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There is increasing interest in multisensory influences upon sensory-specific judgments,
such as when auditory stimuli affect visual perception. Here we studied whether the dura-
tion of an auditory event can objectively affect the perceived duration of a co-occurring
visual event. On each trial, participants were presented with a pair of successive flashes
and had to judge whether the first or second was longer. Two beeps were presented with
the flashes. The order of short and long stimuli could be the same across audition and
vision (audio–visual congruent) or reversed, so that the longer flash was accompanied by
the shorter beep and vice versa (audio–visual incongruent); or the two beeps could have
the same duration as each other. Beeps and flashes could onset synchronously or asyn-
chronously. In a further control experiment, the beep durations were much longer (tripled)
than the flashes. Results showed that visual duration discrimination sensitivity (d ′) was
significantly higher for congruent (and significantly lower for incongruent) audio–visual syn-
chronous combinations, relative to the visual-only presentation. This effect was abolished
when auditory and visual stimuli were presented asynchronously, or when sound durations
tripled those of flashes. We conclude that the temporal properties of co-occurring auditory
stimuli influence the perceived duration of visual stimuli and that this can reflect genuine
changes in visual sensitivity rather than mere response bias.

Keywords: multisensory integration, crossmodal interactions, response bias, signal-detection theory, audition,

vision, time perception

INTRODUCTION
There is increasing interest within multisensory research in how
auditory information can influence visual perception (e.g., Shams
et al., 2000; Vroomen and de Gelder, 2000; Calvert et al., 2004;
Spence and Driver, 2004; Vroomen et al., 2004; Cappe et al., 2009;
Vroomen and Keetels, 2009; Leo et al., 2011). Time is one funda-
mental dimension for all sensory modalities, and there are now
several studies that demonstrate that manipulating the temporal
dimension in one modality affect perception for other modali-
ties (e.g., Eagleman, 2008; Freeman and Driver, 2008). Perception
of an event’s duration can deviate from its physical characteris-
tics (Eagleman, 2008) and in multisensory cases might be most
influenced by the sensory modality that carries the most reliable
temporal information (see Welch and Warren, 1980; Walker and
Scott, 1981; Recanzone, 2003; Wada et al., 2003; Alais and Burr,
2004; Ernst and Bülthoff, 2004; Witten and Knudsen, 2005; Burr
and Alais, 2006), as we studied here for audio–visual cases.

While the visual system typically has a higher spatial resolution
than the auditory system (e.g., Witten and Knudsen, 2005) audi-
tion is usually more reliable for temporal aspects of perception
(Repp and Penel, 2002; Bertelson and Aschersleben, 2003; Morein-
Zamir et al., 2003; Guttman et al., 2005; Getzmann, 2007; Freeman
and Driver, 2008). Accordingly vision can dominate audition in
determining spatial percepts, as in the classic “ventriloquist effect”
(Howard and Templeton, 1966; Thurlow and Jack, 1973; Bertelson

and Radeau, 1981). Conversely, audition may dominate vision in
the temporal domain (Welch and Warren, 1980; Repp and Penel,
2002; Bertelson and Aschersleben, 2003; Morein-Zamir et al., 2003;
Guttman et al., 2005; Getzmann, 2007; Freeman and Driver, 2008;
Kanai et al., 2011) leading to so-called “temporal ventriloquism”
(e.g., Gehard and Mowbray, 1959; Bertelson and Aschersleben,
2003). Freeman and Driver (2008) found that timing of a static
sound can strongly influence spatio-temporal processing of con-
current visual apparent motion. Shams et al. (2000) found that
illusory percepts of multiple flashes can be induced when a sin-
gle flash is accompanied by a sequence of multiple beeps. Shipley
(1964) showed that changes in the physical flutter rate of a clicking
sound induce simultaneous changes in the apparent flicker rate of
a flashing light.

Several crossmodal effects on subjective time perception in par-
ticular have been described (e.g., Walker and Scott, 1981; Donovan
et al., 2004; Chen and Yeh, 2009; Klink et al., 2011). Chen and Yeh
(2009) reported in an oddball paradigm that auditory stimuli can
apparently extend reported visual duration, while visual stimuli
had no such impact on reported auditory duration (see also Dono-
van et al., 2004; Klink et al., 2011; but see also van Wassenhove et al.,
2008; Aaen-Stockdale et al., 2011 for alternative accounts). But
despite such suggestions of auditory influences on visual dura-
tion perception, to date it has typically been hard to establish
whether such influences reflect response biases or instead genuine
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changes in visual sensitivity, in signal-detection terms (Macmillan
and Creelman, 1991).

We sought to address this issue directly here. On each trial
subjects were presented with two visual stimuli in succession (see
Figure 1) and had to make a force-choice about which was longer,
which had an objectively correct answer. The multisensory manip-
ulation was that we could also present two sounds on each trial.
In Experiment 1a each sound was presented simultaneously with
a flash (see Figure 1). These were possible two durations for the
flashes, both used on every single trial so that one flash (either the
first or the second) was longer. The beep durations on a given trial
could potentially agree with those for the two successive flashes
(congruent condition). Alternatively the two sounds could have
the reverse order of durations (incongruent condition), or else the
same duration as each other (both sounds short, or both sounds
long). We measured whether manipulating the auditory durations
had an impact on objective performance in the visual duration
discrimination task, analyzing this in terms of signal-detection
theory.

To determine whether any influence of auditory durations on
visual duration judgments depended on synchrony between the
multisensory events, in a control study (Experiment 1b) we mis-
aligned the onsets of auditory and visual events (by 500 ms) to pro-
duce asynchronous control conditions. If the impact of auditory
durations on visual duration perceptions reflects multisensory
binding (e.g., see Meredith et al., 1987; Colonius and Diederich,
2011), it should be eliminated or reduced in the asynchronous
condition; whereas if instead it were simply to reflect a response
bias (similar to the response that a blind observer might give
when asked to report visual durations when only hearing sounds)
the auditory influence should remain the same even in the new
asynchronous case of Experiment 1b. Finally, in a further control
situation (Experiment 2) we tripled the length of auditory dura-
tions relative to visual durations, reasoning that if auditory and
visual durations mismatch sufficiently, there should be less gen-
uine perceptual binding between them (whereas once again, the
response bias of a strictly blind observer who only hears sounds,
misreporting them as if they were seen, should remain the same).

FIGURE 1 | Schematic timelines representing conditions in Experiment

1A and 1B. In Experiment 1A all corresponding auditory (red lines marked
with label “AUD”) and visual (blue lines marked with label “VIS”) stimuli had
the same onset (synchronous conditions) while in Experiment 1B visual
stimuli always preceded auditory stimuli by 500 ms (asynchronous
conditions). In both situations, each pair of stimuli within one modality was

separated by a 1000-ms interval; the order of short and long stimuli could be
the same across auditory and visual modalities (congruent) or reversed
between them (incongruent). In the both-auditor-short condition, both
successive sounds had the shorter visual duration (and vice versa for
both-auditory-long). Finally a visual-only condition served as a baseline
measure.
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EXPERIMENT 1
Seventeen participants with a mean age of 26.29 (range 19–35)
took part in the first experiment, nine female, one left-handed.
All reported normal or corrected visual acuity and normal hear-
ing. All gave written informed consent in accord with University
College London ethics approval, were naïve to the purpose of the
study and were paid for their time. One participant was excluded
because she showed an inconsistent pattern in the visual titration
(see below). Two more were excluded because their performance
in the visual-only condition was at ceiling in the main experiments,
leaving 14 participants in the sample.

APPARATUS
Stimuli were presented on a 21′ CRT display (Sony GDM-F520) in
a darkened room. Participants sat with their head in a chin rest at
65 cm viewing distance. Video resolution was 1600 × 1200, with
screen refresh rate of 85 Hz. Two small stereo PC speakers were
placed just in front of the monitor immediately on either side
of it. Stimulus control and data recording were implemented on
a standard PC, running E-Prime 2 Professional (Psychology Soft-
ware tools, Inc., www.pstnet.com). Unspeeded manual two-choice
responses were made using a standard PC keyboard.

STIMULI
Each visual stimulus comprised a white disk extending 1.2˚ in
visual angle with its midpoint at 3˚ below a central fixation cross
on a gray background. On each trial a pair of disks was flashing
consecutively with varying durations from 55 to 165 ms.

The auditory stimulus was a 900-Hz pure tone sampled at
44.100 kHz with durations also varying from 55 to 165 ms. Sound
level was measured with an audiometer and set to ∼70 dB(A).

PROCEDURE
Visual titration
Only visual stimuli were presented during this part of the exper-
iment. On each trial participants were presented with a pair of
disks flashing in two consecutive time windows separated by an
SOA of 1000 ms. While one of the two visual stimuli had a constant
standard duration of 55 ms, the other was slightly longer, with its
duration varying between 66 and 165 ms (10 possible incremental
steps of one frame at 85 Hz, i.e., ∼11 ms). The latter stimulus type
will be referred to as the “longer” stimulus. Each of the resulting 10
pairings of standard and longer stimuli was repeated 10 times per
block. Each participant completed two to three blocks. The pair-
wise order of standard and longer stimuli was counterbalanced
between trials, with standard-longer or longer-standard pairwise
sequences being equiprobable.

On each trial participants were instructed to indicate whether
the first or the second flash lasted longer, by pressing a corre-
sponding button on the keyboard (“1” or “2”). This allowed us
to identify the visual duration discrimination threshold for each
participant individually. Threshold was defined as corresponding
to the increase in duration for the longer stimulus whose duration
allowed correct identification of it as longer in ∼75% of cases. As
it turned out, for the selected threshold stimulus participants were
able to discriminate differences of durations correctly in 73.78
(±1.6 SE)% of cases for those stimulus pairings containing the

longer stimulus that was identified as threshold. The average dura-
tion of the longer stimuli identified as threshold was 103.4 (±3.97
SE) ms duration, for the visual disks used.

MAIN EXPERIMENT 1
In each trial of the main experiment, participants were presented
with the pair of visual stimuli previously identified as around
threshold from the titration task. Again, the order of standard
and longer visual stimulus was counterbalanced and equiprobable,
with participants again asked to indicate which of the two consec-
utive flashes lasted longer. But the main experiment now consisted
of 10 conditions (5 in Experiment 1a, and 5 in Experiment 1b, with
these 10 all intermingled but presented separately here for ease of
exposition). These 10 conditions differed with regard to whether,
when, and how any sounds were presented with the flashes. Par-
ticipants were emphatically instructed to ignore all sounds played
during the experiment and to judge only the duration of the visual
stimuli.

Two pure tone durations were selected for each participant –
one lasting 55 ms and thus matching the standard visual stimulus
in duration, the other auditory duration matching the participant-
specific longer visual stimulus identified as threshold during the
preceding visual titration task. These two pure tones were then
combined with the flashes according to condition. There were two
main classes of conditions: potentially synchronous (Experiment
1a) or asynchronous (Experiment 1b). In the potentially synchro-
nous conditions, tone onset was temporally aligned with the visual
onsets; whereas in the potentially asynchronous conditions, the
onset of tones was delayed for 500 ms (thus 180˚ out of “phase” if
one considers the pair of visual stimuli as a cycle, for which 180˚
yields the maximum possible phase offset) relative to flash onsets.
In either of the potentially synchronous or asynchronous situa-
tions, there were five possible conditions: audio–visual congruent
(same order of durations in the two modalities), audio–visual
incongruent (opposite orders of durations in the two modali-
ties), both-long auditory stimuli, both-short auditory stimuli, or
a purely visual condition (c.f. Figure 1). The purely visual con-
dition was of course actually equivalent for “synchronous” and
“asynchronous” conditions, corresponding to the same condition
arbitrarily divided into two separate datasets (random halves of
the visual-only trials per participant), so as to a 5 × 2 factorial
analysis of variance (ANOVA) on the data; see below.

Each block contained 10 repetitions for each of the 10 condi-
tions in a randomized order. Every participant repeated three to
four of these blocks.

DATA ANALYSIS
For each participant we computed visual sensitivity (d ′) and crite-
rion (c) for the duration discrimination task, for each condition,
using standard formulae as in Macmillan and Creelman (1997),
namely:

d ′ = z(H) − z(F)

and

c = − [z (H) + z (F)]/2
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where z(H) stands for the z-transform of the hit rate, while z(F)
stands for the z-transform of the false-alarm rate. For any cases
in which false-alarm rates were zero, we followed the conservative
convention (as recommended by Snodgrass and Corwin, 1988;
Macmillan and Creelman, 1991; c.f. Sarri et al., 2006) of adding a
count of 0.5 to all cells within a single analysis.

d ′ and criterion were analyzed using repeated-measures
ANOVA, with SYNCHRONY (synchronous/asynchronous) and
audio–visual CONDITION (Congruent; Incongruent; Short
sounds; Long sounds, Purely visual) as within-subjects factors;
followed up by pairwise t -tests where appropriate.

RESULTS
The sensitivity (d ′) results are shown in Figure 2A (synchro-
nous conditions) and Figure 2B (asynchronous conditions), as
group means with SE. Recall that synchronous/asynchronous is a
dummy factor solely for the visual-only condition, which was split
randomly into two separate datasets. Note the higher sensitivity
specifically in the synchronous audio–visual congruent condition
(Figure 2A, leftmost bar). The overall 5 × 2 ANOVA showed a
main effect of SYNCHRONY [F(1,13) = 12.09, p < 0.01], a signif-
icant main effect of audio–visual CONDITION [F(4,52) = 6.68,
p < 0.001] and critically a significant interaction between these
two factors [F(4,52) = 5.96, p < 0.001].

To identify the source of the interaction, first two sep-
arate one-way ANOVAs were performed for synchronous or
asynchronous datasets, with the five-level factor of condition.
While none of asynchronous conditions differed from each other
[F(4,52) = 0.56, p = 0.69 for the main effect], the synchronous
conditions did [F(4,52) = 10.91, p < 0.00001]. Exploratory pair-
wise t -tests for the asynchronous conditions confirmed no sig-
nificant differences between any (all p > 0.20). Pairwise t -tests
for the synchronous conditions showed that sensitivity in the
synchronous audio–visual congruent condition (d ′ = 1.93 ± 0.23
SE) was significantly higher than in all the other conditions,

as follows: (i) versus the synchronous audio–visual incongru-
ent condition [d ′ = 0.20 ± 0.15 SE; t (13) = 4.93; p < 0.001]; (ii)
versus the both-auditory-short condition [d ′ = 1.07 ± 0.16 SE;
t (13) = 3.63; p < 0.01]; (iii) versus the both-auditory-long condi-
tion [d ′ = 1.11 ± 0.19 SE; t (13) = 3.0, p = 0.01]. The trend for the
somewhat lower d ′ overall in the asynchronous than synchronous
experiment did not approach significance.

When compared to the visual-only baseline measure
(d ′ = 1.01 ± 0.18 SE), we found that: (i) visual duration discrim-
ination was significantly enhanced in the synchronous audio–
visual congruent condition [t (13) = −3.38; p < 0.01]; (ii) was
significantly impaired in the synchronous audio–visual incon-
gruent condition [t (13) = 3.44, p < 0.01]; (iii) was not signifi-
cantly affected in the both-auditory-long or short conditions (all
p > 0.71).

A comparable two-way ANOVA on criterion scores instead
revealed no significant results [main effect of SYNCHRONY
(F(1,13) = 4.17, p = 0.07); main effect of audio–visual CONDI-
TION (F(4,52) = 0.35, p = 0.83); interaction between the two
(F(4,52) = 1.10, p = 0.36); all n.s.].

DISCUSSION
In Experiment 1 we found that objective duration discrimination
for visual stimuli was objectively modulated by the duration of co-
occurring auditory stimuli, but only when those auditory stimuli
were synchronous with the visual events, rather than being delayed
by 500 ms. Specifically, visual duration discrimination sensitivity
(d ′) was enhanced for congruent-duration, synchronous audi-
tory stimuli but decreased for incongruent-duration, synchronous
auditory stimuli. Neither a sensitivity enhancement nor a sensitiv-
ity decrease could be observed for the asynchronous conditions, in
which the sounds were now delayed by 500 ms so as to be (maxi-
mally) out-of-phase with the flashes. This elimination of the effect
for the asynchronous case, together with the observed impact on
d ′ (rather than criterion) for the synchronous cases, indicates a

FIGURE 2 | Mean visual duration discrimination sensitivity (d′), SEM

indicated) for each condition in Experiment 1a (A) and 1b (B). Asterisks in
1a indicate significant differences relative to the synchronous–congruent

condition that gave best performance (*p < 0.05, **p < 0.01, ***p < 0.001),
see leftmost bar in left graph. None of the pairwise contrasts were significant
for the asynchronous conditions (see right graph).
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genuine multisensory impact on visual perception, rather than a
mere response bias as might be evident if a blind observer had to
guess the response based solely on the sounds.

We suggest that the strong effect of auditory duration on per-
ception of synchronous visual events reflects crossmodal binding
between them (e.g., see also Meredith et al., 1987; Vroomen and
Keetels, 2010; Colonius and Diederich, 2011), plus weighting of
the auditory duration when bound due to the higher precision
of temporal coding for audition than vision (see Introduction).
A visual event is evidently perceived as longer when co-occurring
with a slightly longer auditory event that is parsed as part of the
same, single multisensory event. But we reasoned that if this is
indeed a genuine perceptual effect as we document, rather than
merely a response bias, then there should presumably be a limit
to how far a longer auditory event can “stretch” perception of a
visual event. If the auditory event were to endure much, much
longer than the corresponding visual event, it should become less
plausible that they arise from the same single external crossmodal
event, and the auditory influence should begin to wane. We tested
this in Experiment 2.

EXPERIMENT 2
This study repeated the critical conditions where effects had
been apparent in Experiment 1 (i.e., synchronous–congruent,
synchronous–incongruent, plus visual-only baseline) except that
now either the sounds had the same possible durations as the
flashes, or else the sounds were tripled in duration such that
they would no longer plausibly correspond to the flashes. A mere
response bias, akin to a blind observer simply reporting the dura-
tions of the sounds, should lead to a similar outcome in either
case; whereas the genuine perceptual effect we have documented
should reduce (or even potentially disappear) in the mismatching
tripled situation.

METHODS
Participants
Fifteen new participants with a mean age of 24.53 (range 18–34)
took part, seven females, one left-handed, all reporting normal or
corrected visual acuity, and normal hearing.

Apparatus and stimuli
The setup was as for Experiment 1,but with less conditions and two
new ones. We repeated the synchronous–congruent, synchronous–
incongruent, and visual-only conditions. We also added two
new conditions that were as for the synchronous–congruent and
synchronous–incongruent except with tripled auditory durations.
In these two new tripled conditions, each sound still onset simul-
taneously with each flash, but the sounds now lasted three times
as long, so that with their much later offset they did not match the
visual events so well.

PROCEDURE
Visual titration
This aspect of the procedure was the same as in Experiment 1. On
average, participants were able to discriminate durations correctly
for 76.33 (±1.5 SE)% of cases for those stimulus pairings that
contained the longer visual stimulus identified as threshold. The

average duration of the longer visual stimuli identified as thresh-
old was 94.5 (±3.49 SE) ms duration, so 49.5 ms longer than the
standard stimulus, with the visual disks used.

MAIN EXPERIMENT
The procedure resembled Experiment 1, but with only five con-
ditions, two of which were new. The purely visual baseline,
synchronous–congruent, and synchronous–incongruent condi-
tions were as before. The two new conditions were tripled-
sound-synchronous–congruent and tripled-sound-synchronous–
incongruent condition. These were exactly like their untripled
counterpart, except that the duration of each sound was three
times as long.

DATA ANALYSIS
For each participant and condition we computed sensitivity (d ′)
and criterion (c) for each stimulus condition as in Experiment 1.
d ′ or criterion for the four audio–visual conditions were ana-
lyzed using repeated-measures two-way ANOVA, with SOUND
LENGTH (tripled or untripled) and audio–visual duration CON-
GRUENCY (congruent versus incongruent) as factors. In addi-
tion pairwise t -tests compared performance in the purely visual
baseline against the remaining conditions.

RESULTS
The sensitivity (d ′) results are shown in Figure 3, as group means
with SE. Note the higher sensitivity in the audio–visual untripled
synchronous–congruent condition (leftmost bar), replicating the
effects obtained in Experiment 1a (c.f. Figure 2A).

The two-way ANOVA showed no main effect of SOUND
LENGTH [F(1,14) = 1.94, p = 0.18], a significant main effect of
CONGRUENCY [F(1,14) = 49.33, p < 0.00001] and a significant
interaction between these two factors [F(1,14) = 10.99, p < 0.01],
because the congruent/incongruent difference was larger in
the untripled than tripled case. Sensitivity in the audio–visual
untripled synchronous–congruent condition (d ′ = 2.07 ± 0.16
SE) was significantly higher than in all the other condi-
tions, as follows: (i) versus the visual-only duration condition
[d ′ = 1.58 ± 0.16 SE; t (14) = 2.86; p = 0.013]; (ii) versus the
tripled congruent condition [d ′ = 1.72 ± 0.18 SE; t (14) = 2.82;
p = 0.014]; (iii) versus the untripled incongruent condition
[d ′ = 0.11 ± 0.26 SE; t (14) = 8.85; p < 0.000001]; (iv) versus the
tripled incongruent condition [d ′ = 0.82 ± 0.25 SE; t (14) = 4.8,
p < 0.001].

Thus, by prolonging the duration of the auditory stimuli to
triple that of the visual stimuli, the significant enhancement (rel-
ative to visual-only baseline) obtained for the congruent audio–
visual durations was abolished. While even triple-duration audi-
tory stimuli still produced some sensitivity decrease for incongru-
ent stimuli, even this remaining decrease was still significantly
reduced for the tripled versus untripled case [t (14) = −2.69,
p = 0.018].

A comparable analysis of criterion scores instead revealed no
significant results [e.g., for the two-way ANOVA, main effects
of SOUND LENGTH (F(1,14) = 3.29, p = 0.09); main effect of
CONGRUENCY (F(1,14) = 0.002, p = 0.96); interaction between
the two (F(1,14) = 2.15, p = 0.16), all n.s.].
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FIGURE 3 | Mean visual duration discrimination sensitivity (d′), SEM

indicated) for each condition in Experiment 2. Asterisks above bars point
to significant differences relative to the visual-only baseline, with the latter
represented here by the orange dashed line with SEM shading. The
significant enhancement or decrease of sensitivity, for the untripled
congruent and incongruent conditions (respectively) replicates the findings
of Experiment 1a. These effects were eliminated or reduced (respectively)
for the corresponding two new tripled conditions, in which a sound still
onset concurrently with each flash, but the sounds now were three times
as long.

DISCUSSION
We replicated the results of Experiment 1a for the shared con-
ditions in Experiment 2, showing significant enhancement of
objective visual duration discrimination sensitivity (d ′) by con-
gruent auditory stimuli and a significant decrease of sensitivity
for incongruent stimuli. The new finding was that the sensitiv-
ity enhancement for congruent stimuli (i.e., same pairwise suc-
cessive order of longer and shorter) relative to the visual-only
baseline was completely abolished for prolonged auditory stimuli
that onset concurrently with the visual flashes but endured three
times longer. Some sensitivity decrease for incongruent audio–
visual pairings remained but at a significantly reduced level in the
tripled-sound-duration case. These results show that the impact
of auditory durations on visual duration discrimination is larger
when the sounds and flashes endure for a similar order of magni-
tude, being significantly diminished when the sounds endure three
times longer than the flashes.

GENERAL DISCUSSION
In two experiments we tested the influence of sound duration
on objective discrimination of the duration of visual events. Our
results accord with but go beyond previous reports (e.g., Walker
and Scott, 1981; Donovan et al., 2004; Chen and Yeh, 2009; Klink
et al., 2011) that auditory stimuli can impact significantly on judg-
ments for the duration of co-occurring visual stimuli. The new
findings extend previous work by showing that: (1) not only can
incongruent auditory stimuli significantly impair objective visual

performance, but congruent auditory stimuli can benefit visual
duration judgments; (2) this applies for visual sensitivity (d ′) to
visual duration in signal-detection terms, rather than affecting
mere response bias or criterion; (3) this impact of auditory dura-
tion on perception of visual duration depends on whether the
audio–visual onsets are synchronous, being eliminated when the
sounds lagged here; (4) it also depends on whether the auditory
and visual events are similar in length, being reduced, or elimi-
nated when the sounds are triple the duration of corresponding
visual events.

A previous study by Donovan et al. (2004) used a similar
approach to ours. They investigated the influence of task-irrelevant
auditory information on a visual task, but with participants judg-
ing whether two sequential visual events were presented for the
same or different lengths of time. They found a similar trend to
the present pattern for congruent versus incongruent audio–visual
conditions, and their effect was abolished for asynchronous con-
ditions, reminiscent of the present Experiment 1b. But Donovan
et al. (2004) did not titrate the duration of visual stimuli to a
threshold level; did not present a visual-only condition to provide
a baseline for assessing any multisensory benefit or cost; did not
calculate signal-detection scores.

More recently, Klink et al. (2011) extensively tested cross-
modal influences on duration perception, confirming auditory
over visual dominance for time perception. These authors adopted
a duration discrimination task, similar to the one presented here.
In line with our results, they found a reduction in visual dura-
tion discrimination accuracy with incongruent auditory stimuli.
But they did not test the effect of audio–visual congruent stimuli,
and their control for possible response biases was very differ-
ent to our own (a grouping experiment, Experiment 5 in Klink
et al., 2011). Our findings accord with such prior work (see also
Introduction) in showing a clear influence of audition on visual
duration judgments. We show in signal-detection terms that visual
d ′ for duration discrimination can not only be impaired by incon-
gruent auditory timing information, but for the first time, also
significantly enhanced by congruent auditory information; plus
we document some of the boundary conditions for this [in terms
not only of synchronous onset across the modalities (see Exper-
iment 1 here) but also in terms of fairly well-matching duration
scale (see Experiment 2 here)].

How could such auditory influences over visual duration per-
ception arise? An extensive literature on the many possible mech-
anisms for time perception has built up (for recent reviews, see
Ivry and Schlerf, 2008; Grondin, 2010). One long tradition in
the field of time perception posits the presence of central mech-
anisms for time estimation, such as an internal clock or clocks
(e.g., Ivry and Richardson, 2002; Rosenbaum, 2002; Schöner, 2002;
Wing, 2002). Some research suggests that such central-clock(s)
might operate supramodally. In apparent support of this view are
findings that several brain areas (e.g., see Ivry and Keele, 1989;
Harrington et al., 1998; Rao et al., 2001; Leon and Shadlen, 2003;
Coull et al., 2004; Bueti et al., 2008) are implicated in estima-
tion and representation of time independently from the sensory
modality of the stimuli in question, although it should be noted
that some of the time judgments used were on longer scales than
here.
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Other authors have argued that there may be no need to invoke
internal “clocks” to describe some timing behaviors (e.g., Zeiler,
1999; Jantzen et al., 2005; Karmarkar and Buonomano, 2007; Ivry
and Schlerf, 2008). Recent findings in the field of visual percep-
tion, for example, have led to the development of seemingly more
modality-specific perspectives (e.g., Yarrow et al., 2001; Ghose and
Maunsell, 2002; Morrone, 2005; Johnston et al., 2006; Shuler and
Bear, 2006; Xuan et al., 2007), suggesting that estimates for the
duration of visual signals could be embedded within the visual
modality itself.

Here we showed that visual duration sensitivity can be signif-
icantly impaired or enhanced by auditory stimuli that are likely
to be parsed as reflecting the same external “event” as the affected
visual event. The central-clock perspective might consider this to
arise at some internal timing process that is shared between modal-
ities. On the other hand, our results might also be reconciled with
visual duration judgments arising within visual cortex itself, pro-
vided it is acknowledged that auditory can also impact upon visual
cortex (for which an increasing body of evidence now exists; e.g.,
Martuzzi et al., 2007; Romei et al., 2007, 2009; Wang et al., 2008;
Bolognini et al., 2010; Cappe et al., 2010; Noesselt et al., 2010;
Bolognini and Maravita, 2011; c.f. Ghazanfar and Schroeder, 2006;
Driver and Noesselt, 2008 for extensive review). It would be useful
to combine the present behavioral paradigm with neural measures
in future work; and also to study the impact of neural disruptions,
such as transcranial magnetic stimulation (TMS), targeting visual
cortex or auditory cortex or heteromodal cortex (see Kanai et al.,
2011). Other future extensions of our paradigm could investigate
whether lagging auditory events by different parametric amounts
in the asynchronous condition would lead to a graded or cate-
gorical change in results; and the possible impact of introducing

asynchrony by making auditory events lead instead. Here we had
lagged the sounds in our asynchronous condition by a full 500 ms,
in order to generate the maximum 180˚ shift to visual and auditory
events being “out-of-phase” in terms of the cycle we used.

A further interesting question for future extensions of our par-
adigm concerns the possible role of attention in the multisensory
effect on sensitivity that we have identified. Indeed there is now a
growing literature on the possible role of attention in multisensory
integration (see Sanabria et al., 2007; Talsma et al., 2010). Studies
of some multisensory phenomena suggesting no role for attention
(e.g., Bertelson et al., 2000); while others on different multisensory
phenomena suggest a key attentional role (e.g., van Ee et al., 2009).
Accordingly it is an empirical issue whether the new multisensory
phenomena that we have uncovered may depend on attention or
not. The present results already make clear that audio–visual inte-
gration can genuinely affect visual sensitivity (d ′) here, and that
this depends on audio–visual synchrony.

Finally, given the evidently perceptual nature of the objective
improvements in visual duration discrimination that we observed
here due to appropriately timed sounds, it would be intriguing to
study whether a slightly longer sound paired with a concurrent
visual event can not only extend the apparent duration of that
visual event, but actually improve visual perception of its other
(non-temporal) visual qualities, in a similar manner to the visual
improvement found for a genuinely longer visual stimulus (see
Berger et al., 2003).
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