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Abstract: In this précis of our recent book, Semantic Cognition: A Parallel Distributed Processing Approach (Rogers & McClelland
2004), we present a parallel distributed processing theory of the acquisition, representation, and use of human semantic knowledge.
The theory proposes that semantic abilities arise from the flow of activation among simple, neuron-like processing units, as
governed by the strengths of interconnecting weights; and that acquisition of new semantic information involves the gradual
adjustment of weights in the system in response to experience. These simple ideas explain a wide range of empirical phenomena
from studies of categorization, lexical acquisition, and disordered semantic cognition. In this précis we focus on phenomena central
to the reaction against similarity-based theories that arose in the 1980s and that subsequently motivated the “theory-theory”
approach to semantic knowledge. Specifically, we consider (1) how concepts differentiate in early development, (2) why some
groupings of items seem to form “good” or coherent categories while others do not, (3) why different properties seem central or
important to different concepts, (4) why children and adults sometimes attest to beliefs that seem to contradict their direct
experience, (5) how concepts reorganize between the ages of 4 and 10, and (6) the relationship between causal knowledge and
semantic knowledge. The explanations our theory offers for these phenomena are illustrated with reference to a snnple feed-
forward connectionist model. The relationships between this simple model, the broader theory, and more general issues in
cognitive science are discussed.
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theory-theory.

When we open our eyes and look around us, we observe a
host of objects — people, animals, plants, cars, buildings,
and other artifacts of many different kinds — most of
which are quite familiar. We have tacit expectations
about the unseen properties of these objects (e.g., what
we would find underneath the skin of an orange or
banana) and how the objects would react or what effects
they would have if we interacted with them in various
ways. Would a furry animal bite if we tried to stroke it?
Would a particular artifact hold a hot liquid? We can
usually name these objects, describe their visible and invis-
ible properties to others, and make inferences about them,
such as whether they would likely die if deprived of
oxygen, or whether they would break if dropped onto
a concrete floor. Understanding the basis of these
abilities — to recognize, comprehend, and make infer-
ences about objects and events in the world, and to
comprehend and produce statements about them — is
the goal of research in semantic cognition. Since antiquity,
philosophers have considered how we make semantic
judgments, and the investigation of semantic processing
was a focal point for both experimental and computational
investigations in the early phases of the cognitive
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revolution. Yet the mechanistic basis of semantic cognition
remains very much open to question.

In the 1960s and early “70s, the predominating view held
that semantic knowledge was encoded in a vast set of
stored propositions, and theories of the day offered explicit
proposals about the organization of such propositions in
memory, and about the nature of the processes employed
to retrieve particular propositions from memory (e.g.,
Collins & Loftus 1975; Collins & Quillian 1969). The
mid-70s, however, saw the introduction of findings on
the gradedness of category membership and on the privi-
leged status of some categories that such “spreading acti-
vation” theories did not encompass (Rips et al. 1973;
Rosch & Mervis 1975; Rosch et al. 1976). These findings
subsequently gave rise to a family of “similarity-based”
approaches proposing that semantic information is
encoded in feature-based representations — category pro-
totypes or representations of individual instances — and
that retrieval of semantic information depends in some
way upon the similarity between a probe item and these
stored representations (Smith & Medin 1981). Like
spreading-activation theories, similarity-based approaches
advanced specific hypotheses about the nature of the
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stored representations and of the mechanisms by which
semantic information is retrieved (e.g., Hampton 1993;
Kruschke 1992; Nosofsky 1984; 1986); but these in turn
have been subject to serious and challenging criticism
arising from a theoretical framework often called the
“theory-theory” (Carey 1985; Gopnik & Meltzoff 1997;
Keil 1989; Murphy & Medin 1985).

The theory-theory proposes that semantic knowledge is
rooted in a system of implicit beliefs about the causal
forces that give rise to the observable properties of
objects and events. On this view, implicit and informal
causal theories determine which sets of items should be
treated as similar for purposes of induction and generaliz-
ation, which properties are important for determining cat-
egory membership, which properties will be easy to learn
and which difficult, and so on. Conceptual development is
viewed as arising (at least in part) from change to the
implicit causal theories that structure concepts. This fra-
mework has been very useful as a springboard for powerful
experimental demonstrations of the subtlety and sophisti-
cation of the semantic judgments adults and even children
can make, and for highlighting the serious challenges
faced by similarity-based and spreading-activation the-
ories. In contrast to those frameworks, however, the
theory-theory has not provided an explicit mechanistic
account of the representation and use of semantic knowl-
edge. The fundamental tenets of the theory-theory are
general principles whose main use has been to guide the
design of ingenious experiments rather than the formu-
lation of explicit proposals about the nature and structure
of semantic representations or the mechanisms that
process semantic information.

In what follows, we provide a précis of our recent book,
Semantic Cognition: A Parallel Distributed Processing
Approach (Rogers & McClelland 2004, henceforth simply
Semantic Cognition in this précis), which puts forward a
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theory about the cognitive mechanisms that support seman-
tic abilities based on the domain-general principles of the
connectionist or parallel distributed processing framework.
Our approach captures many of the appealing aspects of
spreading-activation and similarity-based theories while
resolving some of the apparent paradoxes they face; and it
addresses many of the phenomena that have motivated
theory-theory and related approaches within an alternative,
more mechanistic, framework. The book illustrates how a
simple model instantiating the theory addresses, among
other things, classic findings from studies of semantic cogni-
tion in infancy and childhood; the influence of frequency,
typicality, and expertise on semantic cognition in adulthood;
basic-level effects in children and adults; and the progressive
disintegration of conceptual knowledge observed in some
forms of dementia. In this précis, however, we focus on
phenomena that were central to the critical reaction against
similarity-based theories and that subsequently motivated
the appeal to theory-based approaches. These phenomena
are briefly summarized in Table 1, and are explained in
further detail in what follows. We emphasize these particular
phenomena because they are often thought to challenge the
notion that semantic abilities might arise from general-
purpose learning mechanisms, and to support the view that
such abilities must arise from initial domain-specific knowl-
edge, via domain-specific learning systems.

These issues are central to questions about what makes
us uniquely human. Do we possess, at birth, and by virtue
of evolution, a set of highly specialized cognitive modules
tailored to support knowledge about particular domains?
Or do our advanced semantic abilities reflect the operation
of a powerful learning mechanism capable of acquiring,
through experience, knowledge about all semantic
domains alike? A key point of our book is that the learning
mechanisms adopted within the connectionist approach to
cognition are quite different from classical associationist
learning; that the capabilities of connectionist models
have been under-appreciated in this respect; and that
such models can provide an intuitive explanation of how
domain-general learning supports the emergence of
semantic and conceptual knowledge over the course of
development. The models we describe employ domain-
general learning mechanisms, without initial knowledge
or domain-specific constraints. Thus, if they adequately
capture the phenomena listed in Table 1, this calls into
question the necessity of invoking initial domain-specific
knowledge to explain semantic cognition.

The particular models we will use throughout our dis-
cussion are variants of a model described by Rumelhart
(Rumelhart 1990; Rumelhart & Todd 1993), which in
turn built on previous proposals by Hinton (1981; 1986).
We will therefore begin, in section 1, with a description
of Rumelhart’s model and how it works, followed by a
brief explanation of the more general theory the model
is intended to exemplify. In section 2, “Accounting for
the phenomena,” we will consider how the theory explains
the phenomena listed in Table 1, using simulations with
variants of the Rumelhart model to illustrate the substan-
tive points. With a more complete understanding of the
implications of the theory before us (sect. 3), we then con-
sider, in section 4, “Contrasting the PDP and theory-based
approaches,” how our theory relates to the theory-theory.
In section 5, “Principles of the PDP approach to semantic
cognition,” we summarize more general aspects of the
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Table 1. Six key phenomena in the study of semantic abilities

Phenomenon

Example

Progressive differentiation of
concepts

Category coherence

Domain-specific attribute
weighting

Hlusory correlations

Conceptual reorganization

Children acquire broader semantic distinctions earlier than more fine-grained distinctions.
For example, when perceptual similarity among items is controlled, infants differentiate
animals from furniture around 7-9 months of age, but do not make finer-grained
distinctions (e.g., between fish and birds or chairs and tables) until somewhat later (Pauen
2002a; Mandler et al. 1991); and a similar pattern of coarse-to-fine conceptual
differentiation can be observed between the ages of 4 and 10 in verbal assessments of
knowledge about which predicates can appropriately apply to which nouns (Keil 1989).

Some groupings of objects (e.g., “the set of all things that are dogs”) seem to provide a useful
basis for naming and inductive generalization, whereas other groupings (e.g., “the set of all
things that are blue”) do not. How does the semantic system “know” which groupings of
objects should be used for purposes of naming and inductive generalization, and which
should not?

Some properties seem of central importance to a given concept, whereas others do not. For
instance, “being cold inside” seems important to the concept refrigerator, whereas “being
white” does not. Furthermore, properties that are central to some concepts may be
unimportant for others — although having a white color may seem unimportant for
refrigerator, it seems more critical to the concept polar bear. What are the mechanisms that
support domain-specific attribute weighting?

Children and adults sometimes attest to beliefs that directly contradict their own experience.
For example, when shown a photograph of a kiwi bird — a furry-looking animal with eyes but
no discernible feet — children may assert that the animal can move “because it has feet,”
even while explicitly stating that they can see no feet in the photograph. Such illusory
correlations appear to indicate some organizing force behind children’s inferences that goes
beyond “mere” associative learning. What mechanisms promote illusory correlations?

Children’s inductive projection of biological facts to various different plants and animals
changes dramatically between the ages of 4 and 10. For some researchers, these changing
patterns of induction indicate changes to the implicit theories that children bring to bear on
explaining biological facts. What mechanism gives rise to changing induction profiles over

development?

The importance of causal
knowledge

A variety of evidence now indicates that, in various kinds of semantic induction tasks, children
and adults strongly weight causally central properties over other salient but non-causal

properties. Why are people sensitive to causal properties?

current work that we believe to be particularly critical to
understanding semantic abilities. In “Broader issues,”
section 6, we discuss implications of the present work for
cognitive science more generally.

The material here is largely excerpted from Semantic
Cognition, with some restructuring, condensation, and
minor corrections. In the interest of providing a relatively
succinct overview of the theory, we have omitted substan-
tial detail, both in the range of phenomena to which the
model has been applied and in the descriptions of the
simulations themselves. Where we feel these details may
prove especially useful, we refer the reader to the corre-
sponding section of the book. We have avoided adding
new material addressing work completed since Semantic
Cognition appeared; where relevant, such material will
arise in our response to open peer commentary.

1. The PDP framework

As previously mentioned, the models we will use to illus-
trate the theory are variants of an architecture first

proposed by Rumelhart (Rumelhart 1990; Rumelhart &
Todd 1993) as illustrated in Figure 1. Rumelhart was inter-
ested in understanding how the propositional information
stored in a hierarchical propositional model such as that
shown in Figure 2 could be acquired and processed by a
connectionist network employing distributed internal rep-
resentations. Thus, the individual nodes in the Rumelhart
network’s input and output layers correspond to the con-
stituents of propositions — the items that occupy the first
(subject) slot in each proposition, relation terms that
occupy the second slot, and the attribute values that
occupy the third slot. Each item is represented by an indi-
vidual input unit in the layer labeled Item, each relation is
represented by the individual units in the layer labeled
Relation, and the various possible completions of three-
element propositions are represented by individual units
in the layer labeled Attribute. When presented with a par-
ticular Item and Relation pair in the input, the network’s
job is to turn on the attribute units in the output that
correspond to valid completions of the proposition. For
example, when the units corresponding to canary and
can are activated in the input, the network must learn
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to activate the output units move, grow, fly, and sing. The
particular items, relations, and attributes used by Rumel-
hart and Todd (1993) were taken directly from the hier-
archical propositional model described by Collins and
Quillian (1969; see Fig. 2), so that, when the network
has learned to correctly complete all of the propositions,
it has encoded the same information stored in that prop-
ositional hierarchy.

The network consists of a series of nonlinear processing
units, organized into layers, and connected in a feed-
forward manner, as shown in Figure 1. Patterns are
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A connectionist model of semantic memory adapted from Rumelhart and Todd (1993), used to learn all the propositions

true of the specific concepts (pine, oak, etc.) in the Collins and Quillian model (Fig. 2). Input units are shown on the left, and

activation propagates from the left to the right. Where connections

are indicated, every unit in the pool on the left is connected to

every unit in the pool to the right. Each unit in the Item layer corresponds to an individual item in the environment. Each unit in
the Relation layer represents contextual constraints on the kind of information to be retrieved. Thus, the input pair canary can
corresponds to a situation in which the network is shown a picture of a canary and asked what it can do. The network is trained to
turn on all those units that represent correct completions of the input query. In the example shown, the correct units to activate are

grow, move, fly, and sing. All simulations discussed were conducted
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living thing
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Figure 2. A taxonomic hierarchy of the type used by Collins and Quillian (1969) in their model of the organization of knowledge
in memory. The schematic indicates that living things can grow; that a plant is a living thing; that a tree is a plant; and that an oak
is a tree. It therefore follows that an oak can grow. The training corpus for the Rumelhart model incorporates all propositions
pertaining to the eight subordinate items (pine, oak, rose, etc.) that can be derived from this tree.

and activation is propagated forward to the output units.
The observed output states are then compared to the
desired or target values, and the difference is converted
to a measure of error. The partial derivative of the error
with respect to each weight in the network is computed
in a backward pass, and the weights are adjusted by a
small amount to reduce the dlscrepdncy Because the
model’s inputs are localist, all items in its environment
are equally distinct from one another in the input — the
model’s input representation of the robin and canary, for
instance, are no more similar to one another than either
is to the input representation of the rose. Each individual
Item unit projects, however, to all of the units in the layer
labeled Representation. The activation of a single item in
the model’s input, then, generates a distributed pattern
of activity across these units. The weights connecting
Item and Representation units evolve during learning, so
the pattern of activity generated across the Representation
units for a given item is a learned internal representation
of the item.

Though the model’s inputs and outputs are constrained
to locally represent particular items, attributes, and
relations, the learning process allows it to derive distribu-
ted internal representations that do not have this localist
character. In contrast to some other connectionist the-
ories, the units that encode learned internal represen-
tations in the model have no explicit content in
themselves — they do not correspond to semantic features,
propositions, images, or other explicit representations.
Thus, it is impossible to determine what the network
“knows” solely by inspecting the activation of these
internal units. Instead, the network’s knowledge must be

probed by querying it with an appropriate input, then
inspecting the response it generates in the output.
Although the learned internal representations have no
directly interpretable content, they do subserve a critical
function: for reasons elaborated further on, they turn out
to capture the semantic similarity relations that exist
among the items in the network’s training environment,
and so provide a basis for semantic generalization.
Obviously, the model’s behavior in this respect depends
on the particular values of the connection weights when
tested. Since the values of these connection weights
change with experience, the model’s generalization beha-
vior strongly depends on the extent and nature of its
prior experience with the items in its environment.
Although Rumelhart conceived of this network as
encoding and processing propositional content, we view
the model as a very simple implementation of a more
general theoretical approach to semantic cognition (also
exemplified in other related work; see Rumelhart et al.
1986¢; McClelland & Rumelhart 1986; McClelland et al.
1989; 1995). Under this approach, the main function of
the semantic system is to support performance on tasks
that require one to generate, from perceptual or linguistic
input, properties of objects and events that are not directly
apparent in the environment. The representations that
support semantic task performance consist of patterns of
activity across a set of units in a connectionist network,
with semantically related objects represented by similar
patterns of activity. In a given semantic task, these rep-
resentations may be constrained both by incoming infor-
mation about the item of interest (in the form of a verbal
description, a visual image, or other sensory information)
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and by the context in which the item is encountered. Thus,
we envision that the two parts of the input in the
model — the Item and Context units — represent a percei-
ved object (perhaps foregrounded for some reason to be in
the focus of attention) and a context provided by other
information available together with the perceived object.
Different item/context input pairs provoke different pat-
terns of activation across internal representation units;
and the instantiation of any particular pattern of activation
propagates forward to allow the system to generate an
output specifying the relevant object properties, which
are encoded in the model’s outputs.

For instance, the situation may be analogous to one in
which a young child is looking at a robin on a branch of
a tree, and sees that, as a cat approaches, the robin sud-
denly flies away. The object and the situation together
provide a context in which it would be possible for an
experienced observer to anticipate that the robin will fly
away; and the observation that it does would provide
input allowing a less experienced observer to develop
such an anticipation. Conceptually speaking, this is how
we see learning occurring in preverbal conceptual devel-
opment: An object encountered in a particular situation
gives rise to implicit predictions which are subsequently
met or violated. (Initially the predictions may be very
general or even null, and are inherently graded). The dis-
crepancy between expected and observed outcomes then
serves as the basis for adjusting the connection weights
that support prediction — thus allowing experience to
drive change in both the internal representations of
objects and events and the predictions about observable
outcomes. In the Rumelhart model, the presentation of
the “object” corresponds to the activation of one of the
Item input units; the situation in which the item is encoun-
tered corresponds to the activation of one of the Context
units; the child’s expectations about the outcome of the
event may be equated with the model’s outputs; and the
presentation of the actual observed outcome is analogous
to the presentation of the target for the output units in
the network. On this view, the environment provides
both the input that characterizes a situation as well as
the information about the outcome that then drives the
process of learning. This outcome information will
consist sometimes of verbal, sometimes of nonverbal infor-
mation, and in general is construed as information filtered
through perceptual systems, no different in any essential
way from the information that drives the Item and
Context units in the network.

We can also see that there is a natural analog in the
model for the distinction drawn between the perceptual
information available from an item in a given situation,
and the conceptual representations that are derived from
this information. Specifically, the model’s input, context,
and targets code the “perceptual” information that is avail-
able from the environment in a given episode; and the
intermediating units in the Representation and Hidden
layers correspond to the “conceptual” representations
that allow the semantic system to accurately perform
semantic tasks.

In what follows, we will show how these simple ideas
account for a surprisingly broad variety of phenomena in
the study of semantic cognition, paying particular atten-
tion to the six phenomena listed in Table 1. Accounting
for the phenomena will allow us to illustrate certain
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interesting properties of the model, which in turn will
allow us to articulate the general theory more completely.

2. Accounting for the phenomena

2.1. Progressive differentiation of concept
representations

Although infants from a very young age are sensitive to
perceptual similarities among objects in their world (e.g.,
Eimas & Quinn 1994; Mareschal 2000), there is now
considerable evidence that knowledge about semantic
similarity relations is acquired somewhat later and
follows a predictable developmental trajectory (e.g.,
Mandler & McDonough 1993; 1996; Mandler et al.
1991). Specifically, children appear to acquire broader
semantic distinctions earlier than more fine-grained dis-
tinctions. For example, when perceptual similarity
among items is controlled, infants differentiate animals
from furniture around 7-9 months of age, but do not
make finer-grained distinctions (e.g., between fish and
birds or chairs and tables) until somewhat later (Mandler
et al. 1991; Pauen 2002a). A similar pattern of coarse-to-
fine conceptual differentiation can be observed over the
elementary school years in assessments of knowledge
about which predicates can appropriately apply to which
nouns (Keil 1979).

The contention that children acquire broad semantic
distinctions before narrower ones seemingly contradicts
an alternative long-standing view that children acquire
“basic-level” concepts like dog or car prior to more
general (e.g., animal, vehicle) or specific (labrador, limou-
sine) concepts (e.g., Mervis 1987). The main support for
this view stems from two sources. First, preferential-
looking studies have shown that infants as young as 3
months of age are capable of “categorizing” at the basic-
level. For instance, habituation to photographs of cats
will generalize to novel pictures of cats, but not to photo-
graphs of horses, suggesting that the infants treat the
different cats as similar to one another and as different
from the horses (Eimas & Quinn 1994). Such results are
only observed, however, when perceptual similarity is
high within category and low between categories (e.g.,
Quinn & Johnson 2000). Hence, they may not reflect the
infant’s pre-existing semantic knowledge about cats and
horses, but may instead indicate an ability to rapidly
extract information about perceptual similarity over the
course of the experiment (as indeed very young infants
have been shown to do in random-dot category learning
studies; see Bomba & Siqueland 1983). In contrast,
recent studies by Pauen (2002a; 2002b) suggest that,
when perceptual similarity is closely controlled, preverbal
infants in object-manipulation tasks differentiate more
general semantic categories prior to basic-level categories.

Second, studies of lexical acquisition have shown that,
for fairly familiar items, children learn basic-level labels
(e.g., “dog”) prior to more general (“animal”) and more
specific (“labrador”) labels (Brown 1958; Mervis 1987).
On our reading of the literature, these findings are
robust, but they reflect constraints on word learning that
arise sometime after children have begun to differentiate
concepts at both general and basic levels. That is, the
general-before-basic pattern documented in the work of
Mandler et al. (1991) and Pauen (2002a) occurs between



7 and 9 months of age, before children have begun to
name things; and the basic-before-general pattern
observed during word learning arises because, by the
time children are learning to name, they are already repre-
senting items from different basic-level categories as quite
distinct from one another, even if they are from the same
general semantic domain.

In Chapter 5 of Semantic Cognition, we show that the
basic-before-general trend in naming can coexist in
the model with general-before-basic differentiation of
the underlying conceptual representations. We also
provide a detailed treatment of basic-level effects in
lexical acquisition and in adulthood and consider how
and why such effects change with expertise and in some
forms of dementia. In this précis, we focus on understand-
ing the coarse-to-fine differentiation of concepts that
occurs in preverbal infants when perceptual similarity is
controlled, because a full understanding of the mechan-
isms that produce the phenomenon in the model will
provide the basis for our explanation of all of the remaining
phenomena.

We trained the network shown in Figure 1 with the
same corpus of propositions used by Rumelhart and
Todd (1993). The corpus contains all of the propositions
true of each of the eight specific concepts (pine, oak,
etc.) shown in the propositional hierarchy displayed at
the top of the figure. To see how the network’s internal
representations change over time, we stopped training at
different points during learning and then stepped
through the eight items, recording the states of the rep-
resentation units for each. The top part of Figure 3
shows these activations at three points during learning.
Initially, and even after 50 epochs of training as shown,
the patterns representing the items are all very similar,
with activations hovering around 0.5. At Epoch 100, the
patterns corresponding to various animal instances are
similar to one another, but are distinct from the plants.
At Epoch 150, items from the same intermediate cluster,
such as rose and daisy, have similar but distinguishable
patterns, and are now easily differentiated from their
nearest neighbors (e.g., pine and oak). Thus, each item
has a unique representation, but semantic relations are pre-
served in the similarity structure across representations.

The arrangement and grouping of the representations
shown in the bottom of Figure 3 reflects the similarity
structure among the internal representations, as deter-
mined by a hierarchical clustering analysis. At 50 epochs
the tree is very flat, and any similarity structure revealed
in the plot is weak and arises from the random initial
values of the connection weights. By Epoch 100 the clus-
tering analysis reveals that the network has differentiated
plants from animals: all the plants are grouped under
one node, while all the animals are grouped under
another. At this point, more fine-grained structure is not
yet clear. For example, oak is grouped with rose, indicating
that these representations are more similar to one another
than is oak to pine. By Epoch 150, it is apparent that the
hierarchical relations among the concepts is fully captured
in the similarities among the learned distributed
representations.

To better visualize the process of conceptual differen-
tiation that takes place in this model, we performed a mul-
tidimensional scaling of the internal representations for all
items at 10 different points during training. The solution is
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plotted in Figure 4. The lines trace the trajectory of each
item’s representation throughout learning in the two-
dimensional compression of the representation state
space. The labeled end points of the lines indicate the
final learned internal representations after 1,500 epochs
of training. The figure shows that the items, which initially
are bunched together in the middle of the space, first
divide into two global clusters based on animacy (plant/
animal). Next, the global categories split into smaller inter-
mediate clusters, and finally the individual items are
pulled apart. In short, the network’s representations
appear to differentiate in relatively discrete stages, com-
pleting differentiation of the most general level before pro-
gressing to successively more fine-grained levels. Like
children, the model seems to distinguish fairly broad
semantic distinctions prior to more specific ones. What
accounts for this stagelike progressive differentiation?

To understand this, first consider how the network
learns about the following four objects: the oak, the
pine, the daisy, and the salmon. Early in learning, when
the weights are small and random, all of these inputs
produce a similar pattern of activity throughout the
network. Since oaks and pines share many output proper-
ties, their similar patterns produce similar error signals for
the two items, causing the weights leaving the oak and pine
units to move in similar directions. Because the salmon
shares few properties with the oak and pine, the same
initial pattern of output activations produces a different
error signal, and the weights leaving the salmon input
unit move in a different direction. What about the daisy?
It shares more properties with the oak and the pine than
it does with the salmon or any of the other animals, and
so its weights tend to move in a similar direction as the
other plants. Similarly, the rose representation tends to
be pushed in the same direction as all of the other
plants, and the other animal representations tend to be
pushed in the same direction as the salmon. As a conse-
quence, on the next pass, the pattern of activity across
the representation units will remain similar for all the
plants, but will tend to differ between the plants and the
animals.

This explanation captures part of what is going on but
does not fully explain why there is such a strong tendency
to learn the superordinate structure first. Why is it that so
little intermediate level information is acquired until after
the superordinate level information? Put another way, why
don’t the points in similarity space for different items move
in straight lines toward their final locations? Several factors
appear to be at work, but one is key:

Properties that covary coherently across items tend to move
connections coherently in the same direction, while idiosyn-
cratic variation of properties tends to move weights in oppos-
ing directions that cancel each other out.

To see this, consider the fact that the animals all share
some properties (e.g., they all can move, they all have
skin, they are all called animals). Early in training, all the
animals have essentially the same representation. Conse-
quently, any weight change forward from the represen-
tation units that are made when processing an individual
animal (say, the canary) will produce a similar effect on
all of the other animals. For properties shared by
animals, this generalization speeds learning: When
taught that the canary can move, the network will tend
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Figure 3. Learned internal representations of eight items at three points during learning, using the network shown in Figure 1. In the
top plots, the height of each vertical bar indicates the degree of activation for one of the eight units in the network’s Representation
layer, in response to the activation of a single Item unit in the model’s input. In the bottom plots, the same data were subjected to a
hierarchical cluster analysis that recursively links a pattern or a previously linked group of patterns to another pattern or previously
formed group. The process begins with the pair that is most similar (according to a Euclidean distance metric), whose elements are
then replaced by the mean of the two items. These steps are repeated until all items have been joined in a single superordinate
group. The plots show that, early in learning (50 epochs), the pattern of activation across these units is similar for all eight objects.
After 100 epochs of training, the plants are still similar to one another, but are distinct from the animals. By 150 epochs, further

differentiation into trees and flowers is evident.

to correctly generalize the property to all animals. Thus,
for shared properties, learning accumulates across individ-
ual animals, benefiting knowledge for all animals. For
properties that differentiate individual animals, on the
other hand, this generalization is detrimental to learning:
weight changes that help the network learn, for instance,
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that the canary is yellow or can sing will tend to generalize
to other animals. In this case the generalization is usually
incorrect, so these weight changes will be reversed by
the learning that results when other individual animals
are processed. Thus, learning of individuating properties
will not tend to accumulate across different examples.
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Figure 4. Trajectory of learned internal representations during
learning. The Euclidean distance matrix for all item represen-
tations was calculated at 10 different points throughout
training. A multidimensional scaling was performed on these
data to find corresponding points in a two-dimensional space
that preserve, as closely as possible, the pairwise distances
among representations across training. Thus, the proximity of
two points in the figure approximates the actual Euclidean
distance between the network’s internal representations of
the corresponding objects at a particular point in training.
The lines indicate the path traversed by a particular item
representation over the course of development.

The consequence is that properties shared by items with
similar representations will be learned faster than the
properties that differentiate such items.

The preceding paragraph considers how the structure of
internal representations affects learning in the weights
projecting forward from the Representation layer. What
about the weights projecting from the Item input to the
Representation layer, which after all determine the simi-
larity structure of the internal representations in the first
place? We have seen that items with similar outputs will
have their representations pushed in the same direction,
whereas items with dissimilar outputs will have their rep-
resentations pushed in different directions. The question
remaining is why the dissimilarity between, say, the fish
and the birds does not push the representations apart
very much from the very beginning. The key to this ques-
tion lies in understanding that the magnitude of the
changes made to the representation weights depends on
the extent to which such changes will reduce error at the
output. This in turn depends on the configuration of the
weights projecting forward from the Representation
layer. If, given a particular configuration of forward
weights, changes to the activation of Representation
units will not strongly influence the total error at the
output level, then the weights projecting into the Rep-
resentation layer will not change. In other words, we can
point out a further very important aspect of the way the
model learns:

Error back-propagates much more strongly through weights
that are already structured to perform useful forward-

mappings.

We can illustrate this by observing the error signal pro-
pagated back to the representation units for the canary
item, from three different kinds of output units: those
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that reliably discriminate plants from animals (such as
can move and has roots), those that reliably discriminate
birds from fish (such as can fly and has gills), and those
that differentiate the canary from the robin (such as is
red and can sing). In Figure 5, we show the mean error
reaching the Representation layer throughout training,
across each of these types of output unit when the
model is given the canary (middle plot) as input. We
graph this alongside measures of the distance between
the two bird representations, between the birds and the
fish, and between the animals and the plants (bottom
plot); and also alongside of measures of activation of the
output units for can sing, is yellow, has wings, and can
move (top plot). We can see that there comes a point at
which the network is beginning to differentiate the plant
and the animal representations, and is beginning to acti-
vate move correctly for all of the animals. At this time
the average error information from output properties
like can move is producing a much stronger signal than
the average error information from properties like has
wings, can sing or is yellow. As a consequence, the infor-
mation that the canary can move is contributing much
more strongly to changing the representation weights
than is the information that the canary has wings and
can sing. Put differently, the knowledge that the canary
can move is more “important” for determining how it
should be represented than the information that it has
wings and can sing, at this stage of learning. Subsequently,
the properties that differentiate birds from fish (e.g., has
wings) begin to be learned, and to contribute to represen-
tational change, so that bird and fish representations
are propelled apart; and finally the properties that dis-
criminate subcategories (e.g., canary and robin) are
learned and begin to influence representations. Note
that these effects are not a simple consequence of the
overall frequency of the various properties: is yellow
(which is true of three items in the corpus) is actually
more frequent than has wings (which is true only of the
two birds); nevertheless the network learns to activate
has wings first, because this property coheres with other
properties that reliably discriminate birds from fish,
whereas is yellow does not.

The overall situation can be summarized as follows.
Initially the network assigns virtually the same represen-
tation to all of the items. With just this one representation,
the network cannot predict different outputs for different
concepts. The only properties that are correctly activated
are those that are shared across everything — the is
living, can grow, and ISA living thing outputs. All other
output properties have their effects on the forward
weights almost completely canceled out. However,
because the plants have several properties that none of
the animals have, and vice versa, weak error signals from
each of these properties begin to accumulate, eventually
driving the representations of plants and animals apart.
At this point, the common animal representation can
begin to drive the activation of outputs shared by
animals, and vice versa for the plants. This structure in
the forward weights in turn allows the properties shared
by animals and not plants (and vice versa) to more strongly
influence the model’s internal representations, relative to
properties that differentiate, say, birds from fish. The
result is that the individual animal representations stay
similar to one another, and are rapidly propelled away
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Figure 5. Bottom: Mean Euclidean distance between plants and animals, birds and fish, and canary and robin internal
representations throughout training. Middle: Average magnitude of the error signal propagating back from properties that reliably
discriminate plants from animals, birds from fish, or the canary from the robin, at different points throughout training when the
model is presented with the canary as input. Top: Activation of a property shared by animals (can move) or birds (can fly), or
unique to the canary (can sing), when the model is presented with the input canary can at different points throughout training.

from the individual plant representations. Very gradually,
however, the weak signals back-propagated from proper-
ties that reliably discriminate birds from fish begin to
accumulate, and cause the representations of these sub-
groups to differentiate slightly, thereby providing a basis
for exploiting this coherent covariation in the forward
weights. This process continues through successive
waves of differentiation all the way down to the subordi-
nate level, so that idiosyncratic properties of individual
items are eventually mastered by the net.

In short, there is a kind of symbiosis of the weights into
and out of the representation units, such that both sets are
sensitive to successive waves of higher-order or coherent
covariation among output properties. Each wave begins
and peaks at a different time, with the peaks occurring at
times that depend on the strengths of the corresponding
patterns of covariation. The timing of different waves of
differentiation, and the particular groupings of internal
representations that result, are governed by high-order
patterns of property covariation (corresponding to the
eigenvectors of the property covariance matrix; see
Semantic Cognition, pp. 96—104). Stronger patterns will
drive differentiation earlier than weaker patterns; and
the properties that differentiate very broad categories
tend to exhibit stronger patterns of coherent covariation
than those that differentiate more specific categories.
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2.2. Category coherence

“Coherence” is a term introduced by Murphy and Medin
(1985) to capture the observation that, of the many ways of
grouping individual items in the environment together,
some groupings seem more natural, intuitive, and useful
for the purposes of inference than others. For example,
objects that share feathers, wings, hollow bones, and the
ability to fly seem to “hang together” in a natural grouping —
it seems appropriate to refer to items in this set with a
single name (“bird”), and to use the grouping as a basis
for knowledge generalization. By contrast, other groupings
of objects are less intuitive, and less useful for purposes of
inductive inference. For example, the set of objects that
are blue prior to the year 2010 and green afterward consti-
tutes a perfectly well-defined class, but it doesn’t seem to
be a particularly useful, natural, or intuitive grouping. The
second issue we consider is: How does the semantic
system “know” which groupings should support productive
generalization, and which should not?

The commonsense answer to this question is that the
semantic system construes as similar the groupings of
items that have many properties in common. Murphy
and Medin (1985) argued, however, that similarity alone
is too underconstrained to provide a solution to this
problem. They emphasized two general difficulties with
the notion that category coherence can be explained



solely on the basis of the learned similarities among groups
ofitems. First, the extent to which any two objects are con-
strued as similar to one another depends upon how their
properties are weighted: A zebra and a barber pole may
be construed as very similar to one another if the property
has stripes is given sufficient weight. In order for a simi-
larity-based account of category coherence to carry any
authority, it must explain how some attributes of objects
come to be construed as important for the object’s
representation, while others do not. Moreover, as
R. Gelman and Williams (1998) have pointed out, the chal-
lenge is not simply to derive a set of feature weightings
appropriate to all objects, because the importance of a
given attribute can vary across different types of items.
This observation leads to an apparent circularity under
some perspectives: A given object cannot be categorized
until an appropriate set of feature weights has been deter-
mined, but such a set cannot be recovered until the item
has been categorized.

R. Gelman and Williams (1998), Murphy and Medin
(1985), Keil (1989), and others (Gopnik & Meltzoff
1997; Gopnik & Wellman 1994; Wellman & Gelman
1997) have suggested that the challenge of selecting and
weighting features appropriately might be resolved with
reference to naive theories about the causal relationships
among object properties. That is, certain constellations
of properties “hang together” in psychologically natural
ways, and are construed as “important” to an object’s rep-
resentation, when they are related to one another in a
causal theory. For example, wings, feathers, and hollow
bones may be particularly important for representing
birds, because they are causally related to one another in
a person’s naive theory of flight. On this view, causal
domain theories constrain the range of an item’s attributes
that are relevant to the task.
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The second argument against correlation-based learning
accounts of coherence stems from the observation that
knowledge about object—property correspondences is not
acquired with equal facility for all properties. For example,
Keil (1991a), initially paraphrasing Boyd (1986), wrote that

although most properties in the world may be ultimately con-
nectable through an elaborate causal chain to almost all
others, these causal links are not distributed in equal
density among all properties. On the contrary, they tend to
cluster in tight bundles separated by relatively empty
spaces. What makes them cluster is a homeostatic mechanism
wherein the presence of each of several features tends to
support the presence of several others in the same cluster
and not so much in other clusters. Thus, the properties
tend to mutually support each other in a highly interactive
manner. To return to an example used previously, feathers,
wings, flight, and light weight don’t just co-occur; they all
tend to mutually support the presence of each other, and,
by doing so, segregate the set of things known as birds into
a natural kind.

Boyd’s claim is about natural kinds and what they are, not about
psychology. At the psychological level, however, we may be
especially sensitive to picking up many of these sorts of homeo-
static causal clusters such that beliefs about those causal
relations provide an especially powerful cognitive “glue,”
making features cohere and be easier to remember and
induce later on. (Keil 1991a, p. 243)

The progressive differentiation process just illustrated
suggests some answers to the important issues raised by
Keil (1991a), Murphy and Medin (1985) and others. To
make these answers explicit, we considered how a
variant of the Rumelhart model would learn about items
described by is, can, and has properties (as before), with
some properties co-occurring together in coherent clus-
ters and others distributed independently. The specific
patterns are shown in Figure 6. Each of the items
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Figure 6. Training patterns for the model (excluding names) in the simulation of category coherence. Individual item patterns are
labeled 1-16, and the different properties are labeled with letters. Properties on the left (labeled with uppercase letters) are
“coherent,” in that they always occur together. Properties on the right (labeled with lowercase letters) are not coherent, because
they do not co-occur reliably with one another. Every instance has three coherent and three incoherent properties, and every

property appears as a target for four items.
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(numbered 1-16 in the figure) was assigned six properties,
and each attribute appeared as a target for four items.
Hence, all properties were equally frequent in the
model’s training environment, and all items had an equiv-
alent number of properties. As Figure 6 indicates,
however, half of the properties are coherent in that they
co-occur together in the same 4 objects, whereas others
are incoherent, in that they vary independently of one
another across items.

This structure provides an analog in the model to the
coherent clusters of properties described by Keil (1991a)
in the quotation above. In the real world, such clusters
may arise from “homeostatic causal mechanisms,” as Keil
suggests; for the model, however, such homeostatic
causal mechanisms are not directly accessible. What is
accessible instead is the coherent covariation of properties
across items and contexts produced by such mechanisms.
We have assigned arbitrary labels to the items and the
properties to avoid any sense that the actual properties
are intended to be realistic, and to focus attention on the
issue at hand, which is that of coherent covariation
versus idiosyncratic distribution.

The top part of Figure 7 shows a hierarchical clustering
of the model’s internal representations at three points
during learning. Since all properties occur in exactly 4
items, any individual property taken in isolation could,
in theory, provide some basis for “grouping” a set of four
items together in the model’s internal representations —
for example, considering just the is-d property,
the model might have reason to “group together” items
3, 6, 10, and 13. From Figure 7, however, it is clear that
the model discovers representations that are organized
primarily by the coherent properties. The network rep-
resents as similar those items that have coherent proper-
ties in common (such as items 1-4); and it represents
other groups of four that happen to share an incoherent
property (such as is-d) as different from one another.
The reason is exactly that explored in section 2.1:
Because the items that share property A also happen to
share properties B and C, the error signals generated
by all of these properties push the representations of
all of these concepts coherently in the same direction.
Attributes that vary coherently together will exert a
greater degree of constraint on the model’s internal
representations.

As a consequence, such properties will also be easier for
the network to acquire. In the bottom part of Figure 7, we
plot the activation of each item’s six attributes (when
queried with the appropriate relation) throughout train-
ing, averaged across five different training runs. Coherent
properties are shown as solid lines, and incoherent proper-
ties are shown as dashed lines. The model learns very
quickly to strongly activate the coherent properties for
all 16 items, but it takes much longer to activate each
item’s incoherent properties. Because all units were
active as targets equally often, and all items appeared in
the training environment with equal frequency, this differ-
ence is not attributable to the simple frequency with which
items or properties appear in the environment. The
network is sensitive to the coherent structure of the
environment apparent in the way that attributes are dis-
tributed across items; it shows an advantage for learning
and activating an item’s “coherent” attributes. That is,
the model is especially sensitive to the sorts of
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“homeostatic causal clusters” to which Keil (1991a)
suggests humans may also be especially sensitive.

2.3. lllusory correlations

Children and adults can sometimes be shown to attest to
beliefs that directly contradict their own experience. For
instance, when shown a photograph of an echidna —
a furry-looking animal with eyes but no discernible
feet — children may assert that the animal can move
“because it has feet,” even though, when asked, they
agree that there are no feet to be seen in the photograph.
Or conversely, when shown a stone statue of a humanoid
being, they may attest that it cannot move “because it
doesn’t have any feet,” even when the statue’s “feet” are
clearly visible (Massey & Gelman 1988).

Such illusory correlations are important because they
appear to indicate some organizing force behind children’s
inferences that goes beyond “mere” associative learning.
That is, such phenomena appear to indicate a commit-
ment to beliefs that contradict direct perceptual
experience — and so, whatever mechanism supports the
belief, it must be built upon something other than learning
from direct perceptual experience. Perhaps the child holds
an implicit theory of biological motion under which
“having feet” is precisely the quality that causes the
ability to move under one’s own power. Such a theory
might then be used to infer that any new animal,
because it can move, must have feet, even if you can’t
see them; and that any new artifact, because it cannot
move, must not have feet, notwithstanding appearances
to the contrary. Under this view, a child’s implicit theoreti-
cal commitments leads her to ignore or discount object—
property correspondences not suited to the theory, or to
enhance or even invent such correspondences, even
when they are not present in actual experience. Illusory
correlations are thus sometimes taken as evidence for
the role of implicit causal theories in conceptual knowl-
edge (Keil 1989; Murphy & Medin 1985).

Our simulations offer a different explanation: Perhaps
illusory correlations arise as a by-product of sensitivity to
coherent covariation. That is, perhaps children strongly
infer that the echidna must have feet, appearances to the
contrary, because they observe that it has fur and eyes,
and these properties strongly tend to co-occur with feet
in other animals. To illustrate how this could be, we
trained the model with a variant of the original Rumelhart
corpus, which we extended to include four items in each of
the previous categories (flowers, trees, birds and fish), as
well as a set of 5 four-legged animals (a dog, cat, mouse,
goat and pig). The specific patterns (see Semantic Cogni-
tion, Appendix B) were not intended to accurately
capture all of the actual properties of the corresponding
items; we employed this extended corpus simply because
the original training set was a bit too simple to address
all of the phenomena of interest. The extended corpus
adheres to the similarity structure from the original
corpus: Items from the same intermediate category (e.g.,
fish, flower) tend to have many properties in common;
items from the same broad domain (plant or animal)
tend to have more properties in common with one
another than with items from the contrasting domain.
The slightly larger training set allows us to examine what
happens with individual items that diverge slightly from
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Figure 7. Top: Hierarchical cluster analysis of the model’s internal representations at three points during learning. Each item is
represented with its corresponding number as shown in Figure 6. Although every property in the training corpus is shared by some
grouping of four items, the model organizes its internal representations with respect to shared “coherent” properties. Bottom:
Activation of the correct output units for all 16 items when the network is queried with the corresponding item and context.
Coherent properties are shown as solid lines, and incoherent properties are shown as dashed lines. The network quickly learns to
activate the all of the coherent properties for all of the items, but takes much longer to learn the incoherent properties. Both plots

show data averaged over five separate training runs.

a pattern of coherent covariation among members of a
given category.

We investigated the model’s responses to two queries
throughout learning. First, we considered its activation
of the property has leaves in response to the item pine.
Has leaves is a property that covaries coherently with
other properties of plants; it is not, however, true of the
pine. Second, we investigated its activation of the property
can sing when queried with the item canary. The canary is
the only bird (and indeed, the only animal) that can sing in
this corpus, so can sing represents a relatively idiosyncratic

property. Figure 8 shows the activation of the has leaves
unit and the can sing unit when the network is probed
with the inputs pine has and canary can, respectively, at
different points throughout training. At Epoch 1,500, the
network has been trained repeatedly to turn off the has
leaves unit when presented with pine has as input. Never-
theless, it strongly activates the has leaves unit in response
to this input. Like the children in R. Gelman & Williams’
(1998) study, the network attributes to the object a prop-
erty that, on the basis of its experience, it clearly doesn’t
have. Similarly, by Epoch 1,500 the network has
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Figure 8. The activation of the has leaves and can sing output
units across the first 5,000 epochs of training, when the
network is probed with the inputs pine has and canary can,
respectively. At epoch 1,500, the network has been trained 150
times to turn off the has leaves unit in response to the input
pine has; and to turn on the unit can sing in response to the
input canary can. Despite this, the network still activates the
has leaves unit for the pine tree, and fails to activate the can
sing unit for the canary.

repeatedly been “told” that the canary can sing. Despite
this, it shows no tendency to activate the output can sing
when asked what a canary can do. That is, the network
appears to create an illusory correlation between the
pine and the property has leaves that does not exist in its
environment, and to ignore the strong correlation that
does exist between the canary and the property can sing.

The simulation thus demonstrates that “illusory corre-
lations” can arise from a domain-general correlational
learning mechanism that is sensitive to coherent covaria-
tion among object properties — the higher-order patterns
of covariation may overwhelm learning of weaker pairwise
object—property correspondences that violate the higher-
order regularities.

2.4. Domain-specific attribute weighting

For many theorists (Carey 1985; R. Gelman & Williams
1998; Keil 1991a; Murphy & Medin 1985), a key motiv-
ation for the claim that concepts are rooted in naive
domain theories stems from the observation that children
at fairly young ages can use quite different kinds of
information to govern induction for items from different
conceptual domains. In one of many experiments demon-
strating such effects, Macario (1991) presented children
with novel objects varying along two dimensions (color
and shape). When the children were led to believe the
objects were a kind of food, they most often generalized
a new fact about the items on the basis of shared color;
but when led to believe they were a kind of toy, they
more often generalized on the basis of shared shape.
Thus, the children appeared to weight color more
heavily than shape for food items, but shape more
heavily than color for toys (see also Jones et al. 1991;
Smith 2000). Such phenomena appear to indicate a
paradox: To “categorize” an object, one must know
which of its properties are important; but one cannot

702 BEHAVIORAL AND BRAIN SCIENCES (2008) 31:6

know which properties are important until one knows
what kind of thing it is.

We have seen that sensitivity to coherent covariation
leads the model to weight some properties more strongly
than others. Can the same processes explain patterns of
domain- or category-specific attribute weighting? To
answer this question, we conducted a simulation designed
to capture the pattern of data observed in Macario’s exper-
iment. To the training patterns employed in the previous
simulation, we added four new properties: is bright, is
dull, is big, and is small. We assigned these properties to
the familiar objects in the network’s environment (the
plants and animals) in such a way that size, but not bright-
ness, was important for discriminating between the trees
and flowers; and brightness, but not size, was important
for discriminating between the birds and fish. Thus, all
the trees were big and all the flowers were small, but a
given tree or flower could be either bright or dull;
whereas all the birds were bright and all the fish were
dull, though a given bird or fish could be either big or
small. Of course, these attributions are not perfectly
valid, but they allow us to illustrate how the network
learns in domain-specific ways about attribute “import-
ance.” Does the learning process described above come
to selectively weight size more than brightness for
plants, and brightness more than size for animals?

We trained the model for 3,000 epochs, on all items and
relations, at which point it had learned to correctly activate
all output properties except for specific names and idiosyn-
cratic properties above a threshold of 0.7. We then
used a technique called backpropagation-to-activation to
investigate how the model would represent various novel
objects varying in their size, brightness, and other observa-
ble qualities represented by output units. In a recurrent
model that included projections back from output proper-
ties to Representation units, such an item could be rep-
resented just by activating its observed properties and
allowing this information to feed back to the Represen-
tation units. Backpropagation-to-activation allows us to
accomplish a similar effect in a feed-forward model — for
instance, we can investigate how the model would rep-
resent a novel item, given just the information that it “is
a bird,” or given more detailed information, for example
that it “is large,” “is bright,” and “has roots.” (Details
regarding the technique are given on pp. 63—66 of Seman-
tic Cognition.)

We assigned brightness and size attributes to four
“novel” test items as shown in Table 2. In the first simu-
lation run, we also assigned to these items an attribute
shared by the plants (has roots); in the second, we assigned
to them an attribute shared by animals (has skin). In both

Table 2. Distribution of attributes across four test objects in the
simulation of category-specific attribute weighting

bright dull big small
Object 1 1 0 1 0
Object 2 1 0 0 1
Object 3 0 1 1 0
Object 4 0 1 0 1




runs, we used backpropagation-to-activation to derive an
internal representation for each item, by backpropagating
from the output units corresponding to bright, dull, big,
small, roots, and skin. We then examined the similarities
among the four test item representations in each case.

Figure 9 shows the results of a hierarchical cluster analy-
sis on the network’s internal representations of the four test
objects, when they share a property common to plants (left-
hand figure) or animals (right-hand figure). When the
network is “told” that the objects all have roots like the
plants, it groups them on the basis of their size; when
“told” that they all have skin like the animals, it groups
them on the basis of their brightness. That is, the network
seems to “know” that brightness is more important than
size for representing animals, but that the reverse is true
for plants. Like the children in Macario’s (1991) exper-
iment, it represents different similarities among a group
of items, and consequently it will generalize from one to
another differently, depending upon the superordinate cat-
egory to which the items belong.

To understand why this happens, consider how the
network comes to represent an object that is bright and
big, compared to one that is bright and small. When the
objects both share a property with the plants, such as
has roots, the network must assign to them representations
that lie somewhere within the space spanned by the predi-
cate has roots. Within this region, the only objects that are
big are the trees, which exhibit coherent covariation of
several other properties; whereas the only objects that
are small are the flowers, which have their own set of
coherent properties, different from those of the trees.
Thus, the bright-big test object will receive a represen-
tation similar to the trees, whereas the bright-small
objects will receive a representation similar to the
flowers. The property is bright does not vary coherently
with other properties within the plant domain, and, as a
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Figure 9. Hierarchical cluster analysis of the model’s
representations of test objects varying in brightness and size,
and sharing a property common either to all animals or to all
plants. When the objects share a property common to the
plants (has roots), the network groups them on the basis of
their size, which is important for discriminating flowers from
trees. However, when the objects share a property common to
animals (has skin), the network groups them on the basis of
their brightness, which is important for discriminating birds
from fish in the network. Thus, the network has learned that
brightness is “important” for animals, but not for plants.
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consequence, exerts little influence on representations
among the plants.

The opposite consequence is observed when the same
test objects share a property with animals. In this case,
they must receive representations that fall within the
region of semantic space spanned by the predicate has
skin. Within this subspace, all the fish are dull, and all
the birds are bright. In order to activate the property is
bright, both objects must be represented as similar to
the birds. The property is big does not vary coherently
with other properties in this domain. Thus, both big and
small objects fall within the same small region of semantic
space (i.e., proximal to the other birds) and hence are
represented as similar to one another. What we see here
is that domain-specific constraints on attribute weighting
do not require pre-existing knowledge about which prop-
erties are important for which conceptual domain. Such
constraints can be learned, and there is no chicken-and-
egg problem — category-specific attribute weighting can
be explained by the sensitivity of a domain-general learn-
ing mechanism to patterns of high-order covariation
among stimulus properties.

2.5. Induction and conceptual change

An important source of information on the development of
conceptual knowledge comes from studies of inductive
projection, where children at different ages are asked to
answer questions about the properties of novel and fam-
iliar objects. In some cases, they may be taught a new
fact about an item (e.g., “this dinosaur has warm blood”),
and then asked whether the fact is true about other
kinds of objects (e.g., “Do you think this other kind of
dinosaur also has warm blood?”). In other cases, they
may simply be asked about properties of presumably unfa-
miliar things (e.g., previously unfamiliar animals), or about
properties of things that may be somewhat familiar but
where it is unlikely they have learned directly about the
property in question (e.g., “Do you think a worm has a
heart?”). In a series of influential experiments, Carey
(1985) showed that children’s answers to such questions
change in systematic ways over development. Since gener-
alization and induction are key functions of the semantic
system, these patterns provide an important source of
information about developmental change in the structure
of semantic representations.

Carey (1985) used such changing induction profiles in
an effort to diagnose developing children’s causal theories.
She suggested that a concept like living thing is rooted in
an emergent theory of biology, which is constituted in part
of knowledge about the causal mechanisms that give rise to
the shared properties of living things. All living things
breathe, eat, reproduce, grow, and die; Carey (1985) pro-
posed that 10-year-olds (and adults) realize that all of these
properties are consequences of the same underlying causal
(biological) mechanisms. By contrast, she suggested,
4-year-olds conceive of these biological facts as arising
from the same social and psychological mechanisms that
also give rise to other various aspects of human behavior:
Something might grow because it “gets the idea” from
other things that grow, for example. The later-developing
conception of animals and plants as both belonging to the
same conceptual domain depends upon the acquisition of
a theory of biological causation. Thus conceptual
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reorganization — change over time in the way that con-
cepts are organized — reflected, for Carey (1985), change
to causal theories. And yet, although conceptual reorgan-
ization is so central to Carey’s work, she has relatively
little to say about the mechanisms that lead to chan-
ge — indeed, in some subsequent writings, Carey and
others seem to find it a mystery how theory change is
even possible (Carey & Spelke 1994; Fodor 2000).

Here we consider some of Carey’s findings on inductive
projection in developing children between the ages of 4
and 10, and present simulations indicating how analogs
of these patterns may be seen in the behavior of the
Rumelhart model as it gradually learns from experience.
We will not attempt to simulate the specific patterns of
inductive projection seen by Carey and others; rather
our focus will be on showing that the different types of
changes that she points to as indicative of underlying
theory change can be seen in the changing patterns of
inductive projection, and in the underlying represen-
tations, within the model. These kinds of changes can be
briefly enumerated as follows: (1) Patterns of inductive
projection change over development; (2) they can differ
for different kinds of properties; (3) such patterns tend
to become more specific to the particular type of property
over the course of development; and (4) patterns of induc-
tive projection can coalesce as well as differentiate.

To understand how these patterns of reorganization
might arise within the model, consider that the particular
properties the model must activate in response to a given
item depends upon the context in which the item is
encountered. In the Rumelhart model, there are four
different contexts, which require the model to generate
an item’s names (ISA), behaviors (can), parts (has), or
other properties such as color (is). We have stressed up
to now how knowledge of a concept evolves across the
Representation units in the model. In this layer, a given
item is always represented with the same pattern, regard-
less of the context in which the model is queried. The
Rumelhart model does, however, provide for context-
dependent representations on the Hidden layer, where
information from the relational context units comes
together with the context-independent representation on
the Representation units. It is to these representations
that our attention now turns.

When a new property is associated with a representation
in the Hidden layer, the likelihood that it will also be acti-
vated by a different item will depend on the input from
both the Representation and the Relation layers. Because
different relational contexts emphasize different similarity
relations, the model will come to generalize different kinds
of features in different ways; and these patterns will them-
selves change over development, as the model gains
increasing experience with each of the different contexts.
(The range of contexts provided in the model is highly
restricted, but should be sufficient to illustrate how
context sensitivity can be achieved in the model). To
explore how these factors influence the model’s inductive
projection behavior, we investigated its tendency to
project different kinds of newly learned nonsense proper-
ties from one item to others, at two different points during
training with the same corpus used in the previous section.

Specifically, we added a new output unit to the Attribute
layer to represent a new nonsense property called queem.
No occurrences of the novel property queem occurred
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during this overall training, which we take as providing
the background developmental experience onto which a
test of inductive projection can be introduced. To assess
inductive projection in the model, we stopped training
after 500 or 2,500 epochs of training with the corpus,
and taught the network a new fact about the maple tree:
either that the maple can queem, that the maple has
queem, or that the maple is queem. We adjusted only the
weights received by the new nonsense property from the
Hidden layer, so that acquisition of the new fact was tied
to the network’s representation of the maple in the given
relational context. (In the book we discuss how the same
effect could be achieved by fast hippocampal learning of
the type proposed by McClelland et al. 1995.) In each
case, when the network had learned the new property,
we queried it with the other items in its environment to
determine how it would extend the new property queem.

The results are shown in Figure 10. Early in learning,
the network generalizes the novel property from the
maple to all of the plants, regardless of whether it is a
can, has, or is property; there are slight differences in its
handling of the is property compared to the others, in
that it tends also to generalize to some degree to the
animals as well. By Epoch 2,500, however, the model
has learned a much stronger differentiation of the differ-
ent contexts; the can property continues to generalize to
all the plants, while the has property now generalizes
only to the other trees. The is property also generalizes
predominantly to the other plants, but not so evenly, and
it generalizes to some extent to other things (with which
the maple happens to share some superficial attributes).
Thus, when the network has learned that the “maple is
queem,” it shows some tendency to generalize the novel
property to items outside the superordinate category; it
shows no such tendency when it has been taught that
“queem” is a behavior (i.e., can property) or a part (i.e.,
has property).

The model behaves as if it “knows” that different kinds of
properties extend across different sets of objects; and, just
as in Carey’s studies, this knowledge undergoes a develop-
mental progression, such that the model only gradually
sorts out that different kinds of properties should be
extended in different ways. The reason is that, just as the
network’s internal representations of objects in the Rep-
resentation layer adapt to the structure of the environment,
so too do its context-sensitive representations over the
Hidden layer. That is, the weights leading from the Rep-
resentation and Relation layers into the Hidden layer
adjust slowly, to capture the different aspects of similarity
that exist between the objects in different contexts. Items
that share many can properties generate similar patterns
of activity across units in the Hidden layer when the can
relation unit is activated. The same items, however, may
generate quite different patterns across these units when
one of the other Relation units is active in the input.

In Figure 11, we show a multidimensional scaling of the
patterns of activity generated across the Hidden units, for
the same 16 items in two different relation contexts, after
the model has finished learning. (We excluded the
mammal representations from this figure for clarity.
They are distributed somewhere in between the birds
and fish in all three plots.) The plot in the middle shows
the learned similarities between item representations in
the Representation layer. The top plot shows the
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Figure 10. Barplot showing that activation of the nonsense property queem when the network is queried with various inputs, after it
has learned that the maple can queem, has a queem, or is queem. If the network learns the new property after 500 epochs of training, the
property generalizes across the entire superordinate category, regardless of the relation context. However, when the network is taught
the novel property after 2,500 epochs of training, it shows different patterns of generalization, depending on whether queem is

understood to be a behavior, a part, or a physical attribute.

similarities across Hidden units for the same items in the is
context, whereas the bottom plot shows these similarities
in the can context. In the can context, all the plants
receive very similar representations, because they all
have exactly the same set of behaviors in the training envir-
onment — the only thing a plant can do, as far as the model
knows, is grow. As a consequence, the model generalizes
new can properties from the maple to all of the plants.
By contrast, in the is context, there are few properties
shared among objects of the same kind. Thus, the
network is pressured to differentiate items in this
context, and as a result, it shows less of a tendency to gen-
eralize newly learned is properties. The other relation con-
texts not shown in the figure (has and ISA) also remap the
similarity relations among the items in the model’s
environment to some extent. These representations are
generally similar to those found in the Representation
layer, since the similarity structure of the concepts
within both the has and ISA contexts track fairly well the
overall similarity structure. The similarity structure
differs in subtle ways in each context, however, and
these differences exert a subtle influence on the context-
sensitive representations.

These changing induction profiles all involve learning to
treat items differently in different situations or contexts,
which is clearly an important part of the developmental
progression charted in Carey’s work. But Carey suggests
that true conceptual change involves more than simply tai-
loring one’s concepts to particular situations. Instead, the
emergence of a concept such as living thing, which

encompasses plants and animals and allows for induction
across these items on the basis of knowledge about
shared biological mechanisms, would seem to require a
more deep-rooted restructuring of base concepts:
Whereas younger children treat animals and plants as
effectively unrelated for purposes of induction, by age 10
children seem to appreciate that all living things share
certain core properties and are governed by common bio-
logical causal forces, so that the concept living thing
begins to support induction for certain kinds of properties.
This achievement thus indicates the coalescence of for-
merly unrelated concepts within a single conceptual
domain.

Although we have seen that concepts may differentiate
in the Rumelhart model, the processes we have discussed
thus far would seem to preclude the possibility of coalesc-
ence with development. Moreover, Carey (1985) also
suggested that other forms of conceptual change are com-
monly observed in development: Rather than reflecting
proper subsets or supersets of earlier concepts, later-
emerging concepts may entail a complete reorganization
of earlier concepts.

These patterns of developmental change are not only
consistent with the PDP (parallel distributed processing)
framework, but in fact the explanation suggested by the
framework shares much in common with Carey’s (1985)
own ideas about the forces that drive conceptual change
in development. The key observation is that, although
living things may have many properties in common (e.g.,
they all have DNA, they all breathe, they all grow and
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Figure 11.  Multidimensional scaling showing the similarities represented by the model for objects in different relation contexts. The
middle plot shows the similarities among object representations in the Representation layer. The top graph shows the similarities among
the same objects in the Hidden layer, when the is relation unit is activated. The bottom graph shows the similarities across these same
units when the can relation unit is activated. The is relation context exaggerates differences among related objects; for example, relative
to the similarities in the Representation layer, the trees are fairly well spread out in the is context. Moreover, similarities in object
appearances are preserved in these representations; for example, the canary is as close to the flowers as to the other birds in the is
context, by virtue of being pretty. By contrast, the can context collapses differences among the plants, because in the network’s

world, all plants can do only one thing: grow.

die), many of these shared properties are non-obvious
(S. A. Gelman & Wellman 1991). For example, animate
objects may be considered members of the same class by
virtue of sharing various internal organs, but these proper-
ties are not apparent in their outward appearance. By con-
trast, properties that are less diagnostic of an item’s
ontological status are more readily apparent in the
environment. For example, an object’s shape, color,
texture, parts, and patterns of motion are apparent every
time the object is encountered. Information about its
insides, its metabolic functions, or other aspects of its
behavior may be only sporadically available. Moreover,
opportunities for acquiring this information likely change
as the child develops; for example, children presumably
acquire a great deal of non-obvious biological information
when they attend school.
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The account of conceptual reorganization consistent with
these observations, then, is as follows: Early concepts are
shaped by coherent covariation among the most frequently
available object properties — outside, observable properties
experienced whenever the object is encountered — but
such properties may not adequately capture the “deep”
structure organizing concepts like living thing. Other
properties, such as the insides of objects and certain of
their behaviors, are encountered less frequently and in
fairly selective contexts; however, across contexts, such
properties exhibit strong patterns of coherent covariation
with one another and with some of the more frequently
encountered surface properties. As children gain experi-
ence with these coherent-but-rare properties, sensitivity
to coherent covariation drives such properties to become
“more important” than the very frequent but incoherent



surface properties, leading to a reorganization of internal
representations. This view appears to be very similar to
Carey’s notion that conceptual reorganization arises from
the increasing assimilation of knowledge about non-
obvious properties, but she provides no mechanism
whereby such assimilation can actually lead to the relevant
underlying change.

To make this account concrete, consider that, although
different contexts evoke somewhat different similarity
relations in the model’s environment, there is also some
important cross-domain structure. For example, the has,
can, and the ISA (i.e., name) properties exhibit consider-
able coherent covariation: If an animal has wings and
feathers, chances are good that it can fly and is called a
“bird”; if it has scales and fins, it can likely swim and is
called a “fish”; and so on. In contrast, the is properties
(ie., is red, is yellow, is pretty) are more idiosyncratically
distributed — they are shared by items that otherwise
have little in common. Let us consider the possibility
that many of the coherently covarying properties are
non-obvious; that is, they are only observed in specific con-
texts rather than each time the object is encountered,
while the remaining “obvious” properties occur quite fre-
quently in different contexts. The assumption appears
plausible on the face of it: For instance, children experi-
ence what dogs look like on the outside every time they
encounter a dog, but only learn about what the dog has
on the inside in specialized and infrequent situations,
such as science class.

What happens in a model analog of this situation, in
which patterns of coherent covariation apparent across
different specific contexts are reflected only weakly, if at
all, in the information that is available every time a
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particular object is encountered? To investigate this ques-
tion, we considered how the context-invariant represen-
tations over the Representation units in the network
evolved under a training regime in which the is properties —
which, as noted earlier, are distributed in a relatively arbi-
trary manner — were available every time an item was
encountered, but the other properties were only available
less frequently, contingent on a particular context. Specifi-
cally, the is properties were made a part of the target
pattern for learning, regardless of which context unit was
active in the input, while all other attributes remained con-
tingent on the context. For example, when presented with
robin has in the input, the model was given as the target
for learning all of the is properties true of robins, as well
as all of the has properties. Similarly, when presented
with robin can in the input, the model was given all of
the robin’s is properties, as well as its can properties. As a
result, the information coded in the is patterns was more
frequent than the information coded in the other contexts;
and the is information became independent of context,
while the information associated with other contexts
remained context-dependent. We trained the model with
these patterns and examined the resulting internal rep-
resentations (excluding the 5 mammal items simply to
keep the cluster plots uncluttered) at different points
during learning. We emphasize that there was no change
over time in the training in this simulation; the regime
described here remained constant throughout the entire
training process. Such changes would, of course, contribute
to reorganization of representations (see Semantic Cogni-
tion, pp. 283—88), but are not essential.

The results of this simulation are shown in Figure 12.
After 500 epochs of training, the model has divided the
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Figure 12. Hierarchical cluster plot of the model’s internal representations in a simulation where the model was always required to
activate is properties in every different context, so that such properties were both (a) more frequent and (b) less context-dependent.
Earlier in learning, the model shows an organization of internal representations based largely on the more frequent is properties;
later the internal representations have reorganized to capture the less frequent but more coherent structure apparent across the

different contexts.
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items into several small clusters that do not correspond
well to global semantic categories. These clusters are orga-
nized largely, although not completely, by overlap of the
superficial but frequent is properties: For example, the
right-most cluster includes three red items (rose, robin,
salmon) as well as the sunflower (likely because it is
pretty like the rose and big like the salmon); the next
cluster consists of yellow items (sunfish, daisy, canary);
and so on. (In reality, there is some degree of coherent
covariation of color with other object properties. The
inconsistency with nature allows us to illustrate key prop-
erties of the workings of our model.)

Later in the model’s development, the representations
have reorganized to capture more fully the shared struc-
ture present across the other contexts. And, Figure 12
shows that both differentiation and coalescence can
occur in the model: Clusters like the sunfish, daisy, and
canary split apart to take their place in the later structure,
and new groupings like the general clusters plants and
animals coalesce later in learning. Hence, it is not the
case that the later model’s representations form a simple
superset or subset of the earlier model’s representations.
Instead, the later model’s internal representations find
no obvious progenitor in the earlier model’s
representations.

In summary, the model provides two ways of under-
standing the changing induction profiles that, for Carey
(1985), signaled underlying theory change. First, children
may grow increasingly sensitive to the demands of particu-
lar situations or contexts, in which different properties and
consequently different similarities are highlighted, so that
items treated as similar for purposes of induction in some
situations may be treated as quite different in others.
Second, the “domain-general representations” — those
that are acquired as a result of experience across many
different contexts — are nevertheless influenced both by
the frequency with which different kinds of information
are encountered across different situations, and by the
coherent covariation of properties across different con-
texts. Frequently encountered properties will strongly
shape the first representations that emerge; but less fre-
quently encountered properties can exert a strong influ-

ence on representational change later in learning, if

these properties covary coherently with other properties
observed in different situations. Thus, both the changing
induction profiles observed in children’s behavior, and
the kind of representational change that Carey emphasizes
as indicative of theory-change, can be understood as
arising from the same domain-general learning mechan-
isms described earlier.

3. The importance of causal knowledge in
semantic cognition

To this point, we have described simulations illustrating
how the PDP theory can explain a range of phenomena
motivating the view that conceptual knowledge is rooted
in implicit domain theories. We have not yet addressed,
however, three lines of evidence that most directly
support the idea that causal knowledge contributes impor-
tantly to human semantic cognition. Here we illustrate
how the PDP theory could be extended to encompass
these phenomena; we then consider whether the theory
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is best considered an alternative to, or an instantiation
of, the theory-theory.

3.1. Inductive inferences are constrained by knowledge
of event sequences

First, several studies demonstrate that knowledge about
the sequence of events through which an object comes
to have its observed properties can influence how an
adult or child conceives of the object (e.g., Ahn 1998;
Ahn et al. 2002; Gopnik & Sobel 2000; Keil 1989). In
Keil's “transformation” studies, for example, children
were told stories about a raccoon that undergoes a series
of interventions and ends up looking like a skunk (Keil
1989). Some children were told that the raccoon was
wearing a skunk costume; others were told that it was
dyed black and had a stripe painted down its back; still
others were told that it received an injection when it was
young that caused it to grow up looking and smelling
like a skunk. After hearing the story, all children were
shown a picture of a skunk and told “now the animal
looks like this.” When asked to decide if it was a raccoon
or a skunk, the youngest children tended to choose
skunk, regardless of which transformation story they had
been told; but older children tended to choose skunk
only in conditions where the mechanism of change could
be construed as biological (for instance, when the
raccoon was given an injection and “grew up into” a
skunk). Thus, for older children, the decision as to
whether the animal was “really” a raccoon or a skunk
depended upon the causal mechanism by which it exhib-
ited the visual properties of a skunk.

To understand how the PDP approach might be
extended to address these issues, we rely upon a general-
ization of the Rumelhart model, illustrated in Figure 13. In
the Rumelhart model, items co-occur together with con-
texts, and both are represented with static, externally
applied patterns of activation across corresponding units.
In contrast, the “contextual” information in the general-
ized model includes (1) other simultaneously present
aspects of the situation, and (2) an internal representation
of prior events leading up to the current input that can
influence the current input’s interpretation. We suggest
that, just as the Rumelhart network can learn to generate
different outputs for the same item depending upon the
(static) context in which it is encountered, the generalized
model should be able to generate different outputs for a
given item depending upon the temporal context — the
particular sequence of events that precedes its
appearance.

We base this suggestion on previous studies of such
recurrent network models. A key appeal of recurrent
models is that, after learning, processing can be highly sen-
sitive to temporal context: The response generated by a
given input strongly depends upon the sequence of pre-
ceding inputs, as captured by a learned internal represen-
tation. Such models have been brought to bear on a broad
range of phenomena relating to knowledge about sequen-
tial structure (e.g., Cleeremans 1993; Cleeremans &
McClelland 1991; Elman 1990; 1991; Rohde & Plaut
1999), including models of language comprehension. For
example, in St. John’s (1992) work on story comprehen-
sion, if a named individual has been placed in the role of
a waiter greeting and seating guests early in an event
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Figure 13. A sketch of a network architecture of the sort we
envision will be necessary to capture the acquisition of causal
knowledge from event sequences and the convergent use of
verbal as well as other modalities of experience to jointly
constrain the emergence of semantic knowledge. The diagram
is intended to suggest a general correspondence with the
Rumelhart network, in which a given item is encountered in a
particular relational context, and potential completions of the
event are to be predicted. Here we indicate how the contextual
representation can be influenced by preceding internal
representations (via a time-delayed connection indicated by a
dotted line), so that predictions about the current input can
vary depending upon the preceding sequence of events. The
illustration also shows how verbal inputs and predictions can
be interfaced with inputs and predictions from other
modalities. The dashed arrows indicate projections that may
include recurrent connections.

sequence characterizing a visit to a restaurant, then the
model will expect this individual to be the one who
brings the food and the check, and not to be the one
who eats the food or pays for it.

Such studies suggest that a learning mechanism like the
one we have sketched out could provide the basis for
understanding phenomena like those documented by
Keil and others. For instance, children are likely to have
had considerable experience with event sequences invol-
ving costumes and disguises. Those of us who have been
parents or caregivers to young children may recall how ter-
rifying such costumes and disguises can be for children
when they are very young, perhaps because at that point
the children do not yet have an acquired appreciation
that the costumes only create a temporary change in
appearance. But after a child repeatedly witnesses and/
or participates in various kinds of costume events, he or
she apparently comes to appreciate that the visible
surface properties of animate things can be strikingly but
also reversibly affected, and that many other properties
remain unchanged. A child can dress up as Dracula and
his friend as E.T., or vice versa, but other sources of infor-
mation will indicate that many of the costumed individual’s
properties are maintained throughout. Furthermore, both
he and his friend will revert to their prior appearance
when they take their costumes off. Through such experi-
ences, we suggest, the child learns to maintain an internal
representation of a costumed individual that retains
the properties that the person had before putting on the
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costume, rather than the properties known to be possessed
by the things they appear to be while they are wearing the
costume.

In addition to this direct learning from experiences with
individuals in costumes, we also suggest that verbal inputs
in the form of statements that are made by others during
costume-wearing events (e.g., statements like “That’s just
your friend Sally dressed up like E.T.”), as well as
movies or stories about costume wearing events, will con-
tribute to the acquisition of knowledge about costumes.
We don’t suggest that children will need to have had
experience specifically with raccoons in skunk costumes,
but only that they will need to have had experience with
other animate objects in costumes, because we would
expect them to generalize across different types of
animals, due to their having similar underlying represen-
tations. Similarly, children may not need to have direct
experience with sequences in which specific animals are
given injections in order to draw conclusions from the
story in which the raccoon that received an injection
“grew up into” a skunk. Perhaps they will think the
raccoon is now ‘really” a skunk because many times
animals transform naturally from one apparent “kind” to
another as they grow up, the transformation of caterpillars
to butterflies and tadpoles to frogs being two clear
examples.

Of course, we understand that some readers may
remain to be convinced that this kind of story about the
influence of causal knowledge on semantic cognition
could ever work in practice. Although we cannot allay all
such concerns without extensive further work, we can
point to an existing simulation that addresses issues
related to those arising in the “costume” experiments
reviewed earlier. The simulation in question addresses
knowledge about the continued existence of objects even
when they are out of view. When an object A moves in
front of another object B, object B disappears from
view — a situation analogous to that in which a costume
C is put on by an individual D, so that the individual no
longer looks like itself even though it actually remains
the same inside. In the case of object permanence, we
know that object B is “still there” despite appearances to
the contrary; and in the case of a costume, we know that
despite appearances it is still individual D standing in
front of us, even though the costume replaces D’s visible
attributes with what might be a very different set of
properties.

Munakata et al. (1997) demonstrated how a very simple
recurrent network could learn to maintain representations
of objects that are no longer visible from simple event
sequences involving objects hidden by occluders. The
essential element of the simulated event sequences was
that objects hidden by the occluder became visible again
when the occluder moved away. In order to correctly
predict that this would occur, the network learned to
maintain a representation of the object during the part
of the event sequence when it was hidden by the occluder.
Although, of course, costumes provide far more complex
situations than this, this simulation illustrates the funda-
mental property required for a system to employ knowl-
edge about an item’s prior status in order to maintain a
consistent internal representation of the item when it is
subjected to certain transformations, rather than treating
it as having been fundamentally transformed by the
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alteration. We believe that similar processes may also
underlie acquisition and use of knowledge about the con-
sequences of more complicated transformations docu-

mented by Keil (1989) and others.

3.2. Children strongly weight inferred causal properties
when generalizing newly learned names

In a very different series of studies, Gopnik and Sobel
(2000) have shown that (1) children make inferences
about the causal properties of novel items, and (2) they
use these inferences to govern their decisions about how
names should generalize. (We consider Gopnik and col-
leagues” more recent work on inferring causal properties
later.) In the canonical paradigm, children are shown a
machine called a “blicket detector.” The blicket detector
flashes and makes music when certain blocks (blickets)
are placed on it; but nothing happens when other blocks
(non-blickets) are placed on it. In early studies with this
device, the authors showed that children would use the
apparent causal potency of a given object, rather than its
appearance, to decide whether it is a blicket or not. That
is, shown a small yellow block that is called a blicket and
activates the detector, and a tall red block that does not,
children will then call another block a blicket if it activates
the detector, regardless of'its color or size, generalizing the
name to other objects based on their causal powers, not on
their color or shape. The experiment thus shows that chil-
dren appear to lend special weight to “causal” properties in
their inductive inferences.

We consider such phenomena to reflect the operation of
mechanisms similar to those described in previous sec-
tions. The children in Gopnik and Sobel’s experiment
may not have had much experience with blocks that
produce music when they are placed on certain boxes;
but no doubt they have had experience with other kinds
of objects with specific causal properties. Keys, switches,
fasteners, bank cards, batteries, openers, remote controls,
and many other objects in everyday use have specific
causal powers of this type. And, such objects can vary con-
siderably in shape or other aspects of their appearance,
while remaining consistent in their causal potency. Bat-
teries, for instance, come in many shapes, sizes, and
colors, but have similar causal consequences. We suggest
that people learn to represent such objects (and, indeed,
all other types of objects) through exposure to event
sequences in which they interact with other objects, with
partially predictable consequences. Furthermore, we
suggest that the words we use to refer to such objects
covary more consistently with their causal properties
than with surface attributes such as shape and size, with
the consequence that these causal properties become
more important in determining how such object’s names
will generalize.

3.3. The role of explanations in causal and other
semantic tasks

The third source of evidence that children’s concepts
depend upon causal theories is simply that they can
provide explicit explanations for their semantic judgments.
In one study, Massey and Gelman (1988) showed children
photographs of novel objects and, for each, asked them to
decide whether it could move itself up and down a hill.
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After making their judgment, children were asked to
explain them. Their responses seemed to the authors to
reveal an underlying process of causal inference. For
example, when a child says “it can move up and down
the hill because it has feet,” this indicates to Massey and
Gelman that, in making their judgment, the child is con-
sulting an underlying theory in which “having feet” is pre-
cisely the property that causes the ability to move
autonomously. The models we have described may
explain how the child is able generate the judgment
itself, but how can they account for this introspective
ability to explain the reasons for the judgment?

The difficulty with this argument is that the explanations
people give for their own behavior are often at complete
variance from the factors that demonstrably govern their
responding (Nisbett & Wilson 1977). Indeed, people are
remarkably poor at judging whether they are capable of
explaining even very familiar causal scenarios (e.g., how
a toilet works; see Wilson & Keil 2000). Such findings
suggest that the explicit explanations people proffer for
their own judgments do not necessarily shed light on the
mechanisms that support the judgments; and this may
be true even when there is a degree of concordance
between the behavior and the explanation. That is, we
do mot believe that the overt explanations people
produce provide much insight into the processes that
support their semantic judgments.

We do accept that overt explanations constitute one of
the various kinds of responses that people can learn to gen-
erate from a given situation; and we suggest that a shared
intuitive sense of what “counts” as an explanation is one of
the things that could be learned within a model like that
shown in Figure 13 (see Semantic Cognition, Ch. 8.). On
this view, explanations can shape, and can be shaped by,
our internal semantic representations of witnessed
events, just like other varieties of experience and behavior;
however, the propositions that appear in overt expla-
nations do not necessarily play a causal role in generating
semantic judgments.

4. Contrasting the PDP and theory-based
approaches

The variety of phenomena and the arguments emphasized
by theory-based approaches demonstrate clearly that
adults and even young children can be quite sophisticated
in their semantic abilities, and we often find ourselves in
agreement with some of the claims of theory-based
approaches. For example, we agree with theory-theorists
that “semantic knowledge” encompasses more than just
list-like knowledge about the properties of objects — it
includes knowledge about how objects interact with one
another, how certain properties and situations give rise
to other properties and situations, and so on. In
Table 8.1 in Semantic Cognition, we enumerated several
points of agreement between our position and theory-
based approaches. In this section of the précis, however,
we will attempt to bring out the key differences. We
should note that we are contrasting our view with a
theory-based approach that is more of a prototype than a
specific theory held by any individual investigator.
Several important contributors expressly do not endorse
all of the properties we attribute to some version of the



theory approach. For instance, Gopnik (see Gopnik &
Meltzoff 1997; Gopnik & Wellman 1994), a major propo-
nent of theory-theory, considers the possibility that theory-
like knowledge may be acquired using a domain-general
mechanism, albeit one that may be especially attuned to
the detection of causal relations (Gopnik et al. 2004).
Also, Murphy (2002) eschews the theory approach in
favor of what he calls the “knowledge approach,” even
though he was one of the early protagonists of theory-
based approaches (Murphy & Medin 1985), and he
expresses doubt about domain specificity, innateness of
domain knowledge, and even that causal knowledge
plays a special role in semantic cognition.

The first point of contrast lies in the question of whether
the knowledge that underlies semantic task performance
necessarily depends on initial (i.e., innate) principles that
provide the seed or skeleton on which the development
of semantic cognition depends. Many researchers in the
theory-theory and related traditions appear to favor the
view that some initial principles are necessary to serve as
a base for further elaboration of conceptual knowledge.
The argument for innateness, however, sometimes rests
on little more than the suggestion that known learning pro-
cedures seem inadequate to explain the acquisition of the
abilities children possess (Keil 1994). Even the very simple
networks that we have employed can acquire domain-
specific behaviors similar to those that putatively arise
from naive domain theories. Thus, the observation of
domain-specific behaviors in children provides little
reason to infer innate domain-specific theories (or innate
domain-specific constraints leading to such theories).

To be clear, we do not contend that there are no initial
constraints of any kind on learning or development. We
accept, for example, that some animals may be endowed
with an initial bias to link taste with sickness but not
with electric shock (Garcia & Koelling 1966), and that per-
ceptual mechanisms have evolved to facilitate, among
other things, the representation of external three-dimen-
sional space and the segregation of the perceptual world
into objects. Where we appear to differ from many theor-
ists is in our feeling that, for many aspects of semantic
knowledge, there is no clear reason at present to rely so
heavily upon the invocation of initial domain-specific prin-
ciples. Mechanisms exist that can learn to behave in
domain-specific ways based on experience, without the
need for extensive initial domain-specific commitments.

A second point of contrast with theory-based
approaches lies in the question of whether semantic abil-
ities are fundamentally rooted in causal knowledge. We
certainly agree that children learn about and rely upon
knowledge of causal properties and relations, and that
this knowledge constitutes a part of their semantic knowl-
edge. We do not accept, however, the need to attribute
special status to causal knowledge; and we don’t believe
that causal knowledge necessarily carries with it any real
appreciation of mechanism. For us, causal knowledge,
together with all other forms of semantic knowledge,
inheres in the configuration of weights that allows the
semantic network to generate expectations about the
likely outcomes of particular event sequences. Properties
that enter into causal relationships with other properties
are, by definition, associated with more predictable out-
comes across different events. Hence such properties
will covary coherently with other properties, and
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consequently, they will be quickly learned and strongly
weighted by the learning mechanisms we have described.
Also, we fully accept that words like “cause” are part of
language and that such words can influence how we
think about event sequences — possibly leading us on
some occasions to assign greater centrality to events that
are described as causes rather than effects. We simply
hold that such phenomena do not require that causal
knowledge be construed as fundamentally different from
other kinds of semantic knowledge.

Third, the theory-theory has what we believe is an
important and related set of weaknesses, at least as it has
been developed up to now. Specifically, theory-theory is
for the most part noncommittal about the nature of the
representations and processes that underlie semantic
task performance and the development of semantic abil-
ities. The most systematic statements of the approach
(Gopnik & Meltzoff 1997; Gopnik & Wellman 1994)
contain no specification of mechanisms for the represen-
tation, use and acquisition of the knowledge underlying
semantic task performance. Instead, the authors of these
works simply suggest that it is useful to think of the
child’s knowledge as being, in some respects, analogous
to a scientific theory. The subsequent effort by Gopnik
et al. (2004) to characterize children’s inferences as con-
forming to normative rules of causal inference does not
really alter this lack of commitment to an underly-
ing mechanism — indeed, Gopnik et al. (2004) explicitly
eschew any such commitment.

Lack of commitment to mechanism can, of course, be a
virtue when any such commitment would be premature.
In such cases the theory simply remains underspecified.
Without a more mechanistic specification, however, the
analogy to explicit scientific theories brings with it a ten-
dency to attribute properties of such theories to naive
domain knowledge, whether such attribution is intended
or not. In our view, this tendency can be counterproduc-
tive, because there are important properties of scientific
theories that naturalistic human semantic knowledge
does not actually have. Real scientific theories are explicit
constructions, developed as vehicles for sharing among a
community of scientists a set of tools for deriving results
(such as predictions and explanations) using explicit,
overtly specified procedures that leave a trace of their
application through a series of intermediate steps from
premises to conclusions. As far as we can tell, few
theory-theorists would actually wish to claim that these
properties of real scientific theories are also characteristic
of the intuitive domain knowledge that underlies the
performance of children or adults in naturalistic semantic
tasks.

We suspect, however, that these aspects of real scientific
theories occasionally filter into the thinking of researchers.
For example, Spelke et al. (1992) speak of children reason-
ing from principles stated in propositional form. This idea
may provide a useful basis for deriving predictions for
experiments, whether or not anyone actually believes
that the principle is held in explicit propositional form
and enters into a reasoning process that follows specified
rules of inference. But it may also carry additional impli-
cations that lead to unjustified conclusions. For example,
the notion that a theory contains explicit principles
and/or rules carries with it the tendency to suppose that
there must be a mechanism that constructs such principles
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and/or rules. Yet it is easy to show that the full set of poss-
ible principles or rules vastly outstrips those that children
are said to actually use; and that the subset that children
are said to use is underdetermined by actual evidence.
Thus, the tacit invocation of explicit principles or rules
ends up motivating the suggestion that there must
be initial domain constraints guiding at least the range
of possible principles that might be entertained (cf.
Chomsky 1980; Keil 1989). If, however, behavior is not
governed by explicit principles or rules, it is only mislead-
ing to consider the difficulties that would arise in
attempting to induce them. By proposing that learning
occurs through the gradual adaptation of connection
weights driven by a simple experience-dependent learning
process, the PDP approach avoids these pitfalls and allows
us to revisit with fresh eyes the possibility that structure
can be induced from experience.

With these observations in mind, we are now in a pos-
ition to consider the relationship between the PDP
approach to semantic cognition and theory-based
approaches. One possible stance would be to suggest
that the PDP framework constitutes an implementation
of a theory-based approach — one that simply fills in the
missing implementational details. Though in some ways
this suggestion is appealing, we have come to feel that
such a conclusion would be misleading, since the rep-
resentations and processes captured by PDP networks
are quite different from the devices prowded by explicit
scientific theories. While the knowledge in PDP networks
may be theory-like in some ways, it is expressly not explicit
in the way it would need to be in order to constitute a
theory by our definition. Thus, we would argue that the
PDP framework provides a useful alternative framework
for understanding the acquisition, representation, and
use of semantic knowledge.

5. Principles of The PDP approach to semantic
cognition

We consider here the core principles underlying our
approach to semantic cognition — those aspects of the
simple model implementation to which we are strongly
committed. The model itself is obviously greatly simpli-
fied. We have discussed some of the ways the model
might be extended; and we envision that a more complete
model may involve additional elaborations that we have
not foreseen. The following principles capture, however,
aspects of the simple model that we believe will prove
critical to any such future account; they are considered
at length in Semantic Cognition (Ch. 9).

1. Predictive error-driven learning. Our current work
grows in part out of a long-standing effort to apply the
PDP framework to aspects of cognitive development
(McClelland 1989; 1994; Munakata & McClelland 2003).
This work has stressed how predictive error-driven learn-
ing may provide the engine for knowledge acquisition in a
wide range of domains, including language, object perma-
nence, and causal reasoning; we believe that the same
engine drives semantic knowledge acquisition.

2. Sensitivity to coherent covariation. The models we
have considered are strongly sensitive to patterns of coher-
ent covariation among the properties that characterize
different items and contexts; we propose that such
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sensitivity is critical to understanding many aspects of
semantic cognition.

3. The convergence principle. Sensitivity to coherent
covariation is not a property of all networks that might
be trained with predictive error-driven learning. Rather,
such sensitivity requires that error signals for all sources
of information about an item converge, at some point in
the network, on the same set of connection weights. In
the Rumelhart network, such convergence occurs at the
first layer of weights projecting from Item to Represen-
tation layers — error signals from all output units, across
all contexts, influence how these weights change, and
permit the network to detect patterns of coherent covaria-
tion among them. Other network architectures considered
in Semantic Cognition (Ch. 9) do not have this property
and so will not be sensitive to coherent covariation, and
nor will they exhibit the interesting behaviors critical to
our account of semantic abilities.

4. Distributed representation. Something that sets
the PDP approach to human cognition apart from some
other connectionist approaches is the stipulation that
representations are distributed: the same units participate
in representing many different items, with each individual
representation consisting of a particular pattern of activity
across the set. Importantly for the current work, dis-
tributed representations promote generalization: what is
known about one item tends to transfer to other items
with similar representations. Although our models do
employ localist input and output units, these never com-
municate with each other directly — their influences on
one another are always mediated by distributed internal
representations.

5. Weak initial differentiation. A specific property of the
Rumelhart model, very important to the way that it func-
tions, is that the network is initialized with very small
random connection weights, so that all items initially
receive nearly identical distributed representations. The
important consequence of this choice is that at first, what-
ever the network learns about any item tends to transfer to
all other items. This allows for rapid acquisition and com-
plete generalization of information that is applicable to all
kinds of things; but it also induces in the network a pro-
found initial insensitivity to the properties that individuate
particular items. Different items are treated as effectively
the same until considerable evidence is accumulated indi-
cating how they should be distinguished, based on patterns
of coherent covariation. After each wave of differentiation,
there remains a tendency to treat those items not yet
distinguished as very similar. In general, this property of
the network imposes a very strong tendency to generalize,
instead of capturing idiosyncratic differences between
items.

6. Gradual, structure-sensitive learning. Our simu-
lations depend on slowly and gradually adjusting the
weights during learning, so that weight changes are not
dominated by any single experience or a limited set of
experiences, but tend to benefit processing for all items
and all contexts. We believe that learning in a real environ-
ment requires the assimilation of statistical properties,
some of which may be strong and of fairly low-order, but
others of which are much subtler and infrequently
encountered. The environment so characterized favors
slow learning for reasons discussed in McClelland et al.
(1995) and Semantic Cognition (pp. 65—66).



7. Activation-based representation of novel objects. If
learning in the semantic system is a gradual and incremen-
tal process, then it cannot mediate the ability to immedi-
ately use new information obtained from one or a few
experiences. To explain such abilities, we propose that
the semantic system can dynamically construct useful
internal representations of new items and experiences —
instantiated as patterns of activity across the same units
that process all other items and events — from the knowl-
edge that has accumulated in its weights from past experi-
ence. In our book we have implemented this principle
using backpropagation-to-representation — a process that
allows the feed-forward Rumelhart network, given some
information about a novel object’s observed properties,
to assign it an internal representation (See Semantic Cog-
nition, pp. 63—65 and 69-76, for details and discussion).
The important point is that the representations so assigned
are not stored in connection weights within the semantic
system. Instead, the representations are used directly as
the basis for judging semantic similarity and making infer-
ences about the object’s unobserved properties and beha-
viors in other situations. To allow such representations to
be brought back to mind in another situation, they can
be stored via the complementary fast-learning system in
the hippocampus; and with repetition, these represen-
tations can be gradually integrated in the connection
weights in the neocortical learning system.

It must be noted that a system adhering to the principles
described above has several limitations; specifically, it
tends to be quite insensitive to idiosyncratic properties
of individual objects and learns very slowly. In light of
this and other considerations, McClelland et al. (1995)
extended earlier ideas of David Marr (1971) in arguing
that it is crucial to provide a second, complementary learn-
ing system that relies on sparse, non-overlapping rep-
resentations rather than densely overlapping, distributed
ones, and in which large weight changes can be made
based on one or a few presentations of novel information.
This allows knowledge of idiosyncratic properties of
individuals to be learned rapidly and generalized very
narrowly, complementing the positive features of the
slow-learning system. McClelland et al. (1995) identify
the fast-learning system with the medial temporal lobes,
and the slow-learning system primarily with the neocortex.
Such a system would support a wide range of important
functions that are quite domain general; as such, both
the slow-learning cortical system and the fast-learning
hippocampal system are, in our view, parts of a general-
purpose, cross-domain learning system.

6. Broader Issues

In the final chapter of Semantic Cognition, we touch on
some broader issues in cognitive science that relate to
the specific issues in conceptual development that have
been our focus here. In the next sections we summarize
briefly the points we made in that discussion that have
not already been covered in this précis.

6.1. Thinking and reasoning

As is often the case with PDP models, we suspect that our
models will arouse in some readers a feeling that there is
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some crucial element of cognition that is missing. Even
those who feel generally favorable toward our approach
may have a sense that there is something to human con-
ceptual abilities that goes beyond implicit prediction and
pattern completion. Do we really think this is all there is
to semantic cognition? What about “thinking”?

A suggestion explored both in Hinton’s (1981) early
work and by Rumelhart et al. (1986¢) is that temporally
extended acts of cognition — what one would ordinarily
call “thinking” — involves the repeated querying of the
processing system: taking the output of one prediction or
pattern completion cycle and using that as the input for
the next. Rumelhart illustrated the basic idea with a
mental simulation of a game of tic-tac-toe, in which a
network trained to generate the next move from a given
board position simply applied its successive predictions
to its own inputs, starting with an empty board. Hinton
used a similar idea to suggest how one might discover
the identity of someone’s grandfather from stored prop-
ositions about fathers: One could simply complete the
proposition “John’s father is” and from the result construct
anew probe for the father of John’s father. A slightly more
general idea is that thinking is a kind of mental simulation,
not only encompassing internally formulated propositions
or sequences of discrete game-board configurations, but
also including a more continuous playing out of imagined
experience. This perspective is related to Barsalou’s pro-
posals (e.g., Barsalou et al. 2003), and seems to us to be
quite a natural way of thinking about thinking in a PDP
framework.

6.2. Relationship between PDP models and Bayesian
approaches

Over the last several years there has been considerable
interest in the idea that various aspects of human cogni-
tion, including many aspects of semantic cognition, can
be characterized as a process of Bayesian inference (see,
e.g., Anderson 1990; Oaksford & Chater 1998). What is
the relationship between these ideas and the approach
we have taken here?

One perspective might be that they are distinct
alternative frameworks for thinking about human cogni-
tion. In our view, however, Bayesian approaches are not
replacements for connectionist models, and nor for sym-
bolic frameworks. Rather, they provide a useful descrip-
tive framework that can be complementary to these
other more mechanistic approaches. Indeed, Bayesian
approaches are often cast largely at Marr’s (1982) compu-
tational level — specifying, for example, a normative theory
for inference from evidence under uncertainty. It is a
further matter to provide a model at what Marr called
the algorithmic level, which specifies the processes and
representati()ns that support the Bayesian computation.
Connectionist models are cast at this algorithmic level
and are thus not inconsistent with normative Bayesian
approaches.

It is worth noting that many connectionist models were
either designed to be, or were later shown to be,
implementations of Bayesian inference processes (McClel-
land 1998). For example, the Boltzmann machine (Hinton
& Sejnowski 1986) and Harmony theory (Smolensky 1986)
are general-purpose frameworks for deriving optimal
(Bayesian) inferences from input information, guided by

BEHAVIORAL AND BRAIN SCIENCES (2008) 31:6 713



Commentary/Rogers & McClelland: Précis of Semantic Cognition

knowledge built into connection weights; and the stochas-
tic version of the interactive activation model (McClelland
1991; Movellan & McClelland 2001) has this property,
also. The backpropagation algorithm implements a Bayes
optimal process in the sense that it learns connection
weights that maximize the probability of the output given
the input (subject to certain assumptions about the charac-
teristics of the variability that perturbs the observed
input—output patterns), as several authors pointed out in
the early 1990s (MacKay 1992; Rumelhart et al. 1995).
Connectionist models might therefore be viewed as spe-
cifying the actual algorithms that people use to carry out
Bayesian computations in specific task situations. There
is, however, one important point of difference between
our approach and most such models that we are aware
of. Unlike the highly distributed connectionist models
that are the focus of our own work, the Bayesian models
generally operate with a set of explicitly enumerated
alternative hypotheses. For example, in Bayesian theories
of categorization, an item is assigned a posterior prob-
ability of having come from each of several possible
categories, and each category specifies a probability distri-
bution for the features or attributes of all of its members.
In our PDP approach there are no such categories, but
rather each item is represented in a continuous space in
which items are clustered and/or differentiated to
varying degrees. We hold that the use of distributed rep-
resentations has desirable computational consequences,
and it will be interesting to explore further how they
might be encompassed within a Bayesian framework.

6.3. Semantic cognition in the brain

The neural basis of semantic cognition has been the focus
of a great deal of recent research using a variety of meth-
odologies. Investigations of semantic impairment follow-
ing brain damage and functional imaging studies of
healthy adults both support the general conclusion that
semantic processing is widely distributed across many
brain regions. One widely held view for which substantial
evidence now exists is that the act of bringing to mind any
particular type of information about an object evokes a
pattern of neural activity in the same part or parts of the
brain that represent that type of information directly
during perception and action (Martin & Chao 2001).
Our simple and abstract model can be brought into line
with this work by placing the input or output units repre-
senting different types of information in different brain
regions (Rogers et al. 2004), so that units coding different
kinds of movement are located in or near brain regions
that represent perceived movement, those coding color
are in or near regions mediating color perception, and so
forth. In addition to these units, however, our theory calls
for a convergent representation: a set of representation
units that tie together all of an object’s properties across
different information types. Such units might lie in the tem-
poral pole, which is the focus of pathology in the purest and
most profound semantic disorder, semantic dementia
(Mummery et al. 2000). Others (Damasio 1989; Barsalou
et al. 2003) have emphasized the potential role of this
region as a repository of addresses or tags for conceptual
representations. We emphasize that the patterns of acti-
vation in these areas are themselves “semantic” in two
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respects. First, their similarity relations capture the semantic
similarities among concepts, thereby fostering semantic
induction. Second, damage or degeneration in these areas
produces a pattern of degradation that reflects this semantic
similarity structure. Distinctions between items that are very
similar semantically tend to be lost as a result of damage to
this area, whereas distinctions between highly dissimilar
area concepts are maintained (Rogers et al. 2004).

Note that we do not contend that these representations
contain a “copy” of semantic features, propositions, images,
or other explicit content. In agreement with many others,
we believe that this content is instantiated in sensory,
motor, and linguistic representations closely tied to those
that mediate perception and action — roughly correspond-
ing to the input and output units in the Rumelhart model.
Instead, the intermediating “semantic” representations
that, we suggest, are encoded in anterior temporal lobe
regions are like the learned internal representations
acquired in the Rumelhart model. They capture similarity
structure that is critical for semantic generalization and
induction, and that determines which explicit properties
are “important” for a given concept; but they do not
encode directly interpretable semantic information.

7. Conclusion

It is clear to us that our efforts are only one step toward the
goal of providing an integrative account of human semantic
cognition. The principles stated here are very general, and
we expect they will remain the subject of ongoing debate
and investigation. The form that a complete theory will ulti-
mately take cannot be fully envisioned at this time. We do
believe, however, that the small step represented by this
work, together with those taken by Hinton (1981) and
Rumelhart (1990), are steps in the right direction; and
that, whatever the eventual form of the complete theory,
the principles exemplified in this précis will be instantiated
in it. At the same time, we expect that future work will lead
to the discovery of additional principles, not yet conceived,
which will help the theory we have laid out here to gradu-
ally evolve. Our main hope for this work is that it will con-
tribute to the future efforts of others, thereby serving as a
part of the process that will lead us to a fuller understand-
ing of all aspects of semantic cognition.
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and therefore cannot be the basis for a theory of semantic cognition. The
reason is that the neural networks simply perform statistical
categorization procedures, and these do not require any semantics for
their successful operation. We conclude that this has severe
consequences for the semantic cognition views of R&M.

If Rogers & McClelland (R&M) have done what they say they
have done in Semantic Cognition (Rogers & McClelland 2004),
then they have solved one of the most vexing problems in philos-
ophy, cognitive science, and psychology: namely, the problem of
giving a mechanistic explanation of why humans are able to have
thoughts and beliefs that are about objects, states of affairs, prop-
ositions, and the like. That is, should R&M’s claims hold true, so
that the neural network they propose indeed acquires semantics,
then they should be considered to have solved the long-standing
problem of intentionality (Brentano 1874/1995). It is thus
important to consider the question whether the neural network
proposed indeed does this. That is, we need to evaluate
whether the network really acquires “internal representations
of objects” (Semantic Cognition, p. 69), so that it would be accu-
rate to state, say, that the network “represents the daisy, the sun-
flower, the canary, and the sunfish as similar to one another”
(p. 287), or that it has “Like the children, ... .inferred that the
object [an echidna] can move and that it has legs.” (p. 252).

Let us consider an example to see whether such claims hold up
to scrutiny. We read, on page 215, that the network displayed “a
tendency to extend the name ‘dog’ . . . to robins.” So, according to
R&M, their network has learned to apply the name “dog” to some
objects, namely, dogs, and now extends that name to other
objects, namely, robins. Obviously, R&M cannot be taken to
seriously mean this. Their network has never seen dogs or
robins. Hence, it has never applied the name “dog” to any dogs
whatsoever and could not possibly “extend” that name to
robins, simply because there aren’t any robins around to extend
it to. Now, if the network cannot be said to learn to apply the
concept of “dog” to dogs, or to extend that concept to robins — as
we think is painfully obvious — then what can it be said to do?

Clearly, the network can be said to respond to certain input
patterns with certain output patterns. What do these patterns
consist of? R&M assert that the network is trained with the
corpus of Collins and Quillian (1969), that is, a set of concepts
(“dog,” “robin”) with associated properties (“is a living thing,”
“can fly,” etc.). Literally speaking, however, this is incorrect.
What the network is trained with, and probed to reproduce, is
a pattern of zeroes and ones that was extracted from Quillian’s
corpus. “Extracted by whom?,” one may now plausibly ask — after
all, we are talking about semantic cognition here, and if it were
the neural network that extracted these patterns, say, from its
observations of dogs and robins — real or simulated — then that
would at least count for something. The disappointing answer,
however, is that these patterns were not extracted by the
network, but were carefully put in place by R&M themselves.

A second problematic aspect of the network architecture is that
the network learns to associate a label, say, “dog,” with the corre-
sponding properties, for example, “animal,” “tail,” “bark,” and so
forth. Children, when learning to make sense of the world, do
exactly the opposite: They see a bunch of features, and their
task is to learn that there are similarities between objects based
on these features, and that, if similarity is large enough, objects
should be clustered into a single concept. The network presented
by R&M seems to be learning language by reading a dictionary,
which is most certainly not the way children learn a language.
Moreover, the network by R&M fails to capture an important
aspect of categorization learning, which is the sudden of stepwise
nature of that learning process (Schmittmann et al. 2006).

But wouldn’t some semantic cognition be necessary for the
network to operate as well as it does? Certainly not. Despite the
superficial resemblance of a connectionist model to the neural
structures in our heads, all that the network of R&M does is to
carry out a statistical categorization procedure. No semantic cog-
nition is required for this purpose, as can be easily verified by

looking at other statistical programs of this type, for instance,
those incorporated in statistical packages like SPSS. It is ironic,
in this respect, that R&M use clustering and multidimensional
scaling programs to study the “representations” that the
network “has” (e.g., see Semantic Cognition, Ch. 7), for their
network is exactly such a program. Moreover, given that such
wonderful statistical techniques as multidimensional scaling and
hierarchical clustering are available to describe these learning
processes, why not just stick to those techniques rather than use
an overparameterized version of them implemented in a neural
network (cf. Ripley 1996)? The usually quoted advantage of
neural networks over statistical techniques is that they behave
better in the face of noisy data; that advantage, however, is
almost certainly completely lost in the R&M network, because
it has localist rather than distributed representations.

We submit that the neural network of R&M does not acquire
any semantics whatsoever, and as a result their theory cannot be a
theory of semantic cognition. It seems to us that R&M have two
options in responding to this charge, of which one is hopeless and
the other absurd. The hopeless route to defuse the criticism is to
attempt to show that a neural network in fact does something
qualitatively different from, say, principal components analysis.
This is hopeless because, despite all the fancy talk of “neurons”
that “fire” to create “distributed representations” and the like,
the sobering fact is that neural networks, in general, can be
shown to do nothing but principal components analysis,
maximum likelihood regression, and so on (cf. Hadley [2000]
for relationships between classical computational models and
neural networks; and Sarle [1994] for an overview of equivalen-
cies between neural networks and different regression tech-
niques and principal components analysis). Alternatively, R&M
may take the other horn of the dilemma and argue that
humans do nothing but carry out statistical categorization pro-
cedures in acquiring semantics. This is not logically inconsistent,
to be sure, but it has some very unhappy consequences: If there is
nothing to semantic cognition except for the sort of data mining
that a neural network does, then we are logically committed to
the thesis that SPSS does semantic cognition when we tell it to
factoranalyze a data set. For anybody remotely familiar with
either SPSS or factor analysis, this would seem a position suffi-
ciently absurd to dismiss out of hand.
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Abstract: We describe evidence that certain inductive phenomena are
associated with IQ, that different inductive phenomena emerge at
different ages, and that the effects of causal knowledge on induction are
decreased under conditions of memory load. On the basis of this evidence
we argue that there is more to inductive reasoning than semantic cognition.

Rogers & McClelland’s (R&M’s) deeply impressive book, Seman-
tic Cognition (2004), outlines a plausible alternative to theory-
theory, and it shows how parallel distributed processing (PDP)
models can capture many phenomena in the literatures on categ-
orisation, naming, and concepts. We are interested in impli—
cations of R&M’s approach for what we know about inductive
reasoning and its relation to knowledge. Our understanding of
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their position is that in many cases inductive reasoning and
semantic cognition are just different names for the same thing.
However, in our view, although knowledge is very important to
an understanding of thinking, there are limits to what can be
explained by recourse to knowledge and the processes by which
it is attained. First, we will describe some effects, our own and
other people’s, which appear to challenge accounts that equate
thinking with semantic cognition. Then we will speculate as to
what kinds of account might best capture those effects.

The literature on deductive reasoning contains the clearest
evidence that there is more to thinking than semantic cognition.
For example, Handley et al. (2004) used a belief bias task where
10-year-old participants were asked to reason about arguments
the validity and believability of whose conclusions had been
orthogonally manipulated. Participants also completed measures
of inhibitory control and working memory. Successful perform-
ance on this task calls for the inhibition of outputs from semantic
cognition, and Handley et al. observed that inhibitory control and
working memory were independent predictors of the ability to
respond in accord with logical validity.

Of course, R&M make no claims about deduction. However,
some of our own work asks whether inductive reasoning can be
wholly captured by fast and parallel knowledge-based processes
or whether slow, resource-demanding processes also play a
role. For example, Feeney (2007) studied inductive projection
using arguments with multiple premises. Such arguments can
be used to study whether people are sensitive to diversity and
amount of evidence when evaluating inductive arguments, and
sensitivity to these phenomena has been modelled in wholly simi-
larity-based ways (Osherson et al. 1990; Sloman 1993). Feeney
showed that a measure of 1Q is associated with people’s sensitivity
to these principles. The results are complex, but particularly in
the case of diversity, those participants who scored highest on
the IQ test tended to be most sensitive to the diversity of the pre-
mises. One interpretation of correlations between 1Q and per-
formance on particular thinking tasks is that they indicate the
involvement of slow, symbol-manipulating processes in thinking
(see Stanovich 1999). That is, inductive reasoning is more than
semantic cognition, and is based on more than processes that
allow for the calculation of similarity between representations.

A related finding concerns when sensitivity to properties of the
premises of an inductive argument develops. Wilburn and Feeney
(2007) have shown that sensitivity to diversity begins to emerge at
age 7, whereas sensitivity to amount of evidence does not begin to
emerge until age 13. We interpret this finding as suggesting that in
a category-based inductive argument, sensitivity to amount of evi-
dence requires the reasoner to know that larger samples make for
sounder inferences, whereas sensitivity to diversity can be demon-
strated on the basis of similarity calculations alone. This finding
also suggests that there is more to thinking than mere similarity.

Like R&M (Semantic Cognition, Ch. 8), we have also been
concerned with the effects of knowledge about causal relations
on inductive generalisation. A particularly interesting case
comes from Medin et al. (2003), who demonstrated the cat-
egory-based conjunction fallacy. They compared strength
ratings for the following argument:

Lead has Property X, therefore pipes and plumbers have Property X

to the mean strength ratings for the causally near generalisation
from lead to pipes and to the causally distant generalisation from
lead to plumbers. (We term lead and pipes causally distant
because the reasoner has to infer the involvement of pipes to
explain the transmission of Property X from lead to plumbers.)
Medin et al. (2003) demonstrated that, on average, people
commit the conjunction fallacy. That is, the strength rating for
the argument with the conjunctive conclusion is higher than
the average strength rating for other two arguments.

Feeney et al., (2007) followed up on this finding and showed
that the near generalisation from lead to pipes is rated strongest,
whereas the distant generalisation from pipes to plumbers is
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rated weakest. In addition, we found that participants highest
in 1Q were more likely to rate the near generalisation stronger
than the conjunctive argument. In further follow-up experiments
(Crisp et al., under review) we asked participants to concur-
rently perform a working memory task whilst rating generalis-
ation strength. The secondary task increased rates of the
conjunction fallacy observed when ratings for the conjunctive
argument were compared to the distant case, but not when com-
pared to the near case. Our interpretation of these findings is that
in the distant case, people resisted the conjunction fallacy
because they explicitly reasoned about causal relations and
reconstructed the causal chain linking, for example, lead to plum-
bers. Having reconstructed the causal chain, they assigned
equally high-strength ratings to distant and conjunctive argu-
ments. A concurrent task impeded their ability to engage in
this causal reasoning in the distant case, whereas it had no
effect in the near case because the stronger causal relation was
immediately available. The same basic pattern was obtained
when participants were encouraged to answer quickly. Thus,
the individual differences, secondary task, and speeded task
data suggest that some effects of knowledge on thinking are mod-
erated by processes that are associated with 1Q and working
memory, and which take time.

Our preferred explanation for these findings is that there are at
least two types of thinking (see Evans 2006; Sloman 1996; Stano-
vich 1999), a fast and associative form of thinking, and a slower
and sequential type of thinking. The first type of thinking per-
forms, among other operations, similarity calculations, whereas
the second type applies rules and makes some (but not all) infer-
ences about causal relations. It has been studied by researchers
interested in models (Johnson-Laird 2006), rules (Rips 1994),
or simulations (Evans & Over 2004) for reasoning. R&M’s
models of semantic cognition appear more relevant to the first
type of thinking than they do to the second.

Impressed as we are by R&M’s book, we cannot see how their
current models can capture our data. Of course, R&M have antici-
pated our concerns and questions (see Semantic Cognition,
pp- 371-73), but it may take another book to convince us of their
answer.
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Abstract: Three issues are raised in this commentary. First, the mapping
of semantic information into the different layers could be done in a more
realistic way by using the Context layer to represent situational contexts.
Second, a way to differentiate category membership information from
other property information needs to be considered. Finally, the issue of
modal knowledge is raised.

The parallel distributed processing (PDP) approach to modeling
cognition has provided a healthy redress of the balance between
empiricist and rationalist accounts of human thought. Following
Chomsky’s demolition of behaviorist theories of thought and
language, it was assumed for many years that the mind was a
symbol-processing machine, following algorithmic, syntactic
rules to solve problems, achieve goals, and so forth. The
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discovery that PDP networks can behave in systematic rule-fol-
lowing ways has been matched by growing evidence that in
many important respects our psychological processes are also
only approximately rule-governed, so that a felicitous marrying
of model and data has been achieved. In Semantic Cognition,
Rogers and McClelland (2004) show how the Rumelhart model
can learn to accurately associate properties with their respective
noun concepts, while at the same time showing the general influ-
ence of the similarity structure of the knowledge being rep-
resented. Just as Rosch (1978) proposed, the mind is sensitive
to the correlational structure of the world and the concepts we
learn correspond to the complex covariation of different proper-
ties across semantic domains. The Rumelhart model provides the
missing mechanism for how this arises, while at the same time
modeling a wide range of now familiar prototype effects such
as basic levels, typicality and category-based induction.

As presented, the model does not aim to represent the actual
contents of anyone’s semantic memory, and so there is still
much detail to explore and develop. The following comments
are suggestions about directions in which the model could use-
fully be taken, both to demonstrate its explanatory power and
test its limits.

Use of the Context Relation layer. The Context or Relation
layer is currently used to determine the type of relation
between the noun concept (e.g., pine) and a property (e.g., ISA
tree, CAN grow, IS tall). This use of the Context layer appears
arbitrary and could lead to difficulties in a more realistic concep-
tual domain. The Context layer is clearly a vital part of the archi-
tecture of the model and cannot be omitted. But perhaps the
Context layer might more usefully encode just that — context.
Barsalou (2003) has reviewed evidence that the properties gener-
ated to a noun concept relate to an imagined situational con-
text — so that, for example, very different properties would be
generated for a car seen in a parking lot versus a car from the
point of view of a driver. Typicality structure can also be highly
context dependent (Barsalou 1987; Roth & Shoben 1983).
Output property units could then encode whole properties (can
grow, is tall) undifferentiated by their syntax. Syntactic form is
a poor guide to the relatedness of properties. In the model
most of the “is” relations were visually based. But in real life an
“is” relation can encode any number of non-perceptual and
abstract properties such as is valuable, is annoying, or is bad
for your health. Grouping properties by syntax may not corre-
spond to any real-world structure. An alternative suggestion to
try here would be to use the Context layer to input the type of
property (part, appearance, function, behavior, origin, etc.)
using semantic rather than syntactic criteria to determine types.

Category information is not just another property. Categorical
ISA relations have traditionally been treated very differently in
studies of semantic memory from other properties. Knowing
the category membership of an item will normally provide a
much broader range of useful inferences about it than will knowl-
edge of a salient property. The ISA relation captures the kind of
thing that the item is, whereas properties just capture a particular
property. Category information is also verified more rapidly
(Hampton 1984). The model does not reflect this difference
structurally, although it is notable that all of the input items
reappear as ISA output units. How could the model be asked
whether it had learned the properties of superordinate categor-
ies — for example, that trees have roots or that fish have gills?

Quantification and modality. A difficulty for any similarity-
based model is the handling of extensional reasoning and quanti-
fied statements. When it has mastered its knowledge domain, the
model will correctly verify that a robin is a robin, a robin is a bird,
and a robin is red. It will not be able to explain, however, that a
robin is a robin is tautologically true, a robin is a bird is necess-
arily true (assuming that any non-bird could never resemble a
robin sufficiently to belong in that class), whereas a robin is red
is generically true — only being true of most adult robins (or in
Europe only of adult males). Knowledge of what actually exists

is not primarily the job of semantic memory, but the model
clearly lacks a way to handle truth under different quantifiers.

Failure to consider the truth of statements extensionally is
quite possibly an advantage of the model given that people are
also bad at it, and succumb to similarity-based “non-logical”
effects when reasoning about category membership (e.g.,
Hampton 1982; Jonsson & Hampton 2006). But it would be
worth exploring whether the model can learn the difference
between properties that are necessarily true and those that are
typically true.

The reverse side of the coin is whether the model can deter-
mine which properties can be expected to co-occur and which
may not. Suppose that backpropagation to representation is
used to find a representation of an item that is large and
yellow, and has petals, as opposed to an item that has roots,
gills, and feathers. Can it be demonstrated that some represen-
tations are found rapidly and with low residual error (even
although the properties have not co-occurred in the training
set), whereas others are impossible to represent without a high
degree of error. Modal intuitions of necessity and possibility
(Rips 2001) are an important aspect of semantic cognition, and
it would be a bonus for the research program to show how the
network can also match such intuitions.
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Abstract: Rogers & McClelland (R&M) criticize models that rely on
structured representations such as categories, taxonomic hierarchies,
and schemata, but we suggest that structured models can account for
many of the phenomena that they describe. Structured approaches and
parallel distributed processing (PDP) approaches operate at different
levels of analysis, and may ultimately be compatible, but structured
models seem more likely to offer immediate insight into many of the
issues that R&M discuss.

It is widely accepted that cognition can be understood at multiple
levels of analysis, but there are different claims about the nature
of these levels (Broadbent 1985; Marcus 2001; Rumelhart &
McClelland 1985; Smolensky 1988). In Semantic Cognition
(2004), Rogers & McClelland (R&M) appear to suggest that par-
allel distributed processing (PDP) approaches and structured
approaches lead to proposals at the same level of analysis, and
are therefore competitors. Like some previous researchers
(Smolensky 1988), we believe that these two paradigms are com-
patible, and that they aim for explanations at different levels of
analysis.

Since R&M treat structured approaches as the competition,
they naturally emphasize the problems they see with structured
models of cognition. Among other criticisms, they suggest that
structured approaches cannot capture typicality, exceptions,
and the graded inferences that are characteristic of human learn-
ing (Semantic Cognition, p. 44); that there are few attempts to
explain how taxonomic hierarchies might be acquired (pp. 13,
31); and that structured approaches do not explain why people
make very different inferences when reasoning about different
kinds of properties (e.g., “has cold blood” vs. “weighs ten tons,”

. 34).
P If PDP approaches and structured approaches operate at
different levels of analysis, then many phenomena (e.g., graded
inferences and learning) will turn out to be compatible with
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both approaches. Some structured models suffer from the limit-
ations described by R&M, but others do not. Models that
combine probabilistic inference with structured representations
allow for noise and exceptions, and are able to account for
graded generalizations and typicality effects (Anderson 1991;
Kemp & Tenenbaum 2003; Tenenbaum 2000). Combining prob-
abilistic inference with structured representations also leads to a
principled account of how these representations might be
acquired, and there are probabilistic models that learn categories
(Anderson 1991), taxonomic hierarchies (Kemp et al. 2004),
abstract schemata (Kemp et al. 2007a), and logical theories
(Kemp et al. 2008)

Structured approaches also help to explain how different kinds
of knowledge support inferences about different kinds of proper-
ties. Shafto et al. (2005) have shown that a probabilistic model that
incorporates a taxonomic hierarchy accounts for inferences about
taxonomic properties (e.g., “has sesamoid bones”), and that a
model that relies on a structured representation of a food web pre-
dicts inferences about disease properties (e.g., “carries E. Spirus
bacteria”). As R&M point out, allowing for multiple structured
representations can raise some challenging problems, but none
of these problems seems insurmountable. For example, there
are models that learn multiple representations of the relationships
between a set of categories (Shafto et al. 2006) and models of
inductive reasoning that combine the knowledge embedded in
multiple representations (Kemp et al. 2007b).

Although psychologists should ultimately aim to understand
semantic cognition at multiple levels of analysis, it is useful to
consider whether the current generation of structured models
shows more or less promise than the current generation of
PDP models. The community as a whole may pursue multiple
approaches, but individuals will need to decide which of these
approaches is most deserving of their time and attention. R&M
provide a comprehensive description of the benefits that PDP
approaches can provide, but there are two primary reasons why
structured approaches appear more promising to us.

First, formalizing commonsense knowledge is a major chal-
lenge for models of semantic cognition. R&M suggest that struc-
tured models may be “too restrictive or constraining to capture
the nuances of human knowledge of all sorts of things” (Semantic
Cognition, p. 44). We are drawn toward the opposite conclusion,
and feel that there are fundamental aspects of human knowledge
that are naturally captured using structured representations but
are difficult for current-generation PDP models to incorporate.
Several examples can be found in the literature, but here we
focus on two: standard PDP models do not provide a compo-
sitional system for building complex concepts out of simpler
pieces (Fodor & Pylyshyn 1988) and find it difficult to discover
abstract relational laws (Marcus 2001). The work of R&M
appears to suffer from both of these limitations. First, it is not
clear how the model will handle relations of several different
arities (e.g., CAN[canary, fly], and CAN/cat, eat, canary]), or
cases involving nested relations (e.g., CAUSE[EATS(canary,
food), GROWS(canary)]). Second, it seems likely that the
model will struggle to acquire abstract knowledge about
relations: for instance, it is not clear whether the model can
recognize that a relation (e.g., ISA[-,])) tends to be transitive,
or that two relations (e.g., HAS[-,-] and POSSESSES[-,]) are
near identical in meaning. Abstract knowledge of this sort
should support inferences about novel categories: for example,
given that a dax is a wug and a wug is a zav, a dax is likely to
be a zav. Extensions of the R&M approach may be able to over-
come many of the limitations we identified, and PDP models of
relational learning and reasoning (Doumas et al. 2008; Shultz
& Vogel 2004) may help to show the way. At present, however,
PDP models seem less successful at capturing complex systems
of relational knowledge than models that rely on predicate
logic as a representation language.

A second advantage of structured models is that they make
more direct contact with previous psychological research on
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semantic cognition. As R&M suggest in their opening chapter
(Semantic Cognition, Ch. 1), many psychologists who have
written about categorization, the theory-theory, and related
topics have seen the need for structured representations. To
mention only one example, the work of Keil (1979) is motivated
in part by the idea that categories are organized into taxonomic
hierarchies, and Keil’s approach can be directly converted into
a structured model that helps to explain how taxonomic hierar-
chies are acquired and used for induction (Schmidt et al. 2006).
The work of R&M may encourage psychologists to develop new
experiments and theories that explore the notion of distributed
representations. At present, however, the most profitable inter-
actions between computational approaches and psychological
studies seem likely to be organized around structured models.

Predictions about the future of any discipline are notoriously
unreliable, but we will venture two of them. First, researchers
will eventually understand how structured semantic represen-
tations are instantiated in the brain. Second, deep insights at
the neural level will only be possible once we have a deep under-
standing of the computations supported by structured semantic
representations.

Semantic cognition: Distributed, but then
attractive
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Abstract: The parallel distributed processing (PDP) perspective brings
forward the important point that all semantic phenomena are based on
analog underlying mechanisms, involving the weighted summation of
multiple inputs by individual neurons. It falls short of indicating,
however, how the essentially discrete nature of semantic processing
may emerge at the cognitive level. Bridging this gap probably requires
attractor networks.

The simple feed-forward Rumelhart model presented in Semantic
Cognition (Rogers & McClelland 2004) is clearly a valuable tool to
study the formation and structure of semantic knowledge in terms
of general connectionist systems. It allows an investigation of
those properties that arise naturally in any network of neural-
like elements, which individually sum a large number of inputs
through experience-modifiable weights. Though rudimentary in
certain respects, it is a huge step beyond conceptually more soph-
isticated constructs based on mere logic, such as the theory-theory
approach, which explicitly eschew the distributed nature of the
neural mechanisms underlying cognitive processes, and in so
doing voluntarily confine themselves to the philosophical
domain. It is not clear, however, whether the Rumelhart model,
even when elaborated and made more complex, can exhaust all
potential insight that neural network approaches may yield on
the architecture of semantic cognition. More critically, it is not
clear whether it can satisfactorily address the central challenge
laid out by the logic-based approaches — that of accounting for
the apparently discrete nature of much of cognition.

The surprising resilience of non-distributed conceptual
accounts (inasmuch as these are the product of the minds of
their proponents and followers) after all indicates the same cog-
nitive process they purport to elucidate: that is, the tendency of
semantic cognition to articulate itself in the form of discrete
logical steps. To anchor cognition in the facts of neuroscien-
ce — and, in particular, in the essentially graded, analog nature
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of the underlying neural computations — is indeed sacrosanct,
provided the apparent discreteness of the mind eventually
emerges. Networks trained with backpropagation seem to go a
certain distance in the right direction, but it remains doubtful
whether they can fully bridge the gap between analog neural
computation and discrete mental operations. Developed twenty
years ago, the backpropagation paradigm does not reflect, in its
claim for neural plausibility, several phenomena that have been
observed more recently, including the tendency of patterns of
neural activity to sometimes fall into discrete attractor states
(Akrami et al. 2006; Wills et al. 2005). We propose, with many
others of course, to go beyond networks trained with backpropa-
gation, and consider cortical networks that store memories based
on known neurobiological mechanisms, as captured by associat-
ive plasticity “Hebbian” rules. The Hopfield model (1982), of
equivalent abstract simplicity to the Rumelhart model, shows
how discrete attractor states can govern the neural dynamics of
networks with recurrent connections, such as had earlier been
invoked by David Marr (1971) to account for associative
memory processes in the hippocampus.

To address semantic memory issues — for example, the ones
derived from the distributed representation of concepts in
diverse cortical areas — attractor networks comprised of multiple
equivalent modules, as in the scheme envisaged by Valentino Brai-
tenberg (see Braitenberg & Schiiz 1991), may offer a convenient
perspective  (Treves 2005). “Hidden” units in such multi-
modular associative models promise to play as important a role
as in feed-forward networks. We have shown how an optimized
Hebbian learning rule that includes local information about stat-
istical biases in the activation of each unit (reflecting the
“popularity” of semantic features) can store and retrieve semantic
patterns of activity, overriding the limitations of classical auto-
associative memory models (which were originally designed to
store, effectively, orthogonalized representations). The optimized
learning rule leads to interesting similarities with semantic
memory phenomena, such as category specific deficits (Kropff &
Treves 2007; Warrington & Shallice 1984). Observed distributions
of feature popularity obtained with experimental approaches (such
as feature norms; see McRae et al. 2005) appear, however, to
hover around values that are too high to be compatible with retrie-
val (Kropff, forthcoming). Hidden units, functioning for example
as conjunction detectors, could solve this problem by lowering
the typical feature popularity. If so, it would be of great interest
to understand their contribution to categorization, as this type of
discretization of conceptual spaces emerges during the learning
process; as well as to other phenomena studied in the book,
such as illusory correlations or concept reorganization.
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Abstract: This commentary challenges Rogers & McClelland (R&M) to
use their model to account for delusional belief formation and
maintenance. The gradual development of delusions and the nature of
disconnectivity in Capgras delusions are used to illustrate the role of

emotional salience in delusions. It is not clear how this kind of
emotional saliency can be represented within the current architecture.

The elegance of Semantic Cognition: A Parallel Distributed
Approach (Rogers & McClelland 2004; henceforth Semantic
Cognition) is in the explanatory power of several very simple
principles. Rogers & McClelland (R&M) show the principles of
distributed units with sigmoidal activation functions; varying con-
nection strengths; and predictive, error-driven learning account
for a whole slew of nontrivial phenomena from cognitive and
developmental psychology and linguistics. This is not entirely a
news flash — as the authors point out, they have built upon a
strong foundation of past connectionist models in this area.
R&M’s novel contribution is the sweeping scale of the cognitive
phenomena they simulate with a uniquely robust architecture.
Indeed, their simulations suggest this is how we know what we
know, and the basis for how we reason about the world.

The more I read, the more I wanted R&M to expand
beyond their trees, flowers, birds, fish, and mammals, and
predict when my children will stop believing in Santa Claus, or
why Anselm of Canterbury believed existence was a virtue,
thereby concluding God existed. These seemed well within the
explanatory power of the model (the first deriving from compet-
ing error-driven learning, and the second from coherent covaria-
tion). In this commentary, I will limit my comments to another
domain that did not immediately appear to be within the expla-
natory power of the model. This is the formation and persistence
of delusions.

Delusions are beliefs that arise in the absence of evidence (they
are self-evident to the believer and generally very personally
poignant), and are resistant (though not immune) to invalidating
evidence. Upon occasion, delusions can be quite fanciful and
bizarre. A number of dementias lead to delusional beliefs, includ-
ing some kinds of brain trauma, late-stage Alzheimer’s disease and
AIDS, Parkinson’s disease, affective disorders, and my particular
domain of expertise, schizophrenia. Although experimental evi-
dence is sparse as to the nature of cognitive changes during the
development of a delusional psychosis, clinicians’ reports are gen-
erally consistent about the typical progression. A delusion begins as
a vague sense of something, for example, that someone has mali-
cious intentions toward me. Over the span of weeks or months, a
delusion begins to crystallize; for example, the government is
spying on me, then the FBI is following me, then the FBI is track-
ing my thoughts using an implanted device. Perhaps the FBI's
reasons for this elaborate artifice also become clearer to
me — “T'm a threat to the government” slowly morphs into “I've
been chosen by God to bring down this heretical regime.”
Although delusions take on many forms, they are not random.
They are characterized by personal significance and are emotion-
ally charged. No one develops the delusion that popcorn comes
from barley or that the pavement just happens to be made of
worn-out carpet. Delusions experienced by depressed people are
nearly always depressing; delusions experienced by manic people
are nearly always expansive. Delusions appear to emerge not out
of random associations, or even a random breakdown of associ-
ations. There is a landscape that appears to constrain the kinds
of delusions that people will report (and presumably experience).

The landscape of one type of delusion is particularly con-
strained. Capgras delusions occur across several forms of demen-
tia, including schizophrenia. In a typical Capgras case, the patient
believes a loved one has been replaced by an identical imposter.
One prominent hypothesis used to account for this phenomenon
observes that visual form is processed by paths ascending to occi-
pital cortex, whereas its emotional salience can be processed by
subcortical paths that project directly to the amygdala (Morris
et al. 1999). A Capgras delusion, therefore, may occur when
the occipital pathway is intact (thereby allowing facial recog-
nition), but the subcortical pathway is lesioned (denying the per-
ceiver the usual emotional salience of the face) (Ellis & Young
1990; Frith 2004). There is some support for this conjecture:
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Five psychiatric patients with Capgras delusions, in contrast to
controls, showed no modulation of their autonomic responses
to familiar and unfamiliar faces (Ellis et al. 1997). Indeed,
across the different classes of delusions, there is reason to
believe that an abnormal feeling drives an a posteriori cognitive
explanation that is manifest as a delusion (Frith 2004).

It is not clear how the landscape of delusional susceptibility is
manifest by the model described by R&M. In accounting for the
possibility of “preparedness” to learn, they readily acknowledge
the possibility that the strength of some pathways are not
random and may have evolved stronger links (Semantic Cognition,
p- 368). This is one way to incorporate emotional experiences.
However, this brief consideration of the development of delusions,
and evidence for the relationship between delusions and changes
in emotional salience, is not clearly reconcilable within the current
model. Given the boost to psychopathology research derived from
“breaking” other connectionist models (e.g., Cohen & Servan-
Schreiber 1992), many readers will welcome any and all efforts
R&M might make to account for these distressing phenomena.
How can this model be “broken” to make it delusional?
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Abstract: Coherent covariation appears to be a powerful explanatory
factor accounting for a range of phenomena in semantic cognition. But
its role in accounting for the crosslinguistic facts is less clear. Variation
in naming, within the same semantic domain, raises vexing questions
about the necessary parameters needed to account for the basic facts
underlying categorization.

Rogers & McClelland (R&M) set the ambitious goal of account-
ing for a wide array of experimental findings in semantic cogni-
tion. The ability of their simple distributed connectionist model
to account for such a range of phenomena is impressive.
However, the authors do not consider crosslinguistic naming
data at all in their book, Semantic Cognition (Rogers & McClel-
land 2004). We believe that these data pose serious problems for
the model in its current form.

One of the critical properties of the R&M model is its sensi-
tivity to “coherent covariation” of features, for example, “has
wings,” “has feathers,” “can fly” are features that coherently
covary in birds. Sensitivity to higher-order inter- and intra-cat-
egory features enables their model to exhibit some of the core
characteristics of semantic cognition. For their model to be psy-
chologically plausible, it is important to be able to demonstrate
that there are indeed higher-order correlations in the world
and that semantic categories straightforwardly map these corre-
lations. In the examples that R&M consider, it seems likely that
this could be so — plant and animal categories, for instance,
appear to be highly constrained in the ways that the authors
outline (see also Malt 1995). But for many other categories it is
not clear that coherent covariation alone will account for the
facts.

» e
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Consider event categories as an example. Recent cross-cultural
research suggests that there may be coherent covariation among
features of events, as there are for object categories. But despite
this, the specific instantiation of categories found in different cul-
tures vary substantially. Majid and colleagues (Majid et al. 2007a;
forthcoming), for example, analyzed naming data collected
from 28 typologically, genetically, and geographically diverse
languages. Using correspondence analysis, Majid et al. (2007a;
forthcoming) found that there were a small number of dimen-
sions that accounted for the semantic categories of cutting and
breaking across languages. The first, and most important of
these dimensions, was a continuous one that distinguished
events where the location of separation in the object was predict-
able from those where the location was unpredictable (roughly
corresponding to “cut” and “break” events). But despite the
fact that all languages loaded very highly on this, and the other,
dimensions, individual categories from specific languages were
very different.

To illustrate this, compare the sheer number of categories
used for this domain from two of the languages of the
sample — Tzeltal, a language spoken in the Highlands of
Mexico, and Yéli Dnye, a language spoken on Rossel Island, an
isolated island in Papua New Guinea. Tzeltal speakers used
more than 50 different verbs to describe the 60-odd videoclips
(Brown 2007), while Yéli Dnye speakers used only three (Levin-
son 2007). Or consider a more detailed contrast — Dutch,
Swedish, and Mandarin have a specific category used for
events of “cutting-with-scissors,” whereas most other languages
lump these events with other events of predictable separation.

How can it be that languages correlate very highly on the
dimensional structure but vary so much in the specific categories
that they have? One way to reconcile these findings is that the
dimensions uncovered by the correspondence analysis are
exactly those exhibiting coherent covariation among features.
For cutting and breaking events in the real world, there is a
tight correlation between the kind of instrument used, the
object it is used on, the manner in which it is used, and the
end state of the object. Sharp instruments, such as knives, are
typically used with rigid but pliable objects, in a deliberate
manner to achieve a clean separation. Across the board,
languages are sensitive to these regularities, just as R&M
propose. But R&M under-emphasize — and perhaps under-
appreciate — that different languages come to different conven-
tionalized solutions about how to make reference to these
constellations.

For example, English speakers have a hierarchical system of
verbs that they can call upon when deciding how to name an
event. The same event could be labeled cut or slice, dice, chop,
or break and snap, smash, and so on. Swedish speakers, on the
other hand, do not have this option open to them. In Swedish,
cutting and breaking verbs appear to be organized in a flat struc-
ture. There are no general superordinate verbs like cut and
break. As a consequence, Swedish speakers are more consistent
namers for these events since there are fewer options for how
to label a particular event in their language. English speakers
are less consistent because there are equally good alternatives
available (Majid et al. 2007b).

This kind of variation in naming highlights the complex inter-
play of world, concept, and word. Convergent evidence from
domains as diverse as event representation (such as the data
mentioned above), color (e.g., Kay & Regier 2003), and artifacts
(e.g., Malt et al. 1999) suggest that names may indeed be con-
strained by perceptual attributes, but there is still much variation
between languages. It is not clear how R&M’s model will be able
to account for this sort of variation.

R&M hold an ambivalent position about the role that language
plays in categorization. On the one hand, they acknowledge that
“experience with spoken language may play some role in concept
acquisition prior to the infant’s ability to produce speech”
(Semantic Cognition, p. 145). On the other hand, they stress
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that in their model “structure arises from the pattern of covaria-
tion of properties of objects, and does not depend on the explicit
labeling of the objects” (p. 69). If categories are being created
independently of linguistic experience, then how do R&M
account for how children come to acquire the particular linguistic
system of their community? If language is being used from the
earliest phases of acquisition, then R&M need to be more explicit
about how labels interact with “coherent covariation.”

As we said at the outset, the range of phenomena that R&M
tackle are impressive. In their own words, they wish to account
for semantic tasks “that require a person to produce or verify
semantic information about an object, a depiction of an object,
or a set of objects indicated verbally (e.g., by a word)” (Semantic
Cognition, p. 2). We have our doubts that a single model can
really do it all, given that there is evidence that the represen-
tations underlying naming and object recognition are distinct.
For example, Malt et al. (1999) have demonstrated that object
naming and nonlinguistic sorting are only weakly correlated,
suggesting that they are at least partially independent.

To summarize, R&M need to illustrate how their model can be
appended to accommodate these findings or acknowledge
whether another mechanism is needed.

Some suggested additions to the semantic
cognition model
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Abstract: Rogers & McClelland (R&M) present a powerful account of
semantic (conceptual) learning. Their model admirably handles many
characteristics of early concept formation, but it also needs to address
attentional biases, and distinguish direct input from error-driven
learning, and fast versus slow learning. Not distinguishing implicit and
explicit knowledge means that the authors also cannot explain why
some coherently varying information becomes accessible and other
information does not.

Semantic Cognition (Rogers & McClelland 2004) is an impress-
ive book, with important lessons for researchers interested in
how the development of a knowledge system takes place.
Rogers & McClelland (R&M) show convincingly that even a
simple feed-forward connectionist system can account for a
number of aspects of nonverbal knowledge acquisition, such as
global (superordinate) learning preceding more specific (basic-
level) learning, how naming accelerates basic-level learning,
and how generalization, even overgeneralization, takes place.
These are fundamental characteristics of concept formation in
infancy (Mandler 2004), and an algorithmic account of how it
might be accomplished is a fine contribution. The emphasis on
coherent covariation is particularly important because it provides
a detailed account of the pattern learning that underlies much
human knowledge. It also poses a serious challenge to strongly
nativist views that require built-in domain-specific constraints.
R&M make an excellent case that the structure of the environ-
ment itself, in conjunction with a domain-general learning mech-
anism, is sufficient to produce what superficially appears as
domain-specific learning.

It must be noted, however, that the book veers more toward
showing the usefulness of their learning model than to provide
a realistic model of semantic (conceptual) development. R&M
themselves note that distributed representations and fully recur-
rent networks would be more realistic, and that their simulations
work on greatly oversimplified content and restricted contexts.

However, they propose some basic developmental principles,
and it is to these that I direct my comments. I offer a few sugges-
tions to make their approach a more satisfying account.

First, there are known attentional biases that influence the
course of learning. For example, infants are biased to attend to
motion from birth. Indeed, it is a large part of what they do
attend to in the first months of life. They often do not pay atten-
tion to objects’ details (Bahrick et al. 2002), in spite of the fact
that recognition data tell us those details are already becoming
part of the perceptual knowledge system (Eimas & Quinn
1994). These are quite plausibly learned in the way R&M
describe. Attentional biases likely affect concept formation
more than they do perceptual learning, but in any case they are
present in real life, which means that infants do not respond ran-
domly even at the beginning of learning, as all the simulations in
this book do. Their presence also means that some things are
learned faster than others, not just because of learning how
they covary with other attributes, but because of the attention
that is paid to them from the start.

R&M show nicely how with coherent variation an attribute
such as movement can be used to categorize unmoving objects.
This is interesting vis-a-vis our experiments showing that
infants correctly categorize static models of animals and non-
animals (Mandler & McDonough 1993; 1998). But these real
infants had many months of observing that animals move by
themselves and non-animals do not. Motion is input, not error-
driven learning. In the R&M simulations, infants do not see
motion, but only learn to infer it. Unfortunately, this approach
distorts what actually occurs in a learning infant. An observed
property that consistently differentiates animals and non-
animals should be learned very quickly and presumably faster
than the way it covaries with other properties, even though
such pattern learning eventually becomes important.

A related issue concerns how to relate the simulations of
various tasks to developmental time. Simulations using distribu-
ted inputs found that the animal versus non-animal discrimi-
nation took about 2,500 epochs. This is a discrimination that
takes place in the first few months of life (Quinn & Johnson
2000). How should we relate it to the differentiation into basic-
level categories, which takes another year or longer? Albeit
with a different task but using extremely simple inputs, the rel-
evant simulation still took about the same number of epochs to
differentiate birds from fish. It doesn’t matter so much how
epochs are interpreted as that they be proportional to the
amount of time it takes to actually master coarse and fine distinc-
tions. Some pattern learning, such as the covarying properties of
animals and plants, does not appear in real life until around age
10 (if at all). Why? Does that imply hundreds of thousands of
epochs are needed, or will a small number of well-distributed
school instructions make the difference? The book wasn’t
designed to compare verbal and observational learning, but this
is another aspect of fast and slow learning that needs
consideration.

Another crucial issue, if we are to understand conceptual
development, is why some coherently varying information
becomes accessible and other information does not. Only some
knowledge is available for conceptual thought. Although R&M
distinguish perceptual and conceptual knowledge, their model
does not do so; it treats all “semantic cognition” as alike. But
self-motion and certain bodily parts become explicitly known,
whereas much equally covarying perceptual information does
not. For example, why do we know explicitly only a few things
about what faces look like, but not the equally coherently
varying spatial relations that differentiate men’s and women’s
faces? We have a great deal of perceptual knowledge we use
for recognition that remains unconceptualized.

R&M note that they need a second learning mechanism that
takes in new information without interfering with established
knowledge. This issue, previously discussed by McClelland
et al. (1995) in terms of fast and slow learning systems, is not
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only relevant to differences between verbal and observational
learning, but also potentially relevant to explicit versus implicit
knowledge. I regret that R&M did not address how fast and
slow learning interact in development. In the relevant simu-
lations new information was rapidly added to an existing knowl-
edge base by a backpropagation-to-representation technique,
but how this new information interacts with ongoing learning
was not discussed.

Perhaps when a fast-learning system is integrated with the
current model, it will help clarify what differs between forming
accessible concepts and learning the coherent patterns that
underlie many of them. It might also clarify how learning
perceptual patterns comes to affect the attentional processes
that influence concept formation. R&M’s book is an excellent
contribution, and hopefully these further difficult issues will be
solvable within a connectionist framework.

Concepts, correlations, and some challenges
for connectionist cognition
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Abstract: Rogers & McClelland’s (R&M’s) précis represents an
important effort to address key issues in concepts and categorization,
but few of the simulations deliver what is promised. We argue that the
models are seriously underconstrained, importantly incomplete, and
psychologically implausible; more broadly, R&M dwell too heavily on
the apparent successes without comparable concern for limitations
already noted in the literature.

Rogers & McClelland’s (R&M’s) précis target article represents
an important effort to bring explicit computational models to
bear on questions of concepts and categorization; the sheer
breadth of their demonstrations cannot fail to impress.

What, however, do R&M’s demonstrations, presented here and in
the book (Semantic Cognition, Rogers & McClelland 2004), really
show? R&M’s ambition is threefold: to reinterpret theory-based
approaches to concepts, to suggest that domain-specific knowledge
emerges solely from general learning principles, and (implicitly) to
undermine symbol-manipulation in favor of parallel distributed pro-
cessing (PDP)-style connectionism.

The success of the enterprise lies in the simulations, and here
we have serious reservations. Although the models seem to
address some core phenomenon in concepts or conceptual devel-
opment, few fully deliver what is promised.

Take, for example, “category coherence” (sect. 2.2. of the
target article) R&M’s ostensible goal is to explain why “some
groupings seem more natural, intuitive, and useful for the pur-
poses of inference than others” (sect. 2.2, para. 1), but no
matter how well the models track such correlations, they never
really get to the crux of the matter: causation. Some properties
are correlated in the world by accident, and others because of
causal relations, a fact that is apparent even to young children
(e.g., Greif et al. 2006); and people’s generalization over different
sets of “coherent” properties is powerfully mediated by their
understanding of causal relations (Rehder 2003; Rehder & Kim
2006); R&M’s model, in contrast, literally cannot represent the
difference between a correlation of particular strength that is
causal and one that is not.

More broadly, the demonstrations they present are (1) seriously
underconstrained, (2) importantly incomplete, and (3) psychologi-
cally implausible.
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1. Constraints: Each time R&M introduce a new phenomenon,
they also introduce a new model: In the five core models of the
target article, there are five different training regimes, five differ-
ent architectures, five different dependent measures — and no
effort at reconciling the differences.

2. Completeness: Although the current models excel at learn-
ing complex correlations between features, they fail to represent
abstract operations over variables, structured representations,
and contrasts between individuals and kinds; and it is not clear
how well they can do any of these things in principle (Marcus
1998a; 1998b; 2001). In consequence, common two-place predi-
cates such as X is a sister of Y, or P is a parent of Q cannot be
properly represented in a fully generalizable way (Marcus
2001); complex notions such as lectures about movies versus
movies about lectures cannot be represented without a combina-
torial explosion of input nodes; and the models cannot represent
basic distinctions such as the difference between the fact that
dogs in general have four legs and that some dog in particular
has three legs (Marcus 2001).

3. Psychological plausibility: Virtually all PDP models face
certain fundamental problems, such as the slowness of their
learning (here, acquiring a single fact can take thousands of
trials), but the present models face a special set of problems, in
terms of the way the learning task itself is defined. The experi-
ence of a real child can be thought of as a series of learning epi-
sodes that pertain to particular entities and whatever happens to
be observable in a given moment: A child might see a particular
dog, note some properties of that dog, and then update his or her
internal representations. In R&M’s framework, the learning
experience is entirely different: In part because the model lacks
a type-token distinction, the learning regime is designed such
that the model never experiences any particular dog; all its
experiences consist, instead, of pre-digested lessons about the
properties of all dogs, whether or not those properties might
be plausibly observed in any given moment. The model is not
told “on a particular occasion, I see a dog, and on that occasion
the dog is barking,” it is told dogs can bark; moreover, it is
given all such facts simultaneously. In Figure 1, the model is
told — in one go — that all canaries can grow, move, fly, and
sing. Real children rarely have it so easy; at any given moment
a child might see a canary that is in the act of flying, without
seeing it sing, or see it sing without seeing it fly; the child has
to infer that what he or she sees at one moment doesn’t preclude
other possibilities later. The challenge of putting together
observed and unobserved properties — which some might call
the heart of categorization — is not adequately addressed. (Like-
wise, since the model trades entirely in abstractions rather than
specific experiences, there is no way to capture, e.g., the
human intuition that natural kinds have essences that can
persist through drastic transformations; see Keil 1989.)

Still more broadly, perhaps the greatest problem with the
current work is not so much the details as the enthusiastic
reports of apparent success without comparable concern for
limitations. Problems raised before (e.g., Gentner & Markman
1993; Marcus 1998a; 1998b; 2001; Pinker & Prince 1988),
receive scant mention, and competing models such as Anderson
and Betz (2001), Rehder (2003), Love et al. (2004), Nosofsky
(1986), and Kruschke (1992) are never seriously discussed.
There is no test, for example, of whether exemplar or ACT-R
models would exhibit the same patterns, and hence no way of
parceling out what predictions are unique to the present archi-
tecture and which would follow from any system that was sensi-
tive to intercorrelations.

What we are left with? The simulations do acquire complex,
learnable correlations between properties, but do not show that
such intercorrelations alone suffice for human reasoning. In a
true account of human reasoning, correlations may well serve
as the input to cognition, but the end product is often far
richer; we humans don’t just notice contingencies, we seek to
understand them. When a child sees that animals in cold climates
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tend to have heavy fur, she doesn’t just note the data; she asks
why, and that is one thing PDP models just cannot do.

Finely tuned statistical engines of the sort discussed here may
well play some role in our conceptual understanding of the world
(Keil 1991b; Marcus 2000), but if the current work serves as a
guide, such machinery seems unlikely to suffice on its own.

Analogy and conceptual change in childhood
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Abstract: Analogical inferences are an important consequence of the way
semantic knowledge is represented, that is, with relations as explicit
structures that can take arguments. We review evidence that this
feature of semantic cognition successfully predicts how quickly and
broadly children’s concepts change with experience and show that
Rogers & McClelland’s (R&M’s) parallel distributed processing (PDP)
model fails to simulate these cognitive changes due to its handling of
relational information.

Rogers & McClelland (R&M) have presented a powerful
response to the theory-theory of concepts (Carey 1985; Keil
1989; Murphy & Medin 1985), the view that knowledge of
causal and other abstract relations among entities influences
learning, memory, and reasoning. Against this view, in Semantic
Cognition (Rogers & McClelland 2004) R&M have shown that an
artificial learner (their parallel distributed processing [PDP]
model) need not represent concepts within a theory to show
many classic phenomena of cognitive development, including
category coherence, context-sensitive generalization, conceptual
reorganization, and the causal status effect.

Despite its ability to simulate these aspects of child cognition,
R&M’s approach has a fundamental limitation: Their PDP
network does not process relational structure the way that chil-
dren do. That is, within R&M’s PDP model, relations (like ISA,
can, and has) allow the model to learn the difference between
being a predator, being capable of chasing, and actually having
prey, much as children do when recognizing that a kitten, even
when it hasn’t chased any mice, is a miniature predator-to-be.
So far, so good; but children, unlike a PDP network, can rep-
resent these relations and their fillers in a manner that preserves
relation-filler independence (i.e., relations and their fillers are
represented independently), while simultaneously representing
the bindings between roles and fillers in an explicit and
dynamic fashion. Thus, children can appreciate how “Fido
chases Felix” is like “Felix chases Fido” (same elements involved
in the same relation) and how they differ (role-bindings are
reversed; e.g., Richland et al. 2006). This capacity requires (1)
that relations and objects be coded with the same sets of units
regardless of their specific configuration (i.e., the same unit[s]
should code for the chase relation and for the object Fido regard-
less of whether Fido is chasing Felix or Felix is chasing Fido), and
(2) that the system can create and destroy bindings dynamically.
That is, it must be able to bind the units representing the chaser
role of the chase relation to the units representing Fido (and
explicitly encode that binding) when Fido is doing the chasing,
and then bind the same units that represented the chaser role
to Felix when Felix is doing the chasing.

Consequently, although the R&M model can simulate some
important aspects of cognitive development, it fails to account
for several developmental phenomena that entail relational
reasoning, such as transitive inference and analogy. These

capacities are important because they account for rapid and
broad changes in semantic cognition, such as developing the
living thing concept. For example, Opfer and Siegler (2004)
have shown that children can quickly learn abstract categories
like goal-directed agent by comparing goal-directed actions
(e.g., cats turning toward mice, caterpillars turning toward
leaves, and plants turning toward sunlight). Moreover, just as
adults interpret ambiguous blobs turning toward goals to be
living things (Opfer 2002; Schultz et al. 2004), kindergartners
who learned that plants — like animals — are goal-directed also
spontaneously induced (without feedback) that plants — like
animals — are living things, too (Opfer & Siegler 2004). This
zero-trial learning is inconsistent with the hundreds of epochs
of direct training required by the R&M model. Further, errors
that children actually make during learning — such as assuming
that only animals are living things — are consistent with their
idea that life requires some kind of goal-directed movement (nor-
mally visible only in animals), but this error is never made by the
R&M model; moreover, errors made by the model — such as
honoring a categorical distinction between sunflower/rose/
robin/salmon versus sparrow/pine/flounder — have never been
reported in the many studies investigating development of the
living things category (for review, see Opfer & Siegler 2004).
Thus, while R&M’s PDP model can simulate feature-based
learning of the living thing category, it does not actually simulate
children’s relation-based learning of the living thing category.

Children make analogical inferences such as those found in
Opfer and Siegler (2004) because they can process relational
structure. Relational structures allow us to make alignments
between otherwise dissimilar systems (e.g., Gentner 1989;
Holyoak & Thagard 1995) and to make inferences based on
relational — rather than only featural — commonalities (Opfer &
Bulloch 2007). Thus, having learned a predicate like goal-
directed agent, children can align otherwise dissimilar objects
(cats, potted plants) and generalize the properties of cats and
other goal-directed agents (e.g., living-thing) to plants as well.
These kinds of problems pose a difficulty for R&M’s model pre-
cisely because it represents neither relations (e.g., goal-directed)
nor relation-filler bindings explicitly. Consequently, R&M’s PDP
model cannot use relational information to drive inference (see
also Hummel & Holyoak 2003).

A recent model by Doumas et al. (2008), called DORA, provides
a solution to these problems. DORA is a connectionist model that,
by virtue of its solution to the dynamic binding problem, can rep-
resent relations as explicit symbols that can take arguments. Start-
ing with unstructured representations of objects as simple feature
vectors, DORA learns explicit representations of object properties
(and later relational roles) via comparison-based intersection dis-
covery. These representations are effectively single-place predi-
cates (represented as collections of nodes) that can be bound to
arguments. DORA then links sets of these single-place predicates
to form complete multi-place relations (where each of the linked
predicates serves as a role of the relation). Importantly, these rela-
tional roles can be dynamically bound to arguments. Like its pre-
decessor LISA (Hummel & Holyoak 2003), DORA uses time to
carry binding information. Roles are bound to their fillers by sys-
tematic asynchrony of firing, where bound roles and fillers fire in
direct sequence. For example, to bind Fido to the role chaser
and Felix to the role chased, DORA will fire the units representing
chaser followed by the units representing Fido, followed by the
units representing chased, followed by the units representing Felix.

Unlike R&M’s PDP model, successful models of semantic cog-
nition must be able to learn explicit representations of properties
and relations from examples and must bind these representations
to novel arguments. By exploiting the strengths of structured
relational thinking, successful models can make analogies based
on common relations and thereby generalize over shared
relations, just as children do when learning that, by virtue of
being goal-directed agents, plants — like animals — are living

things.
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Time for a re-think: Problems with the parallel
distributed approach to semantic cognition
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Abstract: Rogers & McClelland (R&M) have provided an impressive
outline of the capabilities of a class of multi-layered perceptrons that
mimic many aspects of human knowledge acquisition. Despite this
success, in the literature several basic issues are raised and concerns
are expressed. Indeed, the problems are so acute that a different way
of thinking is called for. In this commentary it is suggested that rational
models approach provides a promising alternative.

In 1984 Hinton wrote, “Any plausible scheme for representing
knowledge must be capable of learning novel concepts that
could not be anticipated at the time the network was initially
wired up” (Hinton 1984, p. 26). Despite the 400-plus pages on
the wonders of the various kinds of multi-layered connectionist
networks discussed by Rogers & McClelland (R&M) in Semantic
Cognition (Rogers & McClelland 2004), we are faced with the
rather difficult issue of plausibility mentioned by Hinton.

In arguing for the benefits of distributed representation, Hinton
raised many issues regarding the limitations of traditional semantic
networks. How does the store keep track of new items of infor-
mation? How are new things added to the network? How is it
that new things are wired up correctly? Such worries apply with
some force to the connectionist models discussed by R&M. In
every case, the network structure is fixed and because of this, it
is the capabilities of very particular kinds of tightly constrained
network architectures that are revealed. However, if it is accepted
that learning a new thing corresponds to adding a new node, then
Hinton’s concerns about incorporating new nodes re-emerge.
There is some discussion of learning the new fact that, “a
sparrow is a bird” (Rogers & McClelland 2004, pp. 63-69), but
where does the sparrow unit come from, and who is in charge of
the wiring? Aligned to these concerns are others — sparrows do/
may/will molt? (Rather unfortunately, there is also the recurrent
tendency in this line of work to graft on new units when the situ-
ation calls for it: Need to simulate hierarchical naming? Okay, graft
on “ISA-general,” “ISA-basic,” “ISA-specific” units.)

Perhaps we can side-step some of these issues. Novel distrib-
uted representations on the representation units can be intro-
duced at any time during the network’s development. So
(maybe) we can do away with the item units and focus attention
on the sorts of distributed representations that are captured by
the networks. Do these embody the atoms of meaning? It
seems that everyone agrees that, underlying all aspects of knowl-
edge representation and knowledge acquisition, are the atoms of
meaning. Variously, semantic primitives, semantic features,
cogits, and semantic micro-features have been discussed. Many
have struggled in attempting to specify exactly what such things
might be. Some have attempted have to individuate these by pro-
viding verbal labels (e.g., gotfrom-plants), whereas others have
conceded that this is probably too hard and proffer that such
things may not map directly onto verbal labels. As a consequence,
we are much better off with the notion of semantic micro-
features — the undefinable essence of knowing. A difficulty with
this latter view is that norming studies in which people are
simply asked to generate properties for things are reasonably
successful in accounting for what it is that we know.

Aside from the basic assumption, about the atoms of meaning,
there is little consensus. Clearly, issues remain over what such
atoms are and how they operate. If we are to adopt a mental chem-
istry approach to knowledge acquisition, then we can accept that
there is a set of semantic atoms, combinations of which give rise
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to all kinds of complex concepts. The critical point is that only
some but not all such atoms are needed to represent any given
entity. By this view it is simply not true that the identical set of
atoms is used to build the concepts of “pine,” “robin,” and
“salmon,” and so forth. Such a mental chemistry set provides a
relatively simple way of thinking about the productivity of
thought: “fins,” “pink,” “gills,” “swims” — salmon; “feathers,” “red
chest,” “sings” — robin. When I think about “robin,” “not having
fins” simply does not enter my head. The alternative is enshrined
in the sort of theory underpinning the R&M model. Within their
network models, all atoms are used to represent every concept.
For a more considered argument as to why this kind of theory
does not work, see Fodor and McLaughlin (1990).

We may also ask other basic questions about whether the
R&M framework for thinking is useful in other ways. The evi-
dence seems incontrovertible: humans are exquisitely sensitive
to environmental statistical regularities. R&M use such evidence
to propagate a connectionist manifesto for human knowledge
acquisition. Nevertheless the evidence can be used in a different
way. There is a different trend emerging and this allows us to
countenance the idea that the sorts of learning processes embo-
died in the models favoured by R&M are radically different from
the sorts of learning processes that are going on in humans. We
may contrast connectionist counting machines with Bayesian
statistical machines as discussed by rational modelers (Steyvers
et al. 2006; Xu & Tenenbaum 2007a).

Indeed, it seems that by the rational models view both nativist
and empiricist accounts of knowledge acquisition can be accom-
modated. To take an example from vision, the principle of group-
ing by proximity may reflect an innate tendency. Things close
together on the retina reflect things close together in the real
world, so the tendency is to group adjacent things as belonging
to a single object. This sort of “prior,” as embodied in the
visual system, could reasonably reflect the adaptive history of
the species. Reasoning about the visual world reflects both this
sort of prior and estimates of probability built up over the individ-
ual’s own developmental history.

There is little point in repeating more cogent arguments. The
main intention here is to stress the emerging support for rational
models. Such models provide a radically different view of human
knowledge acquisition to that discussed by R&M (see Xu &
Tenenbaum [2007b], and their provocative account of word
learning). The supporting evidence fits rather uncomfortably
with the idea of connectionist counting machines.

R&M have provided a very clear description of what various
kinds of connectionist models of human knowledge acquisition
can do. Given such an impressive list, it seems sensible to ask
what it is that such models cannot do. Only by addressing these
issues will progress be made. My concerns are such that my
advice is to look elsewhere for the answers to the problems that
remain. It seems to me that a more fruitful framework for thinking
is provided by the emerging field based around rational models.

On the semantics of infant categorization and
why infants perceive horses as humans
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Abstract: This commentary considers the issues of what should be taken
as evidence for semantic categorization in infants and why infants display
a surprising asymmetry in the categorization of humans versus nonhuman
animals. It is argued that perceptual knowledge should be viewed as a
potent source of information for semantic categorization, and that the
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asymmetrical categorization behavior arises as a consequence of the
frequency and similarity structure of experience.

Two comments on Semantic Cognition (Rogers & McClelland
2004) are offered. The first speaks to Chapter 4, “Emergence
of Category Structure in Infants,” and the second addresses
Chapter 5, “Naming Things: Privileged Categories, Familiarity,
Typicality, and Expertise.”

What counts as semantic categorization in infants?. In
Chapter 4, Rogers & McClelland (R&M) examine whether the
concepts of infants are semantic, where semantic information is
defined as information “not available more or less directly from
the perceptual input” (Semantic Cognition, p. 2). To address
this issue, R&M consider reports of global categorization by
infants (Mandler & McDonough 1993; Pauen 2002a). Some
readers like myself may have questions about the evidence and
the definition.

The responding of the 11-month-olds in Pauen (2002a) and
Mandler and McDonough (1993) should be revisited. R&M
observe that these infants generalized habituation from the famil-
iarized category instances to the novel instance of the familiar cat-
egory, and dishabituated to the novel instance of the novel category.
However, this was not the pattern of results reported in the original
papers. The 11-month-olds dishabituated to the novel instance
from the familiar category and the novel instance from the novel
category, although more so to the latter. Mandler and McDonough
interpreted these results as evidence that the infants recognized the
perceptual difference between the novel and familiar instances
from the familiarized category, and recognized that the novel
instance from the novel category was from a novel conceptual cat-
egory. But this interpretation may be questioned because the
infants did not provide a critical behavioral signature of categoriz-
ation, namely, equivalent responding to instances of the familiar-
ized category. One might reply that there was positive evidence
for categorization observed among Mandler and McDonough’s
11-month-olds presented with planes versus birds, but that could
have been carried by perceptual cues: planes with silver wheels
and vertical tail fins versus birds with textured wings depicting
ruffled feathers. Findings that 12-month-olds categorize animals
versus vehicles based on texture differences are consistent with
this suggestion (Smith & Heise 1992).

However, for argument sake, let us assume that the 11-month-
olds had produced unamblguous evidence of categorization.
Would that allow one to conclude that infant categorization
was semantic? Given the controls in Pauen (2002a), performance
may well have been influenced by knowledge that had accrued
prior to the experiment. But this should not be surprising given
that the infants would have had 11 months to utilize perceptual
input systems and a general learning mechanism to acquire a
database of information about objects in the world. And that
knowledge may be perceptual. In the case of animals, stored
data may include information about faces, coloring, skeletal
appendages, a body shape bounded by curved contours, move-
ment patterns, and species-specific sounds of communication.

This observation raises the question of whether conceptual
information of the sort emphasized by Mandler (2000) and
Carey (2000) (and subsequently in development by Gelman
[2003] and Keil [1989]) should be deemed as necessary to con-
clude that semantic categorization has occurred. From this
commentator’s perspective, knowledge about perceptible parts
and properties of objects can be semantic knowledge. One
could not have much of a concept of cats, for example, without
knowing what they looked like and what parts they had. Concepts
must include perceptual information, or else they would not be
very helpful. Even school children learning about biology must
be able to recognize cats in various poses and contexts. It is
hard to imagine how a child could even map more abstract attri-
butes acquired through language (i.e., cats have cat DNA) onto
their correct object referents without having category represen-
tations available from perceptual experience to serve as support

structures. By this view, information about perceptual properties
seems just as semantic as information about genetics (Hampton
et al. 2007), and the way forward is to explain how perceptual
and conceptual knowledge are integrated (not dissociated) to
form mature concepts (Murphy 2002; Quinn 2004b).

The infant who mistook a cat for a person. In Chapter 5, R&M
describe how increased experience with a particular category
leads word learners to extend the label for that category to less
familiar, similar categories, although not to less familiar, dissim-
ilar categories. In a corresponding simulation, R&M trained a
model with dog patterns appearing more frequently than other
mammals. Early in learning, the model extended the label dog
to goats and even robins, but not to trees. R&M also relate
how increased experience with a category that has been linked
with expertise acquisition leads to increased ability to differen-
tiate within that category. A matching simulation demonstrated
how birds (or fish) became more distinct for a model that was
trained with birds (or fish) more frequently than other animals.
Importantly, the different tendencies associated with increased
experience, towards generalization and differentiation, are
explained in a common framework in which the semantic space
devoted to the more experienced class becomes larger than
that allocated to less experienced classes.

The behavior of word learners and experts that is captured in
R&M’s simulations may also be observed in infants categorizing
humans and nonhuman animals. In particular, 3- to 4-month-olds
familiarized with humans generalize familiarization not only to
novel humans, but also to cats, horses, and even fish, although
they differentiate cars. By contrast, same-aged infants familiar-
ized with horses generalize familiarization to novel horses, but
differentiate humans, fish, and cars (Quinn & Eimas 1998). In
addition, infants represent humans as subordinate-level exem-
plars, but represent nonhuman animals (i.e., cats) as summary-
level information.

Consistent with R&M’s approach, the differences in how
infants represent humans versus nonhuman animals have been
attributed to infants’ greater experience with humans inclusive
of repeated encounters with parents, siblings, and caregivers
(Mermillod et al. 2004). This experience leads to a larger rep-
resentational space for humans, thereby allowing individual
humans to be represented at the subordinate level and enabling
generalization to nonhuman animals. The trends toward
increased specificity and generality resonate with findings that
experts recognize instances from their domain at more specific
levels than novices (Tanaka 2001), and are also better able to
recognize commonalities across their domain (Murphy &
Wright 1984). These observations in turn suggest a sense in
which infants” knowledge of humans may constitute an initial
domain of perceptual expertise (Quinn 2005). The specificity
and generality effects are further in accord with the dual trends
of differentiation and coalescence observed in the trajectory of
learning produced in R&M’s network simulations.

Subsequent research has suggested that infants” generalization
from humans to nonhuman animals is rooted in holistic-configural
structure, that is, a head attached to an elongated body with skel-
etal appendages (Quinn 2004a; Quinn et al. 2007), which is con-
sistent with the finding that experts perceive objects within their
domain holistically (Gauthier & Tarr 2002). Humans, cats,
horses, and fish (but not cars), share this abstract resemblance,
and R&M’s networks demonstrated the ability to compute such
global structure, extracting commonalities emerging in the
pattern of coherent covariation. Notably, such structure is pre-
served even as the networks (and presumably infants) continue
learning and begin differentiating subclasses. On this basis, gener-
alization from humans to nonhuman animals by infants may form a
foundation for the construction of a broad, domain-level concept
of animal, and may also be a precursor of how children first rely on
a human prototype to reason about biological knowledge (Carey
1985). Thus, in accord with R&M, differences in the frequency

of exposure to different classes (humans vs. nonhuman animals),
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coupled with the similarity structure of those classes (attributes
shared by humans and nonhuman animals, but not cars), are
important determinants of the growth of category organization
during early cognitive development.

ACKNOWLEDGMENTS

Preparation of this commentary was supported by NIH Grants HD-
42451 and HD-46526. The author thanks Gregory L. Murphy for
helpful comments on an earlier draft.

The development of modeling or the modeling
of development?

doi:10.1017/S0140525X0800602X

David H. Rakison® and Gary Lupyan®

2Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213;
®Department of Psychology, Cornell University, Ithaca, NY 14850.
rakison@andrew.cmu.edu http://www.psy.cmu.edu/~rakison/
il24@cornell.edu http://www.cnbc.cmu.edu/~glupyan/

Abstract: We agree with many theoretical points presented by Rogers &
McClelland (R&M), especially the role of domain-general learning of
coherent covariation. Nonetheless, we argue that in failing to be
informed by key aspects of development, including the role of labels on
categorization and the emergence of constraints on learning, their model
fails to capture important features of the ontogeny of knowledge.

The book Semantic Cognition by Rogers and McClelland (2004) is
an elegant demonstration that a simple parallel distributed proces-
sing (PDP) model can exhibit behavior that matches the behavior
found in a range of empirical studies on infants” conceptual devel-
opment. As such, Rogers & McClelland (R&M) make a compel-
ling case that domain-general, rather that domain-specific,
mechanisms that are sensitive to lower- and higher-order covaria-
tion underpin early concept formation. Although we concur with
many of the authors’ claims and their general theoretical perspec-
tive, in this commentary we propose that R&M have overlooked a
number of key points about development which are crucial to con-
sider in modeling early concept formation.

An important aspect of early concept learning overlooked by
R&M is the role of verbal labels. Labels affect categorization
and concept development in infants as young as 9 months (e.g.,
Balaban & Waxman 1997; Xu 2002), and their effect continues
to grow in the subsequent months (e.g., Fulkerson & Haaf
2003; Nazzi & Gopnik 2001; Waxman & Markow 1995). Thus,
labeling may be an important additional mechanism by which
infants construe semantically related items as similar to one
another in the absence of observable similarities.

Unfortunately, the role of labels cannot be investigated in R&M’s
network because they are implemented as simple stimulus features
(the ISA relation). In our opinion, itis erroneous to implement basic-
level category labels as features akin to having wings or barking.
The principle of coherent covariation gains traction because the
feature can move, for example, is informative in that not all entities
can move and that being able to move predicts other properties.
Labels are different: Many things from different semantic categories
can move, but only canaries are canaries. From this perspective,
the category label is the piece of information that varies most
coherently and is most predictive of the item’s category.

To explore the consequences of labels on concept formation, a
model needs to map multiple exemplars (e.g., many different can-
aries), to a single label. In the process of learning to associate a
single label with multiple category exemplars, the label becomes
strongly associated with features most predictive of the category
(Lupyan 2005) providing the “glue” that may be necessary for coher-
ing together items from categories with high intra-category variabil-
ity (Lupyan, in press). Thus, rather than adding a simple feature,
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labels can be thought to schematize a given stimulus by placing it
into a relationship with the other members of the category.

An additional concern relates to the fact that humans, and
especially human infants, demonstrate clear limits on learning,
whereas connectionist networks are capable of learning essen-
tially any pattern of inputs (Massaro 1988). This point is over-
looked in two ways by R&M’s model. First, in a number of
simulations the model is able to show patterns of behavior that
match those of infants only after it receives a level of experience
that is unavailable in the real-world or the laboratory setting. The
model, for example, has only begun to differentiate conceptually
the input stimuli after 50 epochs, but by this time the network has
been exposed to over 50,000 trials (Siegler 2005).

Second, and more important, R&M expose the model to all of
the covarying input at the same time, yet infants are limited in
the amount and kind of correlated information they can process.
Before approximately 7 months of age, for example, infants are
unable to encode relations among static features (Younger &
Cohen 1986), and it is not until around 14 months of age that
they can encode object features or whole objects with dynamic
motion-related cues such as can fly or can walk (Rakison 2005).
That infants are unable to process certain kinds of information
constrains concept learning, but, at the same time, it also facilitates
concept learning; that is, it allows infants to learn about more fun-
damental aspects of things in the world while at the same time
ignoring other aspects. R&M’s model, in contrast, is exposed sim-
ultaneously to a wide range of information which in an infant
would probably lead to what William James (1890) called a
“blooming, buzzing confusion.” R&M argue that they used input
features that they consider to be important or salient to infants,
but in our view this approach disregards a large database of
empirical data that shows to which features infants actually
attend in developing concepts (see Madole & Oakes 1999).

Finally, the architecture of R&M’s model is sufficiently flexible
and powerful to demonstrate learning for any input pattern.
Fitting a PDP model to existing data is not the strongest test of
the theory advocated by the model (Roberts & Pashler 2000);
more powerful support for the theory behind the model is to gen-
erate novel predictions that are borne out by empirical studies.
Moreover, from our perspective any model that tries to
emulate a set of empirical findings with infants or children
must take developmental issues into account. We have recently
developed such a PDP model for early concept formation that
is theoretically compatible with that of that of R&M, but that
incorporates development in a number of plausible ways (e.g.,
increasing over time the number of hidden units and reducing
over time the weight-decay parameter of fast but not slow learn-
ing links) (Rakison & Lupyan, in press). This developmentally
oriented model exhibits behavior that is unintuitive but nonethe-
less matches that found in infants. For example, 14-month-olds
learn relations in simple causal events that are consistent and
inconsistent with the real world (e.g., agents possessing moving
or static parts), but 16-month-olds demonstrate constraints on
learning by failing to learn the inconsistent events (Rakison
2005). From our perspective it is necessary for models to be
informed and compatible with key developmental findings and
issues if traction is to be made in determining the origins,
nature, and development of concepts.

Semantic redintegration: Ecological
invariance
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Abstract: In proposing that their model can operate in the concrete,
perceptual world, Rogers & McClelland (R&M) have not done justice
to the complexities of the ecological sphere and its invariance laws. The
structure of concrete events forces a different framework, both for
retrieval of events and concepts defined across events, than that upon
which the proposed model, rooted in essence in the verbal learning
tradition, implicitly rests.

There is no cognition without memory, that is, without the redin-
tegration of events. In Semantic Cognition (Rogers & McClel-
land 2004), the depth and breadth of thought by the authors
on semantics is impressive, but I fear the claim that their
model dwells in the perceptual/ecological sphere ignores the
realities of this sphere, resulting in an inadequate theory of
redintegration.

Consider an event: stirring coffee in a cup, using a spoon. The
event has a time-extended invariance structure, here defined as
the transformations and invariants specifying an event and ren-
dering it a virtual action. The swirling coffee surface is a radial
flow field. The constant size of the cup, should it move forward
or backward, is specified, over time, by a constant ratio of
height to the occluded texture units of the table surface gradient.
The tau ratio defined over this flow field supports modulating the
hand for grasping the cup (Savelsbergh et al. 1991). Were the cup
cubical, its edges and vertices are sharp discontinuities in the vel-
ocity flows of its sides as the eyes saccade, where these flows
specify the form of the cup (cf. Robbins 2004; 2007). The peri-
odic motion of the spoon is a haptic flow field that carries an adia-
batic invariance — a constant ratio of energy of oscillation to
frequency of oscillation (Kugler & Turvey 1987). The action of
wielding the spoon is defined by an inertial tensor describing
the moments of force (Turvey & Carello 1995). It is this entire
informational structure and far more that must be supported,
globally, over time, by a neural network — by the resonant feed-
back among visual, motor, auditory, even prefrontal areas. To
define the “summary sketch” or compressed format, stored in
the hippocampus, of this dynamic, ever changing, global
pattern (McClelland et al. 1995) would be interesting.

In Rogers & McClelland’s (R&M’s) formulation, I present an
occurrence, SPOON, in the context, CAN, and the network is
trained, via weight adjustments, to respond with STIR. In the
causal version, the network is trained to predict the seque-
lae — the “circular motion of the coffee liquid,” the clinking
sound, and so forth. What sense is this? This is a remnant of
the supremely non-ecological verbal learning tradition, its roots
in the semantics-eradication program of Ebbinghaus, which ulti-
mately bifurcated events arbitrarily into components (now
feature vectors), for example, SPOON and COFFEE, then
asked: How do we learn these components as a paired-associate
pair? This is the paired-associate (PA) learning framework of the
older cousin-model (McClelland et al. 1995). Paivio’s (1971)
introduction of imagery, later the elaboration techniques,
where SPOON and COFFEE are imagined in a dynamic
event, were the first near-ecological cracks in this brute force,
syntactic learning framework. Coherent covariation is essentially
a low-order, syntactic invariance, insufficient to carry the form of
invariance structure described above.

In reality, we are perceiving the spoon as an integral part of a
stirring event, with all the event’s ongoing invariance structure.
Where is the “error?” We need no weight adjustments to “link”
the event “components.” A spoon scooping and lifting oatmeal is
yet another event with an integral and complex set of forces and
auditory/visual patterning. A spoon stirring pancake batter is yet
a different complex invariance structure. A spoon digging into
and cutting grapefruit is yet another. A spoon balancing on the
edge of the coffee cup another. Now we have the set: SPOON
CAN: [stir, balance, scoop, cut]. If T re-present SPOON, which
event will it redintegrate? Presenting SPOON is roughly equival-
ent to a static event, a resting spoon. There is little structure to this
cue-event; it is underspecified, yet common to all. It is like sending
an imprecise reconstructive wave with little coherence through a

hologram — we reconstruct a composite image of multiple
recorded wave fronts, in this case, spoon-related events. It is the
classic interference of McGeoch (1942). The brain’s neural
network does not require error-training to specify this set.

But we can retrieve specific events. The cue must bear the
same invariance structure or a sufficient subset. For the coffee
stirring, we re-present an abstract rendering of the coffee’s
radial flow field, or simulate the inertial tensor of the wielding.
We are creating, globally throughout the brain, a more con-
strained, more coherent “reconstructive wave.” To reconstruct
the batter-stirring event as opposed to the coffee-stirring, we
must constrain our wielding cue differently to capture the
larger amplitude of the stirring motion and/or the greater resist-
ance of the batter. In essence, we are discussing a “paired associ-
ate” paradigm, call it A-B/C/D, that is impossible in the verbal
learning realm, for every cue is in effect SPOON, yet with the
appropriate ecological, dynamic constraints on a cue event invol-
ving a spoon, we can reconstruct each separate event (Robbins
2006a; 2006b). But we also understand, “A SPOON can CATA-
PULT (a pea),” for the spoon, we know, can be inserted in,
and supports the forces/invariance structure of, catapulting.
This is precisely the realm of French’s (1990; cf. Robbins 2002)
devastating critique regarding the Turing Test — we would
need to train for all possible object pairs — and the network pro-
posed is no better equipped for these emergent analogies; it is
simply not capturing the source of the semantics. It might be
held that some analogy program such as Structure Mapping
Engine (SME) (Gentner 1983) must now take over, but these
must now define, ad hoc, the relevant “features” of catapult
and spoon which are then merely algorithmically related
(French 1999; Robbins 2002), again precisely because these
systems ignore the ecological invariance defining events.

Ecological invariance forces an entirely different principle of
retrieval for events and higher-order invariance (classes) across
events. Discovering invariance laws, it is heavily argued (Kugler
& Turvey 1987; Wigner 1970; Woit 2006; Woodward 2000;
2001), is scientific explanation. This subsumes the “causal”
explanations of theory-theory. In this, science models itself
after the brain in perception, and in this sense R&M, in
holding, contra theory-theory, that there is no special mechan-
ism, are perceptively right. But the neural dynamics required
for the transformations and invariance noted here is beyond
the coherent covariation detection of the model; the lesson of
invariance in the ecological sphere has yet to be engaged by
either side.

Reading Semantic Cognition as a theory
of concepts
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Abstract: Any theory of semantic cognition is also a theory of concepts.
There are two ways to construe the models presented by Rogers &
McClelland (R&M) in Semantic Cognition. If we construe the input and
output representations as concepts, then the models capture knowledge
acquisition within a stable set of concepts. If we construe the hidden-
layer representations as concepts, the models provide a simulation of
conceptual change.

The primary goal of Semantic Cognition (Rogers & McClelland
2004) is to illustrate how connectionist models can provide an
explicit theory of the nature and development of semantic proces-
sing. But any account of semantic processing is also, necessarily, a
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theory of concepts (see Fodor [1998] for discussion). What theory
of concepts is implicit in the Rogers & McClelland (R&M)
models? Answering this question might allow us to align these
models with the rich theoretical literature on the nature of con-
cepts (see Laurence & Margolis [1999] for introduction). There
are two ways of thinking about these models as conceptual the-
ories: We can think of the nodes in the input and output layers
as concepts, or we can think of the patterns of activation in the
hidden layers as concepts.

If we think of the input and output layers as concepts, then
these models propose a theory with three sets of concepts that
exist prior to the learning process that is being modeled: item
concepts which are nodes in the input layer for basic-level
kinds (e.g., salmon), property concepts in the output layer (e.g.,
pretty), and relation concepts in the input layer that link kinds
and properties (e.g., can). The model is trained on propositions
composed of these concepts and learns to make inferences
about other propositions based on knowledge it acquires. On
this construal, these are models of knowledge acquisition, not
conceptual change, since the set of concepts is defined before
training begins and is not altered by the training.

The nature of these concepts varies across the different instan-
tiations of the model. The localist model (Semantic Cognition,
Chs. 2—4) instantiates a theory of concepts that is strikingly
similar to Fodor’s (1998) atomistic theory. The concepts in the
input and output layer have no internal structure. Their content
does not come from the propositions in which they appear — that
knowledge appears later and is formulated over the concepts.
Instead, the identity of each concept is based on its relation to
the world (Fodor’s nomothetic relation). The node pine means
pine solely because it is activated when the model represents
pine trees. Its identity is fixed by the training stimuli, which are
meant to represent the perceptual experiences of the learner.
For example, a training stimulus such as “pine has bark”™ corre-
sponds to a situation in which the child sees a pine, represents it
as a pine, notices the bark, and represents it as bark. Thus, the
input to the model presupposes that the learner already possesses
concepts that allow her to categorize objects at the basic level and
properties at a fairly abstract level (e.g., can move).

The distributed version of the model (Ch. 4) instantiates a
different theory of concepts. Properties and relations are still
modeled as conceptual atoms, while items are modeled as sets
of perceptual features. For example, pine is represented by
setting the units corresponding to big, green and branches to 1,
and all other units to 0. This is simply a connectionist instantia-
tion of the classical theory of concepts; each kind of item is
defined by a set of necessary and sufficient features which are
(arguably) perceptual in nature.

The alternative is to construe the patterns of activation in
hidden layers as concepts. This appears to be what R&M have
in mind (see Semantic Cognition, pp.140—141). On this con-
strual, the input and output layers are preconceptual primitives
that link the conceptual representations in the hidden layer to
the world, thus lending them content. The pattern of activation
in the Representation layer when an item node is activated is
the concept for that item. Because these patterns of activation
change throughout training, under this construal the models
are simulations of conceptual change.

On this interpretation, the model bears a family resemblance to
two types of conceptual theories. First, like theory-theories, the
model grounds the meanings of some concepts in their relations
to other concepts. In particular, the natural kind concepts gain
their content from their relations to the predicates created by
combining properties and relations. Furthermore, the relative sig-
nificance that is assigned to each predicate depends largely on the
intercorrelations between them. However, in another respect
these hidden-layer concepts are similar to prototype theories. In
prototype theories, the set of possible concepts is defined by the
set of features and the set of possible weights for each feature.
In these models the set of possible hidden-layer concepts is a
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function of the primitives in the Item, Relation, and Property
layers. The model differs from the prototype model in that the
function for combining these features is considerably more
complex.

On this construal, what knowledge is necessary for acquiring
the concepts in the hidden layer? In both the distributed and loc-
alist versions of the model, every instance of a basic-level kind
receives the same input representation. As we noted earlier,
this amounts to the claim that we categorize items and properties
in precisely the right way, prior to acquiring the knowledge in the
training set. In other words we must have the concepts to learn
them (see Fodor 1998). This constraint is relaxed in the localist
model in Appendix C, in which two items (cats and dogs) are
each represented by five different nodes (e.g., five individual
cats). This manipulation does not affect the organization of the
hidden layer, leading the authors to conclude that pre-categoriz-
ation is not necessary for acquiring these concepts. This con-
clusion seems a bit premature: most items in this simulation
were pre-categorized (19 of 21), and all of the relations and prop-
erties were. Thus, it is not clear that the relevant structure could
be unearthed if all the input nodes represented individual enti-
ties or particular instantiations of a property.

One alternative is to argue that the pre-categorization in the
input and output nodes is based on perceptual processing
rather than conceptual processing. The coherence of this position
depends upon arriving at a clear definition of the distinction
between conceptual and perceptual processes, and demonstrat-
ing that the primitives in the input and output layers can be
defined in purely perceptual terms.

Agency, argument structure, and causal
inference

doi:10.1017/S0140525X08006055

Alice G. B. ter Meulen

Center for Language and Cognition, University of Gréningen, 9700 AS
Gréningen, The Netherlands.

a.g.b.ter.meulen@rug.nl

Abstract: Logically, weighting is transitive, but similarity is not, so
clustering cannot be either. Entailments must help a child to review
attribute lists more efficiently. Children’s understanding of exceptions
to generic claims precedes their ability to articulate explanations. So
agency, as enabling constraint, may show coherent covariation with
attributes, as mere extensional, observable effect of intensional
entailments.

Three theoretical concerns regarding parallel distributed proces-
sing (PDP) modeling keep puzzling a logically minded cognitive
scientist, if it is, as Rogers & McClelland (R&M) claim, designed
to provide simulations of the acquisition and deterioration of
human semantic cognition.

1. The weighting or strengthening of network relations in the
base architecture (see Semantic Cognition, Rogers & McClelland
2004, pp. 115, 356) is presumably a linear relation. It is hence
transitive, that is, if x is heavier or stronger than y, and y
heavier or stronger than z, then x must be heavier or stronger
than z. But an arbitrary similarity relation does not need to be
transitive, for a canary may be similar to an orange in color,
and an orange similar to the moon in being round, but a canary
is not therefore similar to the moon. If such similarity judgments
constitute the basis for inductive generalizations and clustering
(Semantic Cognition, p.183), do PDP networks require similarity
to be strengthened to a transitive relation? Perhaps an item may
be simultaneously included in two distinct clusters? To give a
particular illustration of this problem: If the representation
space in Figure 3.9 (Semantic Cognition, p. 112) were also to
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represent the color pink, how could it incorporate both salmon
and rose in one shaded region?

2. According to Semantic Cognition (p. 182), basic names indi-
cate the “labels that identify an object at an intermediate level of
specificity” (e.g., bird), and general names “identify an item at a
more inclusive level” (e.g., (mmwl) and specific names “identify
objects at a more specific level” (e.g., canary). So obvious logical
entailment patterns should be validated; for example, if every
bird is an animal and every canary is a bird, then obviously
every canary must be an animal. Clearly, the list of attributes is
highly structured by such logical entailments, which presumably
facilitates children’s review in allocating weights to attributes. Is
there any evidence to assume that all the listed attributes are inde-
pendently reviewed in assigning weights to connections, as
suggested by linearly listing all attributes in PDP networks and
requiring exhaustive review of these in attributing weights (e.g.,
the longer the list, the longer it takes to allocate weights)? Don’t
children quickly detect such valid logical patterns and use them
in facilitating their review of attributes, skipping large sets of
labels that don’t apply simply because they depend on a label
that is already known not to apply? In other words, doesn’t
logical knowledge help children in speeding up attribute weighting
by making their review more efficient?

3. From an epistemological point of view, generic knowledge
is special, “immunized” information. It is preserved in changing
worlds and throughout a variety of contexts in virtue of a set of
associated, generally accepted exceptions, that are prevented
from serving as counterexamples falsifying the generically quan-
tified statement (Carlson & Pelletier 1995). In learning to com-
plete the similarly generic claim canary can. .., any child will
quickly exclude dead, frozen, or wind-up canaries in assigning
a heavy weight to the attribute move. Having learned to treat a
wind-up canary as an exception to the generic claim that canaries
can move, the child applies the abstract notion of agency to any-
thing capable of self-determined action (cf. Semantic Cognition,
p. 131-33). If agency is considered to be one of Gelman’s
enabling constraints (Semantic Cognition, p. 133), then it
seems undeniably to play a core role in concept formation at a
pre-lingual and hence pre-explanatory phase of development.
In the similarity-based learning algorithm of bootstrapping
syntax (van Zaanen 2001; 2002), the child learns that if x moves
y, then x causes y to move, and accordingly, y has been moved
by x, and that therefore y has moved, but also that the reverse
entailments do not hold. The causal source of the movement is
consistently assigned as thematic role to the subject argument
in either the intransitive or active transitive use of the verb
move, as it is part of its lexical semantic content at least in ordin-
ary English. As the child also knows that agency is required for
self-movement, he or she would probably, at a linguistically ade-
quate phase of development, be able to explain that a dead or
wind-up canary, which he or she has observed to have moved
from one location to another, must have been moved there by
someone else. Such causal inference appears in no way logically
prior to linguistic acquisition of the corresponding lexical items,
nor does it seem to play a role similar to the logical relations
alluded to above in structuring the set of attributes. But to con-
clude from such lexicalization of attributes that “Infants’ sensi-
tivity to a property, as indexed by attention, ease of learning,
and other measures, is affected by the extent of its coherent cov-
ariation with other properties” (Semantic Cognition, p. 135),
seems theoretically a bridge too far, although coherent covaria-
tion must be an extensional, observable counterpart to any
obviously intensional logical entailment.

It is an interesting, and to my knowledge, novel claim that the
PDP networks should also simulate semantic dementia effects.
For instance, in overextending basic level names (dog), the
model is claimed to be more likely to apply a highly familiar
name incorrectly than a less familiar name to similar items
(Semantic Cognition, pp. 215-17). It is well known that the fam-
iliarity of names is directly correlated with their early acquisition

and hence retention in early memory, rather than with their fre-
quency in recent usage (ter Meulen 2004). It would constitute an
interesting new dimension in the empirical predictive power of
PDP simulations, if time were an explicitly represented par-
ameter. Consequently, the weighting should be an overtly
dynamic relation, instead of a static time-slice model. In
dynamic semantics a plethora of detailed representation
systems have been developed that could well serve as inspiration
for designing such overtly dynamic PDP systems (Kamp & Reyle
1993; Lascarides & Asher 1993; ter Meulen 1995; 2000; 2006; van
Benthem & ter Meulen 1997).
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Abstract: The commentaries reflect three core themes that
pertain not just to our theory, but to the enterprise of
connectionist modeling more generally. The first concerns the
relationship between a cognitive theory and an implemented
computer model. Specifically, how does one determine, when a
model departs from the theory it exemplifies, whether the
departure is a useful simplification or a critical flaw? We argue
that the answer to this question depends partially upon the
model’s intended function, and we suggest that connectionist
models have important functions beyond the commonly
accepted goals of fitting data and making predictions. The
second theme concerns perceived in-principle limitations of
the connectionist approach to cognition, and the specific
concerns these perceived limitations raise for our theory. We
argue that the approach is not in fact limited in the ways our
critics suggest. One common misconception, that connectionist
models cannot address abstract or relational structure, is
corrected through new simulations showing directly that such
structure can be captured. The third theme concerns the
relationship between parallel distributed processing (PDP)
models and structured probabilistic approaches. In this case we
argue that there the difference between the approaches is not
merely one of levels. Our PDP approach differs from
structured  statistical approaches at all of Marr’s levels,
including the characterization of the goals of cognitive
computations, and of the representations and algorithms used.

Our book, Semantic Cognition: A Parallel Distributed Pro-
cessing Approach (Rogers & McClelland 2004), has pro-
voked a wide range of reactions, ranging from supportive
suggestions for new domains to address, to friendly amend-
ments of aspects of our proposals, to points of criticism,
either of specific elements of our argument or of the
overall approach that we have taken. We thank the commen-
tators for engaging seriously and thoughtfully with our work.
We are gratified that the range of replies is broad enough to
raise most of the reactions we have encountered as we have
presented our work to different audiences.

We wish to address both the specific challenges, misun-
derstandings, queries, and criticisms raised by the various
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commentators, as well as the core issues underlying their
alternative perspectives on our theoretical framework.
To these ends, our response is organized around three
themes, each addressing specific issues raised in the com-
mentaries, and each touching on more general issues
regarding the connectionist enterprise. These include (1)
a discussion of how computational models should be
used to support cognitive theories, (2) a treatment of puta-
tive limitations on the scope of our theory, and (3) a con-
sideration of the relationship between our theory and a
range of approaches cast in terms related either to Ander-
son’s (1991) “rational analysis” or Marr’s (1982)“compu-
tational” level of analysis.

R1. What is the relationship between a
model and a theory?

We begin by considering a set of questions raised by com-
mentators that might seem at first glance to be fundamental,
but which, we will argue, are best viewed as concerns about
particular details of specific models. For instance, Snedeker
wonders whether our use of localist representations in many
of the models amounts to endorsing Fodor’s claim that con-
cepts are innate; Quinlan takes us to task for adding new
units to the model in order to represent additional items in
the environment; Marcus & Keil suggest that we use differ-
ent models or measures of model performance to substanti-
ate each theoretical claim; Rakison & Lupyan, Robbins,
and others suggest that our training regime is unrealistic in
ways they see as important; and Kropff & Treves argue
that our feed-forward models, which do not have attractor
dynamics, cannot explain important nonlinearities in chil-
dren’s conceptual development. None of these concerns,
we believe, touch on criticisms of our actual theory — in-
stead, they focus on less central details of particular prag-
matic choices we made when devising simple model
instantiations of the theory.

Of course, any such claim might justifiably be met with
skepticism: It is very easy to attribute the strengths of a
model to its core characteristics, and the limitations to
superficial simplifications! How can the neutral observer
determine whether any given aspect of a model really rep-
resents a critical theoretical claim or an unimportant
implementational detail?

In answer to this question, we find it useful to invoke an
analogy employed by Jorge Luis Borges (1998) in a short
fiction entitled “On the Exactitude of Science.” Borges
tells of an empire in which cartographers strive for such
perfect fidelity that the maps they create are built
exactly to scale. The resulting products are a marvel of
accuracy but, as maps, are essentially useless: The
journey one would have to undertake to discern the dis-
tance between any two cities, for example, would be
equally arduous in the map as in the real world. This
satire illustrates an important and, we think, oft-neglected
fact about the relationship between models in science and
the systems they are modeling. Typically those systems are
complex — perhaps too complex to understand in their
entirety without aid. Faithful replication of the full
system is, therefore, rarely if ever the goal of a modeling
enterprise in science. Should such a program succeed, it
might prove as difficult to understand the model as to
understand the system itself! Rather, the function of a
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model is to simplify — to remove some of the complexity
of the full system, and even to violate some of its known
properties, so as to reveal more clearly other important
characteristics.

This does not mean, of course, that all departures from
the complex system are equally tolerable: It certainly
seems fair to criticize the map that situates Paris closer
to New York than to Marseilles. The question then
arises, which departures from reality constitute helpful
simplifications and which represent serious flaws? The
answer to this question depends upon the model’s
intended function — that is, which aspects of the real,
complex system the model is intended to illuminate, and
how the theorist uses it to reason about the real system.
The cartographer knows that the Earth is not small, or
flat, or made of paper — he purposely sacrifices those
elements of the real system so that his model better rea-
lizes its intended function (i.e., to facilitate an understand-
ing of the spatial relationships among important landmarks
in some region of the Earth). Because the mapmaker
intends distances between points on the map to be pro-
portional to distances among analogous points on the
Earth, criticism of a map on these grounds is justified.

Thus, to evaluate whether criticisms of our models have
important implications for our underlying theory, it is
important to be clear about the intended function of the
models we have presented. Often in cognitive science, it
is understood that the primary function of a model is to
fit data and to make predictions that can be tested empiri-
cally; but there are at least three less commonly acknowl-
edged functions of models that have guided our work,
which we believe to be equally important.

First, a model allows the theorist to investigate and
better understand the implications of core theoretical
principles. In our work, these include principles general
to the parallel distributed processing (PDP) approach to
cognition articulated in Rumelhart et al. (1986b; see
especially Rumelhart & McClelland 1986) and developed
extensively over the past two decades, as well as additional
principles specific to our theory of semantic cognition
which are described in Chapter 9 of Semantic Cognition
and summarized in the précis. They hold, among other
things, that mental representations are patterns of
graded activation values across simple processing units,
rather than discrete symbols; that these patterns influence
each other through mappings encoded in connections
among the elements that participate in the represen-
tations; that learning involves graded changes in these
mappings; that the architecture of the semantic system
fosters convergent influence of all kinds of information
on a common underlying representation; that learning
within this system must be gradual and interleaved; and
so on. An important function of the simulation work is to
provide a tool for better understanding the implications
of these core principles. It goes without saying that these
implications are complex and non-obvious. Even very
simple models like the Rumelhart model can exhibit coun-
terintuitive behaviors. Computer simulations with such
models allow the theorist to figure out how and why
these counterintuitive behaviors occur, and what impli-
cations they then have for the ability of the theory to
explain particular aspects of human behavior.

Second, the models help to demonstrate the sufficiency
of the theory to address the phenomena it purports to
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explain. Suppose we had simply stated that a domain-
general learning process based on the principles sketched
in the preceding paragraph will give rise to a progressive
differentiation of conceptual knowledge; that it acquires
general before basic information about particular concepts
but exhibits a basic-before-general trend in naming these
same concepts; that it can explain why some categories
are useful and informative and others not, why different
properties  become important for different semantic
domains, how the semantic system comes to “ignore” irrele-
vant perceptual similarity and “hone in on” similarities and
differences important for semantic generalization; and so
on. None of this would have been believable, no matter
how clearly articulated. The simulations provide a way of
demonstrating that, in fact, an instantiation of the principles
of the theory can lead to the consequences described. An
actual model system really does exhibit the behavior we
claim in the verbal articulation of the theory. Of course,
extension of the model to more complex situations must
also be addressed, but the initial demonstration in a simpli-
fied instantiation is important to counter claims that the
approach cannot possibly work in principle.

Third, the model serves as a didactic tool for explaining to
others how and why the relevant phenomena arise. Just as
the simpler models make it easier for us, the researchers,
to trace out the implications of certain assumptions, so
too do these models aid our ability to communicate the
important points to the reader. For instance, we might
have begun our report of this work with a description of
the most complicated model in Semantic Cognition,
which (1) has a relatively large number of training items
that vary in their category typicality, item frequency, and
word frequency; (2) includes different contexts for
naming items at different levels of specificity; (3) includes
properties that are differentially “important” for different
conceptual domains; and so on. All of the important
effects in the book can be observed in this single model,
which compared to the original Rumelhart model (Rumel-
hart & Todd 1993), is relatively complex. For the purposes
of understanding why the model gives rise to these effects,
and communicating this explanation to the reader, this
model is less than ideal. Precisely because frequency, fam-
iliarity, typicality, contextual specificity, and so on, are all
operating in the model simultaneously, it is diflicult to
understand which factors are responsible for which effects
and why, or how the different factors interact. The
simpler versions of the model (discussed in Semantic Cog-
nition, Chs. 3 and 4) held many of these factors constant
and so made it easier to understand, and hence to commu-
nicate, fundamental aspects of the model’s behavior. After
establishing these fundamental behaviors, it becomes
easier to communicate how additional factors then
operate in the more complex model to explain a broader
range of phenomena. So, when Marcus & Keil suggest
we use different models to explain different phenomena,
we view this aspect of our work as a virtue: The different
models allow us to more clearly illustrate why a particular
model works, as opposed to just demonstrating that it does.

R1.1. Three ways our models simplify our underlying
theory

With these points in mind, we now consider some of the
ways our model departs from the underlying theory, and

some of the critical reactions these departures have pro-
voked. In each case, we view the departure in question
as a simplification adopted to promote the goals of under-
standing, demonstrating, and communicating implications
of the underlying theory.

R1.1.1. Simplified input and output representations. In
most simulations, we employed a single input unit to rep-
resent each subordinate level concept in the model’s
environment (i.e., one unit for rose, another for daisy,
another for pine, etc.); a single unit for each different
context (e.g., ISA, is, can, has); and a single unit for each
possible output attribute (e.g., grow, fly, feathers, gills,
etc.). Given our theoretical commitment to distributed
representations throughout the semantic system, this use
of “localist” inputs and outputs is clearly a simplification
used for convenience (see, e.g., Semantic Cognition,
Chs. 4 and 9). Still, some commentators have wondered
about this choice. Snedeker asks, for example, if the use
of localist input representations was tantamount to accept-
ing Fodor’s claim that representations of all concepts are
essentially built in. If the use of localist input and output
representations was a necessary condition for the success
of the model, this might be a valid concern, but as we
demonstrated with simulations described in Chapter 4 of
the book, this is not the case.

We adopted localist input representations partly for his-
torical reasons: The simplest version of the model was, in
fact, the very model used by Rumelhart (1990). Rumelhart
was specifically interested in using a connectionist model
to encode the contents of systems of propositions like
“canaries can sing” or “trees have roots.” We think the sim-
plification here is natural and, essentially, uncontroversial.
Although spoken words are, in our view, represented as
distributed auditory patterns, the relationship between
spoken word forms and their meanings is largely arbitrary,
and it seems clear that our language-processing systems
are capable of ignoring such similarities at the input
level when mapping spoken word forms onto meanings
(as distributed connectionist models also learn to do;
see, e.g., Dilkina et al. 2008; Plaut & Shallice 1993).
Note that the use of localist input units to represent dis-
tinct words does not amount to knowing the concepts in
advance — it simply imbues the network with the ability
to treat each possible word form as distinct from every
other.

In Semantic Cognition, we were interested in under-
standing how people learn from experience with objects
in the world, including statements about objects but also
other aspects of experience, such as watching a canary
and then seeing it fly away or hearing it sing. In this case
the use of localist input representations is still a useful sim-
plification for many purposes, but, like others, we were
concerned that use of such representations might
perhaps seem to presuppose too much “built-in” knowl-
edge. In Semantic Cognition, Chapter 4, we showed that
the model behaved essentially identically whether
trained with a single unit to represent each subordinate
concept or several different units to represent individual
exemplars of each concept. We also replaced the localist
input representations with distributed input patterns,
and showed that this model behaved similarly to a model
with localist inputs.
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The distributed model could learn to overcome super-
ficial input similarity (i.e., raw overlap in the input pat-
terns), and to weight certain input features much more
strongly than others, when mapping from inputs onto
internal semantic representations. It also provided a
more natural way of presenting novel items to the
model: Rather than adding new units to represent new
information — a procedure to which Quinlan particularly
objects — new items could be presented as novel patterns
of activation across existing units. The use of distributed
input patterns, however, raised other issues that distracted
from the main insights we wished to communicate.
Specifically, such representations raise the question of
what kind of “perceptual” similarity structure should be
“built-in” to the inputs. Since we wished to show that
the model’s behavior does not depend upon building any
similarity structure into the inputs, we continued to
employ localist inputs for most simulations.

In short, our theory does not assume localist input rep-
resentations. Our models used these for simplicity in many
cases; but to demonstrate that the important effects did
not depend upon this simplification, we also explored
the use of distributed input representations. Similar
issues arise regarding the context units in our model — as
with the input units, we believe these representations to
be distributed. Although we did not run simulations with
distributed context representations in Semantic Cognition,
we did consider the relationship between our framework
and other models that learn distributed internal context
representations in Chapter 9.

The situation with the attribute units is somewhat differ-
ent: In this case, the outputs are in fact patterns with more
than one active unit. For example, for the input canary
can, the model learned to activate a pattern of activation
across output units (specifically grow, move, fly, and
sing). The pattern is coded over units that themselves
are individually labeled with particular attributes; but
what is important to the network is not the labels on the
units, but the similarity relations among the patterns
assigned to different items. In this regard, we think our
models make quite defensible first approximations: For
example, on the can units, canary overlapped the most
with robin, somewhat less with salmon and sunfish, and
very little with any of the plants. It is the pattern of
overlap (both within and across contexts) and not the
labels on the features that causes the network to learn
and to behave as it does. These points are discussed in
detail in Chapter 4 of our book.

R1.1.2. Simplified, unidirectional flow of activation. A
second way in which our models simplify our theory con-
cerns the flow of activation through the network. In
Semantic Cognition, we used only feed-forward models,
in which activation flows in only one direction, from
inputs through internal representations toward outputs.
In our theory, activation occurs as a recurrent, mutual-
constraint satisfaction process, in which all of the units
in the network participate in the activation of all other
units (see e.g., Farah & McClelland 1991; Rogers et al.
2004). Among other things, this means that activation
can flow both from internal representations toward rep-
resentations of specific sensory, motor, and linguistic attri-
butes, and from the attribute representations toward the
internal representations. The use of a feed-forward
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network greatly speeds up processing and learning in the
model, but it also raised two issues in the commentaries.

One set of issues that arises here pertains to the rep-
resentation of new items in the network (e.g., Snedeker,
Quinlan). In our feed-forward networks, the properties
of individual items are represented across the network’s
output units. Thus, to teach the network about something
new, we not only require a new input unit as previously
discussed; we also must provide specific information
about the item in the form of target outputs. From
such targets we used the backpropagation-to-activation
method to allow the model to derive internal represen-
tations of novel items when given information about
their properties. Although we see this approach as a
valuable extension of the connectionist framework
(introduced long ago by Miikkulainen & Dyer [1987])
that can easily be motivated in conceptual terms
(“Adjust your internal representation so that it accounts
for the specified target properties”) it might be felt that
presenting “input” to the network over output units is
unnatural and that backpropagation is implausible
biologically.

Appreciation of the computational properties of con-
nectionist models has often been diverted by concern
over the biological plausibility of backpropagation.
These models are not intended, however, to exactly repro-
duce the actual processing activity of real biological
neurons, but rather to make explicit certain computations
that real biological systems might carry out in slightly
different ways. In fact, it is now quite well established
that in recurrent networks, the difference between acti-
vation values at different time points can be used to
compute the very same error signals that are explicitly
computed by backpropagation (Hinton & McClelland
1988; Hinton & Salakhutdinov 2006; O’Reilly 1996).
Thus, the abstract computational consequence we pro-
duce using backpropagation may be implemented through
the activation process that occurs in a fully recurrent
network.

Regarding the presentation of “input” to a network
across its output units, this issue does not arise in fully
recurrent networks because the distinction between
input and output units disappears. Hinton’s (1981) seman-
tic network, the precursor of the feed-forward networks
used later by Hinton (1986; 1989) and then further simpli-
fied by Rumelhart, was a fully recurrent network. The
three elements of a ItemlI-Relation-Item2 proposition
like canary can fly are each represented by a pattern
over a set of units that can serve as input and/or as
output, and each has its own corresponding set of rep-
resentation units (see Fig. R1). External inputs applied
to any of the three input pools constrain the corresponding
hidden unit representations through the propagation of
ordinary activation signals. Thus, information such as the
fact that a previously unknown item can move can be rep-
resented as a pattern over the Relation and Item?2 pools,
and propagation of activation will then constrain the rep-
resentation assigned to this item over the Iteml internal
representation units. In general, in recurrent models of
semantic cognition, which we have employed extensively
in other work (e.g., Farah & McClelland 1991; Lambon
Ralph et al. 2007; Rogers et al. 2004), there is no need
to treat some units exclusively as “inputs” and others as
“outputs.”
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Hinton, 1981

Hinton, 1986

Rumelhart, 1990

Canary  Can Sing

Figure R1. Schematic diagram illustrating the progressive
simplification of Hinton’s (1981) semantic representation
model. The model was made strictly feed-forward in Hinton
(1986; see also Hinton 1989), and then further simplified by
Rumelhart (1990).

A separate issue concerns differences in processing
dynamics between feed-forward and recurrent networks.
Specifically, in feed-forward networks, a given input gen-
erates an essentially static pattern of activation across
successive layers. In recurrent networks, a given unit can
influence and be influenced by the other units with
which it is connected. Consequently, a given input initiates
a dynamic interaction among units, and the resulting pat-
terns of activation across units can evolve over time in
complex and nonlinear ways. In particular, they can
exhibit attractor dynamics, that is, a tendency to settle
from any of a range of inputs into the same final state or
fixed point. Also, the use of fully recurrent networks
may, as Kropff & Treves suggest, help explain abrupt
transitions in the course of cognitive development; slight
changes in connection weights can suddenly lead to a
change in the attractor structure, causing relatively
abrupt transitions even if the underlying connection
changes are subtle and gradual.

While we share Kropff & Treves’s enthusiasm for
attractor networks, we would note that the abruptness
of developmental transitions may often be overstated. In
fact, some developmental psychologists who used to
argue for very discrete jumps from stage to stage in per-
formance of certain tasks now advocate an “overlapping
waves” model (Siegler & Chen 1998), and there are
many signs of a fairly gradual change accompanied by a
gradually increasing sensitivity to previously ignored
information (McClelland 1995; Schapiro & McClelland,
in press). Thus, while there may be good reasons to
favor models with attractor dynamics, we are not sure
that purported discontinuities in development are
among them. The patterns of acceleration and decelera-
tion seen even in feed-forward networks, discussed exten-
sively in Semantic Cognition, Chapter 3, may be sufficient
to address most aspects of these data (Schapiro &
McClelland, in press).

In summary, we view the feed-forward networks that we
have used as simplifications of the dynamically more
complex, highly recurrent networks that are likely to be
at work in the brain. Analysis of learning and processing
in fully recurrent models is more difficult, though, and
the use of backpropagation-to-activation in a feed-
forward model captures much of what we might otherwise
rely on recurrent networks for. We are interested in
further exploring differences between these types of

networks in their ability to explain patterns of change in
development.

R1.1.3. Simplified environment. The third major simplifi-
cation adopted in our work is in the training “environ-
ment,” that is, the set of patterns used to train the
network. This is, of course, true of essentially all modeling
work in this domain, connectionist or not, and as in all such
work, the key question is whether the simplifications we
have adopted capture enough of the characteristics of
real-world structure to be interesting, or whether they
are unrealistic in ways that critically influence the reported
results.

According to ter Meulen and several others (Kemp &
Tenenbaum, Rakison & Lupyan, Quinlan), children do
not experience all of an item’s properties every time they
encounter the object. As a criticism of our model, this
point is off target, since the model receives information
at the same time only about those properties that are rel-
evant to the current context. In the ISA (naming) context,
for example, the model learns about an item’s names;
whereas in the has context, it learns about the item’s
parts; in the can context, it learns about behaviors; and
so on. Context-sensitivity in our models is specifically
intended to address precisely the concerns that the
authors raise, that children only get exposed to partial
information about an item’s properties in any given situ-
ation or context.

This point aside, it is certainly the case that, for all of our
models, both the training patterns themselves and the range
of contexts in which items are encountered are hardly
realistic, as Robbins notes, for instance. Does this simpli-
city undermine our arguments in favor of the overall
approach exemplified by our simulations? For one thing,
even the most complex model only learns about 21 different
items, all living things. We think it is fair to ask whether
the theory can scale up well to much larger training
environments based on naturalistic corpora. The appli-
cation of connectionist models to such corpora has been
a key goal of work by McRae and colleagues (Cree et al.
1999; McRae & Cree 2002; McRae et al. 1997), who
have successfully used their models to understand a
variety of phenomena in priming and speeded property
verification. We would be deeply gratified if others
would join us in exploring this extension of our work. In
this connection it may be worth noting that recent
advances on the machine learning side of connectionist
modeling have greatly increased the efliciency of learning
in connectionist networks (Bengio et al. 2006; Hinton &
Salakhutdinov 2006; Ranzato et al. 2007), and we are
actively planning to work on such extensions drawing on
these developments.

Specific criticisms can also be leveled at the particular
contexts and attributes used in our networks. For
example, the network is trained with attributes labeled
can grow and ISA living thing. It seems unlikely that chil-
dren have access to such information at early phases of
their development, but it is important to recognize once
again that the model’s behavior is determined, not by
the specific labels given to the Item, Context, and Attribute
units, but by the relationships among the patterns with
which it is trained. The important point is that the can
grow and ISA living thing attributes are shared by all of
the items in our training environments. We think it
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defensible that, in fact, plants and animals do share some
attributes in common that are accessible to young children
(again, see Semantic Cognition, Ch.4, for discussion).

What is important for the model is that, in the patterns
used to train our networks, the attributes show systematic
coherent covariation across the different items and con-
texts. Our theory explains many of the key phenomena
in development (and adult semantic cognition) with refer-
ence to the ways that this assumed structure influences
learning and processing. For these explanations to be
correct explanations of the phenomena as they occur in
humans, it must be the case that the actual experiences
of children exhibit the structure that our simulations
suggest is important. For example, we found that basic-
level naming advantages arise in the model when
basic-level labels pick out sets of things that share many
properties with each other and few properties with other
sets of things (as Rosch et al. [1976] originally proposed).
If it is not the case that members of basic-level categories
share many properties with one another and few with
members of contrasting categories, then this would
provide evidence against our account of basic-level
effects. In this particular case, empirical evidence supports
the assumptions that guided the construction of the
training corpus: Basic level categories do appear to maxi-
mize distinctiveness and informativeness, as assessed
in a variety of norming and experimental studies over
the years (McRae et al. 2005; Murphy 2000; Rosch et al.
1976; Tanaka & Taylor 1991). Thus, whether or not
the specific patterns used in our simulations are fully
realistic in the sense that they capture information about
the properties of a large set of actual objects that people
are likely to know about, they may be realistic in the
sense that they capture the essential aspects of structure
that are important, under the theory, for producing the
effects of interest.

In our view, the place where the theory is in most need
of development is in the enrichment of its Context rep-
resentations. We relied on a very small and somewhat arbi-
trary set of possible contexts, which came initially from the
small set of relations used in Collins and Quillian’s (1969)
propositional hierarchy and were in turn adopted by
Rumelhart. But as Hampton points out, the range of vari-
ation of object properties across contexts is extremely rich,
with important, and as yet unexplored, implications for the
nature of conceptual representations. We look forward to
extensions of our theory into a fuller investigation of these
issues.

In summary, some of the features of the models used in
Semantic Cognition are deliberate simplifications that
should not be confused with assumptions of our under-
lying theory. It is important to be clear about where we
have simplified, and we hope the preceding discussion
clarifies these issues. It is also legitimate to ask: If we
had not employed these simplifications, would a more
complex model based on the theory still exhibit the
phenomena we have illustrated with the simple models?
If the answer is “yes,” then the simpler model can be
viewed as a useful tool for understanding the behavior of
the more complex reality that fully conforms to the prin-
ciples of our theory. It would be possible to construct a
more complex model that is truer to the theory, and
there are good reasons why this should be pursued, but
there will still be a place for the simpler models of the

734 BEHAVIORAL AND BRAIN SCIENCES (2008) 31:6

kind we have used, that exhibit many of the fundamental
characteristics of our approach very clearly.

R2. Are there aspects of semantic cognition our
approach cannot address?

Several commentaries focused on phenomena that we
have not yet addressed in our work. We agree with
Marcus & Keil when they state that we have not shown
that “intercorrelations alone suffice for human reasoning.”
A full account of all aspects of human reasoning is surely a
task that will require far more than one book, and certainly
new insights will be required before these books can be
written. We do hope and expect that some of the ideas
in Semantic Cognition will play a role in the gradual emer-
gence of these insights.

For the most part, we found the focus in many of the
commentaries on the yet-to-be-explained very positive,
since it points to new opportunities to extend the coverage
of the theory. We found that these comments fell into
three types: Phenomena outside the current scope of the
theory, either because we do not aspire to extend our
approach to them, or because they lie beyond its current
reach; phenomena to which the approach might relatively
easily be extended; and phenomena that seem to challenge
fundamental aspects of our approach. We consider the
first type briefly before turning more detailed attention
to the last two.

R2.1. Phenomena outside the theory’s current scope

There are aspects of human cognition that we do not plan
to address within our framework. For example, as Feeney,
Crisp, & Wilburn (Feeney et al.) note, we have not tried
to address explicit deductive inference — that is, the
process of reasoning from premises to conclusions via
the rules of logic. As we discussed in Chapter 9 of our
book, we do believe these processes are deeply influenced
by the kinds of implicit knowledge addressed in our book,
and this separates us from cognitive scientists who treat
the processing of logical syllogisms and other formal struc-
tures as indicative of the fundamental nature of human
thought (e.g., Fodor & Pylyshyn 1988; Marcus 2001).
We take the alternative view that such processes, though
they can be mastered with practice, are not the natural
basis for human cognition. Instead they are acquired
skills that depend like other aspects of cognition on exten-
sive relevant experience.

Just outside our model’s current scope lies an important
direction for future development of our approach: to
address the relationship between the kinds of implicit pro-
cesses examined in our model and processes that control
or regulate these processes. Feeney et al. review evi-
dence that control processes play a role even in fairly
simple inductive inferences of a kind we think our model
should address. We think this role occurs through the
internal manipulation of context representations and the
internal re-use of outputs of implicit cognitive processes
as re-entrant inputs to the system, rather than through
the use of some completely separate type of processing
system. The PDP model of control of automatic processes
in the Stroop task (Cohen et al. 1990) and the latter part of
the chapter in the PDP books on schemata and sequential
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thought processes (Rumelhart et al. 1986¢) discuss these
ideas. We agree with Feeney et al. that the fleshing out
of these ideas will require another book.

A successor to our approach may someday begin to
address the phenomena of insight and creativity — crucial
features of human cognition that are not easily captured,
we believe, in systems like those envisioned by .
Fodor & Pylyshyn (1988) and Marcus (2001), and Wthh
a complete theory of human cognition should ultimately
address. It is our belief that these characteristics of
human thought arise from graded constraint-satisfaction-
based processes dependent on implicit knowledge
acquired by mechanisms of the sort that we explore in
our book (as these are guided by control processes)
rather than from the application of structure-sensitive or
“algebraic” processes of the kind favored by Fodor and
Pylyshyn (1988) and Marcus (2001). Actually developing
a model that addresses these topics will be a challenge
that is certainly worth undertaking.

R2.2. Phenomena compatible with the approach

The next group of phenomena are those we believe our
framework could readily address, but which have not
been a focus of our work to date.

R2.2.1. Initial saliency. Mandler, Quinn, and Rakison &
Lupyan point out that although all properties are given
equal initial weight in our simulations, in fact some prop-
erties are likely to be initially more salient to infants and so
are likely to strongly shape early concept learning. As we
indicated in Semantic Cognition, Chapter 4, saliency vari-
ations across different kinds of information can easily be
incorporated into our framework. Salient features can be
given more “weight” in a connectionist network in a
number of ways: by scaling error derivatives accruing on
the units that represent such properties; by scaling the
learning rate associated with these properties; or by
using more units to represent them. Any or all of these
strategies would be available to evolution as a simple
way of adjusting the relative salience of particular stimulus
dimensions or attributes. We are not opposed to the possi-
bility that development may reflect, in part, differential
salience of some types of information relative to other
types. Our effort has been to show that, in models with a
convergent architecture, saliency scaling can arise auto-
matically for properties that exhibit coherent covariation
with one another. This kind of emergent saliency may be
sufficient to account for many developmental phenomena,
and where there is a convincing case to be made for differ-
ential salience of certain types of information, it is possible
to incorporate this into the framework.

R2.2.2. Cross-linguistic influences on concepts. Majid
& Huettig note evidence that people in different linguis-
tic communities may organize their concepts somewhat
differently, suggesting that the way we refer to objects
and events in speech may influence the concepts we
acquire. We agree with these points, and they are comple-
tely compatible with our framework, where producing and
comprehending language is one of many abilities sup-
ported by the semantic system. In our models these abil-
ities are supported in a small way through the ISA
relation and attribute units, which capture information

conveyed primarily through explicit labeling of objects
by others in the environment. Consequently, the structure
of a given language will influence the concepts we acquire,
just as will other kinds of culture-specific experiences,
including different degrees of exposure to different kinds
of information, differential emphasis on certain distinc-
tions in some languages or cultures relative to others,
and so on. Some such influences were examined in our
simulation of phenomena in expertise (see Semantic Cog-
nition, Ch. 5), and other recent work is extending these
ideas (Dilkina et al. 2007).

R2.2.3. Different kinds of situations and contexts. Hamp-
ton notes that the different contexts adopted by our mod-
els — the situations in which different items are encoun-
tered that determine which attributes are of current
relevance — are  extremely simplistic, and wonders
whether they could be expanded, perhaps by adopting a
more extended context-coding scheme such as that
employed by McRae and colleagues (e.g., McRae et al.
2005). We agree that a richer variety of contexts is necess-
ary for further development of the theory. In addition to
considering “semantically based” kinds of contexts, as
Hampton suggests, we believe that it will be important
to consider the temporal context in which items are
encountered — thatis, the sequence of events surrounding
a particular encounter with an item — as well as other
aspects of context, such as the particular settings in
which various items are encountered, the items with
which they tend to interact, and the linguistic contexts
in which objects are designated by category labels at differ-
ent levels of specificity. These and related issues are dis-
cussed in Semantic Cognition, Chapter 8.

R2.2.4. Accounting for delusions and other forms of
semantic dysfunction. A major part of our research
effort has been to use our models to better understand
disorders of semantic cognition occurring as a conse-
quence of neurodegenerative illnesses and other forms
of brain damage (e.g., Lambon Ralph et al. 2007; Rogers
& Patterson 2007; Rogers et al. 2004). MacDonald
inquires whether our framework could further aid in
understanding neuropsychiatric disorders in which delu-
sions are a significant feature. For instance, some theorists
have proposed that Capgras syndrome — where the suf-
ferer believes that close family and friends have been
replaced with impostors — arises from a functional discon-
nection between the systems that mediate person-recog-
nition and the limbic system (Ellis & Lewis 2001).
Loved ones are recognized but fail to evoke the expected
emotional response, a failure subsequently interpreted as
evidence that that the individual is not “really” who she
claims to be. This theory has a straightforward interpret-
ation under the fully recurrent model implementations
of our theory: Disruption of connections between the inte-
grative semantic pool and a separate “limbic” pool that
encodes emotional responses, for example, could
produce partial recognition of a person without the associ-
ated emotional response.

In summary, the four phenomena considered here
exemplify ways in which the theory might be fruitfully
extended. The fact that the theory could likely be extended
to address them testifies to its breadth and utility.
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R2.3. Phenomena that challenge our framework

The third group consists of phenomena raised by several
commentators (Opfer & Doumas, Marcus & Keil,
Quinlan, Kemp & Tenenbaum) as fundamental chal-
lenges to our theory. These are aspects of human cognition
that the commentators believe to be (1) a critical part of
semantic cognition and (2) beyond the ability of our
theory, in principle, to capture.

These comments almost all focused on the common idea
that “deeper” aspects of human thinking involve setting
aside superficial similarity relationships (e.g., physical simi-
larity) among items, and taking note instead of similarities
among the relations between items. On this view, two struc-
tured entities (domains, situations, etc.) are thought to be
analogous if the items within them enter into a similar
pattern of interrelations with one another. And, to the
extent that two structures are analogous, alignment of the
structures can promote detection of similarity (and sub-
sequently inductive inference) between items that other-
wise may have little in common (Gentner 1983). As one
simple example, foxes prey on hens just as eagles prey on
mice. By virtue of the shared preys on relation in these
propositions, it is possible to recognize that eagles and
foxes are in some sense similar kinds of things — more
similar, in this respect, than are eagles and chickens, even
though eagles and chickens may share more properties.
The ability to detect such relational similarities and to use
these to reason about object properties is thought by
many to require knowledge representations that explicitly
mark relations among different items — such as, for
example, directed graphs or propositional hierarchies.

Accordingly, several commentators have raised ques-
tions about our framework’s ability to deal with relations
effectively. As one example, Opfer & Doumas state that:

children, unlike a PDP network, can represent these relations
and their fillers in a manner that preserves relation-filler inde-
pendence (i.e., relations and their fillers are represented inde-
pendently), while simultaneously representing the bindings
between roles and fillers in an explicit and dynamic fashion.
Thus, children can appreciate how ‘Fido chases Felix’ is like
‘Felix chases Fido’ (same elements involved in the same
relation) and how they differ (role-bindings are reversed).

A similar statement is made by Marcus & Keil, who
suggest that such role-filler bindings cannot be achieved
by connectionist networks without a “combinatorial
explosion of input nodes.” Kemp & Tenenbaum reiterate
these points, and further indicate skepticism that our fra-
mework could ever cope with the indefinite variability in
the number of roles associated with different relations
(e.g., two in chase (dog, cat) versus three in eat (boy,
cereal, spoon) — what they call different “arities”), nested
relations (e.g., eating food causes the canary to grow), or
the ability to discern similarities among different kinds of
relations (e.g., the fact that the relation terms has and pos-
sesses have near-identical meanings).

It is true that the simple Rumelhart network used in
Semantic Cognition has some of these limitations, but
these do not reflect a fundamental limitation of the frame-
work. Indeed, three of these issues — the issue of relation-
filler independence and binding raised by Opfer &
Doumas, the problem of achieving role-filler binding
without “a combinatorial explosion of elements” raised
by Marcus & Keil, and the issue of different “arities”
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and nested relationships noted by Kemp & Tenenbaum —
were addressed by the Sentence Gestalt model (St. John &
McClelland 1990), which employed a simple recurrent
network architecture in which a series of inputs are inte-
grated over time into a single learned internal represen-
tation (Fig. R2). In this case, sentences involving any
number of relations were presented to the model one
word at a time, and the model was trained to answer
queries about the meaning of the sentence. After training,
the model would generate a distributed internal represen-
tation for any given sentence — the “sentence gestalt” —
from which it could produce the answer to any question
about the fillers of every role. Each sentence included a
subject and several other optional arguments; and word
order, prepositions, and semantic information determined
the assignment of fillers in the sentences to roles including
agent, patient, recipient, and instrument. Only the relation
role appeared obligatorily in all sentences (the surface
subject role was always filled as well, but its underlying
role could vary as in, e.g., “The boy broke the window,”
“the window broke,” “the hammer broke the window,”
“the car was parked,” etc.). An extension of this model
by Rohde (2002) further addressed the issue of embedded
relational structures.

Both of these models can be probed specifically for the
filler of each of the roles in a sentence, including, crucially,
the filler of the relation role. This would allow specification
of the exact ways in sentences like “Fido chases Felix” and
“Felix chases Fido” (or “lectures about movies” and

St. John and McClelland, 1990

F——— =

Sentence Gestalt
o

\/\
A

= knife

1. Instrument?
« Boy butter H with knife

Figure R2.  Sentence Gestalt model of St. John and McClelland
(1990). In this model, words making up declarative sentences are
presented one by one over the input layer of the network (pool of
units at lower left). Each word is used, together with the sentence
gestalt representation derived from the previous word, to create
an updated sentence gestalt. Probes querying the filler of one of
the roles in the sentence can be presented to the probe units. In
the example shown, the words “Boy” and “spread” from the
sentence “Boy spread butter on bread” have so far been
presented. The network, when queried for the instrument, can
already respond “knife” since in its experience knives are the
only instruments used for spreading. Note that the sentences
may contain an indefinite number of roles, one of which is the
“action” role. A later model by Rohde (2002) extended the
probe syntax to allow querying specific arguments of specific
clauses of multi-clause sentences.
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“movies about lectures”; see Marcus & Keil) are similar
(they involve the same relation) and how they are different
(the fillers of the roles associated with these relations are
reversed). The Sentence Gestalt model also learned
appropriate similarity structure among the relations
appearing in its training corpus (as did Elman’s [1990]
simple recurrent network model and Hinton’s [1989]
family trees model). Because the Sentence Gestalt
model learned internal representations of sentences
from inputs arriving one word at a time, it could capture
role-filler bindings without encountering the “combinator-
ial explosion” of input nodes alluded to by Marcus & Keil.
Rohde’s (2002) extension of the model to embedded
relations showed that the framework has no difficulty
with the nested relations raised by Kemp & Tenenbaum.

In sum, many commentators appear to hold the intui-
tion that our framework is incapable of dealing with knowl-
edge about relations and view this as a critical flaw. The
Rumelhart network’s simplicity perhaps invites this reac-
tion, but precisely these issues have been addressed
in prior work. In Semantic Cognition, Chapter 9, we
discuss alternative network structures, based in part on
the Sentence Gestalt model and Rohde’s (2002) extension
of it, that would address these limitations while still preser-
ving all of the positive features of our approach.

R2.4. Are connectionist networks merely statistical
engines of a familiar kind?

We have not yet addressed three important points raised
in the commentaries concerning the putative limitations
of PDP approaches to cognition generally, and to semantic
cognition in particular. Two were previously noted: The
first of these is Kemp & Tenenbaum’s claim that our
theory cannot explain how people learn that different
relation terms, such as has and possesses, have similar
meanings. The second is the claim that our model will
have difficulty capturing very abstract semantic relation-
ships and concepts, such as the concept predator, which
appears to group items, not on the basis of property
overlap, but on the basis of a given item’s relationship to
other items — so that the eagle and fox are considered
similar “kinds,” whereas the eagle and chicken are
considered different “kinds,” despite the fact that eagles
and chickens certainly share many properties with one
another. We suspect that both of these issues arise from
the underlying concern that connectionist models can
only capture similarity structure that arises from direct
property overlap. If our models only come to represent
items as similar when they share sets of observable prop-
erties, then it is difficult to understand how we come to
know that very dissimilar items are, in some ways,
similar “kinds” of things; or how very abstract terms,
such as relationship terms, might have quite similar
meanings.

The third point is related and concerns statements by
several commentators to the effect that connectionist
models are merely statistical learning machines. For
instance, Borsboom & Visser state that they only
perform “statistical categorization procedures,” which
they take to include hierarchical clustering analysis,
factor analysis, principle components analysis, regression,
and multidimensional scaling; Marcus & Keil call them
“finely tuned statistical engines”; and Quinlan describes

>

them as “connectionist counting machines.” It is difficult
not to see such comments as dismissive of the general
approach. Borsboom & Visser, for example, recommend
that — since we use a variety of statistical methods to
understand the model’s behavior anyway — we simply dis-
pense with the model and apply the same more standard
statistical methods directly to the model training patterns.
The assumption appears to be that the connectionist learn-
ing procedures themselves contribute essentially noth-
ing — that standard multivariate analyses of the training
patterns would reveal the same structure that emerges in
our model; and that the various phenomena we account
for in the book, such as the progressive differentiation of
concepts, domain-specific patterns of attribute weighting,
basic-level advantages in naming, and so on, would be
fairly transparently related to the kinds of results yielded
by these more standard analyses. A similar sentiment
may underlie Quinlan’s statement that the model only
discovers structure that is obvious given the training
examples, and Snedeker’s suggestion that the “concepts”
the model acquires are essentially built in.

The logic underlying such conclusions is not clear to us.
It seems to be something like the following: Connectionist
models are a kind of statistical categorization procedure;
therefore they must have the same properties as other stat-
istical categorization methods; therefore one can apply
other methods to the same patterns to equal effect. But
this is a fallacy, akin to concluding that bats, because
they are mammals, must not be able to fly, since most
more-familiar mammals cannot fly. Connectionist models
may be a kind of “statistical categorization procedure”
under some definitions, but this does not mean that they
have exactly all and only the same properties as other stat-
istical procedures.

We believe that connectionist models differ from many
familiar statistical procedures in important ways. In the
current section, we wish to demonstrate that this is so by
doing just as Borshoom & Visser and Quinlan suggest:
by showing that our models can learn structure that is
not discovered by two commonly used unsupervised analy-
sis methods, namely, hierarchical cluster analysis and prin-
cipal components analysis. Furthermore, we will show that
this structure is precisely the very abstract kind of struc-
ture that Kemp & Tenenbaum and others suggest is
beyond the capability of connectionist approaches: Our
model learns to treat items as similar when they enter
into similar relations with other items even if they have
no direct property overlap (as in the case of the predator
concept); and it learns to treat different relation terms as
similar when they capture comparable patterns of simi-
larity among different items, even if they are associated
with completely non-overlapping sets of properties.

Our demonstration relies on a corpus of patterns similar
to those used in the simulations reported in Semantic Cog-
nition, but coming in four completely non-overlapping
sets, which we will call domains. Each domain contains
eight items, and within each domain, the items can be
encountered in four different contexts. The contexts do
not overlap across domains — each domain has its own
set of four contexts. Finally, each item has a set of attri-
butes pertaining to it in each context, and as with items
and contexts, each domain has its own completely distinct
set. Thus, across domains, there is no overlap of any kind
in any of the Item, Context, or Attribute layers.
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Within a given domain there exists similarity structure
in the overlap of output attributes across items; and this
similarity structure among the eight items within a
domain is identical across the four domains. To see this,
consider the similarity relations in Figure R3, which
shows a hierarchical cluster analysis of the output patterns
describing all 32 individuals. The cluster algorithm
strongly differentiates the four domains, since individuals
in different domains share no properties. The plot also
shows that the within-domain similarity structure is the
same for every domain: the shape of the tree beneath
each superordinate node is identical. In this sense, the
domains are “analogous” or “alignable.” Each domain con-
tains two very similar individuals (squares), four individ-
uals that are very similar to one another but distant from
their other domain members (circles), and two “oddball”
individuals (stars). It is important to note that this cross-
domain structure is completely absent from the network’s
inputs (which are all localist) and from its outputs (see top
panel of Fig. R3).

In other words, although items from different domains
share no properties in this data set, there exists a
second-order isomorphism across the domains: The indi-
viduals represented as circles of varying shades, for
instance, have no properties in common, but each
relates to the other individuals in its own domain in pre-
cisely the same way.

The architecture we employed for this simulation is
shown in Figure R4. It is similar to that used in our
book, except that we have added an additional hidden
layer between the Context input units and the Hidden
layer, so that the model must learn to represent each of
the different contexts with a distributed pattern of acti-
vation across the units labeled Context Representation.

What does this version of the Rumelhart network learn
about the 32 items in this corpus? To answer this question,
we trained the model in the usual way. The connection
weights in the network were initialized with very small
random values, and on each trial, an Individual and
Context unit was activated in the input. Activations were
computed in a forward pass; the difference between the
actual and desired outputs was computed and transformed
to a measure of error; and the weights were adjusted in a
backward sweep so as to reduce the error. The model was
trained for 30,000 epochs without momentum and with a
learning rate of 0.05, at which point 99% of the output
units were activated to within 0.1 of their target values.
We then stepped through the 32 individual inputs,
recorded the learned pattern of activation across Rep-
resentation units for each item, and computed the Eucli-
dean distance matrix describing the dissimilarities among
these learned representations. This simulation was run
five times with different initial starting weights, and the
resulting distance matrices were averaged across simu-
lation runs, to ensure that the results do not reflect
chance findings from a particular set of starting weights.

Figure R5 shows a hierarchical cluster analysis of the
average distance matrix from these simulations. The
model clearly finds a different organization of its internal
representations than that expressed in the output vectors
directly: In the representations learned by the network,
individuals with corresponding similarity relations to
other items within each domain are now treated as
similar. The second-order similarity is now the dominant
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organizing structure in the representations assigned to
these items in the network. This occurs, even though
these individuals have no properties in common.

Again, this result is not a strange artifact of the cluster-
ing algorithm, but can be observed directly in the pairwise
distance matrix itself (Fig. R5 top): The model clearly cap-
tures cross-domain similarity structure based on an indi-
vidual’s role within the domain, while representing as
dissimilar individuals who actually share some overt prop-
erties in common but who play very different roles within
the same domain.

It looks as though the “statistical categorization pro-
cedure” embedded in connectionist models is different
in some important ways from the procedures some of its
critics (especially, Borshoom & Visser) equate it with.
Multi-layer connectionist networks can certainly be seen
as a kind of statistical learning machine, but they differ
from other such procedures in their ability to discover
interesting internal representations of their inputs as a
consequence of the learning procedure and the particular
network architecture. These differences make such net-
works especially relevant for understanding human
semantic cognition. In this case the simulation demon-
strates that there need not exist any direct overlap of prop-
erties in order for the model to learn to represent sets of
items as similar to one another. That is, the model is
capable of learning a kind of analogical similarity struc-
ture — representing as similar the items that occupy
similar positions within alignable structures.

This simulation builds on the early “family trees” simu-
lations of Hinton (1986; 1989), and there are other related
demonstrations of transfer between non-overlapping
patterns in simple recurrent network simulations (e.g.,
Dienes et al. 1999). There is one important difference
between our simulation and Hinton’s, however. In
Hinton’s simulations, items from different domains (i.e.,
members of different families) could appear in the same
context (i.e., with the same “relation” unit activated in
the input), so that in fact input patterns did overlap some-
what across domains. In contrast, we have used completely
distinct context input units in each of the four domains so
that items from different domains never overlap in any way
in the input or output. So, we can also ask: Has the
network learned anything interesting about the contexts
themselves? Has it, in fact, been able to discover the
cross-domain similarities in these contexts?

To answer this question, we used principal components
analysis (PCA) to examine the similarities among (1) the
output patterns associated with each context, and (2) the
similarities among the 16 context representations learned
by the model. Figure R6A shows plots of the first two com-
ponents of a matrix encoding the average of the output
patterns associated with each of the 16 individual contexts.
Because each context is associated with a completely non-
overlapping set of output properties, there is very little
structure for the analysis to discover. The first component
thus weakly differentiates the four individual contexts
from domain 1; and the second component weakly differ-
entiates domain 1 from all other domains. Subsequent
components similarly serve to differentiate the individual
contexts from one another without revealing any interest-
ing substructure. As shown in Figure R6B, the same
analysis conducted on the model’s learned internal
representations of contexts yields quite different results.
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Figure R3.

Similarities among the output training vectors for 32 items (collapsing across context) as captured by the actual pairwise

distance matrix with cells shaded to reflect Euclidean distances between patterns (top) and by a hierarchical cluster analysis of these
distances (bottom). The symbols to the left of the distance matrix indicate the branch labels shown on the cluster plot. Because there is
no feature-overlap across domains, both snapshots of the output data suggest that items from different domains should be treated as
distant from one another. Thus the distance plot shows no overlap at all between items in different domains; and in the cluster analysis
places items from the same domain beneath a common superordinate node. Both plots also show that, within each domain, the eight
items enter into precisely the same set of similarity relationships with one another: the patterns of pairwise distances within domain are
identical in the distance plot; and the shape of the tree beneath each superordinate branch is identical across domains.

In this case, the first principal component neatly
organizes the contexts in a cross-domain fashion: context
1 in domain A is represented as similar to context 1 from
domains B, C, and D, but different from other contexts;
context 2 from domains A-D are represented as similar
to one another and different from other contexts; and so
on. The second component serves to differentiate the
individual contexts, but with little additional apparent
structure.

Why does the model learn to treat some contexts as
similar to one another? The reason is that any given
context captures a certain set of similarity relations
among the items in the associated domain; and these simi-
larity relations are also expressed in the corresponding
contexts from the other domains. That is, context Al cap-
tures the same similarity relations among domain A
members as does context B1 among domain B members,
context C1 among domain C members, and context D1
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Figure R4. The architecture employed in our new simulations. As in the Rumelhart architecture, different individual items and
contexts are represented locally in the input, and representations of attributes are distributed across output units. In this case, input
items and contexts are organized into domains so that items from different domains never overlap in their inputs or outputs. In
addition to learning a distributed internal representation of each individual, this model must also learn a distributed internal
representation of each context (Context-rep) that is independent of the particular item being processed.

among domain D members. So, contexts Al, B1, C1, and
D1 get represented as similar to one another. Context A2,
in contrast, captures a different set of similarities among
domain A members, and so gets represented as quite
different from context Al. Though this simulation is
abstract, it is easy to see that two different relations with
near-identical meanings (whether in the same language
or in different languages) — such as have, possess, and
avoir — will come to be treated as quite similar by our
model, contrary to the intuitions expressed by Kemp &
Tenenbaum in their commentary.

In short, the model is capable of learning correspon-
dences across domains between (1) items that share no
input or output properties but relate to other items in
their domains in similar ways and (2) relations/contexts
that share no input or output properties, but which
organize concepts in similar ways. These correspondences
were not captured by other multivariate techniques
applied to the output patterns themselves.

740 BEHAVIORAL AND BRAIN SCIENCES (2008) 31:6

R2.5. They said it couldn’t be done

In his commentary, Quinlan urges a focus on what con-
nectionist networks like ours cannot do, and comes to a
pessimistic assessment. Although his list of “can’ts” is
short, others provide their own lists, and, if models like
ours could do none of these things, it would indeed be
worth discarding them for alternatives. But let us reconsi-
der some of the key items on the list.

Connectionist networks can’t learn relational similarity
(Feeney et al; Marcus & Keil; Opfer & Doumas;
Quinlan). In fact, they can. Indeed, ongoing work is
beginning to show how this sensitivity to relational simi-
larity can be exploited to explain specific phenomena in
the empirical study of abstract concepts, analogy, meta-
phor, and so on. Clearly, dismissal of the research
program on the basis these perceived limitations is not
warranted.

Connectionist “counting-machines” are no different
from “statistical categorization procedures” (Borsboom
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Figure R5.  Similarities among the representations of 32 items learned by the model, as captured by the pairwise Euclidean distance
matrix and by as hierarchical cluster analysis. In contrast to the analysis of the attribute vectors themselves (Fig. R3), the learned
representations capture substantial cross-domain structure: items that play similar roles within their respective domains get
represented as more similar to one another than do items that play quite different “roles” within the same domain.

& Visser; Quinlan). We have shown that they are differ-
ent. Principal components analysis and hierarchical cluster
analysis both fail to discover structure that our network
discovers.

All the interesting structure is “built in” to the inputs
and outputs by the experimenters, so any old structure-
sensitive  statistical method will find it (Snedeker;
Quinlan). While the structure is in some sense in the
input, it is not true that just any statistical procedure will
find it. In fact, as we have repeatedly stressed, the ability
of our models to learn about cross-context and cross-
domain structure in its training environment depends cri-
tically upon the convergent architecture used in our
models. Models trained on exactly the same patterns
with a different architecture would not acquire the same
internal representations and would exhibit completely

different patterns of learning and generalization. The con-
vergent architecture encourages the discovery of cross-
domain structure, a property we view as crucial for our
domain-general structure-sensitive learning procedure.

It is impossible to learn new concepts in a connectionist
system (or any other learning system), according to Sne-
deker, citing Fodor (1998). Our model learns to group
together items that have nothing in common in the input
or the output, but that all relate to their respective
domains in similar ways. If one considers the input and
output units to correspond to “innate concepts,” as Snede-
ker suggests, then the model has essentially learned a new
set of concepts — concepts that, like prey and predator,
transcend the particular domain (e.g., of land animals or
sea creatures) but that relate corresponding items across
these domains.
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Figure R6. Principal components analyses of the 16 different contexts in the model training environment. The left panel (R6A) shows
the first two components extracted from a matrix containing, for each context, the associated pattern of output activations averaged
across all items. The right panel (R6B) shows the first two components extracted from the model’s learned internal representations
of the different contexts. Even though different contexts are associated with completely non-overlapping sets of output attributes,
the model finds interesting structure that is not apparent from analysis of the training patterns alone. Specifically, it treats contexts
as similar if their associated attributes express similar patterns of overlap among the eight items in each domain.

Connectionist networks can’t learn about how different
contexts are similar to or different from one another.
Kemp & Tenenbaum suggest that, because our model
uses different units to represent different relations, it
will not be able to learn that different relations can be,
in some respects, similar. We have previously seen that
they were wrong about this through the example of the
Sentence Gestalt model, and our new simulation
reinforces this demonstration.

In summary, our simulation illustrates that the capabili-
ties and behaviors of even very simple feed-forward neural
networks continue to be widely misunderstood and
counter to the intuitions of many researchers in the
field. Several of the critiques of our work appear to be
based on mistaken claims about in-principle limitations
of the framework. The very fact that these misconceptions
are so ubiquitous provides evidence supporting our earlier
argument regarding an important function of modeling
work: It allows the theorist to uncover, demonstrate, and
communicate insights about possible cognitive mechan-
isms that run counter to intuition.

R3. Different levels of analysis or alternative
frameworks for capturing structure in cognition?

One remaining issue arising in the commentaries concerns
levels of analysis in cognitive science. This issue was most
directly raised by Kemp & Tenenbaum, who take the
position that PDP approaches and structured approaches
are compatible, aiming at explanations at different levels
of analysis, as also suggested by Smolensky (1988).
Though other commentaries were less explicit about
levels of analysis per se, several commentators argued
that full accounts of semantic cognition will require
some form of structured symbolic representation (Opfer
& Doumas, Marcus & Keil) and/or the exploitation
of “rational analysis” (Quinlan, Feeney et al.). Thus,
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while our following comments directly address Kemp &
Tenenbaum’s remarks, they may be relevant to the
points of some of these other commentators as well.

We agree that there are different ways of thinking about
levels of analysis and the place of connectionist models in
these taxonomies. We do not agree, however, that the
difference between our approach and structured probabil-
istic approaches adopted by Kemp & Tenenbaum is
primarily one of levels. Connectionist approaches may
seem to be cast at a different level from some other
approaches, but we believe this is a misperception. To
us, the difference between our approach and Kemp &
Tenenbaum’s is one of overall framework, and cuts
across Marr’s (1982) computational, representational /
algorithmic, and implementational levels. In what
follows, we briefly contrast two such frameworks in cogni-
tive science. Both take seriously the issue of levels — the
idea that there is a higher level of fundamental principles,
above the level of algorithms and implementation details.
They differ, however, in their claims about what these fun-
damental principles are.

On one approach, which we will call the structuralist
framework, theorists explain cognitive phenomena with
reference to explicitly stipulated domain-specific relation-
ships among structured symbolic objects — as Chomsky
did, for example, in Syntactic Structures (Chomsky
1957). The fundamental principles are those that govern
the relationships, and these are taken as the ultimate
explanatory basis for the characteristics of the domain
itself. Different cognitive domains behave according to
different principles, and the principles themselves
specify both the structure of items in the domain and
the conditions that determine which items are part of
the domain (e.g., grammatical) and which items are not
(e.g., ungrammatical).

For its advocates (which appear to include Opfer &
Doumas and Marcus & Keil, along with Kemp &
Tenenbaum) the structuralist approach appears to
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address a key challenge in language: On one hand,
languages clearly have structure; but on the other, the
actual structure of real languages appears to be quite
complex and often somewhat arbitrary. The structuralist
approach appeals to some because it suggests that the
complex and arbitrary-seeming structure of real languages
might arise from much simpler and more regular under-
lying structures that behave according to a relatively
constrained set of fundamental principles. Other
domains of cognition also exhibit their own characteristic
structure, and so may similarly be amenable to examin-
ation through the structuralist framework (as proposed,
e.g., by Keil 1981).

The alternative, emergentist perspective, with which we
associate ourselves, begins with the assumption that
domain structure arises from the non-obvious interplay
of domain-general principles and processes operating
under constraints imposed by the domain-specific cogni-
tive tasks and environments with which humans and
other intelligent beings are faced. In language, for
instance, many emergentist theorists treat the idealized
characteristics of sentences, as elucidated by linguists,
not as the starting point for an explanation of language,
but as one aspect of the empirical facts about language
that need to be explained. For example, Joan Bybee
(2001), a linguist whose vision of language places her
outside the Chomskyian framework, has argued that the
regularities found in language arise from domain-general
principles of cognition as these come into play when
faced with the task of communicating using a low-
bandwidth communication channel (spoken language). A
similar perspective has been proposed by MacWhinney
(2006). Christiansen and Ellefson (2002), Hare and
Elman (1995), and Lupyan and McClelland (2003)
have used simple connectionist models to show how
characteristics of sentential and morphological structure
could arise over historical time from models of individual
speaker/hearers that embody many of the same domain-
general principles that we have articulated in Semantic
Cognition.

To appreciate the basic intuition underlying the emer-
gentist view, consider Hofstadter’s (1995) example of the
sand dune: a structure whose particular characteristics at
a given moment emerge from the operation of multiple
factors, including the mutual influences exerted on each
other by particles of sand operating in concert with the
effects of external forces such as winds, tides, and
gravity. Sand dunes clearly have structure, but this struc-
ture is an emergent consequence of the elements and
forces in play — a consequence that is to be explained by
general principles that govern these elements and forces.
Emergentists like Bybee argue that the structures of
languages are like sand dunes, continually shaped by an
ongoing interplay of forces that can produce both the sys-
tematic tendencies found in language, and arbitrary-
seeming variations that are otherwise seen as distracting
flies in the ointment.

With these perspectives in mind, we now turn to a brief
consideration of the structured probabilistic approach
advocated by Kemp & Tenenbaum in comparison to
our framework. According to their approach (see also
e.g., Tenenbaum et al. 2006), cognitive phenomena are
best understood with reference to Bayesian inference pro-
cesses operating over probabilistic graphical models which

directly represent structure (e.g., they use a mutation hier-
archy to represent generic properties of animals). So
stated, our approaches seem similar in two senses: both
appeal to completely domain-general underlying prin-
ciples, and both are grounded in an optimal inference
framework.

The point that connectionist models are grounded in
optimization is important. It was not a main focus of our
book, but it was and remains a crucial element of the
framework, anticipated in important precursors of the
PDP volumes, and subsequently explored in considerable
depth (see e.g., Ackley et al. 1985; Hinton & Sejnowski
1983; MacKay 1992; McClelland 1998; Rumelhart 1977).
While we do not see optimality as an easy guide to expla-
nation of cognitive phenomena, we certainly believe that it
is worthwhile to consider what is optimal in a given
context, and to compare what is optimal to what is actually
observed in human behavior.

There are, however, several important differences
between the approaches, and these cut across Marr’s
levels. We focus here on differences at the level of the
overall theory of the computation —in particular, the
goal of the computations being performed — and differ-
ences at the level of representations and algorithms.

R3.1. Goal of the computation

For Kemp & Tenenbaum, and perhaps for other struc-
turalists, it appears that the goal of learning is to discover
the optimal representation of the underlying structure of
the domain per se. The emergentist point of view entails
a different goal for learning — namely, the goal of correctly
capturing the statistical relationships between inputs and
outputs experienced in an environment. This same goal
underlies both backpropagation and Boltzmann machine
learning (Ackley et al. 1985). Additional constraints on
complexity are often incorporated and serve, in a domain-
general way, to promote generalization to unseen inputs.
Of course, the statistics that drive learning in these
models ultimately depend on complex, abstract, nonlinear
relationships and are not simply direct first-order relation-
ships between observable variables — but in contrast to
the structuralist view, the discovery of such structured rep-
resentations is not itself the goal of the computation.

R3.2. Representations

According to the structured probabilistic approach of
Kemp & Tenenbaum, the learner selects a specific
structural form of representation from among a specified
set of alternative forms or types. For example, Kemp &
Tenenbaum suggest that learners select a probabilistic
mutation hierarchy to represent the generic properties
of animals, a continuous two-dimensional space to rep-
resent hues, and a one-dimensional space to represent
the stances of Supreme Court justices. The approach
does not require the theorist to pre-specify which
structure is appropriate for a given domain, and so in
this sense is domain general. It does appear to require,
however, an enumerated catalog of structures available
for selection, among which there must exist a structure
suited to the domain which in turn must be imbued with
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a sufficiently high prior probability of selection (see also
Perfors et al. [2006] for related work on language).

Connectionist modelers like Hinton and ourselves, on
the other hand, do not suggest that any such structures
are available to the learner for selection; instead, learning
operates in a completely continuous representational
space. When the experiences provided by the environment
actually arise from a specific form of structure (like a
mutation hierarchy), a connectionist model will come to
behave as though it has learned that structure, but the
structure itself is not explicitly represented as such, nor
is it selected from a set of possible alternative structures.
As a consequence, learning is not constrained to be fully
consistent with one of a set of pre-specified alternatives:
under our approach, real structure in the environment
need not exactly match some particular structure type.
In our view, this continuous representational potential
makes the connectionist framework ultimately more
appropriate for new semantic learning.

R3.3. Algorithms

Kemp & Tenenbaum might argue that their approach
makes no commitment at the algorithmic level: The goal
is only to find the structure that best fits available data
subject to priors and simplicity constraints. Yet in practice,
they proceed differently than we do, in ways that seem
consistent with other differences between the approaches.
Specifically, they rely on comparative evaluation of
alternative candidate structures and selection among
these, a common approach used within the graphical
models framework. This may be an importantly different
kind of algorithm than the gradient-based algorithms
employed in fully continuous neural networks. Apart
from any consideration of their relative psychological or
neural plausibility, there is reason to believe that funda-
mental issues of computational complexity favor gradi-
ent-based approaches (Bengio & Bengio 2000). Fully
continuous neural network models now represent the
state of the art in several areas of machine learning
and ameliorate the curse of dimensionality that plagues
many other approaches (Bengio et al. 2006; Hinton &
Salakhutdinov 2006; Rajat et al. 2007; Ranzato et al. 2007).
Kemp & Tenenbaum suggest that structured probabil-
istic approaches are to be preferred because “they make
more direct contact with previous psychological research
on semantic cognition.” To us, this reflects the fact that
these models are but a small step away from the commit-
ments to innate domain-specific structure that have been
articulated by many of the researchers whose work we
addressed in our book. Our work instead makes contact
with a newer body of connectionist research that applies
a common set of domain general principles to address
phenomena in perception, attention, memory, language,
development of naive physics concepts, and now the
fundamental structure of semantic cognition.

R4. The future of cognitive science
In this response we have tried to clarify the nature of our
approach and to address misconceptions about its poten-

tial to address semantic cognition and other phenomena
in cognitive science. In concluding, we consider the two
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predictions ventured by Kemp & Tenenbaum about
the future of cognitive science: First, that “researchers
will eventually understand how structured approaches to
semantic cognition are implemented in the brain,” and
second, that “deep insights at the neural level will only
be possible once we have a deep understanding of the
computations supported by structured semantic represen-
tations.” Although we agree with their statement that such
predictions are “notoriously unreliable,” we offer alterna-
tive predictions of our own: That structured approaches
will have an important role in our field, but that research-
ers will come to understand that this role is to provide
useful approximate descriptions of emergent properties
of cognitive systems. These descriptions will be under-
stood to capture structure that emerges from the interplay
of domain-general principles and mechanisms, interacting
with the particular constraints that arise in domain-specific
contexts.
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