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Abstract. This paper develops a probabilistic model of belief change under interpreta-

tion shifts, in the context of a problem case from dynamic epistemic logic. Van Benthem [4]

has shown that a particular kind of belief change, typical for dynamic epistemic logic, can-

not be modelled by standard Bayesian conditioning. I argue that the problems described

by van Benthem come about because the belief change alters the semantics in which the

change is supposed to be modelled: the new information induces a shift in the interpre-

tation of the sentences. In this paper I show that interpretation shifts can be modeled

in terms of updating by conditioning. The model derives from the knowledge structures

developed by Fagin et al [8], and hinges on a distinction between the propositional and

informational content of sentences. Finally, I show that Dempster-Shafer theory provides

the appropriate probability kinematics for the model.

Keywords: Probabilistic epistemology, Bayesian updating, Dynamic epistemic logic,

Knowledge structures, Dempster-Shafer theory.

1. Introduction

In the Bayesian model, beliefs over sentences from a language L are repre-
sented with probability assignments over an algebra generated by possible
worlds, w = {w1, w2, . . . , wn}. The sets of worlds, or propositions, are asso-
ciated with the sentences by an interpretation function, I : L × w → {0, 1}.
A sentence s is associated with a proposition �s� as follows:

�s� = {w ∈ w : I(w, s) = 1}.

The probability measures over sets of possible worlds �r� and �s� are un-
derstood as degrees of belief in the sentences r and s. A belief change due
to the acceptance of a sentence is reflected in the probability assignment by
updating according to Bayes’ rule, that is, by conditioning the assignment
on the proposition associated with the sentence:

Ps(�r�) = P (�r� | �s�).
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Note that the expression on the right can be rewritten by means of Bayes’
theorem. The theorem is distinct from Bayes’ rule, which is expressed here.
Bayes’ rule is an epistemological principle linking the new probability of �r�
after learning s to the old probability of �r� conditional on �s�.

The idea of conditioning is that within the set of possible worlds con-
sistent with the sentence that is learnt, the probability is kept unchanged.
This conservativity of belief change is usually referred to as rigidity (cf. Jef-
frey [15]). It seems rather natural to impose this condition if we interpret
sentences in terms of propositions: after learning the sentence s, we do not
consider possible those worlds in which ¬s holds, i.e., we zoom in on the
worlds within the set �s�. But apart from that there is no reason to nudge
up the probability of one world in which s holds, at the cost of the proba-
bility of another such world. These intuitions, pleasingly illustrated by van
Fraassen’s [9] muddy Venn diagrams, can be given a further underpinning
by the so-called dynamic Dutch book arguments.

Since we use propositions, or sets of possible worlds, to interpret sen-
tences, a shift in the interpretation of a sentence can be represented by a
change in the function that determines the set of possible worlds associated
with a sentence. Now imagine that the interpretation of a sentence is partly
determined by the set of sentences that have been accepted thus far. Then
it may happen that the acceptance of s causes the sentence r to obtain a
different interpretation. We move from I to Is: before the acceptance of s
the sentence r is associated with one set of possible worlds, �r�, but after
the acceptance of s it is associated with a different set of possible worlds,
�r�s say.

Shifts in interpretation of the above kind cause problems for the Bayesian
model. Imagine that all possible worlds associated with the sentence s are
worlds that satisfy the sentence r, so that �s� ⊆ �r�. By Bayes’ rule, ac-
cepting s entails that we assign r a probability Ps(�r�) = P (�r� | �s�) = 1.
However, accepting s may change the interpretation of r. After the change
in interpretation, some worlds that were previously included in both �s� and
�r�, and that had nonzero probability before the update, may fail to be in-
cluded in �r�s. In that case the probability for �r� must be smaller than 1
after a complete update with s. In other words, interpretation shifts lead to
a conflict between conditional and updated probability.

Various conceptual problems in formal approaches to epistemology can
be viewed as examples of such interpretation shifts. One example is the
violation of the principle of reflection, as discussed in van Fraassen [9] and
Maher [18]. Let s be that I drink a bottle of whiskey tonight, and let r be
that I am fit to drive home early tomorrow. Of course, pondering over these
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sentences in the afternoon, I will assign a probability close to zero to the
second conditional on the first. But after having drunk the bottle of whiskey,
it may be that I assign a larger probability to being fit to drive home in
the morning than this conditional probability. One way to understand this
apparent inconsistency is by saying that the interpretation of the phrase
“being fit to drive in the morning” has changed. Worlds in which I risk
several lives including my own by driving home, previously excluded from
the proposition associated with “I am fit to drive home”, are now included
in this proposition.

Further examples stem from the literature on belief revision. Rott [20]
and Arlo-Costa and Pedersen [1] discuss cases in which a department needs
to choose the most suitable candidate for a given position. Of course, if we
learn that the hiring committee has narrowed down the choice to a shortlist
that excludes the candidate first thought to be most suitable, then this will
invite us to revise our beliefs about which candidate will win. But learning
about the shortlist may also give cause to revise our ideas about the criteria
the committee is using. As a result, we might also revise our beliefs on
who will win if the candidate first thought to be most suitable is still on
the shortlist, simply because the shortlist contains some surprising choices
and thus reveals new information about the selection criteria. Such belief
changes can be understood as changes in the interpretation of “most suitable
candidate”.

In what follows I will enter a different domain of application. Interpre-
tation shifts of the above kind also occur in contexts where people reason
about knowledge, and perform so-called epistemic actions: the domain of
dynamic epistemic logic. Apart from this being a convincing domain of ap-
plication, there is an independent reason to investigate interpretation shifts
here. Probabilistic epistemology and dynamic epistemic logic are both con-
cerned with representing the dynamics of belief but to date there have been
few attempts at a rapprochement. From the side of dynamic epistemic logic
there are attempts to accommodate probabilistic updating (e.g. Kooi [16],
Baltag and Smets [3], van Benthem, Gerbrandy and Kooi [5]). But within
probabilistic epistemology there has been scarce attention for the peculiari-
ties of dynamic and epistemic settings. The present paper is aimed at filling
this lacuna. Admittedly it targets one specific aspect of dynamic epistemic
logic, and only from the angle of Bayesian epistemology. Moreover, it deals
primarily with an example. A fully general characterisation of belief change
for interpretation shifts is not given. Nevertheless I hope that this paper
makes the modest beginnings of a fruitful exchange between these two re-
search fields.
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2. An example from dynamic epistemic logic

Van Benthem [4] provides an example showing that some instances of belief
change cannot be modelled by Bayesian conditioning. In this section I re-
hearse the problem case of van Benthem to show that it exemplifies the kind
of interpretation shift at issue in this paper. The example is set against the
background of Kripke models for dynamic epistemic logic.1

Imagine Alice and Bob, who are both investigating the state of the world.
The Kripke model of Figure 1 summarises the possible worlds that they
consider, and also expresses their epistemic perspectives on these worlds.
There are three dots which represent worlds: world 1 in which s∧¬r, world
2 in which s∧r, and world 3 in which ¬s∧r. The double arrows indicate the
so-called epistemic accessibility relations between worlds: from each world
there are arrows expressing what other worlds they consider possible. These
arrows are labelled for Alice and Bob separately: they both have their own
set of relations, meaning that they each have their own epistemic perspective.
Notably, at each world Alice and Bob both have epistemic access to this
world itself. The corresponding reflexive arrows are omitted for the sake of
simplicity.

Let us consider the epistemic perspectives of Alice and Bob in some more
detail. If world 1 is actual, Bob knows that s∧¬r because he only considers
it possible that he is in world 1: there is no arrow for Bob that connects
world 1 to any other world. On the other hand, if world 1 is actual Alice
knows that s but she does not know whether r, because following her arrows
she also considers world 2 possible, and while ¬r holds in world 1, r holds
in world 2. This also means that at world 1 Alice does not know that Bob
knows that s ∧ ¬r, because she considers world 2 possible and if this is the
actual world, then Bob does not know s ∧ ¬r. More precisely, if world 2 is
actual, the situation looks much the same for Alice. She considers world 1
possible as well, and so she does not know whether r holds. Bob, on the
other hand, knows that r but he does not know whether s, because at world
2 he also considers world 3 possible. Accordingly, if world 2 is actual Alice
and Bob both do not know of each other’s lack of knowledge. In world 3,
finally, Alice knows that ¬s ∧ r since she only considers world 3 possible,
while for Bob everything looks much the same as in world 2.

Note that sentences like r and s are all associated with possible worlds,
given by the dots, and not with the epistemic relations as summarised by the
double arrows. Sentences about knowledge, on the other hand, are concerned

1See van Ditmarsch, van der Hoek, and Kooi [7] for a general introduction.
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Figure 1. A Kripke diagram depicting the worlds and epistemic accessibility relations for
Alice and Bob. Reflexive arrows are omitted.

also with the arrows. Note further that, since epistemic accessibility relations
can be concatenated, the Kripke diagram above summarises all the higher-
order beliefs that Alice and Bob have concerning each other’s beliefs, their
beliefs about each other’s beliefs, and so on. Finally, notice that in the
model introspective realisations are instantaneous. If world 2 is actual, then
Bob does not know whether s but he also knows effortlessly that he does
not know this, that he knows he does not know, and so on. As will be seen,
the model of the present paper diverges from this: such introspections are
understood as a separate stage in the process of belief change.

Figure 2. A diagram showing the propositions associated with the sentences KAs, KBr
and their negations.

As indicted, the worlds have a prior probability P (wi) = 1/3. This prior
expresses that we, the modelers, are uncertain about which world is ac-
tual, and hence that we are uncertain about the epistemic perspectives that
Alice and Bob have. Consider the sentences “Alice does not know that
r”, written as ¬KAr, and “Bob does not know that s”, denoted ¬KBs.
As depicted in Figure 2, the interpretation of the sentence ¬KAr is the
proposition or, equivalently, the set of worlds �¬KAr� = {w1, w2}, while
�¬KBs� = {w2, w3}. Now imagine that it is publically announced that
Alice does not know r, ¬KAr, and that Alice and Bob revise their epis-
temic perspective accordingly. With this information we can conclude that
world 3 cannot be actual, because at that world Alice knows that r. Ac-
cording to a naive Bayesian model, and as suggested by Figure 3, the new
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probability assignment P¬KAr for the proposition �¬KBs� must therefore be
P¬KAr(�¬KBs�) = P (�¬KBs� | �¬KAr�) = P ({w2, w3}|{w1, w2}) = 1/2.

Figure 3. A Kripke diagram depicting the situation for Alice and Bob after naive condi-
tioning on ¬KBr.

But this is not the whole story about the update. In the account provided
by dynamic epistemic logic, the belief change rightly involves a revision of
the epistemic perspectives of Alice and Bob, as expressed by the Kripke
model. Apart from ruling out w3 a complete update requires that Alice
and Bob operate on the epistemic relations between the remaining worlds.
Specifically, because w3 is ruled out, neither of them will include epistemic
relations with w3 after the update. So at world 2 Bob cannot access world
3 anymore. The proper representation of the situation after the update
is therefore given on the right side of Figure 4. Importantly, in the new
epistemic situation Bob is not in doubt about the sentence s in any of the two
remaining worlds. After the complete update, there are no possible worlds
associated with the sentence ¬KBs. The new probability must therefore be
P¬KAr(�¬KBs�) = P (∅|{w2, w3}) = 0, and not the half derived earlier.

Figure 4. A Kripke diagram depicting the situation for Alice and Bob after a full update
on ¬KAs. The diagram on the right suggests how the full update induces a shift in
interpretation.

This shows that simply conditioning on the proposition {w1, w2} leads
to the wrong probability assignment for the sentence ¬KBs. After learning
¬KAr we must re-evaluate of each world whether or not it is a member of
the proposition �¬KBs�, and adapt the probabilities accordingly. As it turns
out, the proposition changes from �¬KBs� = {w2, w3} to �¬KBs�¬KAr = ∅.
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In short, due to the acceptance of ¬KAr, the interpretation of ¬KBs has
shifted.

3. Epistemic update as conditioning

Van Benthem is right to identify this problem in the Bayesian model of be-
lief change. The above case of belief change, here portrayed in terms of a
shift in interpretation, creates a conflict between conditional and updated
probability. One may therefore conclude, with van Benthem, that Bayesian
updating has its limitations, and subsequently turn to a different formal
model of belief change. But the reaction of this paper is less dismissive of
the Bayesian model. It is to look for a characterisation of possible worlds
and a generalisation of Bayesian updating that together allow us to incor-
porate interpretation shifts. In this section I make the beginnings of such a
characterisation by representing the example in such a way that the belief
change is a conditioning operation after all.

The guiding idea is that all aspects of the information that play a part
in the learning event must somehow be made explicit in the possible worlds
semantics.2 Dynamic epistemic logic employs what may be termed a thin
notion of possible world, characterised only by sentences like r and s being
true or false. The epistemic structure is superimposed on the worlds by
means of accessibility relations between worlds, and the update rules operate
on the worlds as well as on this epistemic structure. The following, by
contrast, employs a thick notion of possible worlds, characterised also by
epistemic sentences such as ¬KAr and ¬KBs. This complicates the notion
of possible world somewhat, but as we will see the update rule can be kept
conveniently simple. The upshot is a better fit with the Bayesian approach.

The framework required here is that of so-called knowledge structures:
each possible world is separately furnished with an internal epistemic struc-
ture that expresses which other worlds the agents consider possible at that
world. Fagin, Halpern and Vardi [8] give a detailed treatment of this frame-
work, and prove that knowledge structures are fully isomorphic to Kripke
models. But there are nevertheless good reasons to employ knowledge struc-
tures. Most importantly, knowledge structures seem better suited for a treat-
ment of the belief change along Bayesian lines. A Bayesian update is the
imposition of a constraint on the set of possibilities, and as such it is blind

2This is inspired by Halpern [14] who, among other things, discusses extensions of the
semantics by a probabilistic representation of the protocol used by the information source.
However, this paper will ignore the question what protocol the information source is using.
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to any structure other than set inclusion. But a knowledge structure is cast
entirely in terms of sets of possibilities. Moreover, as will become apparent,
knowledge structures allow for a more explicit account of acts of introspec-
tion, during which the agent works out the consequences of the information
they received.3

The present section only gives an illustration of knowledge structures in
the context of van Benthem’s example.4 Knowledge structures unravel the
epistemic accessibility relations between worlds that we know from Kripke
structures, and capture these relations in terms of possibilities associated
with worlds. Fortunately we need not unpack the Kripke structure of Figure
1 very far to arrive at a semantics that can accommodate the learning events
described in the foregoing. Instead of distinguishing only the possible worlds
1, 2 and 3, we now make a further distinction between the possible epistemic
states, or states of mind for Alice and Bob at each of the possible worlds. At
world 1, for instance, Bob can only conceive of world 1, while Alice considers
world 1 and world 2 possible. Accordingly, we distinguish two epistemic
states that both belong to world 1, one in which Alice and Bob both think
world 1 is actual, and one in which Bob thinks world 1 is actual while Alice
thinks world 2 is. Similarly, we can distinguish four epistemic states at
world 2: Alice considers world 1 and 2 possible, and Bob considers world 2
and 3 possible. World 3 has two epistemic states again, corresponding to
Bob considering world 2 and 3 possible. In analogy to Figure 1, Figure 5
summarises the new set of possible worlds and epistemic states.

We can now model the inclusion of the information expressed by the
sentence that Alice does not know r, ¬KAr, by means of a conditioning
operation. We say that world i is one in which Alice does not know r if at
this world we find epistemic states in which Alice considers r to be false.
Updating with the sentence ¬KAr means, first of all, that we zoom in on
those worlds in which Alice does not know r. In this case, as illustrated by
Figure 6, we eliminate world 3 from the possible world semantics. This first
stage of the update corresponds to the simple Bayesian update discussed
in the foregoing: after the update we have only world 2 left in which Bob
does not know s, so that presumably P¬KAr(�¬KBs�) = 1/2. This update is
equivalent to the update depicted in Figure 3.

3The two-step update procedure detailed below echoes the distinction between straight-
forward and conscious updates as discussed in Groeneveld [12], especially sections 4.4 to
4.6, and Gerbrandy [11], in particular sections 4.2 to 4.4.

4More detail on knowledge structures is provided in the next section.
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Figure 5. A possible worlds semantics depicting the epistemic states for Alice and Bob
before the update. Along axis W we find the three worlds, and within each world we have
an axis A coding for epistemic states of Alice, and an axis B coding for the states of Bob.
For example, the foremost square represents world 1, at which Bob only considers world
1 possible while Alice considers world 1 and world 2 possible, so that the epistemic stats
at world 1 have the coordinates (1, 1) and (2, 1) for Alice and Bob respectively.

Figure 6. The possible worlds semantics depicting the epistemic states for Alice and Bob
after an update with the information that world 3 is not actual, but without anyone having
thought this information through.

In the foregoing it was shown that the update operation of eliminating
world 3 is not the full story, because this elimination interfered with the
epistemic accessibility relations, leading to an interpretation shift. This
second stage of the update operation, in which Alice and Bob work out the
epistemic consequences of what they learnt in the first stage, can also be
modeled as a conditioning operation.5 In the example, Alice and Bob do
not just learn that world 3 is not actual, they also learn that they should
not consider world 3 possible. Because of this we exclude the whole of world
3, but we also exclude those epistemic states at other worlds in which Alice
and Bob consider world 3 possible.

The update that corresponds to this stage is depicted in Figure 7, which
is analogous to the update of Figure 4. In dynamic epistemic logic this part of

5Cf. Groeneveld [12], pp. 161–162, and Gerbrandy [11], pp. 87–88.
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Figure 7. The possible worlds semantics depicting the epistemic states for Alice and Bob
after updating with all the information included in ¬KAr.

the update is sometimes called the conscious part. Crucially, in the semantics
of Figure 5, this second stage of the update is a conditioning operation much
like the first part: we eliminate the two epistemic states in world 2 that
pertain to world 3. In the resulting possible worlds semantics there are no
worlds left in which Bob does not know s, because there are no worlds left at
which Bob considers a world for which ¬s holds to be possible. So we have
that �¬KBs�¬KAr = ∅ and hence that P¬KAr(�¬KBs�) = P¬KAr(∅) = 0. The
public announcement of ¬KAr effects a shift in the interpretation of ¬KBs.

Summing up, we have sketched a representation of the belief change
that occurs in the epistemic example. According to this representation, the
belief change involves a shift in interpretation, but it can nevertheless be
modeled in terms of conditioning. We conditioned on a particular set of
epistemic states, namely all states that somehow pertain to world 3. Or in
terms of the cube of Figure 5, we have removed the layer labeled 3 in all
three dimensions. We might say that the set of states conditioned upon is
the information contained in the sentence ¬KAr, and that this information
is richer than just the proposition associated with the sentence. In what
follows, I will show what we have gained by this representation of the belief
change. The key is that the belief change, including the interpretation shift,
consists in the elimination of states, so that the change is amenable to a
more or less Bayesian treatment. But before we can fill in the details of the
interpretation shift and the corresponding probability kinematics, we need
to provide some more detail on knowledge structures, and on how they are
related to the present model.

4. Knowledge structures

In this section we provide a framework for the epistemic states and up-
dates introduced in the foregoing. The eventual goal is to come up with a



Conditioning and Interpretation Shifts 593

probability kinematics for the interpretation shifts exemplified in Section 2.
But we can only define the probability kinematics properly once we have a
clearly defined structure on which the probability assignments rest. As indi-
cated, the knowledge structures of Fagin et al [8] fulfill this role. I introduce
the general idea of these structures below, and then focus on the aspects of
knowledge structures that are relevant to our present concerns.

The general idea of Fagin et al is that possible worlds can be associated
with further structure that expresses the epistemic perspective, or the set
of possible epistemic states, of the agents at that world. The complete
specification of both the world and the perspectives of the agents is termed
a knowledge structure. It can be built up inductively, as follows.

Definition 1 (Knowledge structure). Let W be a set of worlds. At each
world w, define the 0-th order knowledge assignment f0(X) for the agent
X as the world wi, and call 〈f0〉 the 1-world. Now assume inductively that
k-worlds have been defined. The k-th order knowledge assignment fk(X)
for agent X is the subset of the k-worlds that agent X considers possible.
Then a (k + 1)-world is a sequence of knowledge assignments 〈f0, f1, . . . fk〉
if it satisfies the following criteria:

Correctness: The knowledge assignment of order k − 1 is among the possi-
bilities in the k-th order knowledge assignment for each agent, so for all
X we have 〈f0, . . . fk−1〉 ∈ fk(X).

Introspection: Every possibility in the k-th order knowledge assignment of
any agent X corresponds with the knowledge assignment at order k−1, so
for all X we have that if 〈g0, . . . gk−1〉 ∈ fk(X) then gk−1(i) = fk−1(X).

Extension: Every possibility in the (k − 1)-th order knowledge assignment
for any agent X has an extension to a k-th order knowledge assign-
ment, so for all X we have that if 〈g0, . . . gk−2〉 ∈ fk−1(X) then ∃gk−1 :
〈g0, . . . gk−1〉 ∈ fk(X). Similarly, every possibility in the k-th order
knowledge assignment of X is an extension of some (k − 1)-th order
knowledge assignment.6

A knowledge structure f is an infinite sequence 〈f0, f1, . . .〉.
At each world, a knowledge structure describes the epistemic perspective

of the agents up to arbitrary order. The structures provide a representation
that is equivalent with Kripke models, but they are also different in im-
portant ways. Whereas a Kripke models covers all orders of knowledge in

6This direction of the equivalence is already entailed by the combination of Correctness
and Introspection.
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a single representation, knowledge structures give us a separate handle on
the different orders in the epistemic perspectives of the agents. As a result,
we can closely follow how information that an agent receives percolates up
in the hierarchy of knowledge, and how this causes the agent to adapt her
beliefs at ever higher orders. For this reason knowledge structures can be
tailored to represent epistemic states of finite order. Rather than employing
the complete structure, we may use the first k elements in the structure to
represent knowledge up to order k.

For the purpose of modeling interpretation shifts in the epistemic exam-
ple, we only need a very shallow knowledge structure. It suffices to specify
the knowledge of Alice and Bob up to order 1, on the basis of the given
Kripke model. That is, we need only determine the epistemic perspectives
of Alice and Bob on the worlds, and we can ignore any further introspective
and intersubjective knowledge. The epistemic perspectives of agent X can
be characterised as follows:

〈f0(X), f1(X)〉 = 〈wi, {wi′ : 〈wi, wi′〉 ∈ RX}〉 .

Agents Alice and Bob are here indexed with X, and their epistemic accessi-
bility relations are RA and RB respectively. So at world 1 Alice’s epistemic
perspective is 〈w1, {w1, w2}〉 while Bob’s perspective is 〈w1, {w1}〉. At world
2, Alice has 〈w2, {w1, w2}〉 while Bob has 〈w2, {w2, w3}〉 and at world 3 Alice
and Bob have 〈w3, {w3}〉 and 〈w3, {w2, w3}〉 respectively.

The most salient important difference between Kripke models and know-
ledge structures is that in the latter, the epistemic perspective is located
at a particular world. In what follows, I will spell out worlds and epistemic
perspectives as sets of possible epistemic states or states of mind, to contrast
them with states of affairs. Consider an epistemic perspective at world wi

of order k, described by the prefix of a knowledge structure of length k + 1,
namely 〈f i

0, . . . , f
i
k〉. For every world i and agent X, and for every j ≤ k,

every j-th order knowledge assignment f i
j(X) is some set of j-worlds. We

define the set of epistemic states of order k at a particular world wi as

wi ×
∏

X

f i
1(X) × . . . × f i

k(X). (1)

An epistemic state of order k is a complete description of a particular pos-
sibility, regarding the world and regarding the knowledge of both agents up
to order k. Notice that the knowledge assignments f i

j carry a superscript
i to denote the world with which they are associated. The full set of epis-
temic states at world i determines the prefix of length k of the knowledge
structure, and hence the epistemic perspective.
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Let me illustrate the set of epistemic states for the example of van Ben-
them. The perspective in the example is of order 1, so at world wi the
epistemic states are simply the elements generated by a Cartesian product
of f i

1(A) and f i
1(B). Following Equation (1) we find:

W1 = {111, 121},
W2 = {212, 213, 222, 223}, (2)
W3 = {332, 333},

where each 3-tuple iab is shorthand for 〈wi, wa, wb〉. The first element in the
tuple expresses the world itself, the second expresses the possibility for Alice,
and the third expresses the possibility for Bob. Notably, these epistemic
states are exactly the states used in the representation of Section 3. In other
words, the representation of Section 3 is now seen to be a particular fragment
of the more systematically developed notion of knowledge structure.

5. Propositions, information, and interpretation

The next step in this exposition is to clarify the notion of update used
in Section 3. Using the framework of epistemic states, we distinguish the
propositional and informational content of a sentence, we define a notion of
updating by informational content, and finally we specify how such updates
give rise to interpretation shifts.

The basic update mechanism for knowledge structures is conditioning.
Upon receiving new information, we eliminate the worlds that are incon-
sistent with the information, and we also eliminate these worlds from the
remaining knowledge structures. However, there are several ways of mak-
ing the latter process of elimination precise, and the theory of updating
knowledge structures has unfortunately not converged onto a clear set of
procedures for it.7 Therefore, rather than reviewing the update procedures
in general terms before applying them to the case at hand, I will define an
elimination process that directly fits the needs of the epistemic example.
When restricted to this highly specific context, the proposed update coin-
cides with the updates considered in Gerbrandy and Groeneveld [10] and
Renardel de Lavalette [19], and in this context it is also equivalent with the
update rule described in the public announcement logic of Baltag, Moss, and
Solecki [2].

7It seems that updating in knowledge structures has received relatively little attention,
especially after the groundbreaking work of Baltag, Moss and Solecki [2]. Gerbrandy and
Groeneveld [10] and Renardel de Lavalette [19] are noteworthy exceptions.
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The structure over which the update is defined is the set of epistemic
states. We denote individual states with ω, and the set of all states with Ω.
Worlds are sets of states, denoted Wi, and these worlds form a partition of
the entire set of states, W = {W1,W2, . . . ,Wn}. In the epistemic example,
the states only concern the worlds that the agents can conceive of in each of
the worlds. But even with this limited notion of epistemic state, the algebra
of states will be richer than the algebra of possible worlds. Some sets of
states will not coincide with an element from the algebra of worlds, and this
allows us to distinguish between the propositional and the informational
content of a sentence.

The propositional content of the sentence u, written �u� ∈ P(W), con-
sists of all the worlds Wi for which the sentence u is true. It is determined
by the interpretation function I(u, wi). The propositional content �r�, for
example, is the set of worlds Wi at which r is true, so �r� = {W2,W3}.
Notice that the propositional content �u� is different from �u�, because the
latter consists in a set of worlds wi ∈ w while the former consists of Wi ∈ W.
Importantly, a world may belong to the propositional content of a sentence
in virtue of states within the world Wi. For example, the propositional con-
tent of the sentence ¬KAr is given by �¬KAr� = {W1,W2}, because in both
of these worlds we find states in which Alice thinks ¬r. As explained below,
such dependencies between states and propositional content drive the shifts
in interpretation.

The informational content of a sentence u, written as �u�, is a set of epis-
temic states that may cut across the worlds Wi. In the epistemic setting, we
can derive the informational content from the propositional content. Using
only the knowledge structure up to order 1, the propositional and informa-
tional content of a sentence u are related according to

�u� = {〈wi, wa, wb〉 : Wi,Wa,Wb ∈ �u�}. (3)

In other words, the states 〈wi, wa, wb〉 in �u� are those for which all elements
are included in �u�. So, for example, the information contained in the
sentence ¬KAr is the set of states in which none of the elements is w3.
This is because the propositional content �¬KAr� rules out world 3, so
that neither Alice nor Bob can conceive of themselves as being in world 3
anymore.

The proposed update rule is to condition the set of epistemic states on
�u� when learning the sentence u. The point of this rule is that we do
not merely eliminate the worlds inconsistent with u, but also the epistemic
states that involve worlds inconsistent with u. The latter stage in the update
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corresponds to the revision of the knowledge structures or, in other words,
the revision of the epistemic accessibility relations. Notice that, strictly
speaking, the informational content of a sentence depends on the cognitive
ability and diligence of the agents. In the epistemic example, it is conceivable
that Alice and Bob do not think the sentence ¬KAr through, in which case it
presents them with the information of all epistemic situations within worlds
1 and 2, eliminating only the situations in world 3. I take it as an advantage
of knowledge structures that they can accommodate such failures of logical
omniscience. However, in this paper I assume that the agents think the
sentences through, at least up to first order.

It may now seem that we can solve all our problems by using epistemic
states as the units in which we interpret the sentences. Why employ a
separate notion of possible world if we have a more fine-grained space of
epistemic states available? It turns out that a model in which the epistemic
states are taken as the units of analysis comes out wrong. In the Kripke
models, whether or not a world is included in a certain proposition may
depend on the relations this world has with other worlds. Similarly, in the
algebra of states the inclusion of a world in a proposition will depend on the
states included in the world. If we interpret sentences in terms of epistemic
states only, we fail to capture the interplay between propositional content
and epistemic states, and thereby loose sight of the interpretation shifts.

We can finally make precise the idea of an interpretation shift: the in-
terpretation of a sentence, and hence its propositional content, may change
if we update by conditioning on the informational content of another sen-
tence. Recall the interpretation function I : L×W → {0, 1}. Now for some
sentences, the interpretation will depend on the states included in the world:

I(u, wi) = Gu (Wi) ,

where Gu is an indicator function whose value may depend on the composi-
tion of Wi. After learning a sentence v, the elimination of states in Wi may
cause Gu(Wi) to change in value, and hence change the interpretation of u:

Iv(u, wi) = Gu (Wi ∩ �v�) .

For sentences u depending on the composition of Wi, the old interpreta-
tion I and the new interpretation Iv may differ, thus effecting a shift in
interpretation.

Let me illustrate this in terms of the epistemic example. It is because
of the inclusion of a state of mind in which Bob thinks that ¬s that we
say that world W2 belongs to �¬KBs�. When learning the sentence ¬KAr,
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we condition on the information �¬KAr�. This induces a change to the
composition of world W2 because the states 223 and 213 are removed, leaving
no state of mind in which Bob thinks ¬s. As a result, the propositional
content �¬KBs�, which included world W2 before the information �¬KAr�
came in, does not include this world after the information �¬KAr� has been
processed.

Summing up, we express beliefs by a probability assignment over sets of
worlds, but we frame the information we receive in terms of sets of states
that may cut across worlds. Information change is modelled by means of
conditioning on information, and this may involve changing the composition
of the worlds. As a result, conditioning on new information may require us
to redraw the map of propositions. Conditioning thereby captures the way
in which the interpretations of sentences change.

6. Probability kinematics for interpretation shifts

The foregoing provides an analysis of how sentences receive different inter-
pretations depending on what we learn. We now provide an account, in
Bayesian spirit, of how a modeler adapts her beliefs in response to such
interpretation shifts. It turns out that our model of the belief change re-
quires a generalization of the standard probabilistic expressions of belief to
Dempster-Shafer belief functions.

We first define these belief functions, as a measure over the space of
states Ω, partitioned by the worlds Wi.

Definition 2 (Belief functions). Let M : P(W) → [0, 1] be a mass function,∑
i M(Wi) = 1. Belief in the set �v� is expressed by an interval-valued

probability,
Bel(�v�) =

[
P (�v�), P (�v�)] .

where the so-called upper and lower probability are defined as

P (�v�) = minu: �v�⊆�u� M(�u�), (4)
P (�v�) = maxu: �u�⊆�v� M(�u�). (5)

Notice that �u� ∈ P(W) is here used as a variable. Of course, if �v� ∈
P(W) as well, then the interval-valued belief collapses onto a point.

We can incorporate new information into the mass function by Demp-
ster’s rule of combination.

Definition 3 (Dempster’s rule). Let the new information M� be a mass
function over a partition V = {V1, . . . , Vm} of Ω. Then the mass function
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after the update is given by

MV(Wi ∩ Vj) =
M(Wi)M�(Vj)∑
ij M(Wi)M�(Vj)

.

The new mass function can be used to generate the new belief function Bel .
In the case of simple conditioning on the set V , the above partition is simply
V = {V, V c}, where V c is the complement of V , and the mass function has
M�(V ) = 1. In such cases we write BelV for the new belief function.

It will be clear that we can readily apply this update rule to the algebra
of epistemic states. To see how this leads to updates in Bayesian spirit,
I now explore a number of properties of belief functions and Dempster’s
rule, focusing on the case that we move from Bel to Bel�v�.8

First we discuss the relation between belief functions and probabilistic
expressions of belief. Recall that the Bayesian model of belief employs sharp
probability assignments. Because the probability of epistemic states within
worlds Wi is not determined, any probability assignment of the epistemic
states is admitted, as long as they sum to the mass assigned to the world as
a whole. Each mass function thus corresponds to a set of probability assign-
ments over Ω, denoted P, whose members each comply to the restrictions set
by Equations (5) and (4). The restrictions are simply that P (Wi) = M(Wi)
for all i and for each P ∈ P. Belief functions can be taken as a generalisation
of the Bayesian model towards sets of probability assignments.9

Secondly, much like belief functions generalize sharp probability func-
tions, Dempster’s rule of combination is in some sense a refinement of Bayes-
ian updating. To see the connection, we represent a mass function by a set
of probability assignments P over epistemic states. Now imagine that we
learn the information corresponding to the set V . What operation must we
perform on the members of the set P such that the set of updated probability
assignments, PV ∈ PV , is a representation of the mass function MV ?

First consider the case in which the new information coincides with a set
of worlds, V ∈ PW. Let Hi be a function that indicates whether V overlaps
with Wi, so Hi(V ) = 0 if Wi ∩ V = ∅ and Ii(�v�) = 1 otherwise. We can

8For a more extensive discussion of Dempster-Shafer belief functions, see Shafer [21]
and Halpern [14], pp. 32–40.

9Apart from the fact that such sets of probability assignments can be used in a proba-
bilistic model of interpretation shifts, there are independent reasons for expressing belief
in these terms. A recent overview of approaches that use sets of probability functions is
Haenni et al [13]. For more detail on the precise formal relation between belief functions,
inner and outer measures, and sets of probability assignments I refer to Halpern [14] and
the references therein.
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define the set
VW = {Wi : Hi(V ) = 1}.

Because in this case V ∈ W we have V = VW . The key observation is that
the new mass function MV , derived by Dempster’s rule, will correspond to
a set of probability assignments PV that we can arrive at by performing
a Bayesian update with the set VW on each of the members of P. For all
Wi �∈ VW we have MV (Wi) = 0 so that indeed PV (Wi) = P (Wi|VW) = 0.
And for all Wi ∈ VW , the new mass will be

MV (Wi) =
M(Wi)
M(VW)

.

It follows that PV (Wi) = P (Wi|VW) as well. For every P ∈ P, the update
with V is thus identical to the update we would have had if the worlds Wi

had been the units of analysis.
Next consider the case in which the information V cuts across worlds. For

propositions �u� ∈ W that do not depend on the epistemic states included
in the worlds, and hence are not susceptible to interpretation shifts, the new
probability is very similar to what Bayesian updating prescribes as well. To
see this, simply consider the mass and probability assignment on the level
of worlds again. For the sets Wi, Dempster’s rule becomes

MV (Wi) =
Hi(V ) M(Wi)∑
i Hi(V ) M(Wi)

.

So for any world Wi not intersecting with V , we can deduce that PV (Wi) =
0 = P (Wi|V ), as above. For worlds Wi intersecting with V , on the other
hand, we can derive that

PV (Wi) =
M(Wi)∑

i Hi(V )M(Wi)
= P (Wi |VW ) .

As before, the new mass function MV , derived by Dempster’s rule, will
correspond to a set of probability assignments PV that we can arrive at by
performing a Bayesian update with the set VW on each of the members of
P. So on the level of worlds, Dempster’s rule works much the same as the
rule of Bayes.

It may be insightful to point to a connection between the present ap-
plication of Dempster’s rule, and a particular application of Lewis’ idea of
updating by imaging.10 If the set V is not a proposition, V �∈ P(W),

10Cf. Lewis [17], p. 310.
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learning the information expressed in V means that the probability of the
complement V c is set to 0 by Dempster’s rule. The probability of all those
Wi that do not intersect with V is redistributed proportionally over the
remaining worlds. The probability of states ω ∈ V c which belong to one
of the worlds Wi intersecting with V , on the other hand, is projected onto
the remaining states in that world, collected in Wi ∩ V . In other words,
updating by Dempster’s rule is similar to updating by imaging in the sense
that statesthat receive probability 0 divide their former probability equally
over the remaining states in their own world, if there are any. The nearest
epistemic state is always one in the same world.

Finally, a remark on sentences whose propositional content depends on
the internal structure of the worlds, or in other words, on the states included
in it. As explained in the foregoing, the sentence ¬KBs of the epistemic ex-
ample is of this kind: a world Wi is a member of the proposition associated
with it, if it includes an epistemic state in which Bob thinks that ¬s. The
probability of the corresponding proposition is not governed by Dempster’s
rule alone, because the change in the interpretation of ¬KBs follows directly
from the conditioning operation and the nature of the interpretation func-
tion. The advantage of Dempster’s rule is rather that it allows us to update
on a set of states that is not a proposition, and whose probability is con-
sequently not defined. It determines a new probability assignment but it is
versatile enough to accommodate changes in interpretation.

7. Application to the epistemic example

We now apply the model of the preceding section to the problem from epis-
temic logic. The example serves as a stand-in for a much larger class of cases
in which interpretations shift, also when these shifts lead to non-trivial prob-
ability assignments.

In the example, the epistemic states can be partitioned into three worlds,
W = {W1,W2,W3}. Following Equation (2), the states are given by ω =
〈wi, wa, wb〉 or iab for short. The complete set of states for the example is:

Ω = {111, 121, 212, 213, 222, 223, 332, 333}.

Any set of epistemic states counts as information that we may learn. But
we can make the standard package of information more precise by means of
Equation (3). For instance, since �¬KAr� = {W1,W2} in virtue of the epis-
temic states inside W1 and W2, we have that �¬KAr� = {111, 121, 212, 222},
i.e. , all situations that do not involve world 3. In terms of the figure, the
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set �¬KAs� consists of the four possibilities in the smaller cube on the right
of Figure 7. Similarly, because �KAr� = {W3}. we have �KAr� = {333}.

We can now define the belief functions and apply Dempster’s rule. We
assign a mass function M to the worlds,

M(W1) = M({111, 121}) = 1/3

M(W2) = M({212, 213, 222, 223}) = 1/3

M(W3) = M({332, 333}) = 1/3

Thereby we have defined a probability for all elements of P(W), for instance:

P (�¬KAr�) = P ({W1,W2}) = 2/3.

As indicated, the probabilities of the situations within the worlds are not
given. Any probability assignment over epistemic states within a world is
allowed, as long as it sums to the probability assigned to the world as a
whole.

Now say that we learn the information of the sentence ¬KAr, and thus
condition on the set �¬KAr�. How do we incorporate this into the mass func-
tion? First we determine a mass function M� that expresses the information
in ¬KAr: it simply assigns mass 1 to the set �¬KAr�. The mass function
after the update is then defined by Dempster’s rule. So, for example, after
the update we have

M�¬KAr�(�r�) = M�¬KAr�({212, 222}) = 1/2,

M�¬KAr�(�s�) = M�¬KAr�({111, 121, 212, 222}) = 1.

These are also the resulting probability assignments. On the level of worlds,
where the mass function is identical to the probability assignment, Demp-
ster’s rule gives the same results that Bayesian conditioning would have
given. However, Dempster’s rule is suitable for conditioning on sets of states
that cut across worlds, like �¬KAr�, whereas Bayesian conditioning is not
defined for conditioning on such sets.

Now consider how the model deals with changes in interpretation. In the
case at hand, we can compute the probability of the proposition �¬KBs�
before and after having conditioned on the information �¬KAr�. Before, we
have

P (�¬KBs�) = P ({W2,W3}) = 2/3.

After the update, however, the sentence ¬KBs has a propositional content
given by �¬KBs� = ∅. This does not follow from Dempster’s rule, but
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rather from the way the sentence ¬KBs is associated with sets of worlds
by the interpretation function. But with that new interpretation in place,
we can determine a new mass function M�¬KAr� by Dempster’s rule, and
compute

P�¬KAr�(�¬KBs�) = P�¬KAr�(∅) = 0.

So by the combination of Dempster’s rule and the interpretation function,
we manage to model the belief dynamics during an interpretation shift.

Summing up, the model of interpretation shifts in the epistemic context
consists of two parts: the interpretation function and particular rules on
set membership determine the propositional and informational content of
sentences respectively, and Dempster-Shafer theory determines how to as-
sign precise and imprecise probabilities to all these sets. Dempster’s rule is
versatile enough to accommodate updates by the informational content of a
sentence, which need not correspond to a set of worlds.

8. Further research

Clearly, the model presented in this paper is not the full story on epistemic
updates, nor on interpretation shifts. However, I hope to have given an
idea of how an almost Bayesian model of belief change under interpretation
shifts can be developed. The crucial insights are that it makes a distinction
between propositional and informational content, that updating by condi-
tioning on informational content may alter the propositional content of sen-
tences, and finally that the probability kinematics for such updates is given
by Dempster-Shafer theory.

Let me end with some further applications and extensions of the present
model. A natural development in the epistemic setting concerns knowledge
of higher order than what is involved in the example. In principle we can re-
fine the set of epistemic states within each world further, to include beliefs of
Alice about Bob’s beliefs, and so on. The resulting model will still be equiv-
alent to a model using knowledge structures, and thus to a Kripke model.
However, it is not clear how the notion of updating used in this paper should
be generalized, and it seems that the conception of an update in knowledge
structures has not been developed enough to settle this matter either. More-
over, the exact relation between the propositional and informational content
has not been worked out in the general case, and the same holds for the
dependence of the interpretation function on epistemic states. And finally,
there are many open questions on how the present model relates to yet other
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approaches, for instance to so-called Harsanyi type spaces.11 In short, this
paper provides a model of interpretation shifts and an illustration thereof in
the context of dynamic epistemic logic, with the intention of starting a fruit-
ful exchange. It certainly does not establish a fully developed probabilistic
alternative.

One interesting extension of the present model trades on the fact that
Dempster’s rule allows for updates with non-trivial mass functions M�. In-
stead of an update that mimics Bayesian updating based on the information
in a single set �v�, this leads to something like an update governed by Jef-
frey’s rule, based on a probability assignment over a partition V. In such an
update we redefine the probability over possible information sets. A curious
consequence of this is that information sets whose probability was imprecise
may, after the update, receive a precise probability. However, the details of
such an update rule have yet to be worked out.

Another possible extension concerns the problems in formal and proba-
bilistic epistemology referred to in Section 1. It will be interesting to see if
we can use the model of this paper for clarifying these problems. Of course,
once you have a hammer, every problem looks like a nail. But even so, I
firmly believe that the present model for belief change is applicable to other
domains than epistemic logic, and that violations of reflection, for instance,
may benefit from a formal treatment along the lines suggested in this paper.
The notions of perspective and state elaborated above have now been given
an epistemic interpretation. But the model itself might be useful for cap-
turing other modal interpretations, for instance those of nomic and physical
possibility.

Finally, a word of caution. The foregoing might create the suggestion
that there cannot be a fully Bayesian model for belief changes involving
interpretation shifts. But this is certainly not true. One option, not investi-
gated in this paper, is to take as possible worlds all evolutions of the worlds
and the epistemic situations therein. A possible world may be defined by
an entry determining the actual world, namely 1, 2, or 3, together with an
infinite sequence of such matrices. In terms of these rather elaborate possi-
ble worlds, we can again define an algebra, over which we define probability
assignments and operations such as conditioning. This algebra will surely be
rich enough for accommodating any belief change over epistemic situations
and worlds, because it makes the time evolution of the beliefs explicit in
the algebra. In this particular case as in formal modeling more generally,

11Type spaces also allow for a Bayesian treatment of higher order beliefs. They are often
used in game theory. Brandenburger [6] provides a very readable introduction to the idea.
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the proper trade-off between the richness of the algebraic structure and the
complexity of the update rule is a matter of taste.
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