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Abstract
We present a model of the distribution of labour in science. Such models tend to rely on the mechanism of the
invisible hand (e.g. Hull 1988, Goldman & Shaked 1991 and Kitcher 1990). Our analysis starts from the necessity
of standards in distributed processes and the possibility of multiple standards in science. Invisible hand models
turn out to have only limited scope because they are restricted to describing the atypical single-standard case.
Our model is a generalisation of these models to J standards; single-standard models such as Kitcher (1990) are a
limiting case. We introduce and formalise this model, demonstrate its dynamics and conclude that the conclusions
commonly derived from invisible hand models about the distribution of labour in science are not robust against
changes in the number of standards.
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1 Introduction

This paper presents a model of the dynamics of scientific activity. An understanding of the
division of labour in science might contribute to more effective research policy and better
institutional design. Moreover it can clarify a number of more general questions concerning
scientific knowledge, the product cognitive labour. Why does knowledge tend to cluster? Is
dissent irrational, and if so, why is disagreement a persistent feature of science? Why do
scientists sometimes refuse to update their beliefs after being confronted with conflicting
evidence?
More specifically, scientific activity exhibits a number of puzzling features which the model
will need to explain. On the one hand, dissent and discussion seems to be omnipresent in
science. But it has been argued that there is an ever growing body of scientific results on
which a consensus is formed; and for some it seems only a matter of time until all dissent
will have disappeared. ‘‘The positive argument for [convergent] realism is that it is the only
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philosophy that doesn’t make the success of science a miracle’’ (Putnam 1975, p. 73).
But then again, Larry Laudan (1981) put forward the pessimistic meta-induction argument:
he compiled a long list of once successful theories which are now ridiculed by the scientific
community. In sum, a powerful model of the dynamics of scientific activity has to provide an
account of three aspects of science that seem difficult to reconcile: the existence of dissent, the
emergence of consensus and the dissolution of that consensus. This is a tough challenge, as
Larry Laudan himself noted: ‘‘[S]tudents of the development of science, whether sociologists
or philosophers, have alternately been preoccupied with explaining consensus in science or
with highlighting disagreement and divergence. […] neither approach has shown itself to
have the explanatory resources to deal with both.’’ (Laudan 1984, p. 2)
This paper discusses a number of models that have taken up this challenge and presents a
new model. More specifically, in section 2 invisible hand models of the distribution of labour
are discussed and shown to provide a satisfactory explanation of a community characterised
by 1 standard. Section 3 lays out a model which generalizes this approach to J standards.
Invisible hand models are a limiting case of this more general model. Section 4 formalises this
model and presents several simulations to illustrate its dynamics. Finally, section 5 argues
that the conclusions commonly derived from invisible hand models about the distribution
of labour in science are not robust against changes in the number of standards considered.

2 Invisible hand models and the distribution of labour in science

Since cooperation is a necessary condition for distribution of labour, no model of the division
of labour in science can ignore the benefits of cooperation in science, lest it leave the division
of labour itself unexplained. The benefits of cooperation imply that there are increasing
returns to adoption: scientists prefer rather than eschew more adopters to their views because
more adopters means more opportunities for cooperation. This would lead a community to
full specialisation, which is an outcome commonly considered to be epistemically undesirable
and moreover conflicting with the actual state of science. The benefits of cooperation present
a basic problem for those who attempt to understand the distribution of labour in science:
why does the presence of these benefits not lead to fully specialised scientific communities,
as one would expect? Invisible hand models of the distribution of labour in science offer a
solution for this problem.
Petri Ylikoski (1995) offers a general characterization of the essential characteristics of
the invisible hand mechanism which is at work in e.g. Kitcher (1990), Goldman & Shaked
(1991) and Hull (1988):

(1) It is a decentralised process: ‘‘There are no explicit agreements or centralised decisions
by the participating agents (Brennan & Pettit 1993: 195–196).’’ (Ylikoski 1995, p. 33).

(2) The process is non-intentional: ‘‘The agents do not intend to produce the result. They are
promoting their own objectives and the result to be explained is a by-product of this pro-
moting. The idea is that the process should work even if the participating agents have no
knowledge of the process. This is why the mechanism is called invisible (Ulmann-Margalit
1978: 271).’’ (Ylikoski 1995, p. 33)

(3) Although the process is non-intentional, it ‘‘needs not be unknown to the agents
participating in its production.’’ (Ylikoski 1995, p. 33)

(4) ‘‘The result should be a pattern or a structure that seems to be made or designed inten-
tionally; it should be somebody’s handiwork (Ulmann-Margalit 1978: 268–270). This
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means that the product in question should be somewhat complex and it should not seem
to be accidental. To be non-accidental, the result should be somewhat stable and
recurring(Brennan & Pettit 1993: 191–192).’’ (Ylikoski 1995, p. 33)

(5) In invisible hand explanations, the result of the mechanism is valued positively. This
contrasts with what has been called the ‘invisible backhand’: ‘‘The only difference is
that the product of the invisible hand is valued positive and the product of the invisible
backhand negative (Brennan & Pettit 1993:192, 204–205).’’ (Ylikoski 1995, p. 33)

The crux of the invisible hand solution to the basic problem is to offset the scientist’s bene-
fit from more adopters by introducing a second factor, competition for credit1. Competition
brings in decreasing returns to adoption. As more scientists adopt, there is more competi-
tion for newness, originality, to be the first to come up with the solution to an important
problem,... More generally, decreasing returns are introduced to offset the increasing returns
that cause the basic problem. The interplay of cooperation and competition will push and
pull a community to a distribution of labour somewhere between full specialisation and full
diversity. Ideally, a laissez-faire policy produces an optimal distribution.
One such formulation of the basic problem and the subsequent use of the invisible hand
solution is found in Philip Kitcher’s ‘‘The division of cognitive labour’’ (1990). Its start-
ing point is the basic problem sketched above, which he calls the ‘‘CO-IR-discrepancy’’: the
mismatch between a scientist’s individual rationality (IR) and the ideal balance between spe-
cialisation and diversity, viz. the community optimum (CO). If scientists were all to pursue
the same path, namely that which is best supported by the available evidence, then there is
no diversity and the community optimum is unlikely to be reached, provided that, as Kitcher
assumes, full specialisation is undesirable. Kitcher solves the discrepancy by de-idealizing the
scientist: they are motivated by personal factors such as social and other factors, such as
greed, stubbornness and honour rather than high-minded virtues that reflect the community
optimum. Scientists freely compete with each other for the reward of being the first to find
the solution. As a consequence, they do not just follow the path which is best supported
by the available evidence, but discount it with the number of people already pursuing that
path. As a result, as by an invisible hand scholarly attention is scattered and yields the
community desideratum, viz. more diversity. The introduction of competition offsets the
increasing returns that come with cooperation: individual returns decrease as the number
of scientists following a certain path rises.

3 A general model of the distribution of labour in science
for multiple standards

3.1 What are standards?
Whereas Kitcher’s single-standard treatment of the problem of the distribution of labour
could afford to leave the characterization of standards implicit, a generalization of his model
to J standards requires a clear understanding of what standards are and what they do. An
interesting way to gain some leverage on this is to characterize the concept of ‘standard’
in analogy to its use in the economics of network industries. It will be argued that the

1The idea of a cycle of credibility stems from Latour and Woolgar (1986), but variants of this are found in
Kitcher (1990), Goldman & Shaked (1991) and Hull (1988).
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presence of multiple standards in science produces the same dynamics as that of multiple
technological standards in a market.
Standards feature prominently in the literature on network industries. A network is a dis-
tributed system constituted of nodes and their interconnections. Its boundaries are defined
by a standard. These standards are necessary conditions for inclusion in the network. For
example, to run Macintosh software you need an Apple computer. However, you might also
run it on a PC, but then you’ll need a ‘gateway’ between networks (an adaptor). In other
words, people adopting to one network will incur transaction costs when changing networks.
So for agents in a distributed system, standards constitute a barrier to entry. Sometimes
these barriers are relatively minor and easily overcome, sometimes they are high and lead
to significant extra costs. In some systems, barriers to entry are constructed artificially,
for example through patents or industrial secrets (e.g. the recipe of the Coca Cola syrup).
In other cases barriers to entry arise naturally. One especially significant case of naturally
arising barriers to entry is not a feature of the product itself: its rate of adoption. For
example, say a company designs an innovative new operating platform. The barrier to entry
it is confronted with is that existing operating platforms (most notably Windows) have
already been widely adopted to. This not only means that most consumers will already have
devices specifically designed to run the pre-existing operating platform, but also, and most
importantly, that new software will be written specifically for that platform and not for the
newly developed one. Even when exhibiting a very high intrinsic quality, the new operating
platform will have great difficulty in conquering market share (it is, however, not impossi-
ble). Barriers to entry entail that producers cannot freely compete in a market because of
significant costs associated with entering a new market and significant differences among
these markets (e.g. different programming languages, different adapters, different consump-
tion patterns,…). The same goes for scientists and the market of ideas: insights, methods,
solutions, discussions, conferences, etc. adopt to a certain standard. Adopting to this stan-
dard requires a non-trivial investment: barriers to entry include mastering standard-specific
expertise, learning standard-specific techniques, getting to know a specific community and
identifying the standard-specific puzzles and trends.
Because standards divide a market into different parts separated by transaction costs, free
competition is no longer possible. In addition to barriers to entry, free competition is further
constrained by the fact that network industries tend to exhibit large economies of scale.
These are especially prominent in information-intensive industries such as newspapers, con-
sulting, publishing,… . The reason for this is that information is characterized by decreasing
marginal costs: once a unit of information is produced (an idea, a book, a score,…) it can
be distributed at virtually no cost, unlike for example the car industry or the service sector,
where an additional unit of the product keeps on costing significant capital and labour. As
such, as more people use it, total cost of production stay constant but marginal costs fall
towards zero. The amount of output produced is only limited by the extent of the market.
In other words, network industries have a natural tendency toward monopoly. A similar
argument can be set up for science: scientists are producers and consumers of information
and as it happens, information-intensive industries are typically characterized by falling
marginal costs. Just as with barriers to entry, falling marginal costs entail increasing returns
to adoption.
So in network industries there are barriers to entry and large economies of scale and
these two characteristics also apply to science. Both factors give rise to strong increasing
returns to adoption and create enough market disruption to prevent decreasing returns of
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competition from offsetting these increasing returns. Indeed, the disruptive nature of these
kinds of industries is widely known among policymakers and has prompted governments to
implement antitrust regulation.

‘The long-standing public policy concerns over network industries are not accidental, because those industries
often embody two major and widely recognized forms of potential market failure: significant economies of
scale -with the potential for monopoly- and externalities.’ (White 1999, p. 1)

Of course the analogy between science and network industries is not complete. For example,
science is often not commercialized and its output not monetized. But analogies are never
perfect and this doesn’t stop them from being fruitful. One way of arguing for the analogy is
to point out that, when turning to economics for a model of distribution of labour in science,
it does make more sense to use ideas used to explain the dynamics of information intensive
industries such as Microsoft, rather than to make an analogy with more traditional sectors
usually characterized by decreasing returns to adoption such as car manufacturers.
But perhaps the most important reason to resist this analogy is to reach back to factors
such as credit, newness, originality, ... viz. the usual factors which invisible hand models
brought in precisely to avoid those increasing returns characterizing network industries.
Surely these have a role to play in science. Section 3.3 discusses their position within our
framework.

3.2 The importance of standards
Apart from cooperation and competition, there is a third factor which is essential to any
analysis of the distribution of labour, namely standards. Kitcher’s solution is a limiting case
of this point of view, namely the description of the distribution of labour with 1 standard.
The model presented in this paper generalizes Kitcher’s solution to J standards. Any act of
cooperation and any distributed activity requires a standard to ensure the compatibility of
individual contributions and the coordination of individual efforts. A minimal consensus is
required from the individual contributors concerning the goals of the distributed activity and
the acceptable procedures to attain these goals. A standard is necessary for the aggregation
of individual contributions at a certain time and the cumulation of the aggregated results
over time. A model without them would simply fail to explain the distribution of labour in
science itself, let alone account for its dynamics.
Standards are essential for a model of the distribution of labour in science and as a
good model, Kitcher does indeed incorporate it, although implicitly. The idea of scientists
competing for a prize and ending up in a nicely distributed scientific community only makes
sense if it is assumed that all these scientists adopt to the same standard. It is after all this
standard which determines what the problems are, which problems are important, how they
should be solved, what solution is sufficient to claim the prize and how big this prize is.
In Kitcher, however, the case of multiple standards is not considered. This is in line with
his view of science as embedded in ‘consensus practice’ but it is a limitation of his model
of the distribution of labour in science, because it unnecessarily commits its followers to
a single-standard view. To overcome this limitation, a generalization of Kitcher’s model is
proposed to the case of J standards, with Kitcher’s own model as a limiting case where
there is only 1 standard. This generalization is important for two reasons. Firstly, it allows
the model to be used by scholars who are uncomfortable with this single-standard view,
such as the large branch of philosophy building on Kuhn (1962) for whom the dynamics of
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science involves existence of multiple ‘paradigms’.2 Secondly, this generalization will show
that Kitcher’s conclusions about the distribution of labour in science are not robust against
changes in his single-standard view.

3.3 Newness in a multi-standard view
An important consequence of introducing standards in considering the distribution of labour
in science is that scientific contributions will tend to cluster. The presence of these clusters
within a field makes it necessary to make the distinction between the dynamics of science
within a cluster and between clusters. This entails that the problem of the distribution of
labour can be described at two levels of analysis. Models for the dynamics of science under
1 standard, such as Kitcher’s, can additionally be used as a model of what happens within
a cluster in models that describe the dynamics between clusters. This distinction between a
model of scientific activity within a cluster and between clusters allows us to further clarify
our claim about increasing returns to adoption. The basic claim of our model is that there are
increasing returns to adoption between clusters. This does not preclude decreasing returns
to adoption within a cluster; with scientists competing e.g. to win the ‘prize’ for being the
first to find the solution for a certain problem. In the case of 1 standard, no more is needed.
However, from a multi-standard point of view, the importance of the problem depends on
how many agents find this problem important; a problem from the point of view of one
cluster might be irrelevant for someone in another cluster; or what counts as a satisfactory
solution for one cluster might not be satisfactory for the other. So whereas these agents
within the same cluster are competitors for the ‘prize’ associated with solving a certain
problem, they have a common interest in the number of adopters to the cluster because
the importance of the problem (the size of the price; e.g. in terms of recognition, funding,
position, etc.) varies with the number of adopters. The characterization of the problem and
the amount of ‘prize money’ are things that Kitcher takes as given but which vary in the
case of multiple clusters: the characterization of the problem is relative to the cluster and
the number of adopters determines the size of the prize.
Since our model is concerned with the overall dynamics of science, we focus on the distri-
bution of labour across clusters rather than on what happens inside a specific cluster. Stan-
dards create barriers that divide a discipline into different parts. The fundamental divisions
between scientist’s contributions will be the same as the divisions between the standards on
which each of these contributions is based. Standards add additional structure to the field.
Since all individual contribution must adopt a standard, the change of the crucial bound-
aries in the field can be modelled by representing the changes in the rate of adoption to
the different standards in the field. In other words, the distribution between core research
programmes in the field is representative for the distribution of all scientific activity in that
field.
At this level of analysis, ‘newness’ loses its importance for the distribution of labour in
science (which is now seen as the distribution of scientific labour across clusters instead of the
distribution of scientific labour across scientists). Because of the different levels of analysis
that are now distinguished, newness can mean two different things: newness within a cluster
and newness as the creation of a new cluster. Both actions are allowed for in our model, but

2A recent illustration of discomfort with Kitcher’s single-standard view is the 2002 discussion between Philip
Kitcher and Helen Longino in Philosophy of Science; Kitcher (2002a,b) and Longino (2002a,b)

 at U
niversiteit van T

ilburg on A
ugust 24, 2013

http://jigpal.oxfordjournals.org/
D

ow
nloaded from

 

http://jigpal.oxfordjournals.org/


[10:00 10/5/2010 jzp058.tex] Paper Size: a4 paper Job: JIGPAL Page: 284 278–294

284 Standards and the distribution of cognitive labour

they fail to offset the overall dynamics of increasing returns which governs the competition
between multiple clusters competing for adoption. In the first case, newness takes place
within the shared consensus of a particular standard; as such it is simply modelled as a
contribution to a cluster. The second case, where a new standard is created, does register as
real newness at our level of analysis. However, the success rate of new clusters in network
industries is very low (however, it is not impossible). In short, ‘newness’ does not alter the
fundamental dynamics of our model because we are at the level of analysis across clusters.

4 Formalization of the model

Our model addresses the relations across clusters since we believe that this is the most
relevant aspect to get a grip on the problem of the distribution of labour in science. Hence
we will model the dynamics of clusters competing for adoption. Interestingly, the analytical
tools for modeling systems exhibiting increasing returns to adoption have only recently been
developed in a series of papers by Arthur (1989) and Arthur et al. (1983, 1984, 1987). His
models were initially designed for problems of technology adoption in network industries,
e.g. to model the competition between VHS and Betamax to become the standard video
format.
The model will thus focus on standards and their adoption by agents. We model these
standards as clusters of contributions. Each turn, all agents in the game (scientists) make
a contribution to one of the clusters in the game. Making a contribution means adopting
to the cluster. Adopting to a cluster requires compliance to a basic set of concepts and
assumptions; this basic set coordinates individual contributions. They form the core of the
research programme implicit in all the contributions made to the cluster. So no matter how
diverse the different contributions to the cluster, the cluster itself is a homogenous entity.
Its size depends on the number of contributions.
As is customary in these models, the model as a whole is agnostic about the value of
these clusters. The choice for one cluster rather than another is left for the agents in the
model to decide. For a model about standards in science, this means that the model needs
to be ‘agnostic’ in its conception of scientific value. By committing to a specific conception
of scientific value, this part of the problem of the division of labour would be put beyond the
model’s explanatory scope and a generalization to J standards would be impossible. This
contrasts with the invisible hand models described above, where the aims of science could
be specified because there is only one standard. Our only claim about these clusters is that
it is possible that there are multiple competing conceptions. The ‘value’ for the agent is
then whatever it is that the cluster aims to produce. To indicate that this product can take
different forms in different clusters, we leave the specific product of a cluster unspecified
and refer to it using the generic term ‘output’ in the agent’s decision function.

4.1 A formal model of formation and dissolution of consensus
Let us consider a population of N epistemic agents. There are J competing clusters. Denote
agent n’s preferences over clusters by the vector pn = (p1n,p2n , ... ,pJn)′ and assume that there
is a vector E=(E1,E2 , ... ,EJ )′, its j-th element being the available output for cluster j . The
simplest way to think about output is to think of it as the number of contributions made to
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a cluster (e.g. the total number of papers, textbooks etc.). We normalize E and denote the
vector of relative output by Ê = (Ê1, Ê2, ... , ÊJ )′.
The most important parameter in our model is c, which we call the strength of increasing
returns. We assume that c≥ 0. With standards becoming more important c will be higher.
In general, c is the weight agents assign to the size of the cluster as measured by relative
output.
Let the likelihoods of pursuit for each agent n be given by equation (1). The likelihoods
of pursuit depends on an individual component (preferences) and a social component (the
size of the cluster as measured by output weighted by the strength of increasing returns).

πn(t)=pn+cÊ(t) (1)

We define the following decision rule: Make a contribution to the cluster with the highest
likelihood of pursuit, i.e. the largest element of the vector πn(t)= (π1n(t),π2n(t), ... ,πJn(t))′.
The model evolves by all agents making a contribution each period. At the end of each
periods output is updated. By making contributions to a cluster output increases. The
process is self-reinforcing. Contributions to a cluster increase output which in turn makes it
more likely that agents will contribute to the same cluster next period.3

In making his decision to which cluster to contribute a scientist looks at the available
output. We assume that all contributions are contributions to just one single cluster. The
quality of contributions is assumed to be homogeneous. Using these assumptions we avoid the
task of having to judge the quality of contributions. We can measure output as the weighted
sum of past contributions, where output produced within a period equals the number of
contributions within this particular period.4 Output for cluster j at time t is given by eqn.
(2) where Kj(t) denotes the number of contributions to cluster j in period t and d ∈ [0,1) .

Ej(t)=Kj(t−1)+dEj(t−1) (2)

Since eqn. (2) holds for all periods t≥1 we can use substitution and see that output is the
weighted sum of past contributions. We assume that initial contributions Kj(0) are given.

Ej(t)=Kj(t−1)+dKj(t−2)+···+dt−1Kj(0)=
t∑

s=1
ds−1Kj(t−s) (2′)

The number of contributions to cluster j in period t are given by Kj(t)=∑N
n=1ajn where

ajn=1 if j ∈ argmax
k∈{1,2,...,J }

πkn(t) and 0 else.

The basic model is a nonlinear Polya process with the probability that a new contribu-
tion is made to a specific cluster being a function of the contributions already made to
that cluster. As previous choices matter and increase the probability that a contribution
will be made to a cluster, this process is path-dependent and exhibits positive feedback.

3Note that the likelihood of pursuit for any cluster is independent from the size of all other clusters. This
implies that the standards that define clusters are completely incompatible. The model could be modified to allow
for gateways. Then, the likelihood of pursuit would depend on the size of all clusters, with less weight given to the
clusters for which there are gateways.

4By using the sum of contributions as a proxy for output it would also be possible to relate the model to
scientometric data.
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We are interested in the structure that emerges during this process, where by structure we
understand the proportion of agents working within each cluster. As has been shown by
Arthur, Ermoliev, and Kaniovski (1983, 1984, 1987), the structure, which in our model is a
vector of proportions, tends to a limit random vector. Our model reaches a stable pattern
if E(t+1)=E(t). Since our agents face the same output each period, they make the same
choice each period and the distribution of agents across clusters stays constant.
Knowing that a stable pattern emerges our next question is concerned with the size of the
clusters. Do all clusters have roughly the same size or does one cluster become dominant?
Assuming that preferences are drawn from a [0,1] uniform distribution, it is clear that for
c=0.0 all clusters are roughly equal in size. In this situation agents only care about their
preferences, there is no premium on compatibility and hence there is no positive feedback.
However, as soon as c>0 increasing returns kick in. Clusters with high output attract more
contributions and grow up to a certain point. This is visualized in row A in figure 1, showing
three runs of a simulation with N =1000 agents and J =5 clusters. On the vertical axis we
see the size of each cluster, measured as the share of agents contributing to the cluster
(formally: Kj (t)N ). The horizontal axes measures time.
In the first simulation (column 1, row A) agents’ choices solely depend on preferences.
Each period they choose the cluster that is most preferred. Since preferences stay constant
and agents are immortal the sizes of the clusters do not change.5 In the second and third
simulations (A2,A3) we observe sensitivity to initial conditions. At t =0 the largest cluster
is determined by the distribution of preferences. Due to the increasing returns the largest
cluster grows faster than all other clusters. After some periods a stable structure emerges
at which the size of the dominant cluster (and all other clusters) stays constant. A large
cluster can be understood as the existence of high consensus and low disagreement, or much
specialisation and low diversity. The maximum size of the dominant cluster increases with
c, where if c≥1 the dominant cluster gets 100%, i.e. there is absolutely no disagreement (no
diversity) within the particular school of thought, as can be seen in column 4, row A.
This model of scientists’ choices between clusters exhibits several features of Arthur’s
increasing returns model (Arthur 1989). We cannot predict in advance which cluster will
get dominant, but we know that one single cluster will get dominant. In Arthur’s terms
the process is non-predictable. The process is nonergodic, meaning that small differences
at the beginning (the distribution of preferences and initial evidence) are not averaged out
over time. Stochastic fluctuations are responsible for selecting the dominant cluster. Having
reached a stable state the size of all clusters stays constant. The process is inflexible; there
is no change from within the system.

4.2 Model refinements
In order to make the model more interesting and realistic we add some refinements. First,
our agents do not live forever. Each period their age increases by one unit. Once they have
reached a certain age, randomly drawn from a uniform [50,100] distribution they die and
get replaced by a new agent with age drawn from a uniform [20,50] distribution. The new
agent makes her first contribution to a randomly chosen cluster. The probability that any
cluster is chosen is proportional to the size of the cluster. This could be interpreted as the

5We will relax both assumptions later and see what happens when agents are not immortal and preferences are
allowed to change.
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agent makes her first contribution in the same cluster as her teachers worked in. Row B in
figure 1 shows typical simulation runs for varying parameters of institutional strength. The
only difference to the simulations in row A is that agents die and get replaced. For c=0.0 the
size of the clusters do not affect agents’ decision and cluster sizes follow a random walk. As
c increases we see emergence and dissolution of consensus. This is clearly visible for c=0.75
(B3) where consensus reaches its peak around period 100 and more than 40 % of all agents
contribute to the dominant cluster. Eventually the dominant cluster ceases to be dominant
and we observe the dissolution of consensus. With increasing c the size of the dominant
cluster gets bigger and dominant clusters are dominant for a longer period of time. This
means that with standards being more important consensus exists longer among a bigger
share of agents in our epistemic community.
Since agents die and get replaced the process is no longer inflexible for c<1, i.e. there
is no stable state at which the size of each clusters stays constant. For c≥1, however, the
process is inflexible. Once a cluster has reached 100 % it stays there forever because agents’
preferences do not matter for their decisions.6

As a second modification we introduce endogenous preferences. The idea is that when
agents make their contributions they invest in learning the methods of the cluster. The
resulting skills are specific to the cluster and cannot be transferred to another cluster. The
result of the agent’s investments are skills which are specific to a cluster, hence the benefits
can only be reaped if the agent contributes to the same cluster. It is not possible to appro-
priate the benefits from that investment if they switch to another cluster. Another reason
for endogenous preferences are that the longer an agent has worked within a cluster, the
less likely she is to change since her standing, reputation and accomplishments all depend
on the correctness of the cluster.7

The change in preferences is modeled as follows. Let there be a vector of intrinsic prefer-
ences p̄n = (p̄1n,p̄2n , ... , p̄Jn)′ for each agent and denote the number of each agent’s contribu-
tion to cluster j up to time t by kjn(t). Assume that at time t the agent makes a contribution
to cluster j . Then, her preferences the next period are given by a convex combination of her
old preferences and some parameter η ≥ 1 (eqn. 3).

pjn(t+1)= kjn(t)
kjn(t)+1pjn(t)+

1
kjn(t)+1η (3)

For all other clusters j ′ �= j to which the agent did not contribute in period t preferences
do not change, i.e. pj ′n(t+1)= pj ′n(t). For clusters to which the agent has never made a
contribution her preferences are given by pjn(t)= p̄jn for all t. The parameter η determines
the speed of the preference change and acts as an upper bound on preferences. By increasing
η more weight is put on agents’ preferences.
The likelihoods of pursuit are now given by πn(t)= pn(t)+ cÊ(t). As can be seen in rows
C and D in figure 1, allowing for endogenous preferences results in slower change and,

6A simple example might illustrate this inflexibility for c=1. Assume two competing clusters, A and B. Cluster
A has reached 100 % which means that ÊA= 1. Likelihoods of pursuit are given by πA= pA+1 and πB = pB
respectively. Since preferences are drawn from the uniform distribution U [0,1], we must have πA ≥ πB , so agents
will always contribute to cluster A.

7In the literature this is known as ‘‘hardening of positions’’ where as time passes agents put more weight on
their own opinion and less weight on the opinion of others (e. g. Hegselmann & Krause 2002, 4). It can also be
understood as a process of dissonance reduction (Festinger 1957) where agents adjust their preferences in order to
reduce the discrepancy between their preferences and choices.
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if c<1, lower variance in cluster sizes. As agents put more weight on their evidence as a
result of past choices they are less likely to switch to another clusters, even if the other
cluster is large. For c≥ 1 the process is inflexible. At some point all agents contribute to the
same cluster. However, with higher η it takes longer until one cluster reaches 100%.

4.3 Main results and possible extensions
The main results of the model can be summarized as follows.

(1) The resulting division of labour depends on the strength of increasing returns. With
stronger increasing returns (meaning more important standards) the size of the largest
cluster increases and the community tends to more specialisation. For c≥ 1 the dynam-
ics result in a lock-in. All agents contribute to one cluster and the community is com-
pletely specialised. The opposite, complete diversification, is achieved for low values of
increasing returns.
This can be seen in figure 2 plotting the variance of cluster sizes for different values

of c. The variance is computed as Var= 1
J

∑J
j=1(xj− x̄)2 where xj(t)= Kj (t)

N is cluster
size, measured as the number of agents contributing to cluster j at time t, divided by
the total number of agents. Since we assume J =5 clusters we know that the mean is
x̄ = 0.2. The variance is a natural way to measure diversification and specialisation. If
the community is completely diversified all clusters have equal size and variance is zero.
At the other extreme, complete specialisation, variance is given by J−1J

( 1
J

)2+ 1
J

( J−1
J

)2

which equals 0.16 for J =5. Figure 2 shows with weak increasing returns the community
is completely diversified. As c increases above 0.4 we observe increasing specialisation,
and for c=1 there is complete specialisation after some periods.

FIG. 2. Variances of cluster sizes for varying values of c. Variances are average values
obtained by running 100 simulations for each value of c(c=0.0, c=0.1 ,… , c=1.0). At t =0
all clusters start with the same size, hence variance is 0. All simulations were run with 500
agents, 5 clusters, and 500 periods.
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TABLE 1. Time to lock-in for varying strength of preference change. Times to lock-in are
average values from 100 simulations with 500 agents, 5 clusters, and c=1.0. Each simulation
run for 1000 periods. The case η=0 corresponds to no preference change.

η time to lock-in
0 66.34
1.0 391.64
1.2 503.18
1.4 517.04
1.6 495.54
1.8 512.10
2.0 516.30

(2) By introducing endogenous preferences the change in the division of labour between
clusters becomes slower because agents are more likely to stick to their choices. With
strong increasing returns (c≥ 1) the distribution of labour will still reach a lock-in where
the community is fully specialised, although the time it takes to get to the lock-in will
be longer. This can be seen from table 1, showing the time it takes to get to the lock-in
for c=1.0 and varying η.

(3) For 0≤ c<1 the distribution of labour is flexible if agents are not immortal. Altough the
dominant cluster can be quite large, the community never reaches full specialisation.
As a consequence of agents dying and getting replaced the largest cluster eventually
looses its dominant position and a new cluster gets dominant (paradigm change). For
c≥ 1 we have a lock-in, meaning that once a cluster reaches 100 % the community will
stay at full specialisation. This could change by endogenizing the number of clusters and
allowing agents to create a new clusters, or by introducing exogenous shocks (anomalies)
that solve the lock-in by lowering the weight agents put on the cluster’s size. These are,
however, subjects for further research.

5 Conclusion

Invisible hand models rely on competition to save objectivist science in the face of non-
epistemic individual motivations such as professional success.8 This solution requires that
there is full competition and that all agents are after the same, for example that they openly
compete for credit. We have argued that the presence of standards in science entails that the
scope of this solution is limited to the special case where there is only 1 standard because
standards cause fragmentation of the market, undermining competition. We discussed how
Kitcher relies on competition to ward off the CO-IR discrepancy and, although we have not
discussed them separately in this paper, so do Goldman & Shaked (1991) and Hull (1988);

8‘‘It is commonly assumed (or hinted) that the presence of such a motivational pattern would constitute a refu-
tation or debunking of an objectivist construal of science. We shall argue, to the contrary, that there is no necessary
incompatibility between the goal of professional success and the promotion of truth-acquisition.’’ (Goldman & Shaked
1991, pp. 31–32)
‘‘Most representatives of other disciplines in science studies have thought that they can do without the invisible
hand. Philosophers seem to have one item on their agenda that others in science studies do not seem to have: the
defence of the objectivity or rationality of science.’’ (Ylikoski 1995, p. 35)
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Goldman & Shaked suppose that scientists ‘‘choose their actions in accordance with the rule
of maximizing expected utility and their utility level is determined solely by professional suc-
cess’’ (Goldman & Shaked 1991, 31)while David Hull describes science as an evolutionary
system in which scientists are agents competing to increase conceptual inclusive fitness9. All
three models describe the features of an atypical case of a system which is in most of its
possible states very different from the single-standard case they describe. Arthur (1989) lists
five features that make increasing returns models different from normal maximizing models:
there are multiple possible equilibria, which equilibrium will be selected is unpredictable in
advance, the equilibrium is not necessarily optimal, the system exhibits inflexibility (it can
‘lock in’) and path-dependence. These stand in sharp contrast to characteristics of invisible
hand models, which typically have only one optimal and predictable equilibrium that is
not path-dependent. Because of the atypical character of the single-standard case, the con-
clusions derived from invisible hand models are not robust against changes in the number
of standards. The main conclusion from such models is that there need not be a conflict
between individual rationality and the community optimum. Private vices become public
virtues:

‘‘The very factors that are frequently thought of as interfering with the rational pursuit of science –the thirst for
fame and fortune, for example- might actually play a constructive role in our community epistemic projects,
enabling us, as a group, to do far better than we would have done had we behaved like independent epistemically
rational individuals.’’ (Kitcher 1990, p. 16)

As a result, individual responsibility of scientists is downplayed and the task of the institu-
tions of science is to accommodate scientist’s cravings rather then direct them toward higher
epistemic ends:

‘‘social institutions within science might take advantage of our personal foibles to channel our efforts toward
community goals rather than toward the epistemic ends that we might set for ourselves as individuals.’’ (ibid.)

‘‘the really neat thing about the reward system in science is that it is so organized that, by and large, more
self-serving motivations tend to have the same effect as more altruistic motivations.’’ (Hull 1997, p. 123)

From the perspective of our generalized model, these views about individuals, institutions
and their interrelation are no longer tenable. Individual scientists cannot escape their respon-
sibility because the dynamics of the model imply that small changes can have large con-
sequences. A laissez-faire institutional design is bound to miss the community optimum
because of the monopolistic tendencies the system exhibits.10 As a consequence, institu-
tional design must play a more active role to attain the community optimum. The general
direction that it should take is that of softening the market disruption produced by the
presence of multiple standards. This could involve the implementation of an active pluralist
policy which aims to reduce transaction costs between clusters. A big step in this direction
would be a pluralist education or at least a historical overview of the development of the
discipline a scientist will work in, such that the transaction costs of not adopting to the
mainstream cluster are not already gigantic from the outset of the scientist’s career.
A final consequence of generalizing to J standards is that whereas the single-standard
case can be individualist and a-historical, the shift to multiple standards makes social and

9‘‘Just as organisms in general behave in ways likely to increase their own genetic inclusive fitness, scientists
tend to behave in ways calculated to increase their own conceptual inclusive fitness.’’ (Hull 1988b, 128)
10Hence we postulate an ‘invisible backhand’ rather than an ‘invisible hand’ (see section 2).
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historical aspects relevant.11 In multi-standard versions of our model social aspects of science
are important because of the occurrence of network externalities that exert causal influence
on scientific activity but are irreducible to the individual level; the connection among the
nodes is more important than the nodes themselves. Historical aspects become relevant in
multi-standard versions because the dynamics is path-dependent, viz. previous states of the
system exert causal influence on future states of the system.
We have presented this model as a generalization of Kitcher’s model. While we think
our model nicely captures most cases (2 to J standards), Kitcher’s model is still better
suited for the 1 standard case while our model has nothing informative to say on this, only
that everyone will always adopt. Because Kitcher only treats the single-standard case, he
can afford to present a model at a lower level of analysis, a level which is better suited
to highlight the salient features of the atypical single-standard case. We could also change
our model’s level of analysis. The clusters would then become paths and increasing returns
would be absent because we’re inside a cluster (c= 0). The model then predicts an equal
distribution across paths and by introducing epistemic and non-epistemic motives we arrive
at Kitcher’s model. So our model is indeed a generalization, and (as is so often the case
with general models; cf. Weisberg & Matthewson 2008) this generality goes at the cost of
describing certain specific cases. The single-standard case is such a case for our model.
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