EDMUND T. ROLLS

REPRESENTATIONS IN THE BRAIN

ABSTRACT. The representation of objects and faces by neurons in the temporal lobe
visual cortical areas of primates has the property that the neurons encode relatively inde-
pendent information in their firing rates. This means that the number of stimuli that can be
encoded increases exponentially with the number of neurons in an ensemble. Moreover,
the information can be read by receiving neurons that perform just a synaptically weighted
sum of the firing rates being received. Some ways in which these representations become
grounded in the world are described. The issue of syntactic binding in representations, and
of its value for a higher order thought system, is discussed.

1. THE ENCODING OF INFORMATION IN THE BRAIN

How is information encoded in the cerebral cortex? Can we read the code
being used by the cortex? What are the advantages of the encoding scheme
used for the computations being performed by neurons in different areas
of the cortex? These are some of the key issues considered here. Because
information is exchanged between the computing elements of the cortex,
the neurons, by their spiking activity, the appropriate level of analysis is
how single neurons, and populations of single neurons, encode inform-
ation in their firing. More global measures which reflect the averaged
activity of large numbers of neurons (for example PET (positron emission
tomography) and fMRI (functional magnetic resonance imaging), EEG
(electroencephalographic recording), and ERPs (event-related potentials))
cannot reveal how the information is represented, or szow the computation
is being performed.

Some of the types of representation that might be found at the neuronal
level are as follows (see Rolls and Treves 1998). A local representation
is one in which all the information that a particular stimulus or event oc-
curred is provided by the activity of one of the neurons. This is sometimes
called a grandmother cell representation, because in a famous example, a
single neuron might be active only if one’s grandmother was being seen
(see Barlow 1995). A fully distributed representation is one in which all
the information that a particular stimulus or event occurred is provided
by the activity of the full set of neurons. If the neurons are binary (for
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example either active or not), the most distributed encoding is when half
the neurons are active for any one stimulus or event. A sparse distributed
representation is a distributed representation in which a small proportion
of the neurons is active at any one time.

1.1. Sparse Distributed Representations of Visual Stimuli

In the higher parts of the visual system in the temporal lobe visual cortical
areas, there are neurons that are tuned to respond to faces (see Rolls 1992;
Wallis and Rolls 1997) or to objects (Booth and Rolls 1998). (Both classes
of neuron are described as being tuned to provide information about faces
or objects, in that their responses can be view-invariant; see Rolls and
Treves 1998, Chapter 8.) Neurons that respond to faces can regularly be
found on tracks into the temporal cortical visual areas, and they therefore
provide a useful set of cells for systematic studies about how information
about a large set of different visual stimuli, in this case different faces, is
represented (Rolls 1992). First, it has been shown that the representation
of which particular object (face) is present is rather distributed. Baylis et
al. (1985) showed this with the responses of temporal cortical neurons that
typically responded to several members of a set of five faces, with each
neuron having a different profile of responses to each face (see examples
in Figure 1). It would be difficult for most of these single cells to tell which
of even five faces, let alone which of hundreds of faces, had been seen. (At
the same time, the neurons discriminated between the faces reliably, as
shown by analyses of variance.)

In a more recent study, the responses of another set of temporal cortical
neurons to 23 faces and 42 non-face natural images were measured, and
again a distributed representation was found (Rolls and Tovee 1995a). The
tuning was typically graded, with a range of different firing rates to the
set of faces, and very little response to the non-face stimuli (see Figure 2).
The spontaneous firing rate of the neuron in Figure 2 was 20 spikes/s, and
the histogram bars indicate the change of firing rate from the spontaneous
value produced by each stimulus. Stimuli which are faces are marked F,
or P if they are in profile. B refers to images of scenes which included
either a small face within the scene, sometimes as part of an image which
included a whole person, or other body parts, such as hands (H) or legs.
The non-face stimuli are unlabelled. The neuron responded best to three
of the faces (profile views), had some response to some of the other faces,
and had little or no response, and sometimes had a small decrease of firing
rate below the spontaneous firing rate, to the non-face stimuli.

The implications of this sparse distributed representation of visual
stimuli found in higher order visual cortical areas are considered below.
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Figure 1. Responses of four different temporal cortex visual neurons to a set of five faces
(A-E), and for comparison to a wide range of non-face objects and foods. F-J are non-face
stimuli. The means and standard errors of the responses computed over 8—10 trials are
shown. (After Baylis et al. 1985; and Rolls and Treves, 1998, Fig. 10.10.)
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Figure 2. The firing rates of a temporal visual cortex neuron to a set of 23 face stimuli and
42 non-face stimuli. Neuron am242. The firing rate of the neuron is shown on the ordinate,
the spontaneous firing rate of the neuron was 20 spikes/s, and the histogram bars are drawn
to show changes of firing rate from the spontaneous rate (i.e. neuronal responses) produced
by each stimulus. Stimuli which are faces are marked F, or P if they are in profile. B refers
to images of scenes which included either a small face within the scene, sometimes as part
of an image which included a whole person, or other body parts, such as legs; and H is
used if hands were a prominent part of such images. The non-face stimuli are unlabelled.
(After Rolls et al. 1997, Fig. 2a; and Rolls and Treves 1998, Fig. 10.11.)
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1.2. The Representation of Information in the Responses of Populations
of Cortical Visual Neurons

Quantitative evidence about the nature of the code used comes from ap-
plying information theory to analyse how information is represented by
a population of these neurons. Figure 3 shows the responses of a typical
single neuron in the inferior temporal cortex to four different faces. Peris-
timulus time histograms and rastergrams show the responses on different
trials (originally in random order) of a face-selective neuron to four differ-
ent faces. (In the rastergrams each vertical line represents one spike from
the neuron, and each row is a separate trial.) To analyse how information
is represented, we need to know what we would learn from any single trial
taken from many such cells as that shown on Figure 4 about which stimulus
was shown. Figure 4 shows that if we know the average firing rate of each
cell in a population to each stimulus, then on any single trial we can guess
the stimulus that was present by taking into account the response of all the
cells. We can expect that the more cells in the sample, the more accurate
may be the estimate of the stimulus. If the encoding was local, the number
of stimuli encoded by a population of neurons would be expected to rise
approximately linearly with the number of neurons in the population. In
contrast, with distributed encoding, provided that the neuronal responses
are sufficiently independent, and are sufficiently reliable (not too noisy),
information from the ensemble would be expected to rise linearly with the
number of cells in the ensemble, and (as information is a log measure)
the number of stimuli encodable by the population of neurons might be
expected to rise exponentially as the number of neurons in the sample of
the population was increased.

The information available about which of 20 equiprobable faces had
been shown that was available from the responses of different numbers of
these neurons is shown in Figure 5 (Rolls et al. 1997a; Abbott et al. 1996).
First, it is clear that some information is available from the responses of
just one neuron: on average approximately 0.34 bits. Thus, knowing the
activity of just one neuron in the population does provide some evidence
about which stimulus was present. This evidence that information is avail-
able in the responses of individual neurons in this way, without having
to know the state of all the other neurons in the population, indicates
that information is made explicit in the firing of individual neurons in a
way that will allow neurally plausible decoding, involving computing a
sum of input activities each weighted by synaptic strength, to work (see
Rolls and Treves 1998, Section 10.4.4.2). Second, it is clear (Figure 5) that
the information rises approximately linearly, and the number of stimuli
encoded thus rises approximately exponentially, as the number of cells in
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Figure 3. Peristimulus time histograms and rastergrams showing the responses on dif-
ferent trials (originally in random order) of a face-selective neuron to four different faces.
Each set of rastergrams is for a different face. (In the rastergrams each vertical line repres-
ents one spike from the neuron, and each row is a separate trial.) (After Rolls and Treves
1998, Fig. 10.12.)
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Figure 4. This diagram shows the average response for each of several cells (Cell 1 etc.)
to each of several stimuli (S1 etc.). The change of firing rate from the spontaneous rate
is indicated by the vertical line above or below the horizontal line which represents the
spontaneous rate. We can imagine guessing from such a table the stimulus S? that was
present on any one trial (see text). (After Rolls and Treves 1998, Fig. 10.17.)

the sample increases (Rolls et al. 1997a). Although the data just described
were from neurons recorded non-simultaneously, there is a preliminary
indication that for simultaneously recorded pairs of temporal cortex visual
neurons, the information they convey is relatively independent (Gawne and
Richmond 1993).This has now been confirmed when recordings are made
from up to four neurons recorded simultaneously, and moreover, almost
all the information was available in the firing rates rather than the relative
time of firing of different simultaneously recorded neurons (Panzeri et al.
1999).

This direct neurophysiological evidence thus demonstrates that the en-
coding is distributed, and the responses are sufficiently independent and
reliable that the representational capacity increases exponentially. The con-
sequence of this is that large numbers of stimuli, and fine discriminations
between them, can be represented without having to measure the activity
of an enormous number of neurons.
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Figure 5. (a) The values for the average information available in the responses of different
numbers of neurons in the temporal cortical visual areas on each trial in a 500 ms period,
about which of a set of 20 face stimuli has been shown. The decoding method was Dot
Product (x) or Probability Estimation (4). (b) The percentage correct for the correspond-
ing data to those shown in Figure 5a. (After Fig. 4 of Rolls et al. 1997; Rolls and Treves
1998, Fig. 8.8.)

We believe that the same type of ensemble encoding of what stimulus is
present (i.e. stimulus identity) is likely to be used in other sensory systems,
and have evidence that this is the case for the primate taste and olfactory
systems, in particular for the cortical taste and olfactory areas in the or-
bitofrontal cortex (Rolls et al. 1996). This type of ensemble encoding is
also used in the primate hippocampus, in that the information about which
spatial view is being seen rises approximately linearly with the number of
hippocampal neurons in the sample (Rolls et al. 1998).

1.3. Advantages of the Distributed Representations Found of Objects for
Brain Processing

Three key types of evidence that the visual representation provided by
neurons in the temporal cortical areas, and the olfactory and taste repres-
entations in the orbitofrontal cortex, are distributed have been provided,
and reviewed above. One is that the coding is not sparse (Baylis et al.
1985; Rolls and Tovee 1995). The second is that different neurons have
different response profiles to a set of stimuli, and thus have at least partly
independent responses (Baylis et al. 1985; Rolls and Tovee 1995a; Rolls et
al. 1997a). The third is that the capacity of the representations rises expo-
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nentially with the number of neurons (Rolls et al. 1997a). The advantages
of such distributed encoding are now considered, and apply to both fully
distributed and to more sparse (but not to local) encoding schemes.

Exponentially High Coding Capacity

This property arises from a combination of the encoding being sufficiently
close to independent by the different neurons (i.e. factorial), and suffi-
ciently distributed. The independence or factorial requirement is simply
to ensure that the information 7 (n) from the population of neurons rises
linearly with the number of neurons in the population. We note that if local
encoding were used, the information would increase in proportion to the
logarithm of the number of cells, which is not what has been found.

Part of the biological significance of such exponential encoding capa-
city is that a receiving neuron or neurons can obtain information about
which one of a very large number of stimuli is present by receiving the rate
of firing of relatively small numbers of inputs from each of the neuronal
populations from which it receives. In particular, if neurons received from
something in the order of 100 inputs from the population described here,
they would have a great deal of information about which stimulus was in
the environment. In particular, the characteristics of the actual visual cells
described here indicate that the activity of 15 would be able to encode 192
face stimuli (at 50% accuracy), of 20 neurons 768 stimuli, of 25 neurons
3072 stimuli, of 30 neurons 12288 stimuli, and of 35 neurons 49152 stimuli
(Abbott et al. 1996; the values are for the optimal decoding case). Given
that most neurons receive a limited number of synaptic contacts, in the
order of several thousand, this type of encoding is ideal. It would enable,
for example, neurons in the amygdala and orbitofrontal cortex to form
pattern associations of visual stimuli with reinforcers such as the taste of
food when each neuron received a reasonable number, perhaps in the order
of hundreds, of randomly assigned inputs from the visually responsive
neurons in the temporal cortical visual areas which specify which visual
stimulus or object is being seen (see Rolls and Treves 1998). Such a rep-
resentation would also be appropriate for interfacing to the hippocampus,
to allow an episodic memory to be formed, for example that a particular
visual object was seen in a particular place in the environment (Rolls and
Treves 1998).

One of the underlying themes here is the neural representation of ob-
jects. How would one know that one has found a neuronal representation of
objects in the brain? The criterion we suggest that arises from this research
is that when one can identify the object or stimulus that is present (from
a large set of stimuli, perhaps thousands or more) with a realistic num-
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ber of neurons, say in the order of 100, then one has a representation of
the object. This criterion appears to imply exponential encoding, for only
then could such a large number of stimuli be represented with a relatively
small number of units, at least for units with the response characteristics
of actual neurons. (In artificial systems a few multilevel errorless units
could represent a much larger set of objects, but in a non-neural-like way.)
Equivalently, we can say that there is a representation of the object when
the information required to specify which of many stimuli or objects is
present can be decoded from the responses of a limited number of neurons.

We may note at this point that an additional criterion for an object
representation is that the representation of the stimulus or object readable
from the ensemble of neurons should show at least reasonable invariance
with respect to a number of transforms which do not affect the identity of
the object. In the case of the visual representation these invariances include
translation (shift), size, and even view invariance. These are transforms to
which the responses of some neurons in the temporal cortical visual areas
are robust or invariant (see Wallis and Rolls 1997; Tovee et al. 1994; Booth
and Rolls 1998; Rolls 1999a). To complete the example, we can make
it clear that although information about visual stimuli passes through the
optic nerve from the retina, the representation at this level of the visual
system is not of objects, for no decoding of a small set of neurons in the
optic nerve would provide information in an invariant way about which of
many objects was present on the retina.

One question which arises as a result of this demonstration of expo-
nential encoding capacity is that of why there are so many neurons in the
temporal cortical visual areas, if so few can provide such a high capacity
representation of stimuli. One answer to this question is that high inform-
ation capacity is needed for fine discrimination. Another point is that the
14 cells analysed to provide the data shown in Figure 4, or the 38 olfactory
cells analysed by Rolls et al. (1996), were a selected subset of the cells
in the relevant brain regions. The subsets were selected on the basis of the
cells individually providing significant information about the stimuli in the
set of visual, olfactory, or taste stimuli presented. If a random sample of say
temporal cortical visual neurons had been taken, then that sample would
have needed to be one to two orders of magnitude larger to include the
subset of neurons in the sample. It is likely that the ensemble of neurons
that projects to any particular cell in a receiving area is closer to a random
sample than to our selected sample.
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Ease with which the Code Can Be Read by Receiving Neurons: The
Compactness of the Distributed Representation

For brain plausibility, it would also be a requirement that the decoding
process should itself not demand more than neurons are likely to be able to
perform. This is why when we have estimated the information from pop-
ulations of neurons, we have used in addition to a probability estimation
(optimal, in the Bayesian sense) method, a dot product measure, which is
a way of specifying that all that is required of decoding neurons would
be the property of adding up postsynaptic potentials produced through
each synapse as a result of the activity of each incoming axon (Rolls et
al. 1997a). More formally, the way in which the activation A of a neuron
would be produced is by the following principle:

h = Zr}wj

J

where r} is the firing of the jth axon, and w; is the strength of its
synapse. The firing r of the neuron is a function of the activation

r=f(h).

This activation function f may be linear, sigmoid, binary threshold, etc.

It was found that with such a neurally plausible algorithm (the dot
product, DP, algorithm), which calculates which average response vec-
tor the neuronal response vector on a single test trial was closest to by
performing a normalized dot product (equivalent to measuring the angle
between the test and the average vector), the same generic results were
obtained, with only at most a 40% reduction of information compared to
the more efficient (optimal) algorithm. This is an indication that the brain
could utilize the exponentially increasing capacity for encoding stimuli as
the number of neurons in the population increases. For example, by using
the representation provided by the neurons described here as the input to an
associative or autoassociative memory, which computes effectively the dot
product on each neuron between the input vector and the synaptic weight
vector, most of the information available would in fact be extracted (see
Rolls and Treves 1998).

Higher Resistance to Noise

This, like the next few properties, is in general an advantage of distributed
over local representations, which applies to artificial systems as well, but
is presumably of particular value in biological systems in which some of
the elements have an intrinsic variability in their operation. Because the
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decoding of a distributed representation involves assessing the activity of
a whole population of neurons, and computing a dot product or correla-
tion, a distributed representation provides more resistance to variation in
individual components than does a local encoding scheme.

Generalization

Generalization to similar stimuli is again a property that arises in neuronal
networks if distributed but not if local encoding is used, and when dot
product operation is involved (e.g. see Rolls and Treves 1998, Chapters 2
and 3). The distributed encoding found in the cerebral cortex allows this
generalization to occur.

Completion

Completion occurs in associative memory networks by a similar pro-
cess (e.g. see Rolls and Treves 1998, Chapters 2 and 3). The distributed
encoding found in the cerebral cortex is appropriate for allowing such
completion to occur.

Graceful Degradation or Fault Tolerance

This also arises only if the input patterns have distributed representations,
and not if they are local (e.g. see Rolls and Treves 1998, Chapters 2
and 3). The distributed encoding found in the cerebral cortex is appropri-
ate for allowing such graceful degradation including tolerance to missing
connections to occur.

Speed of Readout of the Information

The information available in a distributed representation can be decoded
by an analyzer more quickly than can the information from a local
representation, given comparable firing rates. Within a fraction of an in-
terspike interval, with a distributed representation, much information can
be extracted (Rolls et al. 1997a; Rolls and Treves 1998, Appendix A2).

2. CONTENT AND MEANING IN REPRESENTATIONS: HOW ARE
REPRESENTATIONS GROUNDED IN THE WORLD?

The research just described shows that the firing of populations of neur-
ons encodes information about stimuli in the world (see Rolls and Treves
1998). For example, from the firing rates of small numbers of neurons in
the primate inferior temporal visual cortex, it is possible to know which
of 20 faces has been shown to the monkey (Abbott et al. 1996; Rolls et
al. 1997a). Similarly, a population of neurons in the anterior part of the
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macaque temporal lobe visual cortex has been discovered that has a view
invariant representation of objects (Booth and Rolls 1998). From the firing
of a small ensemble of neurons in the olfactory part of the orbitofrontal
cortex, it is possible to know which of 8 odours was presented (Rolls et al.
1996). From the firing of small ensembles of neurons in the hippocampus,
it is possible to know where in allocentric space a monkey is looking (Rolls
et al. 1998; Rolls 1999b). In each of these cases, the number of stimuli
that is encoded increases exponentially with the number of neurons in
the ensemble, so this is a very powerful representation (Rolls and Treves
1998). What is being measured in each example is the mutual information
between the firing of an ensemble of neurons and which stimuli are present
in the world. In this sense, one can read off the code that is being used at
the end of each of these sensory systems. However, what sense does the
representation make to the animal? What does the firing of each ensemble
of neurons “mean”’? What is the content of the representation? In the visual
system for example it is suggested that the representation is built by a
series of appropriately connected competitive networks, operating with a
modified Hebb learning rule (Rolls 1992; Wallis and Rolls 1997; Rolls and
Treves 1998). Now competitive networks categorise their inputs without
the use of a teacher. So which neurons fire to represent a particular object or
stimulus is arbitrary. What meaning therefore does the particular ensemble
that fires to an object have? How is the representation grounded in the
real world? The fact that there is mutual information (see Rolls and Treves
1998, Appendix 2) between the firing of the ensemble of cells in the brain
and a stimulus or event in the world does not answer this question.

One answer to this question is that there may be meaning in the case
of objects and faces that it is an object or face, and not just a particular
view. This is the case in that the representation may be activated by any
view of the object or face. This is a step, suggested to be made possible by
a short term memory in the learning rule which enable different views of
objects to be associated together (see Rolls and Treves 1998). But it still
does not provide the representation with any meaning in terms of the real
world. What actions might one make, or what emotions might one feel, if
that arbitrary set of temporal cortex visual cells was activated?

This leads to one of the answers I propose. I suggest that one type
of meaning of representations in the brain is provided by their reward
(or punishment) value: activation of these representations is the goal of
actions. In the case of primary reinforcers such as the taste of food or
pain, the activation of these representations would have meaning in the
sense that the animal would work to obtain the activation of the taste of
food cells when hungry, and to escape from stimuli that cause the cells
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representing pain to be activated. Evolution has built the brain is such a
way that the animal will work to produce activation of the “taste of food
reward” cells when hungry, and to escape from situations which cause the
activation of the cells that respond to pain. In the case of other ensembles
of cells in for example the visual cortex which respond to objects with the
colour and shape of a banana, and which “represent” the sight of a banana
in that their activation is always and uniquely produced by the sight of a
banana, such representations come to have meaning only by association
with a primary reinforcer, involving the process of stimulus-reinforcement
association learning.

The second sense in which a representation may be said to have
meaning is by virtue of sensory-motor correspondences in the world. For
example, the touch of a solid object such as a table may become associated
with evidence from the motor system that attempts to walk through the
table result in cessation of movement. The representation of the table in
the inferior temporal visual cortex may only have “meaning” in the sense
that there is mutual information between the representation and the sight
of the table until the table is seen just before and while it is touched, when
sensory-sensory association between inputs from different sensory mod-
alities will be set up that will enable the visual representation to become
associated with its correspondences in the touch and movement worlds. In
this second sense, meaning will be conferred on the visual sensory repres-
entation because of its associations in the sensory-motor world. Thus it is
suggested that there are two ways by which sensory representations can be
said to be grounded, that is to have meaning, in the real world.

It is suggested that the symbols used in language become grounded in
the real world by the same two processes. In the first, a symbol such as the
word banana has meaning because it is associated with primary reinforcers
such as the flavour of the banana and with secondary reinforcers such as
the sight of the banana. In the second process, the word “table” may have
meaning because it is associated with sensory stimuli produced by tables
such as their touch, shape and sight, as well as other functional properties,
such as for example being load-bearing.

3. SYNTACTICAL OPERATIONS, SYMBOLIC REPRESENTATIONS, AND
HIGHER ORDER THOUGHTS

In The Brain and Emotion (Rolls 1999a; see also Rolls 2000), I describe
evidence that there are two main types of route to action for emotional
events. One is for instrumental behavior to primary reinforcers or to stimuli
associated with them, and involves working for immediate goals (including
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goals expected as a result of stimulus-reinforcement association learning).
There is evidence that we (and split brain subjects and other patients, see
Chapter 9) can perform many of these actions automatically, without con-
scious awareness, and this is therefore sometimes described as an implicit
system. The second type of route uses a “what...if” type of reasoning
involving flexible (“on-line”) syntactic operations on symbols and enables
long-term planning for strategies to obtain goals, and immediate goals to
be deferred. It is argued that there is a credit assignment problem in such
a first order syntactic system in that if a plan does not result in the desired
outcome, then which of the multiple steps in the plan leads to the error is
not clear. To solve this problem, it is suggested that it would be useful to
have a higher order thought system to enable each step of the plan to be
thought about (evaluating for example the premises for each step of the
plan), so that the plan could be corrected.

The symbols (or symbolic representations) in this system are symbols
in the sense that they can take part in syntactic processing. The symbolic
representations are grounded in the world in that they refer to events in
the world. The symbolic representations must have a great deal of in-
formation about what is referred to in the world, including the quality and
intensity of sensory events, emotional states, etc. The need for this is that
the reasoning in the symbolic system must be about stimuli, events, and
states, and remembered stimuli, events and states, and for the reasoning
to be correct, all the information that can affect the reasoning must be
represented in the symbolic system, including for example just how light
or strong the touch was, etc. Indeed, it is pointed out in The Brain and
Emotion (Rolls 1999a, 252-253) that it is no accident that the shape of
the multidimensional phenomenal (sensory etc) space does map so clearly
onto the space defined by neuronal activity in sensory systems, for if
this were not the case, reasoning about the state of affairs in the world
would not map onto the world, and would not be useful. Good examples
of this close correspondence are found in the taste system, in which sub-
jective space maps simply onto the multidimensional space represented
by neuronal firing in primate cortical taste areas. In particular, if a three-
dimensional space reflecting the distances between the representations of
different tastes provided by macaque neurons in the cortical taste areas is
constructed, then the distances between the subjective ratings by humans
of different tastes are very similar (Yaxley et al. 1990; Smith-Swintowsky
et al. 1991; Plata-Salaman et al. 1996). Similarly, the changes in human
subjective ratings of the pleasantness of the taste, smell and sight of food
parallel very closely the responses of neurons in the macaque orbitofrontal
cortex (see The Brain and Emotion, Chapter 2). The representations in the
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first order linguistic processor that the HOLT's process include beliefs (for
example “Food is available”, or at least representations of this), and the
HOLT system would then have available to it the concept of a thought
(so that it could represent “I believe [or there is a belief] that food is
available”). However, as summarised in the first paragraph of this sec-
tion, representations of sensory processes and emotional states must be
processed by the first order linguistic system, and HOLTs may be about
these representations of sensory processes and emotional states capable
of taking part in the syntactic operations of the first order linguistic pro-
cessor. Such sensory and emotional information may reach the first order
linguistic system from many parts of the brain, including those such as the
orbitofrontal cortex and amygdala implicated in emotional states (see The
Brain and Emotion, Rolls 1999a, Fig. 9.3 and p. 253). When the sensory
information is about the identity of the taste, the inputs to the first order
linguistic system must come from the primary taste cortex, in that the
identity of taste, independent of its pleasantness (in that the representation
is independent of hunger) must come from the primary taste cortex. In
contrast, when the information that reaches the first order linguistic system
is about the pleasantness of taste, it must come from the secondary taste
cortex, in that there the representation of taste depends on hunger (see Fig.
9.3 of Rolls, 1999a).

Another issue is that of the type of syntax that is required. What is
required for the first order linguistic symbol processing system is the abil-
ity to link together representations in multiple “if...then” steps, to form a
flexible plan. The plan involves flexible linking in that one plan might be
formulated now, and another one, using many of the same symbols or rep-
resentations, might be formed two minutes later. (Such a system formally
requires syntax to bind the symbols.) Thus no claim is made about human
verbal language being required, and a number of non-human animals may
be able to form this type of plan. The higher order thought system needs
to be able to understand and correct the plans of the first order syntactic
system, and for this reason itself needs to be able to process syntax, and in
this sense is termed a higher order linguistic thought (HOLT) system.

4. SOME THOUGHTS ON CONSCIOUSNESS

It is suggested that it is difficult to imagine a higher order linguistic thought
system thinking about its own thoughts grounded in the world without it
feeling like something. That is, it is suggested that phenomenal experi-
ence (“what it feels like”) arises as a property of the operation of such a
higher order linguistic thought (HOLT) system (Rolls 1997, 1999a, 2000;
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cf. Rosenthal 1993). (This type of system is sometimes described as the ex-
plicit system.) Having identified a computational advantage for a system to
have thoughts about thoughts, and suggested that phenomenal experience
arises by virtue of this system, I note that sometimes this system must
include sensory processes, emotional states etc. in its operations, and sug-
gest that such sensory events, and emotional and motivational processes,
feel like something by virtue of participating in this system.

An interesting issue is whether higher order thoughts (HOTs) are
involved when we are conscious about stimuli and events that can be pro-
cessed implicitly, for example secondary reinforcers. My hypothesis is that
the HOLT system for explicit linguistic planning should usually be monit-
oring our behavior when it is being performed implicitly and automatically,
in case the different types of computation made possible by the syntactic
planning system would result in a better outcome by deferring an immedi-
ate goal and acting for a goal achievable only by multistep planning (see
Rolls 1999a, Chapters 9 and 10); and that it is by virtue of the operation of
the HOLT system that we are conscious of the secondary reinforcer. That
is, some behavioral responses to the secondary reinforcer may be learned
about in an implicit system (one to which there is no conscious access), but
there may nevertheless be explicit access to the stimuli involved because
they reach a HOLT linguistic system that is continually monitoring. This
may lead to the explicit system confabulating sometimes about causes or
reasons for actions, as described in The Brain and Emotion (Rolls 1999a).

For those who might wonder whether it is proposed that human verbal
language is necessary for qualia and feelings, it should be clear that this
is not implied by the proposal. In any case, theories of consciousness
are not sufficiently developed that they should be taken to have practical
implications.
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