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1. Introduction 

Consider the predicament of a young infant recently arrived in the world and 

trying to make sense of it. She has some resources at her disposal: sensory information 

about her environment, the ability to act on it, and in most cases a surrounding linguistic 

environment, family and culture that can help to teach her what she needs to know. 

Nevertheless the task is daunting. Suppose on one occasion that daddy gestures out the 

window and says “Look, a bunny!” To what is he referring? The field of green? The tall 

structures dotting the horizon? The brownish object streaking rapidly along the ground? 

Later in the evening mommy repeats the word, this time gesturing toward a white contour 

in a picture book—it is not moving, it is not brown, it is two-dimensional. At bedtime big 

brother says “Here’s your bunny,” this time handing her a soft pink fuzzy object. What 

on earth could they all be talking about! 

And yet before she turns 10 she will know that the word “bunny” refers to a 

particular animal with long ears and a fluffy little tail, and what’s more, she will know 

that bunnies have blood and bones inside; that they can reproduce and grow and die; that 

they can feel pain and get hungry; that they are warm to the touch; that they live in holes 

in the ground; that some people believe it brings good luck to wear a bunny-foot on a 

chain. When she gets a new bunny-rabbit as a pet, she will be able to infer that all of 

these things are true, even though she has never before encountered this particular bunny; 

and when she brings her new pet to show-and-tell, she will be able to communicate all of 

these facts to her classmates simply by talking. And, this knowledge about bunny-rabbits 

constitutes a tiny fraction of the general factual world-knowledge she will have 

accumulated. Understanding the basis of these human abilities—to recognize, 
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comprehend, and make inferences about objects and events in the world, and to 

comprehend and produce statements about them—is the goal of research in semantic 

memory. 

Semantic memory is memory for meanings. In some disciplines (e.g. linguistics), 

the word semantics refers exclusively to the meanings of words and sentences. In 

cognitive science, however, the term typically encompasses knowledge of any kind of 

meaning, linguistic or non-linguistic, including knowledge about the meanings of words, 

sentences, objects and events, as well as general facts (Tulving, 1972). Accordingly, the 

terms “semantic memory” and “conceptual knowledge” are often used interchangeably in 

the literature. Semantic memory is usually differentiated from episodic memory (long-

term declarative memory for particular episodes that are firmly rooted in a particular time 

and place; see the chapter by Norman, Detre and Polyn, this volume), procedural memory 

(long-term non-declarative memory for well-learned action sequences; see the chapters 

by Ohlsson and by Cleeremans in this volume), and working memory (short-term 

memory for retention and manipulation of task-relevant information; see chapter by De 

Pisapia, Repovs and Braver, this volume). 

Semantic abilities are central to a broad swath of cognitive science, including 

language comprehension and production, object recognition, categorization, induction 

and inference, and reasoning. Each of these topics constitutes a domain of study in its 

own right, and many are covered in other chapters in the Handbook (see the chapter on 

exemplars models by Logan; the chapter on concepts and categorization by Kruschke; the 

chapter on induction and inference by Heit; and the chapter on Bayesian models by 

Griffiths, Kemp and Tenenbaum). This chapter focuses on three principal questions 
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motivating research in semantic memory: How do we come to know which items and 

events in the environment should be treated as “the same kind of thing” for purposes of 

communication, action, and induction; how do we learn to map language onto these 

kinds; and how are these cognitive abilities subserved by neural processes? 

These questions have, of course, been the subject of philosophical inquiry for 

centuries, but the application of computational methods has considerably advanced our 

understanding of the cognitive and neural bases of semantic abilities. Indeed, semantic 

memory was the target of some of the earliest computer simulation work in cognitive 

science, and much contemporary research in the domain can be fruitfully viewed as a 

reaction to these early ideas. The next section of the chapter thus provides a brief 

overview of two theoretical frameworks that first came to prominence in the 1970’s: 

spreading activation theories based on Collins and Quillian’s (1969) influential computer 

model, and prototype theories deriving from the work of Eleanor Rosch (Rosch, 1978; 

Rosch & Mervis, 1975) and others. A consideration of the strengths and limitations of 

these basic ideas will highlight the most pressing questions guiding current research in 

semantic memory. The remaining sections then follow 3 parallel strands of modeling 

research that are beginning to offer leverage on this issues. Section 3 traces developments 

spurred by Hinton’s (1981) Parallel Distributed Processing (PDP) model of semantics, 

culminating in the general approach to semantic cognition recently laid out by Rogers 

and McClelland (2004). Section 4 addresses how sensitivity to temporal structure in 

language and experience can shape conceptual representations, following a thread of 

research that begins with Elman’s (1990) seminal work and culminates in Latent 

Semantic Analysis (LSA) and related approaches (Burgess & Lund, 1997; Landauer & 
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Dumais, 1997; Steyvers, Griffiths, & Dennis, 2006). Section 5 considers models targeted 

at understanding the neural basis of semantic abilities. 

2. Hierarchies and prototypes 

One of the earliest implemented computer models in cognitive science was the 

hierarchical spreading-activation model of semantic memory described by Collins and 

Quillian (Collins & Quillian, 1969). The model was predicated on the notion that 

semantic memory consists of a vast set of stored simple propositions (e.g. “cats have fur,” 

“canaries can sing,” and so on). Under the rules of logical inference, such a system of 

propositions can support new deductive inferences via the syllogism; for instance, given 

the propositions “Socrates is a man” and “all men are mortal,” it is possible to infer that 

Socrates is mortal without requiring storage of a third proposition. Collins and Quillian’s 

model effectively used the syllogism as a basis for organizing propositional knowledge in 

memory. In their model, concepts (mental representations of categories) are stored as 

nodes in a network, and predicates (specifying relationships between concepts) are stored 

as labeled links between nodes. Simple propositional beliefs are represented by linking 

two nodes with a particular predicate. For example, the belief that a robin is a kind of bird 

is represented by connecting the nodes robin and bird with a predicate that specifies 

class-inclusion (an ISA link, as in “a robin is a bird”); whereas the belief that birds can 

fly is represented by connecting the nodes bird and fly with a link labeled can, and so on.  

The authors observed that, if concepts at different levels of specificity were linked 

with ISA predicates, the system could provide an economical means of knowledge 

storage and generalization. For instance, the knowledge that a canary is a kind of bird is 

represented by connecting the node for canary to the node for bird with an ISA link; 
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knowledge that birds are animals is stored by connecting the bird node to the animal 

node, and so on. To make inferences about the properties of a given concept such as 

canary, the model first retrieves all of the predicates stored directly with the 

corresponding node (e.g. can sing); but the search process then moves upward along the 

ISA links and searches properties at the next node, so that the predicates attached to more 

inclusive concepts also get attributed to the probe concept. For canary, activation first 

searches the bird node, supporting the inference that the canary can fly, and then the 

animal node, supporting the inference that the canary can move. 

In addition to economy of storage, this system provided a simple mechanism of 

knowledge generalization; for example, to store the fact that all birds have a spleen, it is 

sufficient to create a node for spleen and connect it to the bird node with a link labeled 

has. The retrieval process will then ensure that has a spleen generalizes to all of the 

individual bird concepts residing beneath the bird node in the hierarchy. Similarly, if the 

system is “told” that there is something called a “Xxyzzyx” that is a kind of bird, it can 

store this information by creating a new node for Xxyzzyx and attaching it to the bird 

node. The retrieval mechanism will then ensure that all properties true of birds are 

attributed to the Xxyzzyx. 

Early empirical assessments of the model appeared to lend some support to the 

notion that concepts were organized hierarchically in memory. Specifically, Collins and 

Quillian showed that the time taken to verify the truth of written propositions varied 

linearly with the number of nodes traversed in the hierarchy. Participants were fastest to 

verify propositions like “a canary can sing,” which required searching a single node (ie 

canary), and slower to verify propositions like “a canary has skin,” which required 
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searching three nodes in series (first canary, then bird, then animal). Later studies, 

however, seriously challenged the model as originally formulated, showing for instance 

that property- and category-verification times vary systematically with the prototypicality 

of the item probed—so that participants are faster to decide that a robin (a typical bird) 

has feathers than that a penguin (an atypical bird) has feathers. Since the nodes in the 

network were cast as non-compositional primitives, there was no way to represent 

“typicality” in the original model, and no process that would permit typicality to 

influence judgment speed. Moreover, the influence of typicality on property decision 

times was sufficiently strong as to produce results that directly contradicted the Collins 

and Quillian model. For example, participants were faster to decide that a chicken is an 

animal than that it is a bird, even though chicken and bird must be closer together in the 

hierarchy (Rips, Shoben, & Smith, 1973). 

These and other challenges led Collins and Loftus (1975) to elaborate the 

framework. Instead of a search process that begins at the bottom of the hierarchy and 

moves upward through class-inclusion links, the authors proposed a search mechanism by 

which the “activation” of a probe concept such as canary would “spread out” along all 

outgoing links, activating other nodes related to the probe, which in turn could pass 

activation via their own links. In this spreading activation framework, the strict 

hierarchical organization of the original model was abandoned, so that direct links could 

be established between any pair of concepts; and the authors further suggested that links 

between concept nodes could vary in their “strength,” that is, the speed with which the 

spreading activation process could move from one node to the next. On this account, 

people are faster to retrieve the properties of typical items because these are more 
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strongly connected to more general concepts than are less typical items; and the system 

can rapidly determine that a chicken is an animal by storing a direct link between the 

corresponding nodes, rather than having to “deduce” that this is true by allowing 

activation to spread to animal via bird. These elaborations were, however, purchased at 

the cost of computational simplicity. One appeal of the original model was its 

specification of a search process in sufficient detail that it could be programmed on a 

computer. This precision and simplicity depended upon the strict hierarchical 

organization of concepts proposed by Collins and Quillian (1969). When all nodes can 

potentially be connected via links of varying strengths, it is not clear how to limit the 

search process—the spread of activation through the network—so as to retrieve only 

those properties true of the probe concept. For instance, if the proposition “all bikes have 

wheels” is stored by linking the nodes for bike and wheel, and the proposition “all wheels 

are round” is stored by linking wheel and round, how does the network avoid activating 

the predicate is round when probed with the concept bike? 

A second limitation of the spreading-activation theory is that it was not clear how 

the propositional information encoded in the network should be “linked” to perceptual 

and motor systems. Spreading-activation theories seem intuitive when they are applied to 

purely propositional knowledge—that is, when the nodes in the network are understood 

as corresponding to individual words, and the links to individual predicates, so that the 

entire system of knowledge may be accurately characterized as a system of propositions. 

Under such a scheme, there are few questions about which concepts—which nodes and 

links—should inhabit the network. Very simply, each node and link corresponds to a 

word in the language, so that the contents of the network are determined by the lexicon, 
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and the structure of the network represents beliefs that can be explicitly stated by 

propositions (e.g. “All birds have feathers”). And, such a representational scheme seems 

most plausible when considering experiments of the kind conducted by Collins and 

Quillian (1969), where participants must make judgments about the truth of written 

propositions. When the stimuli to be comprehended are perceptual representations of 

objects, things get more complicated, because it is less clear which nodes in the network 

should be “activated” by a given stimulus. A particular dog might belong equally to the 

classes collie, dog, pet, animal and living thing, so which of these nodes should a visual 

depiction of the dog activate? More generally, it is unclear in propositional spreading-

activation models how the nodes and links of the network relate to or communicate with 

the sensory and motor systems that provide input to and code output from the semantic 

system.  

2.1 Prototype and similarity-based approaches 

Around the same time, there was intensive research focusing directly on the 

question of how objects are categorized for purposes of naming and induction (see the 

chapters in the volume on concepts and categorization by Kruschke, on 

instance/exemplar models by Logan, and on induction and inference by Heit). 

Throughout the 50’s and 60’s, researchers appear to have assumed that membership in 

every-day categories could be determined with reference to necessary and sufficient 

criteria (Bruner, Goodnow, & Austin, 1956). Studies of category learning thus focused on 

understanding how people come to know which of an item’s properties are necessary and 

sufficient for membership in some category, and such studies typically employed simple 

stimuli with well-defined properties organized into artificial categories according to some 
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rule. For instance, participants might be shown a series of stimuli varying in shape, 

colour, and size, arbitrarily grouped by the experimenter into categories on the basis of 

one or more of these dimensions. The participant’s goal was to determine the rule 

governing which items would fall into which categories, and the aim of the research was 

to determine which strategies participants employed to determine the rule, which kinds of 

rules were easy or difficult to learn, how easily participants could switch from one rule to 

another, and so on. 

In the early 1970’s, Rosch (Rosch & Mervis, 1975; Rosch, Simpson, & Miller, 

1976), citing Wittgenstein (1953), observed that most every-day categories are not, in 

fact, defined by necessary and sufficient criteria; and that, instead, members of categories 

were best understood as sharing a set of family resemblances. So, for instance, most dogs 

tend to be hairy, four-legged friendly domesticated animals—even though none of these 

properties constitutes necessary nor sufficient grounds for concluding that something is a 

dog. Rosch further showed that the cognitive processes by which we categorize and make 

inferences about names and properties of objects appear to be influenced by family 

resemblance relationships (Mervis & Rosch, 1981; Rosch, 1978; Rosch et al., 1976). For 

instance: 

1) Members of a given category can vary considerably in their typicality or 

representativeness, and members of a given language community show remarkable 

consistency in their judgments of typicality. For instance, people reliably judge robins to 

be good examples of the category bird, but judge penguins to be relatively poor 

examples. 
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2) Judgments of typicality appear to reflect the attribute structure of the 

environment. Items judged to be good or typical members have many properties in 

common with other category members and few distinguishing properties, whereas the 

reverse is true for items judged to be atypical.  

3) Category typicality influences the speed and accuracy with which objects can 

be named and categorized: As previously mentioned, people are generally faster and 

more accurate to name and to categorize typical items than atypical items. 

From these and other observations, Rosch proposed that semantic/conceptual 

knowledge about properties of common objects is stored in a set of category prototypes, 

that is, summary representations of categories that specify the properties most likely to be 

observed in category members. To retrieve information about a visually presented 

stimulus, the item is categorized by comparing its observed properties to those of stored 

category prototypes. The item is assigned to the prototype with the best match, and any 

properties stored with the matching prototype (including, for instance, its name, as well 

as other characteristics that may not be directly apparent in the stimulus itself) are then 

attributed to the object. On this view, category membership depends on similarity to a 

stored prototype and is therefore graded rather than all-or-nothing. People are faster to 

recognize typical category members because, by definition, they share more properties 

with their category prototype, so that the matching process completes more rapidly. 

Rosch herself never proposed a computational implementation of prototype 

theory (Rosch, 1978). Her ideas did, however, spur a considerable volume of research 

into the computational mechanisms of categorization, which are the topic of another 

Chapter (see chapter by Krushke, this volume). For current purposes it is sufficient to 
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note that the similarity-based models deriving from Rosch’s approach offer a quite 

different explanation of human semantic cognition than do spreading-activation theories. 

Specifically, generalization and induction occur as a consequence of similarity-based 

activation of stored representations in memory, and not through a process of implicit 

induction over stored propositions; representations in memory are not linked together in a 

propositional processing hierarchy or network; and items are treated as “the same kind of 

thing” when they activate the same prototype or similar sets of instance traces, and not 

because they connect to the same node in a processing hierarchy. 

The two approaches have complementary strengths and weaknesses. Spreading 

activation models, because they propose that category representations are organized 

within a processing hierarchy, are economical and provide an explicit mechanism for 

induction across categories at different levels of specificity. They do not, however, offer 

much insight into the basis of graded category membership, typicality effects, and so on. 

Similarity-based theories provide intuitive accounts of such phenomena, but raise 

questions about the representation of concepts at different levels of specificity. Consider, 

for instance, the knowledge that both dogs and cats have eyes, DNA, the ability to move, 

and so on. In spreading-activation theories, such information can be stored just once with 

the animal representation, and then retrieved for particular individual animals through the 

spreading activation process. In similarity-based theories, it is not clear where such 

information resides. If it is stored separately with each category or instance 

representation, this raises questions of economy and capacity. On the other hand, if 

separate prototypes are stored for categories at different levels of specificity—one each 

for animal, bird and penguin, say—it is not clear whether or how these different levels of 
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representation constrain each other. If, for example, the bird prototype contains the 

attribute can fly but the penguin representation contains the attribute can not fly, how 

does the system “know” which attribution to make? 

2.2 Challenges for current theories 

It may seem that such issues are best resolved through some combination of 

spreading-activation and similarity-based approaches—and indeed Rosch (Rosch, 

Mervis, Gray, Johnson, & Boyes-Braem, 1976)and others (Jolicoeur, Gluck, & Kosslyn, 

1984) do not seem to view the two frameworks as incompatible. Theoretical 

developments in semantic cognition have not, however, tended to move in this direction, 

partly because of serious critical reactions to similarity-based approaches raised in the 

1980’s that continue to shape research today. Five core issues arising from this criticism 

are summarized below; the remainder of the article will consider how computational 

models offer insight as to how to resolve these issues. 

Category coherence. Some sets of items seem to form “good” or natural 

groupings whereas others do not (Murphy & Medin, 1985). For instance, the category 

dog encompasses a variety of items that seem intuitively to “go together” or to cohere, 

whereas a category such as grue—things that are currently blue but will turn green after 

the year 2010—does not. Moreover, the category dog supports induction; if you learn that 

a particular dog, say Lassie, has a certain kind of protein in her blood, you are likely to 

conclude that all or most other dogs have the same protein in their blood. Categories like 

grue do not support induction. What makes some categories, like dog, coherent and 

useful for induction, and other perfectly well-defined sets of items incoherent and 

useless? Put differently, how does the semantic system “know” for which groupings of 
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items it should form a category representation—a prototype or a node in the network—

and which not? One possibility is that the system stores a category representation for each 

word (or at least each noun) in the lexicon; but this solution just pushes the question a 

step back: why should the language include a word for the concept dog but not for the 

concept grue? Any theory suggesting that semantic abilities depend upon a mediating 

categorization process without specifying how the system “knows” which category 

representations should be created has, in some sense, assumed what it is trying to explain.  

Feature selection. Similarity-based models propose that retrieval of semantic 

information depends upon the degree of similarity between a probe stimulus and a set of 

stored representations. Any such assessment must specify which probe features or 

characteristics “count” toward the measure of similarity and how different features are 

weighted in the determination. As Murphy and Medin (1985) have noted, a zebra and a 

barber pole might be categorized as “the same kind of thing” if the property has stripes 

were given sufficient weight.  

It is an empirical fact that people do selectively weight different properties in 

semantic tasks. In the first of many such experiments, Landau, Smith and Jones (1988)  

showed children a variety of blocks varying in shape, size and texture. After labeling one 

of the blocks by pointing at it and saying “see this, this is a dax,” the authors asked 

children if they could find another “dax.” Children could have used any of the salient 

features to generalize the new word; but the majority of children selected another object 

of a similar shape, largely ignoring its size, and texture. Thus the authors proposed that 

children are subject to a “shape bias” when learning new words—that is, they assume that 
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the word encompasses items with similar shapes, or equivalently, they weight shape 

heavily when constructing a representation of the word’s meaning. 

Moreover, although some properties are undoubtedly inherently more salient than 

others, this cannot be the sole explanation of such biases, because people will selectively 

weight the very same properties differently for items in different conceptual domains. For 

instance, Jones, Smith and Landau (June 1991) have shown that the shape-bias can be 

attenuated simply by sticking a pair of eyes on the various blocks. Specifically, children 

were much more likely to use common texture as a basis for generalizing a new name 

when the blocks had eyes than when they did not—suggesting that they believe texture to 

be more “important” for categorizing animals (most of which have eyes) than non-

animals. Such domain-specific attribute weighting poses an interesting puzzle for 

similarity-based models: one cannot compute similarity to stored representations, and 

thus can’t categorize, without knowing how different attributes should be weighted; but 

one cannot know which weightings to use until the item has been categorized, since 

different weightings are used for different kinds of things (Gelman & Williams, 1998). 

Context sensitivity: Of the many things one knows about a common object such 

as a piano, only a small subset is ever important or relevant in any given situation. For 

instance, if you have arrived at a friend’s house to help her move, the most important fact 

about the piano is that it is heavy; if however you have come to audition for a band, the 

most important fact is that it makes music. That is, the semantic information that “comes 

to mind” in any given situation depends upon the context. Meanings of words are also 

sensitive to both linguistic context and to real-world context—for instance, the referent of 

the phrase “Check out my hog” may be completely different depending on whether one is 
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speaking to a farmer or a biker. Contextual influences on semantic task performance have 

been robustly documented in a very wide variety of tasks (Yeh & Barsalou, 2006), yet the 

implications of such context-sensitivity seem not to have penetrated many models of 

semantics (Medin & Shaffer, 1978). Both spreading-activation models and prototype 

theories specify how individual concepts may be represented and activated, but an 

implicit assumption of such models is that contextual information is effectively 

discarded—neither approach specifies, for instance, what would differ in the retrieval 

process when one moves a piano as opposed to playing it. The default assumption seems 

to be that the very same representation (node or prototype) would be activated in both 

cases, and it is not clear how different information would come to the fore in the two 

situations.  

Abstract concepts: What are the “properties” of concepts like justice, or alive, or 

beautiful, that would allow one to construct prototypes of these categories, or to connect 

them together with simple predicates in a spreading-activation network? Such questions 

may seem beyond the grasp of contemporary theories of semantic memory, which 

predominantly focus on knowledge about concrete objects with directly-observable 

characteristics; but in fact the same questions are pressing even for such theories. The 

reason is that the properties often invoked as being critical for representing concrete 

concepts are frequently quite abstract in and of themselves. Consider, for instance, the 

properties important for the concept animal, which might include self-initiated movement 

and action-at-a-distance (Mandler, 2000), contingent movement (Johnson, 2000), goal-

directedness (Csibra, Gergely, Biro, Koos, & Brockbank, 1999), and “biological” patterns 

of motion (Bertenthal, 1993), among other things. It is difficult to see how these might be 
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directly available through perceptual mechanisms. For instance, different instances of 

self-initiated movement may be perceptually quite different—birds flap and glide, rabbits 

hop, snakes slither, people walk, and so on. To recognize that these different patterns of 

motion all have something important in common—“self-initiatedness,” say—is to 

synthesize from them what is effectively an abstract feature. Even relatively concrete 

properties, such as having legs or a face, seem less and less concrete the more one 

considers the range of variability in the actual appearance of the legs or faces on, say, 

birds, dogs, fish and insects. So a relatively concrete concept such as animal depends 

upon the specification of properties that can be relatively abstract. Similarly, the most 

important properties for many manmade objects are often functions, which are also 

difficult or impossible to define with reference to purely perceptual characteristics. A 

hammer and a screwdriver, for example, have similar functions—they are used to fasten 

things together—and for this reason may be considered similar kinds of things, despite 

having quite different shapes and demanding quite different kinds of praxis. In general, 

theories of semantic memory must explain how people become sensitive to such abstract 

regularities, and are able to use them to constrain property generalization. The suggestion 

that such regularities are directly apparent in the environment is not transparently true for 

many such properties. 

Representing multiple objects, relationships, and events. Finally, it should be clear 

that both spreading-activation and similarity-based theories are targeted predominantly at 

explaining knowledge about individual concepts, corresponding roughly to the meanings 

of single words. But semantic abilities extend considerably beyond knowledge about the 

meanings of individual words and objects: it encompasses knowledge about events and 
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situations (e.g. how to order in a restaurant) as well as knowledge about various 

relationships between and within individual objects, including associative relationships 

(e.g. hammers are used with nails), and causal relationships among object properties (e.g. 

having hollow bones causes a bird to be light) and between objects (e.g. having a certain 

scent causes the flower to attract bees). In many cases, the single object’s meaning seems 

to rely on its relationships to these other objects—for instance, it makes no sense to 

conceive of the hammer as a “decontextualized pounder” (Wilson & Keil, 2000); rather 

the hammer’s meaning depends partly on the fact that it is used specifically to pound 

nails, usually with the intent of attaching two separate objects. Without some account of 

how multiple objects and their relationships to one another combine to form 

representations of events and scenes, it is difficult to understand how such knowledge 

arises even for the meanings of single words and objects. 

Summary 

In summary, two different computational frameworks informed research in 

semantic memory throughout the 1970’s and 80’s: spreading activation models and 

prototype (and other similarity-based) theories. These two frameworks still form the 

theoretical background to much empirical research in cognitive psychology, and are the 

most likely to be covered in cognitive psychology textbooks. And, both approaches 

continue to foster ongoing research, especially in the domains of categorization (Smith, 

2002; Zaki & Nosofsky, 2004) and in artificial intelligence (Crestani, 1997) and aspects 

of lexical processing and speech production (Bodner & Masson, 2003; Dell, 1986). These 

frameworks raise challenging questions, however, about the computational basis of 

human semantic abilities, specifically: 
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1. Why do some sets of items form more “coherent” categories than others, and how 

does the semantic system “know” which category representations to form? 

2. Why are some properties more “important” for governing semantic generalization and 

induction than others, and how does the system “know” which properties are 

important for which concepts? 

3. How is context represented, and how does it work to constrain which information 

“comes to mind” in a given situation? 

4. How are abstract concepts and properties acquired? 

5. How can the system combine multiple concepts together to represent events, scenes, 

and relationships among objects? 

Some of these questions have been addressed, with varying degrees of success, by 

computational modeling efforts that fall outside the scope of this article, since they 

mostly pertain to domains addressed by other chapters in the Handbook. Much of this 

work is specifically focused on understanding categorization phenomena. Anderson’s 

Rational model of categorization (Anderson, 1991) provides an explanation of how a 

categorization-based semantic system can “decide” which category representations 

should be created in memory. Models proposed by Kruschke (1992) and (Nosofsky, 

1986) provide hypotheses about how certain feature dimensions are selectively weighted 

when making categorization judgments; and the “context” models of categorization 

(Medin & Shaffer, 1978; Nosofsky, 1984) provide some suggestions as to how different 

kinds of information about a given concept may be retrieved in different situations or 

contexts. As previously noted, computational models focused on these questions are 

discussed at length in other Handbook chapters—specifically, the chapter on 
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categorization and concepts by John Krushke, the chapter on induction and inference by 

Evan Heit, the chapter on instance/exemplar models by Gordon Logan, and the chapter 

on Bayesian approaches to cognition by Tom Griffiths, Charles Kemp, and Josh 

Tenenbaum. The work discussed in sections 3-5 below will follow three threads of 

research in semantic cognition that derive from the Parallel Distributed Processing 

approach to cognition. 

 3. Distributed semantic models. 

3.1 Hinton’s (1981) distributed model. 

The first important thread begins with Hinton’s (1981) proposal for storing 

propositional knowledge (of the kind described in a Quillian-like semantic network) in a 

Parallel Distributed Processing (PDP) network. As in most information-processing 

frameworks, PDP models typically have “Inputs” that respond to direct stimulation from 

the environment, and “Outputs” that correspond to potential actions or behaviors. In such 

models, information is represented as a pattern of activation across a pool of simple, 

neuron-like processing units; and information processing involves the flow of activation 

within and between such pools by means of weighted, synapse-like connections. The 

activation of any given unit depends upon the sum of the activations of the sending units 

from which it receives inputs, multiplied by the value of the intermediating weights. This 

net input is then transformed to an activation value according to some transfer function 

(often a logistic function bounded at 0 and 1). A network’s ability to complete some 

input-output mapping depends upon the values of the intermediating weights; in this 

sense, a network’s “knowledge” is often said to be “stored” in the weights. To store new 

information in a network, it is not necessary to add new architectural elements; instead, 
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the weights in the existing network must be adjusted to accommodate the new 

information. So, learning in a connectionist framework does not involve the addition of 

new data structures, prototypes, or propositions, but instead involves the adjustment of 

connection weights to promote some new mapping between input and output (see the 

chapter on connectionist approaches to cognition by Michael Thomas and Jay 

McClelland, this volume). 

--Figure 1 about here-- 

Hinton (1981) was interested to show how a body of propositional information 

might be stored in such a network, without any explicit proposition-like data structures in 

the system. The architecture of his model, shown in Figure 1, reflects the structure of a 

simple proposition of the form Item-Relation-Attribute; there is a single bank of neuron-

like processing units for each part of the proposition. Different fillers for each slot are 

represented as different patterns of activation across the corresponding pool of units. For 

example, the representation of the proposition Clyde is gray would correspond to one 

pattern of activity across each of the three groups of units: one for Clyde, one for is, and 

one for gray. 

All three banks are send and receive weighted connections to a fourth layer 

(labelled Prop in the illustration). When a pattern of activation is applied across the three 

input layers, Prop units compute their inputs as the sum of the activations across input 

units weighted by the magnitude of the interconnecting weights. Each input thus 

produces a pattern of activity across the Prop units, which in turn send new signals back 

to the Item, Relation and Attribute units, which update their states accordingly in reaction 

to the new inputs. The process iterates until the unit states stop changing, at which point 
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the network is said to have settled into a steady state. Hinton demonstrated that individual 

propositions could be stored in the network, by adjusting the interconnecting weights to 

make the patterns representing the proposition stable. To achieve this, Hinton trained the 

model with a variant of the delta-rule learning algorithm, which is explained in detail in 

the chapter by Thomas and McClelland (this volume). After training, each stored 

proposition would be represented in the network by a unique pattern of activity across the 

Prop units, which simultaneously activated and received support from the input patterns. 

This early model had several interesting properties and implications. First, it was 

capable of completing stored propositions when given two of its terms as inputs. For 

example, when provided with the inputs Clyde and is, the network settled into a steady 

state in which the pattern representing the correct completion of the proposition (gray) 

was observed across the Attribute units. Second, several such propositions could be 

stored in the network, in the same finite set of weights. Thus, in contrast to spreading-

activation and similarity-based models, new information could be stored in memory 

without adding representational elements to the system. Third, when appropriate 

representations were chosen, the network provided a natural mechanism for 

generalization. If related objects (such as various individual elephants) were represented 

by overlapping patterns of activity across the Item units, they would contribute similar 

inputs to the Prop units. Thus, the entire network would tend to settle into an appropriate 

steady state (corresponding to the most similar stored proposition) when given a novel 

input that overlapped with familiar, stored patterns. For example, if the network had 

stored the proposition Clyde is gray, and was then given the inputs Elmer is in the Item 

and Relation units, it would settle to a state in which the pattern corresponding to gray 
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was observed across Attribute units—provided that the representations of Clyde and 

Elmer were sufficiently similar. Thus, the model exhibited the two characteristics most 

fundamental to both spreading-activation and prototype theories: an economical means of 

storing information, and a mechanism for generalizing stored information to new stimuli. 

The model also offered some leverage on two of the questions posed above from 

our consideration of prototype and spreading-activation theories. Specifically, the first 

question—how does the system “know” for which categories it should create 

representations—becomes moot in this framework. There are no discrete category 

representations in Hinton’s model. Individual items—which in spreading activation 

theories would correspond to individual nodes, and in prototype theories to individual 

category prototypes—are represented as distributed patterns of activity across the same 

set of processing units. The same is true of different predicates, different attributes, and 

full propositions—all are represented as distributed patterns across processing elements. 

Generalization is governed, not by a categorization process nor by the search of an 

explicit processing hierarchy, but by the similarities captured by these various distributed 

representations. This scheme does not address the important question of category 

coherence—why some sets of items form good categories that support induction whereas 

others do not—but it no longer requires an answer to the question of which categories are 

stored in memory and which not. 

Second, Hinton pointed out that, when many propositions are stored in the 

network, neither the Item nor the Relation inputs alone are sufficient to uniquely 

determine a correct pattern of activation in the Attribute units. For instance, suppose the 
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model has stored the following propositions about Clyde the Elephant and Frank the 

Flamingo: 

1. Clyde is gray 

2. Frank is pink 

3. Clyde has a trunk 

4. Frank has a beak 

Here the output generated by a given item (Clyde or Frank) depends upon the 

particular relation, is or has, with which it occurs. Similarly, the response generate for a 

given relation depends upon which item is being probed. Both the Item and Relation 

representations provide constraints on the ultimate interpretation of the inputs into which 

the network settles (the Prop representation), and jointly these determine the completion 

of the proposition. Put differently, the model generates different internal representations 

and hence different outputs for the very same item depending on the context in which the 

item is encountered. This early model thus provides some tools for understanding 

influences of context on semantic representation and processing. 

 Hinton’s model also raised many questions, of course. Most obviously, the 

model’s capacity to learn without interference and to generalize appropriately depends 

entirely on the particular patterns of activity chosen to represent various items, relations, 

and attributes. Hinton simply hand-selected certain patterns to illustrate the appeal of the 

basic framework. How are appropriate internal representations acquired under this 

framework? 

3.2 The Rumelhart model 
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This question was explicitly addressed by Rumelhart (Rumelhart, 1990; 

Rumelhart & Todd, 1993), who showed how the same propositional content stored in the 

Collins and Quillian (1969) hierarchical model can be learned by a simple connectionist 

network trained with backpropagation (see the chapter on connectionist models for a 

detailed explanation of the backpropagation learning algorithm). An adaptation of 

Rumelhart’s model is shown in Figure 2; it can be viewed as a feed-forward instantiation 

of a model similar to Hinton’s, in which the network is provided with the Item and 

Relation terms of a simple proposition as input, and must generated all appropriate 

completions of the proposition as output.  

--Figure 2 about here-- 

The model consists of a series of nonlinear processing units, organized into layers, 

and connected in a feed-forward manner as shown in the illustration. Patterns are 

presented by activating one unit in each of the Item and Relation layers, and allowing 

activation to spread forward through the network, modulated by the connection weights. 

To update a unit, its net input is first calculated by summing the activation of each unit 

from which it receives a connection multiplied by the value of the connection weight, that 

is: 

∑=
i

ijij wanet  

…where netj is the net input of the receiving unit j, i indexes units sending 

connections to j, a indicates activation of each sending unit, and wij indicates the value of 

the weight projecting from sending unit i to receiving unit j. The net input is then 

transformed to an activation a according to the logistic function, which bounds activation 

at 0 and 1: 



26 

nete
a −+

=
1

1
 

To find an appropriate set of weights, the model is trained with the 

backpropagation learning algorithm (Rumelhart, Hinton, & Williams, 1986). First, an 

Item and Relation are presented to the network by setting the activations of the 

corresponding input units to 1 and all other inputs to 0, and activation is propagated 

forward to the output units, with each unit computing its net input and activation 

according to the equations above. The observed output states are then compared to the 

desired or target values, and the difference is converted to a measure of error. In this case, 

the error is the sum over output units of the squared difference between the actual output 

activations and the target values: 

∑ −=
i

ipipp taerr 2)(  

…where errp indicates the total error for a given pattern p, i indexes each output 

unit, a indicates the activation of each output unit given the input pattern for p, and t 

indicates the target value for each output unit for pattern p. The partial derivative of this 

error with respect to each weight in the network is computed in a backward pass, and 

each weight is adjusted by a small amount to reduce the error (see the chapter on 

connectionist models by Michael Thomas and Jay McClelland for further information on 

the backpropagation learning rule). 

Although the model's inputs are localist, each individual Item unit projects to all 

of the units in the layer labelled Representation. The activation of a single item in the 

model's input, then, generates a distributed pattern of activity across these units. The 

weights connecting item and representation units evolve during learning, so the pattern of 
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activity generated across the Representation units for a given item is a learned internal 

representation of the item. Though the model's input and target states are constrained to 

locally represent particular items, attributes, and relations, the learning process allows it 

to derive distributed internal representations that do not have this localist character. 

In the case of the Rumelhart network, for reasons elaborated below, the learned 

representations turn out to capture the semantic similarity relations that exist among the 

items in the network's training environment. These learned similarity relations provided a 

basis for generalization and property inheritance, just as did the assigned similarities in 

Hinton's (1981) model. For instance, after the model had learned about the 8 items shown 

in Figure 2, the authors could teach the model a single fact about a new item—say, that a 

sparrow is a kind of bird—and then could query the model about other properties of the 

sparrow.1 In order to learn that the new item (the sparrow) is a kind of bird, the model 

must represent it with a pattern of activation similar to the previously-learned robin and 

canary, since these are the only items to which the label “bird” applies. Consequently, the 

model tends to attribute to the sparrow other properties common to both the robin and the 

canary: it “infers” that the sparrow can move and fly but can not swim; has feathers, 

wings and skin but not roots or gills; and so on. That is, the key function of semantic 

memory that, in Hinton’s (1981) model, was achieved by hand-crafted representations—

generalization of previously-learned information to new items—was accomplished in 

Rumelhart’s model by internal representations that were “discovered” by the 

backpropagation learning rule. 

3.3 Feature weighting and category coherence. 
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Rogers and McClelland (2004) have suggested that Rumelhart’s model provides a 

simple theoretical framework for explaining many of the important phenomena 

motivating current research in semantic cognition. On this construal, the two input layers 

of the model represent a perceived object and a context provided by other information 

available together with the perceived object. For instance, the situation may be one in 

which a young child is looking at a robin on a branch of a tree, and, as a cat approaches, 

sees it suddenly fly away. The object and the situation together provide a context in 

which it would be possible for an experienced observer to anticipate that the robin will 

fly away; and the observation that it does would provide input allowing a less 

experienced observer to develop such an anticipation. That is, an object and a situation 

afford the basis for implicit predictions (which may initially be null or weak), and 

observed events then provide the basis for adjusting the connection weights underlying 

these predictions, thereby allowing the experience to drive change in both underlying 

representations and predictions of observable outcomes. The range of contexts in which 

the child might encounter an object may vary widely: the child may observe the object 

and what others are doing with it (pick it up, eat it, use it to sweep the floor, etc); some 

encounters may involve watching what an object does in different situations; others may 

involve naming and other kinds of linguistic interactions. Semantic/conceptual abilities 

arise from the learning that occurs across many such situations, as the system comes to 

make increasingly accurate predictions about the consequences of observing different 

kinds of items in different situations and contexts.  

The Rumelhart model provides a simplified implementation of this view of 

semantic abilities: The presentation of an “object” corresponds to the activation of the 
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appropriate pattern of activity over the input units in the Rumelhart model; the context 

can be represented via the activation of an appropriate pattern over the context units; the 

child’s expectations about the outcome of the event may be equated with the model’s 

outputs; and the presentation of the actual observed outcome is analogous to the 

presentation of the target for the output units in the network. 

--Figure 3 about here-- 

The authors suggested that this framework is appealing partly because it provides 

answers to some of the puzzling questions about the acquisition of semantic knowledge 

discussed previously. To show this, Rogers and McClelland (2004) trained a variant of 

the model shown in Figure 2, and investigated its behavior at several different points 

during the learning process. 

The first important observation was that model’s internal representations 

underwent a “coarse-to-fine” process of differentiation, such that items from broadly 

different semantic domains (the plants and animals) were differentiated earliest in 

learning; whereas closely related items (e.g. the rose and daisy) were differentiated latest. 

Figure 3 shows a multidimensional scaling of the internal representations generated by 

the model across the Representation layer for all 8 items at 10 different points during 

training. The lines trace the trajectory of each item throughout learning in the 2-

dimensional compression of the representation state space. The labelled end-points 

represent the final learned internal representations after 1500 epochs of training. These 

end-points recapitulate the semantic similarity relations among the 8 items: the robin and 

canary are quite similar, for instance, and both are more similar to the two fish than they 

are to the 4 plants. The lines tracing the developmental trajectory leading to these end-
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points show that the 8 items, initially bunched together in the middle of the space, soon 

divide into two clusters (plant or animal) based on animacy. Within these clusters, there 

is little differentiation of items. Next, the global categories split into smaller intermediate 

clusters (e.g. birds and fish) with little differentiation of the individual items within each 

cluster, and finally the individual items are pulled apart. In short, the network's 

representations appear to differentiate in relatively discrete stages, first completing 

differentiation of at the most general level before progressing to successively more fine-

grained levels of differentiation. 

The basis for this nonlinear, stage-like process of coarse-to-fine differentiation in 

the model proved key to explaining several critical phenomena in the study of human 

semantic abilities. To see why the model behaves in this fashion, first consider how the 

network learns about the following four objects: the oak, the pine, the daisy, and the 

salmon. Early in learning, when the weights are small and random, all of these inputs 

produce a similar meaningless pattern of activity throughout the network. Since oaks and 

pines share many output properties, this pattern results in a similar error signal for the 

two items, and the weights leaving the oak and pine units move in similar directions. 

Because the salmon shares few properties with the oak and pine, the same initial pattern 

of output activations produces a different error signal, and the weights leaving the salmon 

input unit move in a different direction. What about the daisy? It shares more properties 

with the oak and the pine than it does with the salmon or any of the other animals, and so 

it tends to move in a similar direction as the other plants. Similarly, the rose tends to be 

pushed in the same direction as all of the other plants, and the other animals tend to be 

pushed in the same direction as the salmon. As a consequence, on the next pass, the 
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pattern of activity across the representation units will remain similar for all the plants, but 

will tend to differ between the plants and the animals. 

This explanation captures part of what is going on in the early stages of learning 

in the model, but does not fully explain why there is such a strong tendency to learn the 

superordinate structure first. Why is it that so little intermediate level information is 

acquired until after the superordinate level information? Put another way, why don't the 

points in similarity space for different items move in straight lines toward their final 

locations?  

To understand the stage-like pattern of differentiation, consider the fact that the 

animals all share some properties (e.g., they all can move, they all have skin, they are all 

called animals). Early in training, all the animals have the same representation. When this 

is so, if the weights going forward from the representation layer “work” to capture these 

shared properties for one of the animals, they must simultaneously work to capture them 

for all of the others. Similarly, any weight change that is made to capture the shared 

properties for one of the items will produce the same benefit in capturing these properties 

for all of the other items: If the representations of all of the items are the same, then 

changes applied to the forward-projecting weights for one of the items will affect all of 

the others items equally, and so the changes made when processing each individual item 

will tend to accumulate with those made in processing the others. On the other hand, 

weight changes made to capture a property of an item that is not shared by others with the 

same representation will tend to be detrimental for the other items, and when these other 

items are processed the changes will actually be reversed. For example, two of the 

animals (canary and robin) can fly but not swim, and the other two (the salmon and the 
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sunfish) can swim but not fly. If the four animals all have the same representation, what 

is right for half of the animals is wrong for the other half, and the weight changes across 

different patterns will tend to cancel each other out. The consequence is that properties 

shared by items with similar representations will be learned faster than the properties that 

differentiate such items.  

The preceding paragraph considers how representational similarity structure at a 

given point in time influences the speed with which various different kinds of attributes 

are learned in the model, in the weights projecting forward from the Representation layer. 

But what about the weights from the input units to the representation layer? These 

determine the representational similarity structure between items in the first place. As 

previously stated, items with similar outputs will have their representations pushed in the 

same direction, while items with dissimilar outputs will have their representations pushed 

in different directions. The question remaining is why the dissimilarity between, say, the 

fish and the birds does not push the representations apart very much from the very 

beginning. 

The answer to this question lies in understanding that the magnitude of the 

changes made to the representation weights depends on the extent to which such changes 

will reduce error at the output. This in turn depends on the particular configuration of 

weight projecting forward from the Representation layer. For instance, if the network 

activated “has wings” and “has scales” to an equal degree for all animals (since half the 

animals have wings and the other half have scales) then there is no way of adjusting the 

representation of, say, the canary that will simultaneously reduce error on both the “has 

wings” and “has scales” units. Consequently, these properties will not exert much 
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influence on the weights projecting into the Representation layer, and will not affect how 

the representation of canary changes. In other words, error propagates much more 

strongly from properties that the network has begun to master. 

--Figure 4 about here-- 

Rogers and McClelland (2004) illustrated this phenomenon by observing the 

derivative of the error signal propagated back to the Representation units for the canary 

item. Specifically, this derivative was calculated across three different kinds of output 

units: those that reliably discriminate plants from animals (such as can move and has 

roots), those that reliably discriminate birds from fish (such as can fly and has gills), and 

those that differentiate the canary from the robin (such as is red and can sing). Since 

weights projecting into the Representation units are adjusted in proportion to these error 

derivatives, the calculation indicates to what extent these three different kinds of features 

are influencing representational change at different points in time. Figure 4 shows how 

the error derivatives from these three kinds of properties change throughout training 

when the model is given the canary (middle plot). This is graphed alongside measures of 

the distance between the two bird representations, between the birds and the fish, and 

between the animals and the plants (bottom plot); and also alongside of measures of 

activation of the output units for sing, fly and move (top plot). The Figure shows that 

there comes a point at which the network is beginning to differentiate the plants and the 

animals, and is beginning to activate move correctly for all of the animals. At this time 

properties like can move (reliably differentiating plants from animals) are producing a 

much stronger error derivative at the Representation units than are properties like can fly 

or can sing. As a consequence, these properties are contributing much more strongly to 
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changing the representation weights than are the properties that reliably differentiate 

birds from fish, or the canary from the robin. Put differently, the knowledge that the 

canary can move is more “important” for determining how it should be represented than 

the information that it can fly and sing, at this stage of learning. (The error signal for 

move eventually dies out as the correct activation reaches asymptote, since there is no 

longer any error signal to propagate once the model has learned to produce the correct 

activation). 

The overall situation can be summarized as follows. Initially, the network assigns 

virtually the same representation to all items, and the only properties that vary 

systematically with these representations are those that are shared by all items (e.g. can 

grow, is living). All other properties have their influence on the weights almost 

completely cancelled out, since changes that favor one item will hinder another. Since 

there are many properties common to the animals and not shared by plants (and vice 

versa), however, weak error signals from these properties begin to move the various 

animal representations away from the plant representations. When this happens, the 

shared animal representation can begin to drive learning (in the forward weights) for 

properties that the animals have in common; and the shared plant representation can 

begin to drive learning for properties common to plants. These properties thus begin to 

exert a much stronger influence on the network’s internal representations than do, for 

instance, the properties that differentiate birds from fish. The result is that the individual 

animal representations remain similar to one another, but are rapidly propelled away from 

the individual plant representations. Gradually the weak error signals propagated from the 

properties that discriminate more fine-grained categories begin to accumulate, causing 
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these subgroups to differentiate slightly, and providing the basis for another “wave” of 

differentiation. This process eventually propagates down to the subordinate level, where 

individual items are differentiated from one another. 

The network’s tendency to differentiate its internal representations in this way 

does not arise from some general bias toward discovering superordinate category 

structure per se. Instead it comes from patterns of higher-order covariation exhibited 

amongst the output properties themselves. The first wave of differentiation in the model 

will distinguish those subgroups whose shared properties show the strongest tendency to 

consistently covary together across the corpus (corresponding to those with the highest 

eigenvalues in the property covariance matrix; see Rogers and McClelland, 2004, 

Chapter 3 for further detail)—that is, properties that show the strongest tendency to 

covary coherently. In the model corpus, and perhaps in real experience, such subgroups 

will correspond to very general semantic domains. For instance, animals share many 

properties—self-initiated and biological movement, biological contours and textures, 

facial features, and so on—that are not observed in plants or manmade objects. The 

system will not be pressured, however, to differentiate superordinate groups that do not 

have cohesive structure (e.g. toys versus tools). Further waves of differentiation will then 

distinguish groupings whose shared properties show the next strongest patterns of 

coherent covariation. 

It is worth noting that these interesting phenomena depend upon three aspects of 

the network architecture. First, semantic representations for all different kinds of objects 

must be processed through the same weights and units at some point in the network, so 

that learning about one item influences representations for all items. This convergence in 
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the architecture forces the network to find weights that work for all items in its 

experience, which in turn promotes sensitivity to high-order covariation amongst item 

properties. Second, the network must begin with very similar representations for all 

items, so that learning generalizes across all items until they are differentiated from one 

another. Third, learning must be slow and interleaved, so that new learning does not 

destroy traces of previous learning. These architectural elements are critical to the theory 

and are taken as important design constraints on the actual cortical semantic system (see 

the last section of this chapter, and the chapter on episodic memory by Ken Norman, 

Greg Detre and Sean Polyn, this volume). It is also worth noting that the effects do not 

depend upon the use of the backpropagation learning algorithm per se. Any learning 

algorithm that serves the function of reducing error at the output (e.g. contrastive 

Hebbian learning, GeneRec, leabra, etc…) could potentially yield similar results—so 

long as they permit new learning to generalize relatively broadly. For instance, learning 

algorithms that promote representational sparsity (e.g. some parameterizations of leabra) 

will diminish the degree to which learning generalizes across different items, and so may 

not show the same sensitivity to higher-order covariation. 

Rogers and McClelland’s (2004) analysis of learning in the Rumelhart model 

provides a basis for understanding two of the pressing questions summarized earlier: 

i) Category coherence. Why do some groupings of items seem to form “good” 

categories that support induction whereas others do not? The model suggests that “good” 

categories consist of items that share sets of properties that vary coherently together 

across many situations and contexts. Because these properties strongly influence 

representational change early in learning, they strongly constrain the degree to which 
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different items are represented as similar/dissimilar to one another, which in turn 

constrains how newly-learned information will generalize from one item to another. 

Rogers and McClelland (2004) showed how this property of the model can address 

phenomena as diverse as the progressive differentiation of semantic representations in 

infancy (Mandler, 2000), basic-level advantages in word-learning in later childhood 

(Mervis, 1987), “illusory correlations” in induction tasks (Gelman, 1990), and sensitivity 

to higher-order covariation in category-learning experiments (Billman & Knutson, 1996). 

ii) Selective feature weighting. Why are certain properties “important” for 

representing some categories and not others? The PDP account suggests that a given 

property becomes “important” for a given category when it covaries coherently with 

many other properties. This “importance” is reflected in two aspects of the system’s 

behavior. First, coherently-covarying properties are the main force organizing the 

system’s internal representations—so that items with a few such properties in common 

are represented as similar even if they have many incoherent properties that differ. 

Second, coherent properties are learned much more rapidly: because items that share such 

properties are represented as similar, learning for one item tends to generalize well to all 

other items that share the property. In simulation experiments, Rogers and McClelland 

showed that this emergent “feature weighting” provided a natural account of several 

phenomena sometimes thought to require innate knowledge structures. These include 

sensitivity to “conceptual” over perceptual similarity structure in infancy (Pauen, 2002), 

domain-specific patterns of feature-weighting (Keil, 1989; Macario, 1991), and the strong 

weighting of “causal” properties in determine conceptual similarity relations (Ahn, 1998; 

Gopnik & Sobel, 2000). 
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3.4 Context sensitivity 

It is worth touching on one further aspect of the Rumelhart model because it 

relates to issues central to the next two sections. The analyses summarized above pertain 

to the item representations that arise across the Representation units in the Rumelhart 

model. These units receive input from the localist input units corresponding to individual 

items, but they do not receive input from the Context input units. Instead the distributed 

item representations feed forward to the Hidden units, which also receive inputs from the 

Context inputs, and then pass activation forward to the output units. The pattern of 

activation arising across Hidden units may thus be viewed as a learned internal 

representation of an item occurring in a particular context. That is, in addition to learning 

context-independent representations (across the Representation units), the Rumelhart 

network also learns how these representations should be adapted to suit the particular 

context in which the item is encountered. These context-sensitive representations allow 

the network to produce different outputs in response to the same item—a key aspect of 

semantic cognition discussed in the introduction. 

It turns out that this context-sensitivity also explains a puzzling aspect of human 

cognition—the tendency to generalize different kinds of newly-learned information in 

different ways. For instance, Carey (1985) showed that older children inductively 

generalize biological facts (such as “eats” or “breathes”) to a much broader range of 

living things than they do psychological facts (“thinks,” “feels”). Because the Rumelhart 

model suggests that the same items get represented differently in different contexts, it 

provides a way of understanding why different “kinds” of properties might generalize in 

different ways. 
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--Figure 5 about here-- 

Rogers and McClelland (2004) trained a variant of the Rumelhart model with a 

corpus of 16 items from the same 4 categories as the original (birds, fish, trees and 

flowers), and examined the patterns of activation that arose across the Representation and 

Hidden units for these 16 items in different contexts. Figure 5 shows a multidimensional 

scaling of these patterns. The middle plot shows the learned similarities between item 

representations in the context-independent layer; the top plot shows the similarities across 

Hidden units for the same items in the is context; and the bottom plot shows these 

similarities in the can context.  In the can context, all the plants receive very similar 

representations, because they all have exactly the same set of behaviors in the training 

environment—the only thing a plant can do, as far as the model knows, is grow.  By 

contrast, in the is context, there are few properties shared among objects of the same 

kind, so that the network is pressured to strongly differentiate items in this context. The 

context-weighted similarities illustrated in the Figure determine how newly-learned 

properties will generalize in different contexts. If the network is taught, for instance, that 

the maple tree “can queem” (where “queem” is some novel property), this fact will tend 

to generalize strongly to all of the plants, since these are represented as very similar in the 

“can” context. If it is taught that the maple tree “is queem,” the new fact will not 

generalize strongly to all plants, but will weakly generalize to other items that, in the “is” 

context, are somewhat similar to the maple. In short, because the model’s internal 

representations are sensitive to contextual constraints, the “base” representations learned 

in the context-independent Representation can be reconfigured to capture similarity 
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relationships better suited to a given context. This reshaping can then influence how 

newly-learned information will generalize. 

Summary 

In summary, this thread of research offers a promising theoretical framework for 

semantic cognition that addresses some of the core issues discussed in the introduction. 

The framework suggests that the semantic system allows us, when presented with a 

perceptual or linguistic stimulus in some particular situation, to make context-appropriate 

inferences about properties of the item denoted by the stimulus. It suggests that these 

inferences are supported by distributed internal representations that capture semantic 

similarity relations; and that these relations can be adapted to suit particular contexts. It 

further suggests that the internal representations are learned through experience, and 

shows how the learning dynamics that arise within the framework provide an explanation 

of category coherence, feature selection, and context-sensitivity in semantics. The 

framework does not explicitly address other key challenges for a theory of semantics—

specifically, the representation of abstract concepts, events, and multiple objects and 

relationships. These are the main focus of the next section. 

4. Temporal structure, events, and abstract concepts 

4.1 Simple recurrent networks 

The second important thread of research derives in part from the seminal work of 

Elman (1990). Elman was interested, not only in semantics, but in several different 

aspects of language, including the ability to segment the auditory stream into words, to 

organize words into different syntactic classes, and to use information about word order 

to constrain the interpretation of sentences.  The key insight of this work was that all of 
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these different abilities may derive from a similar underlying learning and processing 

mechanism—one that is sensitive to statistical structure existing in events that unfold 

over time. The catalyst for this insight was the invention of neural network architecture 

that permitted sensitivity to temporal structure—the "simple recurrent network" (SRN) or 

"Elman net" shown in Figure 6. 

--Figure 6 about here-- 

The three leftmost layers of the SRN shown in the Figure constitute a feed-

forward connectionist network similar to that used by Rumelhart: units in the input layer 

are set directly by the environment; activation feeds forward through weighted 

connections to the Hidden layer, and from there to the output layer. What makes the 

model "recurrent" is the Context layer shown on the right of the Figure. Activation of 

these units feeds forward through weighted connections to influence the Hidden units, 

just as do the input units. The activations of the Context units are not set by inputs from 

the environment however. Instead, they contain a direct copy of the activation of the 

Hidden units from the previous time-step. It is this "memory" of the previous hidden-unit 

state that allows the network to detect and respond to temporal structure. 

As a simple example, suppose that the network's inputs code the perception of a 

spoken phoneme, and that the network's task is to predict in its outputs what the next 

phoneme will be. Each individual input and output unit might, for instance, be stipulated 

to represent a different syllable in English. To process a statement such as "pretty baby," 

the network would first be presented with the initial syllable (/pre/). Activation would 

spread forward to the Hidden units and then to the output units through the 

interconnecting weights. On the next step of the sequence, the Hidden unit pattern 
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representing /pre/ would be copied to the Context layer, and the network would be given 

the next syllable in the phrase (/ti/). On this step, the Hidden unit activations will be 

influence both by this new input, and by the activations of the Context units which 

contain the trace of the preceding hidden representation. In other words, the new hidden 

representation will code a representation of /ti/ in the context of having previously seen 

/pre/. Activation again feeds forward to the outputs, which code the network's "best 

guess" as to the likely next phoneme. On the third step, the Hidden unit representation is 

again copied to the Context layer, and the next syllable (/ba/) is presented as input. Again 

the Hidden representations are influenced both by the input and by the Context unit 

activations; but this time the Context representation has been influenced by two previous 

steps (/pre/ followed by /ti/). In other words, the new Hidden representation now codes 

/ba/ in the context of previously encountering /pre/ followed by /ti/. In this manner, new 

inputs are successively "folded in" to the Context representation, so that this 

representation constitutes a distributed internal representation of the sequence up to the 

present point in time. As a consequence of this "holding on" to previously presented 

information, the model can produce different outputs for exactly the same input, 

depending upon previously-occurring inputs. That is, it is sensitive to the temporal 

context in which a given input is encountered. 

SRNs can be trained with backpropagation just like a standard feed-forward 

network. In the syllable-prediction example, the presentation of each input syllable would 

provoke a pattern of activation across output units (via hidden units) that can be 

compared to a target pattern to generate a measure of error. Since the task is prediction in 

this example, the target is simply the next-occurring syllable in the speech stream. 
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Weights throughout the network can then be adjusted to reduce the error. These weight 

adjustments are typically applied to all forward-going weights, including those projecting 

from the Context to Hidden layers. Learning on the weights projecting from Context to 

Hidden layers allows the network to adjust exactly how the sequence history coded in the 

Context influences the Hidden representation on the current time-step; and this in turn 

influences which steps of the sequence are robustly preserved in the Context 

representation itself. If there is no temporal structure, so that the sequence history has no 

implication for how a current input is processed, the weights from Context->Hidden will 

never grow large, and the Hidden representation will be driven almost exclusively by the 

Input and not by the Context. As a consequence, the Context representation itself will 

only reflect the representation of the preceding item, and will not "build up" a 

representation of the sequence preceding that item. On the other hand, if there is temporal 

structure—so that predictions derived from a given input can be improved by "taking into 

account" the preceding items in the sequence, then the weights projecting from Context 

to Hidden units will be structured by the learning algorithm to captialize on these 

relationships, so that the Hidden states come to be more strongly influenced by the 

Context, and preceding states get "folded in" to the new context representation.  

The SRN turned out to be a valuable tool for understanding a variety of linguistic 

phenomena precisely because language has temporal structure at many different 

timescales. At a relatively small timescale, for instance, it is the case that syllable-to-

syllable transitions that occur within words tend to be much more predictable than the 

transitions that occur between words. From the earlier example, the transition from /pre/-

>/ti/ is much more frequent in English than the transition /ti/-> /ba/ (Saffran, Aslin, & 
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Newport, 1996). Because this is true, a syllable-prediction network like the one sketched 

out above can provide a strategy for detecting word-boundaries in a continuous speech 

stream: simply place the boundaries wherever prediction error is high. At broader 

timescales, SRNs provide a way of thinking about processing of syntactic information in 

languages like English where such information is often carried by word order. And, it 

turns out, SRNs and related approaches offer important insights into the acquisition and 

representation of semantic information. 

Here again, the critical insight was offered by Elman (1990), who trained an SRN 

in which the input and output units, instead of corresponding to individual syllables, 

instead represented individual words. The network's task, just as before, was prediction—

in this case, prediction of the next word in a sentence, given the current word as input. 

Elman trained the model with a sequence of simple 2- and 3-word sentences (e.g. 

“Woman smashes plate,” “Cat moves,” and so on) presented to the network in a long 

series. He then examined the internal representations arising across Hidden units in 

response to the activation of each individual word. The interesting observation was that 

words with similar meanings tended to be represented with similar patterns of activation 

across these units—even though input and outputs in the model were all localist, so that 

there was no pattern overlap between different words in either the input or output. 

Somehow the network had acquired information about semantic relatedness solely by 

trying to predict what word would come next in a sentence! 

Why should this be? The answer is that words with similar meanings, precisely 

because they have similar meanings, tend to occur in similar linguistic contexts. For 

instance, because dogs and cats are both kinds of pet, we tend to use similar words when 
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referring to them in speech: we say things like, "I have to feed the dog/cat," "Don't worry, 

the dog/cat doesn't bite," "Please let the dog/cat outside," and so on. Elman’s simulations 

suggested that the more similar two words are in meaning, the more similar are the range 

of linguistic contexts in which they are encountered. Because the representation of a 

given item is, in the SRN, influenced by the temporal contexts in which it is encountered, 

then items that occur in similar contexts tend to receive similar representations. Just as 

the Rumelhart network learns to represent items as similar when they overlap in their 

output properties, so the SRN learns to represent items as similar when they overlap in 

the distribution of items that precede and follow them. Because items with similar 

meanings tend to be preceded and followed by similar distributions of words in speech, 

this suggests that the acquisition of semantic similarity relations may be at least partially 

supported by a learning mechanism that is sensitive to the context in which the words 

occur. 

There are three aspects of this research that offer leverage on the theoretical issues 

listed previously. First, the internal representations acquired by an SRN are, like the 

representations that arise across the Hidden layer of the Rumelhart network, context-

sensitive. In both cases, the distributed patterns that promote the correct output capture, 

not just the current input, but the current input encountered in some context. As a 

consequence, both kinds of network can produce different responses to the same item, 

depending on the context. In an SRN, the context needn't be represented as a separate 

input from the environment (as it is in the Rumelhart network), but can consist solely of a 

learned internal representation of the sequence of previously-encountered inputs. 
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Second, Elman's approach suggests one way of thinking about representation of 

meanings for abstract concepts. Because semantic similarity relations are apparent (at 

least to some degree) from overlap in the linguistic contexts in which words tend to 

appear in meaningful speech, then such relations might be derived even for words with 

abstract meanings. Words like "fair" and "just" may not be associated with obvious 

perceptual-motor attributes in the environment, but they likely occur within similar 

linguistic contexts ("The decision was just," "The decision was fair"). The insight that 

word-meanings may partially inhere in the set of contexts in which the word is 

encountered may therefore provide some explanation as to how learning of such 

meanings is possible. 

Third, the representations arising in the Context layer of an SRN capture 

information, not just about a single input, but about a series of inputs encountered over 

time. That is, these representations are inherently representations of whole events rather 

than individual items. The SRN thus offers a tool for understanding how the semantic 

system might construct internal representations that capture the meaning of a whole 

event, instead of just the meaning of a single object or word. 

The remainder of this section discusses some of the implications of these ideas for 

theories of semantic memory as they have been cashed out in two influential modelling 

approaches: Latent Semantic Analysis (Landauer & Dumais, 1997) and related 

approaches (Burgess & Lund, 1997; Steyvers et al., 2006), and the "Sentence Gestalt" 

models described by St. John and McClelland (McClelland, St. John, & Taraban, 1989; 

St. John & McClelland, 1990; St. John, 1992). 

4.2 Latent Semantic Analysis  
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Latent Semantic Analysis (LSA) is an approach to understanding the semantic 

representation of words (and larger samples of text) that capitalizes on the previously-

mentioned observation that words with similar meanings tend to occur in similar 

linguistic contexts (Landauer, Foltz, & Laham, 1998). Elman had illustrated the face 

validity of the idea by training an SRN with a small corpus of sentences constructed from 

a limited set of words. The pioneers of LSA and related approaches established the power 

of the idea by investigating precisely how much information about semantic relatedness 

among words can be extracted from linguistic context in large corpora of written text. 

The basic computations behind LSA are fairly straightforward. The process 

begins with a large set of samples of text, such as an encyclopaedia in which each article 

is considered a separate sample in the set. From this set, a matrix is constructed. Each 

row of the matrix corresponds to a single word appearing at least once in the set, and each 

column corresponds to one of the text samples in the set. The elements of the matrix 

indicate the frequency with which a word was encountered within the sample. For 

instance, the word "date" might occur 10 times in an encyclopeadia article on calendars; 

once in an article on Egypt; 3 times in an article on dried fruit; 0 times in an article on 

lasers; and so on. So, each word is associated with a row vector of frequencies across text 

samples; and each text sample is associated with a column vector of frequencies across 

words. If it is true that words with similar meanings occur in similar contexts, then the 

vectors for words with similar meanings should point in similar directions. The similarity 

structure of the word-to-text co-occurrence matrix thus captures information about the 

semantic relatedness of the individual words. To get at this structure, the elements of the 

matrix are usually transformed to minimize variation due to overall word frequencies (for 
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instance, by taking the log of the frequencies in each cell); the co-occurrence matrix is 

converted to a similarity matrix by computing the pairwise correlation between all rows; 

and the similarity matrix is then subject to a singular value decomposition (a 

computationally efficient means of estimating eigenvectors in a very large similarity 

matrix). The singular-value decomposition returns a large set of orthogonal vectors that 

re-describe the similarity matrix (one for each word in the corpus); typically all but the 

first 300 or so of these vectors are then discarded. The resulting representation contains a 

description of each word in the corpus as a vector in a ~300-dimensional space. 

What is remarkable about this process is that the similarity structure of the 

resulting vectors appears to parallel, sometimes with surprising accuracy, the semantic 

similarities discerned by human subjects amongst the words in the corpus. Semantic 

distances yielded by LSA and similar measures correlate with the magnitude of 

contextual semantic priming effects in lexical decisions tasks (Landauer & Dumais, 

1997); with normative estimates of the semantic relatedness between pairs of words and 

with word-sorting (Landauer et al., 1998); with the likelihood of confusing two items in 

free-recall list-learning tasks (Howard & Kahana, 2002); and so on. Such 

correspondences would seem to suggest some non-arbitrary relationship between the 

representations computed by LSA-like methods and the word-meaning representations 

existing in our minds. But what, specifically, is the nature of this relationship? 

At the very least, LSA demonstrates that overlap in linguistic context can convey 

considerable information about the degree to which different words have similar 

meanings. In short, Elman's speculation—that words with similar meanings appear in 

similar contexts—appears to be true in actual language. So a learning mechanism that is 
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sensitive to the temporal context in which words occur may help to promote the learning 

of semantic similarity relationships. Nevertheless the skeptic might justly question the 

conclusion that semantic representations can be derived solely from a "dumb" word- or 

phrase-prediction algorithm (Glenberg & Robertson, 2000). Surely there is more to 

meaning than simply being able to anticipate which words are likely to follow one 

another in speech—you can't learn a language just by listening to the radio. And indeed, 

as a theory of semantic processing, LSA raises many questions. How are the semantic 

representations it computes—abstract vectors in a high-dimensional space—accessed by 

perceptual and linguistic input; how do they support naming, action, and other behaviors; 

and how are they influenced by these non-linguistic aspects of experience? What content 

do they have? 

One response to these criticisms is as follows. LSA shows that sensitivity to high-

order temporal structure in language can yield important information about semantic 

similarity structure. Empirical studies show that the human semantic system is sensitive 

to the similarity structure computed by LSA-like measures; so it is possible that the 

human semantic system is also sensitive in some degree to high-order temporal structure 

in language. But this is not to say that the semantic system is not also sensitive to 

structure in other aspects of experience: the same learning mechanisms that extract 

information from statistical structure in speech may also operate on non-linguistic 

perceptual information to support predictions about future events or appropriate actions; 

and such a mechanism might even assimilate high-order patterns of covariation between 

linguistic and non-linguistic sources of information, so that the resulting representations 

support predictions, not just about what words are likely to follow a given statement, but 
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also about upcoming perceptual experiences as well. That is, LSA demonstrates that the 

human mind is sensitive to temporal structure in one aspect of experience (linguistic 

experience), and the same mechanism that gives rise this sensitivity may also mediate 

learning in other perceptual and motor domains.  

4.3 The Sentence Gestalt model.  

The notion that the semantic system might capitalize on statistical structure both 

within language and between language and other aspects of experience is apparent in 

many current theories of conceptual knowledge. This idea has not been very directly 

implemented in any computational model, for obvious reasons—it requires fairly explicit 

theories about perception, action, speech production and comprehension, all of which 

constitute broad and controversial domains of study in their own right! Important 

progress in this vein was made, however, by St. John and McClelland (McClelland et al., 

1989; St. John & McClelland, 1990; St. John, 1992). 

St. John and McClelland were interested in investigating verbal comprehension, 

not just for individual words, but for full sentences describing mini-events. Each sentence 

described an agent performing some action upon some recipient, often with a particular 

instrument—thus understanding of each event required knowledge of who the actor was, 

which action was taken, what item was acted upon, and what instrument was used. When 

one comprehends a sentence such as “The lawyer ate the spaghetti with the fork,” for 

instance, one knows that the lawyer is the thing doing the eating; the spaghetti, and not 

the fork, is what is eaten; the fork is being used by the lawyer in order to eat the 

spaghetti; and so on. Comprehension of such utterances requires combining the meanings 
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of the individual constituent words, as they come into the semantic system, into some 

whole or Gestalt representation of the event.  

Exactly how such combination is accomplished is the subject of considerable 

research in psycholinguistics, extending well beyond the scope of this article. To 

illustrate just one of the complexities attending the question, consider the sentence “The 

lawyer ate the spaghetti with the sauce.” Structurally, it is identical to the example 

sentence in the preceding paragraph; but the interpretation of the final noun (“fork” 

versus “sauce”) is strikingly different. In the former sentence, the noun is interpreted as 

the instrument of the action “ate”; in the latter, the noun is interpreted as a modifier of the 

recipient “spaghetti.”  Understanding how the final noun “attaches” to the other concepts 

in the sentence seems to require knowledge of certain constraints deriving from the 

meaning of the full event—for instance, that it is impossible to use sauce to pick up and 

eat spaghetti noodles, or that it is unlikely that the spaghetti was served with a topping 

made of forks. That is, the attachment of the noun derives neither from the 

structural/syntactic properties of words (which should be identical in the two sentences), 

nor from the meanings of individual words taken in isolation (e.g. “not used as a topping 

for spaghetti” is not likely to be a salient property of the concept “fork”). 

--Figure 6 about here-- 

St. John and McClelland were interested both in providing a general framework 

for thinking about comprehension of the “whole meaning” of sentences, and in 

addressing attachment phenomena like that summarized above. The model they used to 

exemplify the framework is illustrated in Figure 6. The first bank of input units consists 

of localist representations of the individual words that occur in sentences. These feed 
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forward to a bank of hidden units which in turn feed forward to a simple recurrent layer 

labeled “Sentence Gestalt.” The “copying over” of patterns from the Sentence Gestalt to a 

context layer (labelled “Previous Sentence Gestalt”) layer allows the network to retain an 

internal representation of the full sequence of words preceding a current input. This 

context representation, rather than feeding back directly to the Sentence Gestalt, instead 

feeds forward into the first hidden layer, thus influencing the pattern of activation that 

arises there in response to a particular word input. That is, the first hidden layer forms a 

representation of a particular word encountered in a given sentence context; this context-

sensitive word representation then feeds forward to influence the current Sentence 

Gestalt. 

Finally, the Sentence Gestalt units feed forward to another bank of hidden units, 

but these also receive inputs from the layer labeled “Query.” The Query units themselves 

are set directly by the environment, and contain localist representations of basic questions 

one can pose to the network about the meaning of the sentence—questions such as “Who 

is the actor?”, “Who is the recipient?”, “What was the action?”, “What was the 

instrument?” and so on. The output layer, then, contains localist representations of the 

words that constitute answers to these questions: single units coding the various potential 

agents, recipients, actions, instruments, and so on. So the full model can be viewed as 

containing two parts: a “comprehension” or input system that retains representations of 

sequences of words in the sentence to be comprehended, and a “query” or output system 

that “interrogates” the model’s internal representations in order to answer questions about 

the meaning of the sentence. The Sentence Gestalt layer codes the representations that 

intermediate between these two networks. 
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The model’s task is to take in a series of words corresponding to a meaningful 

sentence, and to correctly respond to queries about the sentence’s meaning (ie, answer 

questions about “who did what to whom with what”). To find a set of weights that 

accomplish this task, the model is trained with backpropagation. The unit corresponding 

to the first word of the sentence is activated in the input, and activation flows forward 

through the network to the output. The network is then “queried” by activating each of 

the possible question-inputs in turn. With each query, the network’s actual response is 

compared to the correct response, and the error is computed and backpropagated through 

all the weights in the network. Next the activation of the Sentence Gestalt layer is copied 

over to the Context layer; the next word in the sentence is activated in the input; input 

flows forward through the network to the outputs; and the model is queried again with all 

the various question-inputs. Effectively the model is “asked” about the full meaning of 

the sentence as each word comes into the input, and is trained with backpropagation to 

make its “best guess” as to the answers to those questions at each step in processing. 

Let’s set aside for a moment questions about the naturalness of this training 

regime, and consider the model’s behavior after learning. The trained network could be 

presented with a full sentence (each word coming in, one at a time, in order), leading it to 

build up distributed pattern of activity in the “Sentence Gestalt” layer. The information 

coded in this representation could then be probed by activating different “Query” units—

effectively asking the network to answer questions about the meaning of the sentence. 

The first remarkable thing was that the network could indeed successfully answer the 

questions. That is, although the model’s internal representation of the sentence—the 

pattern of activity across the “Sentence Gestalt” layer—was not directly interpretable in 
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and of itself, it produced the correct answers to all of the probe questions, indicating that 

it somehow “contained” the full meaning of the test sentences. 

The second remarkable thing was that this ability generalized fairly well to test-

sentences the network had never before seen. For instance, when given a sentence like 

“the policeman ate the spaghetti with the fork,” the network could correctly state that the 

policeman was the actor and the fork was the instrument, despite never having seen a 

sentence in which the policeman used a fork. The third remarkable thing was that the 

network’s generalization behavior was sensitive to just the kinds of conceptual 

constraints exemplified above. When given a sentence like “The policeman ate the 

spaghetti with the sauce,” for instance, it correctly concluded that “sauce” must be a 

modifier of “spaghetti,” and not an instrument of “policeman” (again despite never 

having been trained on sentences involving policemen and spaghetti).  In general, 

instruments associated with human beings (e.g. “fork”) would tend to attach to nouns 

describing human beings, even when the pairings had never before been encountered; and 

nouns that tended not to be used as instruments did not attach to agents, even in novel 

sentences. The basis for this generalization should be apparent from the previous 

discussion of Elman’s work. Human agents tend to engage in many of the same kinds of 

activities, using some of the same kinds of instruments; this overlap leads the SG model 

to represent the various different human nouns as somewhat similar to one another in the 

first hidden layer (and different from non-human agents), and this similarity promotes 

generalization to new sentence contexts. 

There are other appealing aspects of the Sentence Gestalt model that will not be 

reviewed here. Instead it is worth focusing briefly on a seemingly artificial nature of the 
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training regime: the fact that the model is “queried” with all possible questions with each 

new word presentation, and gets faithful answers to every question during training. To 

what could such training possibly correspond in the real world? One answer to this 

question is that the training regime in St. John and McClelland’s work provides a coarse 

proxy to the covariation of language with other aspects of experience. The verbal 

statements that children are trying to understand as they learn a language do not occur in 

isolation, but together with other sensory-motor information. When daddy says, “Look, 

mommy’s eating her dinner with a fork!,” the infant may look up to see mommy holding 

a fork, jamming it into the spaghetti noodles, and raising it to her mouth. The agent, 

action, recipient and instrument information is all contained in this event. Although 

children may not be explicitly querying themselves about these relationships as the SG 

model does, they may be doing something related—trying to anticipate who will pick up 

the fork, or what mommy is holding onto, or what will go into the mouth, and so on, 

when they hear daddy’s statement and look up toward mommy. That is, correspondences 

between verbal statements and actual observed events may provide the statistical basis for 

learning to represent the meanings of full sentences. 

Summary 

The thread of research described in Section 3 suggested that the semantic system 

may serve a particular functional role: the ability to make context-appropriate inferences 

about the properties of objects, given their name or some other perceptual input. To 

accomplish this role, it is necessary for the semantic system to represent conceptual 

similarity relationships amongst familiar items, and to adapt these relationships as 

necessary according to the situation or context. Section 3 suggested that some of the 
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information necessary to acquire such knowledge may be present in the overlap of 

sensory and motor properties across different modalities and across various different 

situations. The work précised in the current section adds to this suggestion by showing 

how the semantic system can become sensitive to temporal structure, both within 

language and between language and other aspects of experience. Elman’s (1990) work 

provided a simple mechanism for learning temporal structure; the work of Landauer and 

Dumais (1997), Burgess and Lund (1997), and others has shown how rich such structure 

can be, even just considering temporal structure in natural language; and the Gestalt 

models described by McClelland and St. John (St. John & Gernsbacher, 1995; St. John & 

McClelland, 1990; St. John, 1992) provide a simple framework for thinking about how 

coherent covariation between linguistic structure and other aspects of experience can 

promote the representation of meaning for full sentences and events. These developments 

thus begin to offer leverage on the three issues that remained unaddressed or only 

partially addressed at the end of the last section: the context-sensitive nature of concepts; 

the representation of meaning for abstract words; and the representation and processing 

of full events encompassing multiple items. 

5. Neuro-cognitive models 

All of the models reviewed thus far are best construed as cognitive models—they 

offer limited insight at best as to the nature of the neural systems and processes that 

support semantic abilities. The final thread of research considered here encompasses 

neuro-cognitive models. The great majority of this work has focused on understanding 

impairments to semantic abilities following brain damage. Two principal questions 

addressed by this work are: i) How can patterns of observed semantic impairment be 
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explained given what we know about the cortical organization of information-processing 

systems in the brain, and ii) What do patterns of semantic impairment tell us about the 

neuroanatomical organization of the semantic system? 

Until very recently, these questions have been pursued more-or-less 

independently of the computational issues discussed in the previous two sections. In this 

final section, we will consider the two most widely-studied forms of semantic 

impairment, and the models that have been proposed to explain them. We will see that, 

although these models share many properties in common, they differ in important 

respects that have implications for the view of semantic abilities considered in Sections 3 

and 4. 

5.1 Category-specific semantic impairment 

The first form of semantic impairment we will consider is category-specific 

impairment: semantic deficits that appear to be restricted to one semantic domain  while 

largely sparing others. By far the most commonly observed category-specific impairment 

involves seriously degraded knowledge of living things, with comparatively good 

knowledge of manmade objects (Capitani, Laiacona, Mahon, & Caramazza, 2003; Martin 

& Caramazza, 2003; Warrington & McCarthy, 1983). The reverse dissociation has, 

however, also been reported (Warrington & McCarthy, 1987; Warrington & Shallice, 

1984), along with other apparently selective semantic deficits (Crutch & Warrington, 

2003; Samson & Pillon, 2003), seeming to indicate that different forms of brain damage 

can differentially affect knowledge of different semantic domains. One straightforward 

interpretation of this impairment is that different parts of the brain have been 

“specialized” over the course of evolution for storing and retrieving semantic information 
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about living and nonliving things (Caramazza, 1998). In early discussions of apparent 

category-specific impairments, however, Warrington and Shallice (1984) suggested an 

alternative explanation: perhaps semantic representations of living things depend to a 

greater extent on  knowledge of perceptual qualities, whereas semantic representations of 

manmade objects depend more upon knowledge of their functional characteristics. If so, 

then damage to regions of the brain that support knowledge of visual attributes may 

produce a seeming “living-things” deficit, whereas damage to regions that support 

knowledge of action or function may produce an apparent “manmade object” impairment. 

 This hypothesis had appeal for at least two reasons. First, it was consistent with 

what was already known about the functional organization of cortex. That is, cortical 

regions supporting visual perception of objects are quite removed from those that support 

action/object use—so the hypothesis offered a means of understanding the pattern 

without requiring the ad-hoc proposal of separate cortical regions for representing 

different kinds of concepts. Second, the hypothesis explained a few apparent exceptions 

to the supposed “category-specific” patterns. For instance, some patients with “living 

things” impairments were also seriously impaired at naming and recognizing musical 

instruments and minerals—artifacts that might well depend to a greater extent than usual 

upon knowledge of perceptual characteristics. Similarly, some patients with “manmade 

object” impairments also showed deficits for recognizing body-parts—arguably “living 

things” that are closely tied to knowledge of action and function (Warrington & Shallice, 

1984). 

--Figure 7 about here-- 
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An influential computational implementation of the sensory-functional hypothesis 

was put forward by Farah and McClelland (1991). In addition to demonstrating that the 

theory was indeed tractable, simulations with the model showed that it also had some 

counterintuitive implications. The model, illustrated in the top panel of Figure 7, is a fully 

recurrent network, in which activation may flow in either direction between connected 

layers. For instance, visual input to the Visual layer can flow up to the Semantic layer, 

and then in turn to the Verbal layer; or alternatively input from the Verbal layer can flow 

to the Semantic layer and back to the Visual layer. Thus the units in the Semantic layer 

may be construed as computing mappings between visual and verbal information 

presented from the environment. 

Representations of objects in the model take the form of distributed patterns of 

activity across groups of units. The units themselves can be thought of as each 

responding to some aspect of the entity represented by the whole pattern, though these 

aspects need not be nameable features or correspond in any simple way to intuitions 

about the featural decomposition of the concept. In the semantic layers, some units may 

respond to objects with some particular visual property, while others may respond to 

aspects of the object's functional role. In the visual layer, patterns of activity correspond 

to more peripheral visual representations; while patterns of activity in the verbal layer 

form representations of words. To present a visual stimulus to the network, the 

corresponding pattern of activation is clamped across Visual units; these activations feed 

forward to Semantic units, then on to Verbal units. The activations of Verbal units can 

then feed back to the Semantic units, and this dynamic flow of activation proceeds until 

the unit states stop changing, at which point the network is said to have settled into a 
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steady state or attractor. The location of such stable configurations depends upon the 

connection weight matrix. The role of learning in this model is to configure the weights 

in such a way that, when the network is presented with a particular word or picture as 

input, it will settle into a stable state in which the correct pattern of activity is observed 

across units in the visual, verbal, and semantic layers. 

Farah and McClelland (1991) created representations for ten “living” and ten 

“nonliving” objects, by generating random patterns of -1 and +1 across all three layers of 

units in the model. Each unique pattern corresponded to a representation of an individual 

item. Representations of living and nonliving things differed only in the proportion of 

active semantic units in the “functional” and “perceptual” pools. These were set to match 

the observed ratio of perceptual to functional features of objects in dictionary definitions. 

Living things in the model were represented with an average of 16.1 visual and 2.1 

functional units active; whereas nonliving things were represented with an average of 9.4 

visual and 6.7 functional units active. All patterns had some units active in both semantic 

pools. The verbal and visual representations were random patterns generated in the same 

way for living and nonliving items. To find a configuration of weights that would allow 

the network to perform correctly, the model was trained with the delta rule (McClelland 

& Rumelhart, 1985) to associate Visual and Verbal patterns with the appropriate 

Semantic pattern. When the model had finished learning, it could generate the correct 

Semantic pattern from any Verbal or Visual input; and activation of this pattern would 

then correctly “fill in” the corresponding Verbal or Visual pattern. 

Of interest was the model's behaviour when its semantic units were damaged. 

Under the sensory-functional hypothesis, units representing the functional-semantic 
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aspects of an item can be damaged independently of the units representing the item's 

perceptual-semantic properties. How did the model's performance deteriorate with 

increasing damage to each of these pools of units? To simulate neural trauma in the 

network, Farah and McClelland simply deleted some proportion of the units in either the 

perceptual semantic pool or the functional semantic pool. They then tested the network's 

ability to perform model analogues of picture naming and match-to-sample tasks. In the 

former, the model was presented with the picture of an object (by applying a pattern of 

activity to the visual units), and allowed to settle to a steady state. The resulting pattern of 

activity across the word units could then be read off, and compared to all the patterns in 

the training corpus. The model's response was considered correct if the pattern of activity 

across word units more similar to the correct pattern than to any other pattern. The same 

procedure was employed in the match-to-sample task, using a word as input and 

examining patterns of activity across visual units to determine the response. 

Two aspects of their results are of interest. First, the model showed a clear double 

dissociation in its ability to name and match living and nonliving things. When visual 

semantic units were destroyed, the model exhibited a greater naming impairment for 

living relative to nonliving objects. The opposite was true when functional units were 

destroyed. Second, and more interesting, in neither case was the model completely 

unimpaired in the “spared” domain. Though the model was worse at naming living things 

when perceptual semantic features are destroyed, it was also impaired at naming 

nonliving things. Living things rely more heavily on perceptual semantic features in the 

model, but such features inform the representation of both living and nonliving objects to 

some degree. As this knowledge deteriorates in the model, it tends to affect naming 
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performance for both domains, albeit to differing degrees. The same graded impairments 

are also witnessed in the patient data—profound impairments in one domain are almost 

without exception accompanied by mild impairments in the relatively spared domain. 

Farah and McClelland (1991) also examined the network's ability to retrieve 

functional and perceptual semantic information when given a picture or a word as input. 

Considering only the perceptual or the functional unit pools, they compared the pattern of 

activity in the damaged network when it had settled to the correct pattern, for each object. 

The network was considered to have spared knowledge of the perceptual properties of an 

item if the observed pattern of activity across perceptual semantic units was closest to the 

correct pattern; and spared knowledge of functional properties if the observed pattern 

across functional semantic units was closest to the correct pattern. 

The simulations showed that the loss of semantic features in one modality had 

important consequences for the model's ability to retrieve properties in the spared 

modality. When perceptual semantic features were lost, the model had a tendency to 

generate an incorrect pattern of activity across functional semantic units, especially for 

living things. The reason is that the reciprocal connections among semantic features lead 

the network to rely on activity in perceptual semantic units to help produce the 

appropriate patterns across functional units. When this activation is reduced or disrupted 

as a result of damage, these lateral connections can interfere with the model's ability to 

find the correct states even in the spared units. Thus, the loss of “perceptual” semantic 

knowledge can precipitate a disruption of knowledge about functional properties, 

especially for categories that rely to a large extent on perceptual information in their 

representation. Of course, the reverse is true when functional semantic features are 
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damaged. So, counter-intuitively, it is not the case that patients with worse knowledge of 

animals than artifacts should always show preserved knowledge of functional properties 

under the theory—even though the theory attributes the apparent category effect to the 

loss of knowledge about sensory properties of objects. 

5.2 The convergence model 

The second well-studied form of semantic impairment is the progressive and 

profound degeneration of semantic knowledge observed in the syndrome known as 

semantic dementia (SD). There are three remarkable facts about SD that constrain 

theories about the neural basis of semantic abilities. First, the semantic impairment 

appears to encompass knowledge of all kinds of concepts, tested in all modalities of 

reception and expression. In contrast to the “category-specific” cases described above, for 

instance, patients with SD show equally poor knowledge about living and nonliving 

things (Garrard, Lambon Ralph, & Hodges, 2002). They are profoundly anomic (Hodges, 

Graham, & Patterson, 1995; Lambon Ralph, Graham, Ellis, & Hodges, 1998; Rogers, 

Ivanoiu, Patterson, & Hodges, 2006), but their impairments are not restricted to language: 

they show serious deficits recognizing line drawings of common objects (Rogers, 

Lambon Ralph, Hodges, & Patterson, 2003), drawing pictures of objects after a brief 

delay (Bozeat et al., 2003), colouring black-and-white line drawings of common objects 

(Rogers, Patterson, Hodges, & Graham, 2003), assessing the usual function of every-day 

objects (Bozeat, Lambon Ralph, Patterson, & Hodges, 2002), matching a sound (such as 

a telephone ring) to a picture of the item that makes the sound (Adlam, Rogers, Salmond, 

Patterson, & Hodges, in press; Bozeat, Lambon Ralph, Patterson, Garrard, & Hodges, 
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2000)—effectively any task that requires them to make an inference about an object’s 

properties (regardless of whether the item is depicted or denoted by a word). 

Second, other aspects of cognitive functioning are remarkably spared in the 

disorder. Patients with SD are generally well-oriented in space and time; show 

comparatively normal episodic and recognition memory; have speech that is grammatical 

and, apart from word-finding problems, fluent; have normal or near-normal perception; 

show no attentional dysfunction; and perform well on tests of reasoning and problem-

solving (Patterson & Hodges, 2000). 

Third, the neuropathology that produces SD is not widespread in the brain, but is 

relatively circumscribed. The condition follows from the temporal-lobe variant of fronto-

temporal dementia, a disease that produces a slowly-progressing deterioration of cortical 

gray matter in the anterior temporal lobes of the brain. Although the pathology is often 

more pronounced in the left hemisphere, it is virtually always bilateral, and in some cases 

can be worse in the right hemisphere. 

On the basis of these observations above, Rogers et al. (2004) proposed a theory 

about the neural basis of semantic memory, illustrated in the bottom panel of Figure 7. 

Like the approaches discussed in Sections 3 and 4, the theory proposes that semantic 

memory serves a key function: to promote inferences about the properties of objects and 

events that are not directly perceived in the environment. For instance, when 

encountering a line drawing of a banana, representation of the depicted object’s shape 

may depend predominantly upon perceptual and not semantic processes; but the semantic 

system then promotes retrieval of the item’s name, its characteristic color, its taste, the 
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actions required to peel it, and so on. In this sense, the “meaning” of the image inheres in 

the coactivation of various associated sensory, motor, and linguistic representations. 

Different kinds of sensory, motor, and linguistic information are known to be 

coded in widely distributed and functionally specialized cortical regions—with some 

regions specialized, for instance, for colour perception, others for motion perception, 

others for representation of orthographic or phonological words forms, and so on (Chao, 

Haxby, & Martin, 1999; Martin & Chao, 2001). On the basis of the neuroanatomical 

observations from SD, Rogers et al. (2004) suggested that these widely-distributed 

sensory, motor, and linguistic representations communicate with one another via the 

anterior temporal-lobe regions affected in SD. That is, the anterior temporal lobes act as a 

kind of “hub” or “convergence zone” (Damasio & Damasio, 1994) that promotes the 

interactive activation of linguistic, perceptual and motor representations. When the hub 

deteriorates as a consequence of disease, this degrades the ability to map between such 

surface forms. 

Rogers et al. (2004) used a simplified implementation of the theory to illustrate 

some desirable consequences of this proposal. The model’s architecture (the black ovals 

in the second panel of Figure 7) was similar to that of the Farah-McClelland model: it 

included a layer to code visual shape representations, a layer to code verbal 

inputs/outputs, and an intermediating hidden layer (labeled “Semantics” in the Figure). 

Units in the Visual layer were understood to represent visual properties of objects that 

could be directly perceived; whereas units in the Verbal layer were understood to 

represent individual words. Visual and Verbal units could get direct input from the 

environment, and both layers send connections to and received connections from the 
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intermediating Semantic units. Thus the model could be presented with a visual input 

(corresponding to a pattern of activity across Visual units), a single name or word 

(corresponding to activation of a single Verbal unit), or a phrase describing an object’s 

properties (corresponding to a pattern of activation across Verbal units). 

This Convergence model contrasted with the Farah-McClelland model in three 

important ways. First, the patterns of activity that constituted the Visual and Verbal 

representations were not random vectors, but instead captured aspects of similarity 

apparent in line drawings of common objects, and in the verbal statements we tend to 

make about such objects. That is, items with many visual properties in common were 

represented with overlapping patterns in the Visual layer; whereas items to which similar 

spoken predicates apply were represented with similar patterns in the Verbal layer. 

Second, no “semantic” representations were assigned. Instead, the model was simply 

trained (using a backpropagation algorithm suited to recurrent networks) to complete 

mappings between individual names, visual representations, and verbal descriptions of 

various objects. The patterns of activation that arose across Semantic units in the trained 

models thus constituted learned internal representations, just as in the models described 

in Sections 3-4. Third, the Convergence model proposed no functional specialization of 

the intermediating semantic units. 

Rogers et al. (2004) simulated the neuropathology of SD by removing an 

increasing proportion of the weights projecting into or out from the Semantic layer. The 

simulation experiments were able to replicate several interesting aspects of impairment in 

SD, and made a variety of new predictions about the consequences of temporal-lobe 

damage for semantic memory (Lambon Ralph, Lowe, & Rogers, in press; Rogers et al., 
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2004). Rather than reviewing all of these results, we will instead focus on one aspect of 

the simulations that provides a clue as to why the cortical semantic network might 

employ a convergent architecture. 

The key observation concerns the fact that the learned internal representations in 

the model end up capturing the semantic similarity relations existing amongst the items in 

the training corpus, for essentially the same reasons discussed earlier with respect to the 

Rumelhart model. More interestingly, the authors showed that these acquired similarity 

relations differed from those apparent in the overlap of the model’s Visual and Verbal 

patterns considered independently. Specifically, from overlap in visual features, the 

category of fruits was largely intermingled with manmade objects; whereas, from overlap 

in verbal features, the same items were represented as quite distinct from both manmade 

objects and from animals. The internal representations formed across Semantic units in 

the Convergence model captured a blend of these similarity relations: Fruits were 

represented as i) similar to one another, ii) distinct from both manmade objects and 

animals, but iii) considerably more similar to the former than the latter. This counter-

intuitive finding (that fruits may be represented as more similar to manmade objects than 

to animals) predicted that patients with SD should be more likely to confuse fruits with 

artifacts than with animals, a prediction that was confirmed in a subsequent sorting 

experiment (Rogers et al., 2004). 

In other words, the simulation showed that the intermediating representations that 

arise from learning in a convergent architecture can capture similarity structure that is not 

directly apparent in any individual surface representation. This observation is important 

precisely because surface representations—the sensory, motor, and linguistic 
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representations from which “meanings” are thought to arise—often do not seem to 

faithfully capture semantic/conceptual similarities. Lightbulbs and pears may have 

similar shapes; fire engine and strawberries have similar colours; potato-mashers and 

plungers engage similar praxis; and so on. The Convergence model suggests that, 

although conceptual similarity structure may not be directly captured by any of these 

surface representations, it may be apparent in the pattern of overlap across the different 

kinds of representation. Thus the explanation as to why, computationally, the cortex 

should employ a convergent architecture is as follows: To acquire representations that 

capture conceptual similarity relations (and thus promote appropriate generalization of 

stored information to newly encountered items), the semantic system must be sensitive to 

overlap across widely-distributed surface representations; and such sensitivity depends in 

turn upon there being, somewhere in the cortical semantic network, a region where all 

these different kinds of information converge. 

Summary 

The two semantic syndromes described above seem to point to different 

conclusions about the neuroanatomical organization of the semantic system. Studies of 

patients with apparent category-specific impairment seem to suggest that there exists a 

certain degree of functional specialization within the semantic system, and theorists vary 

considerably in their opinions as to the degree and of nature of such functional 

specialization. On the other hand, studies of patients SD seem to suggest that there exists 

in the anterior temporal cortex a relatively circumscribed region that is critical to 

semantic processing for all variety of concepts and all modes of reception and expression. 

The Farah-McClelland model may be viewed as an effort to find a middle way between a 
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complete balkanization of the semantic system and a fully homogeneous system. Related 

efforts have been put forward by Plaut (2002), Humphreys and Forde (Humphreys & 

Forde, 2001), Tyler and colleagues (Tyler, Moss, Durrant-Peatfield, & Levy, 2000), 

Devlin and colleagues (Devlin, Gonnerman, Andersen, & Seidenberg, 1998), Lambon 

Ralph, Lowe and Rogers (in press), and many others. Although there is as yet no clear 

consensus as to the resolution of these issues, it is apparent that computational models are 

providing important tools for an increasing number of researchers interested in the neural 

basis of semantic abilities. 

An important direction for future efforts will be to relate these neuro-cognitive 

models back to the computational issues motivating the more abstract models reviewed in 

earlier sections of this chapter. That is, rather than asking “What architecture best 

explains the pattern of sparing and impairment observed from different forms of brain 

damage,” we may begin to ask, “What architectures yield the computational properties 

that, from more abstract semantic theories, we believe the semantic system must 

possess?” 

Conclusion and open issues 

This overview indicates that, for many of the challenging puzzles currently facing 

research in human semantic memory, the beginnings of answers exist in the literature. 

Important questions about category coherence and feature weighting may be addressed 

by the fact that certain network architectures promote sensitivity to high-order covariance 

structure amongst stimulus properties across different modalities of reception and 

expression. Context-sensitivity may also reflect sensitivity to higher order correlational 

structure, in that any particular situation or context constrains which of an item’s 
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properties are “important” or relevant, and which similarity relationships are best used to 

govern generalization and induction. One way of understanding such influences is to 

proposed that the distributed semantic representations that govern performance in the 

moment are shaped, not only by the particular item in question, but also by a 

representation of the current context, as is the case in the Rumelhart model (see also the 

chapter on cognitive control by De Pisapia, Repovs and Braver). Finally, the semantic 

system’s ability to comprehend full events, as well as its knowledge of “abstract” 

properties—properties that are not plausibly instantiated directly in sensory and motor 

systems—may derive, at least in part, from its sensitivity to temporal structure. 

Important directions for future work involve drawing these various threads 

together, in three different respects. First, the existing work is dispersed across a variety 

of models employing quite different architectures, differing degrees of abstraction, and 

different assumptions about the nature learning and of the information available to the 

semantic system. It is not clear how the different pieces fit together into a single 

framework—a model in which coherent covariation amongst perceptual, motor, and 

linguistic properties, and sensitivity to temporal structure, and representation of task 

context, all contribute together to semantic representation and processing. Clearly the 

development of such a model is beyond the current state of the art, but important next 

steps will involve addressing at least some components of this uber-system. 

Second, this chapter has focused predominantly on parallel-distributed-processing 

approaches to semantic memory—not because there are no other computational 

approaches, but because these other approaches typically focus on a slightly different set 

of issues. For instance, semantic memory is clearly important for human induction and 
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inference; but induction and inference also constitutes a domain of study in its own right, 

in which Bayesian approaches are probably most influential. Similarly, studies of 

categorization, though clearly overlapping with issues addressed here, also constitute a 

separate domain of study, in which mathematical approaches (including prototype and 

instance-trace models) are the norm. As previously mentioned, these overlapping 

domains of study, and the methods they adopt, are reviewed in other chapters of the 

Handbook. An important direction for future research in semantic cognition and in these 

other domains will be to understand whether the theoretical approaches adopted there 

differ fundamentally from those described in the current chapter, or whether they 

constitute different formal descriptions of the same underlying processes. 

Finally, there is clearly much to be done in relating computational theories of 

semantic abilities to information processing in the brain. Although most theories about 

the neural basis of semantic cognition support the notion that semantic memory arises 

from the association of perceptual, motor, and linguistic representations that are widely 

distributed in the brain, there remain many open questions about the structure and 

properties of the cortical semantic network. For instance, how can sensory-motor learning 

lead to knowledge of conceptual similarity relations? How are abstract properties 

represented in the brain, if the semantic system is built upon sensory and motor 

properties? How does the brain achieve the flexibility and context-sensitivity observed in 

the semantic system? What cortical mechanisms support conceptual development, and to 

what extent are these driven by experience versus maturation? The simulations reviewed 

in the current chapter provide intriguing clues about the answers to these questions; the 
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next decade of research will need to integrate these computational ideas with the 

emerging picture from neuroscience. 
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Figure captions 
 
Figure 1. The architecture of Hinton’s (1981) seminal model of semantic memory. 
 
Figure 2. Rumelhart’s (1990; Rumelhart and Todd, 1993) model, subsequently used as 

the basis for Rogers and McClelland’s (2004) theory of semantic memory. 
 
Figure 3. Multidimensional scaling of internal representations for 8 items at 10 equally-

spaced intervals during training of the Rumelhart model. The labelled end-points 
indicate the similarities amongst the representations at the end of learning, 
whereas the lines trace the trajectory of these representations throughout learning. 

 
Figure 4. Bottom: Mean Euclidean distance between plant and animal, bird and fish, and 

robin and canary internal representations throughout training of the Rumelhart 
model. Middle: Average magnitude of the error signal propagating back to 
representation units from properties that reliably discriminate plants from animals, 
birds from fish, or the canary and robin, when the network is presented with the 
canary as input at different points during learning. Top: Activation of different 
output properties when the network is queried about the canary. The properties 
include one shared by animals (can move), one shared by birds (can fly), and one 
unique to the canary (can sing). 

 
Figure 5. The architecture of a simple recurrent network (SRN; Elman, 1990). 
 
Figure 6. The architecture of the Sentence Gestalt Model (McClelland, St. John and 

Taraban, 1989). 
 
Figure 7. Panel A. The Farah-McClelland model. Pabel B: The Convergence theory of 

semantic memory. Unit pools shown in black were implemented in the models 
described by Rogers et al. (2004) and Lambon Ralph, Lowe and Rogers (in press). 
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Notes 
                                                 
1 In a more realistic model, the representation of a novel item would be achieved by recurrent 

connections projecting back from the attribute units toward the representation units; such a model 

is discussed in the final section of this chapter. To simulate this recurrent process in the feed-

forward model shown in Figure 2, Rumelhart used a technique called backpropagation-to-

activation: beginning with a neutral pattern of activation across Representation units, activation 

was propagated forward to the outputs. Error was computed on just the “bird” output unit, and the 

derivative of this error was calculated, without changing any weights, in a backward pass. The 

activations of the Representation units were then adjusted to reduce the error on the “bird” unit. 

That is, the model adapted its internal representations by changing activations on the 

Representation units until it found a pattern that strongly activated the “bird” output unit. This 

pattern thus constitutes a representation of the novel item given just the information that it is a 

bird. 
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