 is a
closed formula of L2 which

(a) does not contain complex mass terms
(b) is such that within the scope of a first-order quantifier (∀ p ε µ) there

are no connectives or operators except, possibly, other universal first-
order quantifiers.

Complex mass terms can be eliminated from first-order quantifiers in L1

itself with the help of Lemma 1.4 and from second-order quantifiers by
Lemma 2.5.

A statement A of L2 that is free of complex mass terms can be trans-
formed into a pure statement Ap of L2 with the help of the equivalences
assembled in Theorem 2.6.

And the equivalences of Theorem 2.7 allow us to transform any formula
A of L2 which does not contain complex mass terms into an equivalent pure
formula Ap. In order to facilitate the recursive transformation we add to
L2 denumerably many further atomic mass terms π1, π2, . . . , the resulting
language being called L+

2 . If A is an open formula of L2, Ap is in general a
formula of L+

2 ; but if A is a closed formula of L2, then Ap does not contain
any of the additional mass terms πi and is therefore a statement, a pure
statement, of L2.

DEFINITION 2.3. Let A be a formula of L2 without complex mass terms.
Then Ap is recursively defined as follows.

(P.i) If A is Fpi , then Ap is (∀ pi ε πi)Fpi

(P.ii) If A is Rpipj , then Ap is (∀ pi ε πi)(∀ pj ε πj )Rpipj

(P.iii) If A is pi ε µ, then Ap is (∀ pi ε πi)pi ε µ

(P.∼) If A is ∼B and pi1, . . . , pin are the variables free in A, then Ap is
(� αj1 ⊆ πi1) . . . (� αjn

⊆ πin)∼Bp(αj1/πi1, . . . , αjn
/πin), where

αj1 , . . . , αjn
do not occur in Bp

(P.&) If A is B & C, then Ap is Bp & Cp

(P.⊃) If A is B ⊃ C and pi1 , . . . , pin are the variables free in A, then Ap

is (� αj1 ⊆ πi1) . . . (� αjn
⊆ πin)(B

p(αj1/πi1, . . . , αjn
/πin) ⊃

Cp(αj1/πi1, . . . , αjn
/πin)), where αj1 , . . . , αjn

do not occur in Bp

or Cp

(P.Refl) If A is pi1

{pj

pk
B and pi1 , . . . , pin are the variables free in A,

then Ap is (� αj1 ⊆ πi1) . . . (� αjn
⊆ πin)(	 αk1 ⊆ αj1) . . .

(	 αkn
⊆αjn

)Bp(αk1/πj, αk1/πk, αk2/πi2, . . . , αkn
/πin) where

αj1 , . . . , αjn
and αk1, . . . , αkn

do not occur in Bp
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(P.∀) If A is (∀ pi ε µ)B, then Ap is Bp(µ/πi)

(P.�) If A is (� αI ⊆ µ)B, then Ap is (� αI ⊆ µ)Bp

Theorem 2.7 guarantees the equivalence of the quantificational closure
of A with Ap.

THEOREM 2.8. Let A be any formula of L2 without complex mass terms
and let pi1 , . . . , pin be the variables that are free in A. Then (∀ pi1 ε πi1) . . .

(∀ pik ε πik )A 	� Ap.

In particular, given that by Lemmas 1.4 and 2.5 any statement of L2 is
equivalent in L2 to a statement of L2 without complex mass terms we have
the following result.

THEOREM 2.9. Let A be any statement of L2. Then there exists a pure
statement Ap of L2 which is equivalent to A.

In a pure statement of L2 first-order quantifiers occur only with atomic for-
mulae, i.e. in statements of the types (∀ p ε µ)Fp, (∀ p ε µ)(∀ q ε µ′)Rpq,
and (∀ p ε µ)p ε µ′. (∀ p ε µ)Fp can therefore be regarded as a second-
level predicate applied to µ, (∀pεµ)(∀ q ε µ′)Rpq and (∀ p ε µ)p ε µ′
as second-level relations applied to µ and µ′. With this understanding any
trace of first-order quantification has vanished from pure statements of L2.
This feature of pure statements will be exploited when it comes to devising
semantics for L1 and L2.

EXAMPLE. The L1 statement

(∀ p ε �)[∼Fp ⊃ p
{q
r Rqr]

is equivalent to the pure L2 statement

(� α ⊆ �)[(� β ⊆ α)∼(∀ p ε β)Fp ⊃ (� β ⊆ α)(	 γ ⊆ β)

(∀ q ε γ )(∀ r ε γ )Rqr]

Second-Order Logic of Mass Terms as Mereology

The terms µ, ρ, . . . , including second-order variables, are being used in a
systematically ambiguous way. They can be interpreted either as belonging
to the grammatical category of mass terms and as referring distributively to
quantities, or as belonging to the category of singular terms and referring
collectively to quantities. If one focuses on the second interpretation, the
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second-order quantifiers (� α ⊆ µ) can be understood as restricted first-
order quantifiers of a certain kind. It is this understanding of the quantifiers
which will lead to formal semantics for the first-order logic of mass terms.

It is intuitively clear that the part-of relation is a fundamental relation
for quantities. Indeed the part-of relation has played a role in the informal
semantics for the logic of mass terms and Definition 1.1 introduces the
notation µ ⊆ µ′ for µ is a part of µ′. It is hardly surprising then to
realise that the second-order logic of mass terms is the logic of the part-
of relation, i.e. is mereology. By Lemma 1.5(a) every quantity is a part of
the domain � (i.e. the quantity to which, on any particular interpretation,
the term � refers). And according to the rules (�I) and (�E) in Section 1
the quantifier (� α ⊆ �) ranges over all subquantities of �. The term

{� p | ∼(p ε �)}
does not designate a quantity, as there is no empty quantity. However, if the
element to which the term refers is added as null-element, the mereological
structure becomes a Boolean algebra with the Boolean operations defined
in the following natural way.

DEFINITION 2.4.

(a) −µ = {� p | ∼(p ε µ)} Complement
(b) µ ∧ µ′ = {� p | p ε µ & p ε µ′} Meet
(c) µ ∨ µ′ = {� p | p ε µ ∨ p ε µ′} Join
(d) �{α | A} = {� p | (� α ⊆ �)(A ⊃ p ε α)} Infinite Meet
(e) V{α | A} = {� p | (	 α ⊆ �)(A & pεα)} Infinite Join
(f) 1 = � Unit Element
(g) 0 = {� p | ∼(p ε �)} Null Element

With the help of the rules for complex mass terms the identities charac-
teristic of Boolean algebras can then be proved. The result is not at all
surprising. There exists a complete parallelism with the elementary the-
ory of classes encapsulated in ordinary second-order logic. And as I have
pointed out before, classes are related to count nouns in the same way as
quantities are related to mass terms.

In any interpretation of L2, classically construed, the elements of the
domain over which the second-order quantifiers range form a Boolean
algebra. The Boolean algebra is generally not complete. But it is of interest
to note the following infinite joins which must exist in every interpretation.

LEMMA 2.10. � {µ q | A(q/p)} = V{α | α ⊆ µ & (∀ p ε α)A} =
µ ∧ V{α | (∀ p ε α)A}



280 PETER ROEPER

Pure Statements of L2

Predicates and Relations
On the interpretation that takes µ, ρ, . . . to be singular terms for quantities
the language L2 has two types of first-order quantifiers, namely (∀ p ε µ)

and (� α ⊆ µ). If we now concentrate on the pure statements of L2, the
ordinary first-order mass-quantifier can be eliminated. For in pure state-
ments of L2 quantifiers of the form (∀ p ε µ) occur only in formulae of
the forms (∀ p ε µ)Fp, (∀ p ε µ)(∀ p ε ρ)Rpq and (∀ p ε µ)p ε ρ.
(∀ p ε µ)Fp attributes a certain property to the quantity µ, namely that
all of it is F . And (∀ p ε µ)(∀ p ε ρ)Rpq asserts that µ and ρ stand
in a certain relation, namely that all of µ is R-related to all of ρ, while
(∀ p ε µ)p ε ρ asserts the relation µ ⊆ ρ.

So, corresponding to any first-order predicate F defined on the domain
� there is a predicate F defined for the sub-quantities of � as specified
in the following definition. There is a similar correlation between relations
defined on � and relations among the sub-quantities of �.

DEFINITION 2.5.

(a) Fα for: (∀ p ε α)Fp

(b) Rαβ for: (∀ p ε α)(∀ p ε β)Rpq

Treating (∀ p ε µ)Fp and (∀ p ε µ)(∀ p ε ρ)Rpq as atomic statements
Fµ and Rµρ of the first-order logic of quantities, all trace of first-order
mass quantification has disappeared. So, given the result that for any state-
ment of L2 there exists an equivalent pure statement of L2 (Theorem 2.9),
the meaning of every statement of L2 can be explained by invoking the
familiar semantics of classical first-order logic. The details will be given
in the next two sections.

EXAMPLE. The L1 statement

(∀ p1 ε �)[∼Fp1 ⊃ p1
{p2
p3

Rp2p3]

is equivalent to the pure L2 statement

(� α ⊆ �)[(� β ⊆ α)∼Fβ ⊃ (� β ⊆ α)(	 γ ⊆ β)Rγ γ ]
Predicates F and relations R of the kind introduced in Definition 2.5

satisfy the following conditions, known as distributive and cumulative ref-
erence conditions. Lemma 1.2 and Theorem 2.1 yield proof of these con-
ditions.
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LEMMA 2.11. (a) Fα & β ⊆ α � Fβ

(b) (� β ⊆ α)(	 γ ⊆ β)Fγ � Fα

LEMMA 2.12. (a) (Rαβ & α′ ⊆ α & β ′ ⊆ β) � Rα′β ′
(b) (� α′ ⊆ α)(� β ′ ⊆ β)(	 α′′ ⊆ α′)(	 β ′′ ⊆ β ′)Rα′′β ′′ � Rαβ

3. FORMAL SEMANTICS FOR THE LOGIC OF MASS TERMS

Model-theoretic semantics for the logic of mass terms can be formulated
on the basis of the systematic translatability of statements of L1 and L2

into pure statements of L2. The latter can be construed as statements of a
first-order language with restricted quantifiers whose truth conditions can
be formulated without difficulty. Thereby one arrives at formal semantics
for the logic of mass terms. The present section is devoted to first-order
semantics; second-order semantics will be dealt with in the next one.

Interpretations

Since the domain of any interpretation constitutes a Boolean algebra, as
was shown in Section 2, formal interpretations are based on such algebras.
An interpretation J = 〈A, V〉 consists of a Boolean algebra A and a seman-
tic function V. Frequently only the non-null members of A are considered.
These are then referred to as the positive members of A. V associates with
every atomic mass term κ an element of A, and, in particular, with the term
� the unit element 1 of A. Further, V associates with every predicate letter
F a set V(F) of elements of A, which meets these 2 conditions, reflecting
Lemma 2.11.

(1) If α ∈ V(F ) and β ⊆ α, then β ∈ V(F )

(2) If, for every positive β ⊆ α, there exists a positive γ ⊆ β with γ ∈
V(F ), then α ∈ V(F )

And V associates with every relation letter R a set of pairs of elements of
A which meets these 2 conditions (cf. Lemma 2.12).

(3) If 〈α, β〉 ∈ V(R), α′ ⊆ α, and β ′ ⊆ β, then 〈α′, β ′〉 ∈ V(R)

(4) If, for every positive α′ ⊆ α and positive β ′ ⊆ β, there exist positive
α′′ ⊆ α′ and β ′′ ⊆ β ′ with 〈α′′, β ′′〉 ∈ V(R), then 〈α, β〉 ∈ V(R)

By a positive sequence I shall mean an infinite sequence σ =〈σ1, σ2, . . .〉
whose terms are positive elements of A. τ ⊆ σ is to mean that τi ⊆ σi for
i = 1, 2, . . . . The positive sequence Si

j,kσ is like σ except that its j -th

and k-th elements both equal σi . The positive sequence Sj

i σ is like σ
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except that its i-th element equals σj . And the positive sequence Sρ

i σ is
like σ except that its i-th element equals ρ. Truth in an interpretation will
be defined via reference and satisfaction by positive sequences. I write
‘J |=σ A’ for ‘σ satisfies formula A in J’ and ‘J(µ)’ for ‘the reference of
µ in J’.

Satisfaction
The recursive satisfaction clauses are motivated by the clauses of Defini-
tion 2.3.

(J.i) If A is Fpi , then J |=σ A iff σi ∈ V(F )

(J.ii) If A is Rpipj , i �= j , then J |=σ A iff 〈σi, σj 〉 ∈ V(R)

(J.ii′) If A is Rpipi , then J |=σ A iff for every positive sequence σ ′ ⊆ σ

there exists a positive sequence σ ′′ ⊆ σ ′ such that 〈σ ′′
i , σ ′′

i 〉 ∈ V(R)

(J.iii) If A is pi ε µ, then J |=σ A iff σi ⊆ J(µ)

(J.∼) If A is ∼B, then J |=σ A iff, for every positive sequence σ ′ ⊆ σ ,
J �|=σ ′ B

(J.&) If A is B & C, then J |=σ A iff J |=σ B and J |=σ C

(J.refl) If A is pi

{pj

pk
B, then J |=σ A iff for every positive sequence σ ′ ⊆ σ

there exists a positive sequence σ ′′ ⊆ σ ′ such that J |=Si
j,kσ

′′ B

(J.∀) If A is (∀ pi ε µ)B, then J |=σ A iff J |=Sδ
i σ

B, where δ = J(µ)

Reference
The clause for complex mass terms reflects Lemma 2.10.

(J.atom) If µ is an atomic mass term κ , then J(µ) = V(κ)

(J.compl) If µ is {ρ pi | A}, then J(µ) = J(ρ) ∧ V{α | J |=Sρ
i 〈1,1,...〉 A}

Infinite Joins
Note that (J.compl) presupposes that certain infinite unions of elements of
the Boolean algebra A exist. Explicitly:

(J.V) All infinite joins V{ρ | J |=Sρ
i 〈1,1,...〉 A} exist, where A has no free

variables besides pi and ρ ranges over the elements of A.

This means that the semantics do not amount to a recursive definition
of satisfaction and reference given arbitrary choices of A and V. Rather,
the satisfaction and reference clauses form part of the characterisation
of interpretations. The condition that certain infinite joins exist indirectly
constrains A and V.
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Truth
A statement A is true for an interpretation J =〈A,V〉, J |= A, iff J |=〈1,1,...〉A.

Validity
A statement A is valid, |= A, iff J |= A for every interpretation J.

Logical Consequence
� |=A iff in every interpretation J = 〈A, V〉, for every positive sequence σ ,
if J |=σ B for every B ∈ �, then J |=σ A.

Lemmas about Positive Infinite Sequences
With the formal definition of semantic consequence in place, the soundness
and completeness of the system of inference rules for the first-order logic
of mass terms introduced in Section 1 can be established. First, a number
of lemmas which will be required.

LEMMA 3.1. (a) If J |=σ A, then, for every positive σ ′ ⊆ σ , J |=σ ′ A;
(b) If, for every positive σ ′ ⊆ σ , there exists a positive σ ′′ ⊆ σ ′ with

J |=σ ′′ A, then J |=σ A.
Proof by induction on the complexity of A, using the satisfaction

clauses. �
LEMMA 3.2. Let A be a statement in which pi does not occur free. Then

J |=σ A if and only if J |=Sδ
i σ

A,

where δ is any element of the Boolean algebra A.

LEMMA 3.3. Let A be a formula; pj a variable which is different from pi ,
is free for pi in A, and does not occur free in A; let A(pj/pi) be the result
of substituting pj for all free occurrences of pi in A. Then J |=σ A(pj/pi)

iff J |=Sj
i σ

A.

Soundness

THEOREM 3.4 (Soundness). Let A and the members of � be formulae
of L1. Then � |= A if � � A.

The proof is lengthy and uneventful. I present here just the parts dealing
with the quantification rules and reflexivisation.

(∀I) Assume that �,pj ε µ |= A(pj/pi) and that the applicability
conditions of (∀I) are met. Suppose J |=σ �. Then, if J |=σ pj ε µ, i.e. by
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(J.iii) σj ⊆ δ = J(µ), then J |=σ A(pj/pi), i.e. J |=Sj
i σ

A by Lemma 3.3.

Since pj does not occur in �, J |=Sδ
i σ

A, i.e. J |=σ (∀ pi ε µ)A by (J.∀).
So � |= (∀ pi ε µ)A.

(∀E) Assume � |= (∀ pi ε µ)A and suppose that J |=σ � and J |=σ

pj ε µ, i.e. σj ⊆ J(µ). Then J |=σ (∀ pi ε µ)A, i.e. J |=Sδ
i σ

A, where δ

is J(µ). σj ⊆ δ and so Sj

i σ ⊆ Sδ
i σ . Hence J |=Sj

i σ
A by Lemma 3.1 and

J |=σ A(pj/pi) by Lemma 3.3. So �,pj ε µ |= A(pj/pi).
(Refl I) Suppose J |=σ (∀ pj ε µ)(∀ pk ε µ)A, i.e. by (J.∀) J |=Sδ

j Sδ
kσ

A,
where δ = J(µ); hence J |=Sδ

j Sδ
kSδ

i σ
A, since pi is not free in A unless i = j

or i = k. Then J |=σ (∀ pi ε µ)pi

{pj

pk
A, i.e. by (J.∀) J |=Sδ

i σ
pi

{pj

pk
A, i.e.

by (J.Refl) for every σ ′ ⊆ Sδ
i σ there exists a σ ′′ ⊆ σ ′ such that J |=Si

j,kσ
′′

A. For suppose σ ′ ⊆ Sδ
i σ and let σ ′′ be σ ′. Then Si

j,k σ ′′ ⊆ Si
j,k Sδ

i σ . But
Si

j,kSδ
i σ = Sδ

j Sδ
k Sδ

i σ . So Si
j,k σ ′′ ⊆ Sδ

j Sδ
k Sδ

i σ . Hence J |=Si
j,kσ

′′ A by
Lemma 3.1.

(Refl E) Suppose

�, (∃pi ε κ)pi ε κ, (∀ pi ε κ)pi ε µ |= ∼(∀ pj ε κ)(∀ pk ε κ)A,

where κ does not occur in �,µ, or A. Consider an arbitrary interpretation
J = 〈A, V〉 and suppose that J |=σ �. Assume for reductio that J �|=σ

(∀ pi ε µ)∼pi

{pj

pk
A. Then by (J.∀) J �|=Sδ

i σ
∼pi

{pj

pk
A, where δ is J(µ).

Hence by (J.∼) there exists a positive sequence σ ′ ⊆ Sδ
i σ such that J |=σ ′

pi

{pj

pk
A. So by (J.Refl) there exists a positive sequence σ ′ ⊆ Sδ

i σ such

that, for every positive sequence σ ′′ ⊆ σ ′, there is a positive sequence
τ ⊆ σ ′′ with J |=Si

j,kτ
A. Hence by the transitivity of ⊆ there exists a

positive sequence τ ⊆ Sδ
i σ such that J |=Si

j,kτ
A.

Now consider a second interpretation J∗ = 〈A, V∗〉, where J∗ differs
from J only in that J∗(κ) = V∗(κ) = ρ = τi , τi being the i-th ele-
ment in the sequence τ . Since κ does not occur in �, J∗ |= �. Since
τ ⊆ Sδ

i σ, ρ = τi ⊆ δ = J(µ) and so J∗ |=Sρ
i σ pi ε µ by (J.iii) and hence

J∗ |=σ (∀pi ε κ)pi ε µ by (J.∀). Since τ is a positive sequence, V∗(κ)

is positive and so J∗ |=σ (∃ pi ε κ)pi ε κ . By the supposition it fol-
lows that J∗ |=σ ∼(∀ pj ε κ)(∀ pk ε κ)A, i.e., for every positive sequence
σ ′ ⊆ σ , J∗ �|=σ ′ (∀ pj ε κ)(∀ pk ε κ)A. Hence, for every positive sequence
σ ′ ⊆ σ , J∗ �|=Sρ

j Sρ
k σ ′ A; and since κ does not occur in A, for every positive

sequence σ ′ ⊆ σ , J �|=Sρ
j Sρ

k σ ′ A. Let the sequence υ be identical with τ ,

except that υi = σi . Since τ ⊆ Sδ
i σ , υ ⊆ σ and so J �|=Sρ

j Sρ
k υ A. As pi

is not free in A, unless i = j or i = k, J �|=Sρ
j Sρ

k Sρ
i υ A by Lemma 3.2.
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But Sρ

i υ = τ and Sρ

j Sρ

k Sρ

i υ = Sρ

j Sρ

k τ = Si
j,kτ , which means that

J �|=Si
j,kτ

A, q.e.a. So the assumption that J �|=σ (∀ pi µ)∼pi

{pj

pk
A has

to be rejected. Consequently, J |=σ (∀ pi ε µ)∼pi

{pj

pk
A, and therefore

� |= (∀ pi ε µ)∼pi

{pj

pk
A. �

Completeness

The completeness proof involves an adaptation of the well-known meth-
ods used in Henkin’s proof. A consistent set �0 of statements can be
enlarged to a maximally consistent set � of a certain kind, and from this
an interpretation can be constructed under which all statements in �0 are
true. First, the definition of the required maximally consistent set and the
interpretation based on it.

DEFINITION 3.1. Let L+ be an extension of L1. Then � is a maximally
consistent set of statements (closed formulae) of L+ providing examples if
and only if the following four conditions are met:

(i) For any statement A, exactly one of A, ∼A is a member of �;
(ii) If � ⊆ � and � � A, then A ∈ �;

(iii) If a statement of the form

∼(∀ pi1 ε µ1) . . . (∀ pin ε µn)A

is a member of �, there exist atomic mass terms κj1, . . . , κjn
such

that the statements

(∃ pi1 ε κj1)pi1 ε κj1, . . . , (∃ pin ε κjn
)pin ε κjn

,

(∀ pi1 ε κj1)pi1 ε µ1, . . . , (∀ pin ε κjn
)pin ε µn

and

(∀ pi1 ε κj1) . . . (∀ pin ε κjn
)∼A

are all members of �;
(iv) If a statement of the form

∼(∀ pi1 ε µ1) . . . (∀ pin ε µn)(∀ pi ε µ)∼pi

{pj

pk
A

is a member of �, there exist atomic mass terms κj1, . . . , κjn
, and κ

such that the statements

(∃ pi1 ε κj1)pi1εκj1, . . . , (∃ pin ε κjn
)pin ε κjn

,

(∃ pi ε κ)pi ε κ,

(∀ pi1 ε κj1)pi1 ε µ1, . . . , (∀ pin ε κjn
)pin ε µn,

(∀ pi ε κ)pi ε µ



286 PETER ROEPER

and

(∀ pi1 ε κj1) . . . (∀ pin ε κjn
)(∀ pj ε κ)(∀ pk ε κ)A

are all members of �.

If � is so defined, then A ∈ � if and only if � � A.

The Interpretation J�

We construct an interpretation J� = 〈A�, V�〉 for which all the members
of a maximally consistent set � which provides examples are true. The
elements of the Boolean algebra A� are the equivalence classes of mass
terms under the equivalence relation ≈�, defined as follows.

DEFINITION 3.2. If µ and µ′ are closed mass terms, then µ ≈� µ′ for:
� � µ = µ′.

Let [µ]≈� be the equivalence class of µ for the equivalence relation ≈�.
The Boolean operations −, ∧ and ∨, and the ordering relation ⊆ on A�

are then defined as follows (compare Definition 2.4).

DEFINITION 3.3. Let [µ]≈� and [µ′]≈� be the equivalence classes of
closed mass terms µ and µ′ under ≈�. Then

(a) −[µ]≈� = [{� p | ∼(p ε µ)}]≈�

(b) [µ]≈� ∧ [µ′]≈� = [{� p | p ε µ & p ε µ′}]≈� = [{µ p | p ε µ′}]≈�

(c) [µ]≈� ∨ [µ′]≈� = [{� p | p ε µ ∨ p ε µ′}]≈�

(d) [µ]≈� ⊆ [µ′]≈� iff � � (∀ p ε µ)p ε µ′

The unit element 1� of the Boolean algebra is [�]≈� , the null element 0�

is −[�]≈� . Hence µ ∈ 1� if and only if � � (∀ p ε �)p ε µ and µ ∈ 0�

if and only if � � (∀ p ε �)∼(p ε µ) or, equivalently, if and only if
∼(∃ p ε µ)p ε µ.

The interpretation J� is completed by stipulating that, for every atomic
mass term κ , V�(κ) = [κ]≈�; for every predicate letter F , [µ]≈� ∈ V�(F)

iff � � (∀ p ε µ)Fp; and, for every relation letter R, 〈[µ]≈�, [µ′]≈�〉 ∈
V�(R) iff the � � (∀ p ε µ)(∀ q ε µ′)Rpq.

Having specified the interpretation J�, it needs to be proved that
J� |= A iff � � A. A sequence of elements of A� is a sequence of
equivalence classes of closed mass terms. It will be convenient to des-
ignate a sequence 〈σ1, σ2, . . . , σi, . . .〉 of closed mass terms by σ and the
sequence 〈[σ1]≈�, [σ2]≈�, . . . , [σi]≈�, . . .〉 of their equivalence classes by
[σ ]≈� . A �-positive sequence [σ ]≈� is such that [σi]≈� �= 0�, i.e. � �
(∃ p ε σi)p ε σi , for i = 1, 2, . . . ; the sequence σ itself will also be called
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�-positive. [σ ′]≈� ⊆ [σ ]≈� when � � (∀ p ε σ ′
i )p ε σi for i = 1, 2, . . . ;

in this case I also write σ ′ ⊆ σ . Finally, I write J� |=σ A instead of
J� |=[σ ]≈�

A.

DEFINITION 3.4. Let L+ be an extension of L1. Let � be a maximally
consistent set of statements of L+ providing examples, σ a �-positive
sequence of mass terms, and pi1, . . . , pin the free variables in A. Then

� �σ A

is short for

� � (∀ pi1 ε σi1) . . . (∀ pin ε σin)A.

LEMMA 3.5. Let L+ be an extension of L1. Let � be a maximally con-
sistent set of statements providing examples. Let σ be a positive sequence
of closed mass terms of L1 and let pi1, . . . , pin be the variables free in A.
Then

(a) If � �σ A, then for every �-positive sequence of mass terms σ ′ ⊆ σ ,
� �σ ′ A;

(b) If, for every �-positive sequence of closed mass terms σ ′ ⊆ σ , there
exists a �-positive sequence of closed mass terms σ ′′ ⊆ σ ′ with � �σ ′′
A, then � �σ A.

Proof. (a) Assume � � (∀ pi1 ε σi1) . . . (∀ pin ε σin)A. Let σ ′ ⊆ σ ,
i.e. � � (∀ p ε σ ′

i )p ∈ σi , for i = 1, 2, . . . . Then � � (∀ pi1 ε σ ′
i1
) . . .

(∀ pin ε σ ′
in
)A by Lemma 1.2 and the maximal consistency of �.

(b) Assume that, for every �-positive sequence of closed mass terms
σ ′ ⊆ σ , there exists a �-positive sequence of closed mass terms σ ′′ ⊆
σ ′ with � � (∀ pi1 ε σ ′′

i1
) . . . (∀ pin ε σ ′′

in
)A, and suppose that not � �

(∀ pi1 ε σi1) . . . (∀ pin ε σin)A. Then � � ∼(∀ pi1 ε σi1) . . . (∀ pin ε σin)A,
since � is maximally consistent. Since � provides examples (clause (iii)
of Definition 3.1), there are atomic mass terms κj1, . . . , κjn

such that the
following hold.

� � (∃ pi1 ε κj1)pi1 ε κj1; . . . ;� � (∃ pin ε κjn
)pin ε κjn

� � (∀ pi1 ε κj1)pi1 ε σi1; . . . ;� � (∀ pin ε κjn
)pin ε σin

and

� � (∀ pi1 ε κj1) . . . (∀ pin ε κjn
)∼A(1)

Consider the sequence σ ′ which is identical with σ except that σ ′
i1

=
κj1, . . . , σ

′
in

= κjn
. Then σ ′ is a �-positive sequence of closed mass terms,
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σ ′ ⊆ σ , and there exists, as assumed, a �-positive sequence of closed
mass terms σ ′′ ⊆ σ ′ so that the following hold:

� � (∀ pi1 ε σ ′′
i1
) . . . (∀ pin ε σ ′′

in
)A(2)

and

� � (∀ pi1 ε σ ′′
i1
)pi1 ε κj1, . . . ,� � (∀ pin ε σ ′′

in
)pin ε κjn

.

But from (1) by (a)

� � (∀ pi1 ε σ ′′
i1
) . . . (∀ pin ε σ ′′

in
)∼A.(3)

Since σ ′′ is a �-positive sequence of closed mass terms, (2) and (3) are in-
consistent, and therefore � is inconsistent, contrary to what was assumed.
So, rejecting the supposition, we infer that

� � (∀ pi1 ε σi1) . . . (∀ pin ε σin)A. �
LEMMA 3.6. Let L+ be an extension of L1. Let � be a maximally con-
sistent set of statements of L+ providing examples. Let σ be a �-positive
sequence of closed mass terms of L+ and let there be no free variables in
A other than p. Then

V{[ρ]≈� | � � (∀ p ε ρ)A} = [{� q | A(q/p)}]≈�.

Proof. (a) � � (∀{� q | A(q/p)}p)A by Lemma 1.3.
(b) If � � (∀ p ε ρ)A, then � � (∀ p ε ρ)p ε{�q | A(q/p)} by (�I)

and (Compl I). �
THEOREM 3.7. Let L+ be an extension of L1. Let � be a maximally
consistent set of statements of L+ providing examples. Let J� = 〈A�, V�〉
be the interpretation based on �, let σ be a �-positive sequence of closed
mass terms, and let A be a formula, µ a mass term of L+. Then

(a) J� |=σ A iff � �σ A;
(b) J�(µ) = [µ]≈� .

The proof, by simultaneous induction on the complexity of A and of µ,
is omitted.

Consequently,

THEOREM 3.8. Let L+ be an extension of L1. A statement A is true for
the interpretation J� based on a maximally complete set � of statements
of L+ which provides examples if and only if � � A.
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Construction of a Maximally Consistent Set �

It remains to be shown that any consistent set of statements of L1 can be
expanded to a maximally consistent set providing examples. By adding
to the language L1 denumerably many atomic mass terms one obtains a
language L+, whose atomic mass terms are κ1, κ2, . . . . Let C1, C2, . . . , Cl

be an enumeration of all pairs 〈〈κl1, . . . , κln〉, A〉, where A is a formula of
L+ and the sequence 〈κl1, . . . , κln〉 of atomic mass terms of L+ has as many
elements as there are free variables in A.

Let � = �0 be a consistent set of statements of L1. For each l from 1 on,
�l is defined as follows, depending on the pair Cl = 〈〈κl1 , . . . , κln〉, Al〉:

Case 1. Al is of the form ∼pi

{pj

pk
B. Let pi1, . . . , pin−1 be the free

variables in Al other than pi .
Case 1.1. �l−1 ∪ {(∀ pi1 ε κl1) . . . (∀ pin−1 ε κln−1)(∀ pi ε κln)∼pi

{pj

pk
B}

is consistent. Then

�l = �l−1

∪{(∀ pi1 ε κl1) . . . (∀ pin−1 ε κln−1)(∀ pi ε κln)∼pi

{pj

pk
B}

Case 1.2. �l−1 ∪{(∀ pi1 ε κl1) . . . (∀ pin−1 ε κln−1)(∀ pi ε κln)∼pi

{pj

pk
B}

is inconsistent. Then

�l = �l−1

∪ {∼(∀ pi1 ε κl1) . . . (∀ pin−1 ε κln−1)(∀ pi ε κln)∼pi

{pj

pk
B}

∪ {(∃ pi1 ε κj1)pi1 ε κj1, . . . , (∃ pin−1 ε κjn−1)pin−1 ε κjn−1,

(∃ pi ε κ)pi ε κ}
∪ {(∀ pi1 ε κj1)pi1 ε κl1, . . . , (∀ pin−1 ε κjn−1)pin−1 ε κln−1,

(∀ pi ε κ)pi ε κln}
∪ {(∀ pi1 ε κj1) . . . (∀ pin−1 ε κjn−1)(∀ pj ε κ)

(∀ pk ε κ)B},

where κj1, . . . , κjn−1 and κ are atomic mass terms of L+ which do not occur
in any statement in �l−1.

Case 2. Al is not of the form ∼pi

{pj

pk
B. Let pi1, . . . , pin be the free

variables in Al .
Case 2.1. �l−1 ∪ {(∀ pi1 ε κl1) . . . (∀ pin ε κln)Al} is consistent. Then

�l = �l−1 ∪ {(∀ pi1 ε κl1) . . . (∀ pin ε κln)Al}
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Case 2.2. �l−1 ∪ {(∀ pi1 ε κl1) . . . (∀ pin ε κln)Al} is inconsistent. Then

�l = �l−1

∪ {∼(∀ pi1 ε κl1) . . . (∀ pin ε κln)Al}
∪ {(∃ pi1 ε κj1)pi1 ε κj1 , . . . , (∃ pin ε κjn

)pin ε κjn
}

∪ {(∀ pi1 ε κj1)pi1 ε κl1, . . . , (∀ pin ε κjn
)pin ε κln}

∪ {(∀ pi1 ε κj1) . . . (∀ pin ε κjn
)∼Al},

where κj1, . . . , κjn
are atomic mass terms of L+ which do not occur in any

statement in �l−1. Finally, define � as
⋃∞

l=0 �l .
I omit the proof that �, so defined, is consistent.

THEOREM 3.9. Suppose � is a consistent set of statements of L1. Then
there exists a maximally consistent set � of statements of an extension L+
of L1 which provides examples, such that � ⊆ �.

The Completeness Theorem

THEOREM 3.10 (Completeness). Let A and the members of � be state-
ments of L1. Then � � A if � |= A.

Proof. Suppose not � � A. Then � ∪ {∼A} is consistent. By Theo-
rem 3.9 � ∪ {∼A} ⊆ �, where � is a maximally consistent set providing
examples. By Theorem 3.8 the members of � as well as ∼A are true on
the interpretation J�. Hence A is not true on J� and � �|= A. �

4. SOUNDNESS AND COMPLETENESS OF MONADIC SECOND-ORDER

LOGIC OF MASS TERMS

To the formal semantics for the logic of mass terms of Section 4 has to
be added a satisfaction clause for the second-order quantifier. For that the
notion of a (κ,µ)-variant is needed. Note that while in L2 a mass term
µ may contain occurrences of second-order variables, only closed mass
terms have a reference J(µ) in an interpretation J. All mass terms con-
sidered in this section, other than second-order variables themselves, are
closed mass terms. Therefore none of the formulae to be dealt with in this
section contains free occurrences of second-order variables.

DEFINITION 4.1. Let J be the interpretation 〈A, V〉, µ a closed mass
term and κ an atomic mass term; and let V∗ be like V except that V∗(κ) is
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an element of A with 0 �= V∗(κ) ⊆ J(µ). Then J∗ = 〈A, V∗〉 is a (κ, µ)-
variant of J. (Since κ is atomic, J∗(κ) = V∗(κ). If J(µ) = 0, J has no
(κ, µ)-variant.)

With this notion at hand, the satisfaction clause for the second-order quan-
tifier is

(J.�) J |=σ (� α ⊆ µ)B iff J∗ |=σ B(κ/α) for every (κ,µ)-variant J∗
of J, where κ does not occur in (� α ⊆ µ)B.

On the syntactic side we have the two inference rules for the second-
order quantifier which were introduced in Section 2.

(�I) If �, (∃ p ε κ)p ε κ, (∀ p ε κ)p ε µ � A(κ/α),
then � � (� α ⊆ µ)A, provided that

(a) A(κ/α) results from A by replacing every free occurrence of α

by κ;
(b) κ does not occur in (� α ⊆ µ)A;
(c) κ does not occur in �.

(�E) If � � (� α ⊆ µ)A,
then �, (∃ p ε µ′)p ε µ′, (∀ p ε µ′)p ε µ � A(µ′/α), provided
that

(a) µ and µ′ are closed mass terms;
(b) A(µ′/α) results from A by replacing every free occurrence of α

by µ′.

The soundness and completeness of the enlarged system of inference
rules relative to the semantics for second-order logic can be established
quite easily by extending the proofs in the previous section.

Soundness

It needs to be shown that the two rules above are validity preserving.
(�I) Assume that

�, (∃ p ε κ)p ε κ, (∀ p ε κ)p ε µ |= A(κ/α)

and that the provisos (a) to (c) are met. Now suppose that J |=σ �. Let
J∗ = 〈A, V∗〉 be an arbitrary interpretation which differs from J at most
in that 0 �= V∗(κ) ⊆ J(µ). Then J∗ |=σ �, since κ does not occur in �;
J∗ |=σ (∀ p ε κ)p ε µ by (J.∀) and (J.iii), since J∗(κ) = V∗(κ) ⊆ J(µ);
and J∗ |=σ (∃ p ε κ)p ε κ , since J∗(κ) �= 0. So, J∗ |=σ A(κ/α). Hence
J# |=σ A for any interpretation J# = 〈A, V#〉 which differs from J at most



292 PETER ROEPER

in that 0 �= V#(κ) ⊆ J(µ), i.e. for any (κ,µ)-variant J# of J. Hence J |=σ

(� α ⊆ µ)A by (J.�), and so � |= (� α ⊆ µ)A.
(�E) Assume that � |= (� α ⊆ µ)A and that the proviso of (�E)

is met. Suppose that J |=σ �, J |=σ (∀ p ε µ′)p ε µ, i.e. J(µ′) ⊆ J(µ),
and J |=σ (∃ p ε µ′)p ε µ′, i.e. J(µ′) �= 0. Then J |=σ (� α ⊆ µ)A,
hence J∗ |=σ A(κ/α), where J∗ is the (κ, µ)-variant 〈A, V∗〉 of J with
V∗(κ) = J(µ′). Therefore J |=σ A(µ′/α), and so

�, (∃ p ε µ′)p ε µ′, (∀ p ε µ′)p ε µ |= A(µ′/α).

THEOREM 4.1 (Soundness). Let A and the members of � be formulae
of L2. Then � |= A if � � A.

Completeness

The Maximally Consistent Set �

The second-order completeness proof is just a modification of the com-
pleteness proof of Section 3. To begin with, Definition 3.1 of a maxi-
mally consistent set of statements providing examples receives an addi-
tional clause.

DEFINITION 4.2. Let L+ be an extension of L2. � is a maximally con-
sistent set of statements of L+ providing examples if and only if in addition
to (i)–(iv) of Definition 3.1 the following condition is met:

(v) If a statement of the form

∼(∀ pi1 ε µ1) . . . (∀ pin ε µn)(� α ⊆ µ)B,

is a member of �, there exist atomic mass terms κj1, . . . , κjn
, and κ

such that the statements

(∃ pi1 ε κj1)pi1 ε κj1, . . . , (∃ pin ε κjn
)pin ε κjn

,

(∃ p ε κ)p ε κ,

(∀ pi1 ε κj1)pi1 ε µ1, . . . , (∀ pin ε κjn
)pin ε µn,

(∀ p ε κ)p ε µ;
and

(∀ pi1 ε κj1) . . . (∀ pin ε κjn
)∼B(κ/α)

are all members of �.

With L+, A�, V� and J� defined as before, we are able to prove the
following theorem, which extends Theorem 3.7.
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THEOREM 4.2. Let L+ be an extension of L2. Let � be a maximally
consistent set of statements of L+ providing examples. Let J� = 〈A�, V�〉
be the interpretation based on �, let σ be a �-positive sequence of closed
mass terms, and let A be a formula, µ a closed mass term of L+. Then

(a) J� |=σ A iff � �σ A;
(b) J�(µ) = [µ]≈� .

Proof. To the inductive proof of Theorem 3.7 we need to add consid-
eration of the case in which A is (� α ⊆ µ)B, with pi1 , . . . , pin the free
variables in B.

(a) Suppose � �σ (� α ⊆ µ)B, i.e.

� � (∀ pi1 ε σi1) . . . (∀ pin ε σin)(� α ⊆ µ)B.

Let µ′ be any closed mass term with � � (∃ p ε µ′)p ε µ′ and � �
(∀ p ε µ′)p ε µ.

Then by (�E) and (∀E), (∀I)

� � (∀ pi1 ε σi1) . . . (∀ pin ε σin)B(µ′/α),

i.e. � �σ B(µ′/α). Therefore by the inductive hypothesis J� |=σ B(µ′/α).
Let J�∗ be the interpretation 〈A�, V�∗〉, where V�∗ is like V�, except
that V�∗(κ) is [µ′]≈� . Since [µ′]≈� ⊆ [µ]≈� = J�(µ) by the inductive
hypothesis, J�∗ is a (κ,µ)-variant of J�. So, J�∗ |=σ B(κ/α) for every
(κ,µ)-variant J�∗ of J�. Hence by (J.�)

J� |=σ (� α ⊆ µ)B.

(b) Suppose not � �σ (� α ⊆ µ)B, i.e.

not � � (∀ pi1 ε σi1) . . . (∀ pin ε σin)(� α ⊆ µ)B.

Then, given that � is maximally consistent,

� � ∼(∀ pi1 ε σi1) . . . (∀ pin ε σin)(� α ⊆ µ)B.

Since � provides examples (clause (v)) there exists a �-positive sequence
σ ′ ⊆ σ and an atomic mass term κ such that

� � (∃ p ε κ)p ε κ,

� � (∀ p ε κ)p ε µ,

and

� � (∀ pi1 ε σ ′
i1
) . . . (∀ pin ε σ ′

in
)∼B(κ/α),
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i.e. � �σ ′ ∼B(κ/α). Hence not � �σ ′ B(κ/α), since � is maximally con-
sistent. And by the inductive hypothesis J� �|=σ ′ B(κ/α). Since V�(κ) �=
0� and V�(κ) ⊆ J�(µ) = [µ]≈� (again by the inductive hypothesis),
J� itself is a (κ,µ)-variant of J�. Hence by (J.�) J� �|=σ ′ (� κ ⊆ µ)B.
And so J� �|=σ (� κ ⊆ µ)B by Lemma 3.2. �

The Construction of �

In order to ensure that � meets condition (v), the following needs to be
added to the description of the construction of the successive sets �l in
Section 3.

Case 3. Al is of the form (� α ⊆ µ)B. Let pi1 , . . . , pin be the free
variables in B.

Case 3.1. �l−1∪{(∀ pi1 ε κl1) . . . (∀ pin ε κln)(� α ⊆ µ)B} is consistent.
Then

�l = �l−1 ∪ {(∀ pi1 ε κl1) . . . (∀ pin ε κln)(� α ⊆ µ)B}
Case 3.2. �l−1 ∪ {(∀ pi1 ε κl1) . . . (∀ pin ε κln)(� α ⊆ µ)B} is incon-

sistent. Then

�l = �l−1

∪ {∼(∀ pi1 ε κl1) . . . (∀ pin ε κln)(� α ⊆ µ)B}
∪ {(∃ pi1 ε κj1)pi1 ε κj1 , . . . , (∃ pin ε κjn

)pin ε κjn
,

(∃ p ε κ)p ε κ}
∪ {(∀ pi1 ε κj1)pi1 ε κl1, . . . , (∀ pin ε κjn

)pin ε κln,

(∀ p ε κ)p ε µ}
∪ {(∀ pi1 ε κj1) . . . (∀ pin ε κjn

)∼B(κ/α)},
where κj1, . . . , κjn

and κ are atomic mass terms of L+ which do not occur
in any statement in �l−1.

The Consistency of �

Finally, the proof that the set of statements � obtained by the construction
is consistent needs to be supplemented by considering Case 3.2, in which

�l−1 ∪ {(∀ pi1 ε κl1) . . . (∀ pin ε κln)(� α ⊆ µ)B}
is inconsistent, which means that

�l−1 � ∼(∀ pi1 ε κl1) . . . (∀ pin ε κln)(� α ⊆ µ)B.



FIRST- AND SECOND-ORDER LOGIC OF MASS TERMS 295

The assumption that �l−1 is consistent, but �l inconsistent must be shown
to be untenable. By the inconsistency of �l

�l−1, (∃ pi1 ε κj1)pi1 ε κj1, . . . , (∃ pin ε κjn
)pin ε κjn

,

(∃ p ε κ)p ε κ, (∀ pi1 ε κj1)pi1 ε κl1, . . . ,

(∀ pin ε κjn
)pin ε κln,(∀ p ε κ)p ε κ

� ∼(∀ pi1 ε κj1) . . . (∀pinεκjn
)∼B(κ/α)

But then, by Lemma 1.7,

�l−1, (∃ p ε κ)p ε κ, (∀ p ε κ)p ε µ

� (∀ pi1 ε κl1) . . . (∀ pin ε κln)B(κ/α)

and by (�I) and (∀E), (∀I)

�l−1 � (∀ pi1 ε κl1) . . . (∀ pin ε κln)(� α ⊆ µ)B,

which means that, contrary to assumption, �l−1 is inconsistent. So,

THEOREM 4.3. Suppose � is a consistent set of statements of L2. Then
there exists a maximally consistent set � of statements of an extentsion L+
of L2 which provides examples, such that � ⊆ �.

The Completeness Theorem
By familiar reasoning it can now be inferred that L2 is complete.

THEOREM 4.4 (Completeness). Let A and the members of � be state-
ments of L2. Then � � A, if � |= A.

Discussion
The completeness result appears to be in conflict with the well-known
incompleteness of second-order logic. The discrepancy is easily explained.
The familiar incompleteness result presupposes the ‘standard’ interpre-
tation of second-order logic: the second-order quantifiers range over all
properties on the domain of individuals or, equivalently, all subsets of the
domain. The domain of the interpretation not only is the range of the first-
order quantifier, it also determines the range of the second-order quantifier.
When the domain is infinite, the range of the second-order quantifiers goes
well beyond the totality of properties expressible (the totality of subsets
characterisable) in L1.

If the ‘non-standard’ interpretation of second-order logic is adopted, the
range of the second-order quantifiers is not completely determined by the
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domain, the range has to be specified separately, it need not consist of all
properties on the domain (all subsets of the domain), but it must include
all those properties (subsets) which can be characterised in L1. If validity
is defined in terms of non-standard interpretations, then second-order logic
is complete.

At first glance, the interpretation of second-order quantification offered
here corresponds to the ‘standard’ interpretation: the quantifiers range
over all sub-quantities of the domain �, i.e. every non-null element of the
Boolean algebra A. However, if we think of the second-order quantifiers
as ranging over properties a different picture emerges. A property, we have
seen, is a set φ of quantities which meets 2 conditions, namely

(1) If α ∈ φ and β ⊆ α, then β ∈ φ

(2) If, for every positive β ⊆ α, there exists a positive γ ⊆ β with γ ∈ φ,
then α ∈ φ

While for every property F expressible in L1 there is a quantity of all
of the domain that is F , thanks to constraint (J1.x), there is no general
requirement that for every property there is a quantity comprising all of
the domain that has the property. For the Boolean algebra A need not be
complete. This means that properties and quantities are not in complete
correspondence and the present reading of the second-order quantifiers
amounts to a ‘non-standard’ interpretation; for that reason the monadic
second-order logic for mass terms presented here is complete.

In order to formulate the counterpart for mass terms of the standard
interpretation, one would have to require that the Boolean algebra over
whose elements the second-order quantifiers range be complete, i.e. its
domain be the completion of A.

NOTES

1 Semantics for the first-order logic of mass terms were first presented in Roeper, P.,
‘Semantics for Mass Terms with Quantifiers’, Noûs 17 (1983), 251–265, and Roeper, P.,
‘Generalisation of First-Order Logic to Nonatomic Domains’, J. Symbolic Logic 50 (1985),
815–838.

2 Again, second-order universal quantification cannot easily be rendered in ordinary
language.

(� sand, m)(∀ m p) wet p

might be translated as

Take some sand, no matter which: all of it is wet.

3 Mass terms never contain free occurrences of first-order variables.
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4 Note that (∀ p ε �)(∀ q ε �)∼(p = q) and (∀ p ε �)(∃ q ε �)p = q are equivalent to
(∀ p ε �)∼(p =p) and (∀ p ε �)p = p, respectively, and can therefore also serve to
characterise non-atomic and atomic domains, respectively.
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