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Abstract

Advocates of the self-corrective thesis argue that scientific method will refute false theories and find closer approximations to
the truth in the long run. I discuss a contemporary interpretation of this thesis in terms of frequentist statistics in the context of
the behavioral sciences. First, I identify experimental replications and systematic aggregation of evidence (meta-analysis) as the
self-corrective mechanism. Then, I present a computer simulation study of scientific communities that implement this mechanism
to argue that frequentist statistics may converge upon a correct estimate or not depending on the social structure of the community
that uses it. Based on this study, I argue that methodological explanations of the “replicability crisis” in psychology are limited
and propose an alternative explanation in terms of biases. Finally, I conclude suggesting that scientific self-correction should be

understood as an interaction effect between inference methods and social structures.
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1. Introduction

In 2011, a team of psychologists published the following ex-
periment. One group of participants was presented with a set
of photographs of places, some of which had an American flag
(flag prime condition). Another group (control) was presented
with photographs that were the same except that the flags had
been digitally removed. Both groups were asked to estimate the
time of the day the photographs were taken, and then complete
a political belief survey intended to measure their endorsement
of the worldview associated with the Republican Party in the
United States. For example, they had to indicate their agree-
ment on a 7-point scale to statements such as “Laws designed
to protect the environment pose too high a cost on businesses
that contribute to the economy.” As a result of their study, the
authors report:

Participants who received a single exposure to an
American flag exhibited a significant increase in Re-
publican voting intentions, voting behavior, politi-
cal beliefs, and implicit and explicit attitudes, with
some effects lasting 8 months after the initial priming
episode Carter et al. (2011).
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This result, which I will refer to as the “flag-priming ef-
fect,” is an example of what is known as a social priming effect.
(The underlying hypothesis is that exposing people to socially
salient stimuli influences behaviors related to the stimuli, over
and above their conscious expectancies.) The result was pub-
lished in one of the most prestigious journals in psychology,
Psychological Science. It is also most likely false.

Since the 1990s, social psychologists have been invested in
the still-thriving industry of social priming research. However,
in the late 2000s, psychologists started reporting failed replica-
tion attempts of important social priming findings (Doyen et al.,
2012; Pashler et al., 2012; Harris et al., 2013; Shanks et al.,
2013). This led other researchers to organize replication efforts,
and unfortunately the number of failures to replicate increased.
This includes the flag-priming effect (Klein et al., 2014). Par-
ticular experiments have been the locus of heated discussions
(Yong, 2012; Bower, 2012). But the growing consensus is that
social psychology is in a state of crisis.”

Social psychology is just one example. Replicability contro-
versies also affect other sciences with recent attention drawn
to biomedical research.> And more general arguments suggest
that the number of false positives in the literature may be con-

ISome examples are the website PsychFileDrawer.org, intended to be a
repository for quick reports of experimental replication attempts; the Repro-
ducibility Project (Open Science Collaboration, 2012); and the “Many Labs”
replication project (Klein et al., 2014).

2See the special sections in Perspectives on Psychological Science in 2012
(volume 7, issue 6); and 2013 (volume 8, issue 4) for a collection of articles
discussing the crisis from multiple angles.

3Pharmaceutical companies have an interest in academic publications of
preclinical studies, and try to replicate results that look promising, oftentimes
with little success. In 2012, Amgen (a biotech firm) reported that their scien-
tists could replicate just 6 of 53 “landmark” studies in cancer research (Begley
& Ellis, 2012). And in 2011, a team at Bayer HealthCare (Germany) reported
a similar experience (Prinz et al., 2011).
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siderably larger than what can be expected in theory (Ioannidis,
2005). The cases we know about may just be the tip of the
iceberg.

Can science correct these mistakes? The assumption that sci-
ence is self-corrective often underlies the judgment of philoso-
phers and scientists alike that science is epistemically privileged
and truth-conducive. The idea is that, even if sometimes sci-
entists pursue erroneous theories, if they persist in following
the scientific method carefully and rigorously, they will even-
tually correct those mistakes, and find closer approximations to
the truth. Philosophers have called this widely held belief “the
self-corrective thesis.” Here is one rough formulation:

SCT: In the long run, the scientific method will refute false the-
ories and find closer approximations to true theories.

If truth is the goal of science, SCT (or something similar in
spirit) is essential. It is also prima facie plausible. But, how
can we assess its veracity? The generality of the thesis makes
the answer difficult: there is no unique scientific method. Tra-
ditional answers focus on the theoretical long-run performance
of particular inference methods (i.e., they study whether an in-
ference method will eventually converge on an expected valid
inference). Here, however, I show that this approach is insuf-
ficient to assess SCT. The prevalence of systematic production
of scientific errors, such as the aforementioned, shows that SCT
needs to be assessed from a wider social epistemological per-
spective: we need to study the social conditions under which
scientific communities can discover and correct their mistakes,
and the theoretical and practical feasibility of those conditions.

From such a perspective, I present a computer simulation
study to show that SCT is only true in a scientific utopia: a
scenario with highly idealized conditions governing the social
structure of science. I show that, even in best-case scenarios
(i.e., when findings are subject to strict and systematic repli-
cation attempts), social structures impose constraints on scien-
tists” work that make it impossible for them to correct their mis-
takes in the way that SCT contends. This study is framed within
the rich literature on the social organization of science.* But I
take some steps to understand a gap that, as Longino (2015)
points out, philosophers have not addressed yet: the gap be-
tween the self-corrective ideal and the reality. Specifically, I
contribute to understanding the influence of social aspects of
science on scientific self-correction in the following three ways:
(1) I show quantitatively how some social aspects (i.e., the kind
and availability of resources scientists have, their preference for
particular patterns of results, and publication practices) affect
estimated effect sizes in experimental psychology; (ii) I show
that some critiques of classical statistical inference (e.g., the
“file drawer” problem) apply in some social structures but not
others. This leads us to qualify recommendations that focus pri-
marily on changing statistical inference frameworks and disre-
gard the social context in which such frameworks are deployed;

4Several issues discussed here resonate with concerns about the division of
cognitive labor (Kitcher, 1990; Solomon, 1992; Strevens, 2003), social concep-
tions of objectivity (Longino, 1990), and the divergence between individual and
collective rationality (Solomon, 2001; Mayo-Wilson et al., 2011).

and (iii) I show that some explanations of the causes of replica-
bility controversies are limited, and propose an alternative ex-
planation in the context of psychological research.

I have one caveat about the scope of my discussion. My main
case of study is social psychological research as it is a pressing
case in recent discussions. The conclusions of this paper apply
in that context and extend to fields that rely on controlled exper-
iments with randomized samples and frequentist statistical in-
ference. This covers the vast majority of current research in the
behavioral and social sciences but does not cover other fields.
In particular, in fields such as anthropology, ecology, and med-
ical research the notions of “experiment”, “replication” and the
inferential procedures may differ, which brings additional com-
plexities. The discussion of SCT in those contexts deserves
further and separate treatment.

The paper is organized as follows. In section 2, I frame SCT
historically, reconstructing a tradition that goes back to C. S.
Peirce, but the primary goal is to refine SCT so that it fits the
methodology of frequentist statistics. 1 call that formulation
SCT*. In section 3, I present the computer simulation study
of SCT* and main discussion. And in section 4, I conclude
arguing that philosophical attention to methodology can take us
only so far in our understanding of the extent to which science
self-corrects.

2. Self-Correction in Modern Scientific Methodology

2.1. SCT and Quantitative Induction

Explicit discussions of the idea that science is self-correcting
go back at least to the seventeenth century (Laudan, 1981) and
persist today (Allchin, 2015). In the twentieth century, perhaps
the most prominent advocate of SCT is C. S. Peirce. A recurring
idea in his writings is that “science is predestined to reach the
truth” (Peirce, CP, 7.78) in an ideal limit of inquiry, which he
grounds on a firm belief that science uses self-corrective meth-
ods. He discusses inductive inference, and more specifically
the inference from samples to populations (or quantitative in-
duction): take a random sample from a population, measure a
parameter of interest, and then posit that measurement as the
value of the parameter for the population. According to Peirce,
such an inference is justified because if we repeat the procedure,
taking more measurements of the parameter, we will necessar-
ily get closer and closer to the true value of the parameter for
the population. In Peirce’s words:

“[Quantitative induction] is a method which, steadily
persisted in, must lead to true knowledge in the long
run of cases of its application” (Peirce, CP, 7.207).

Reichenbach was also interested in the self-corrective prop-
erties of quantitative (or, as he called it, “enumerative”) induc-
tion.> He acknowledges Peirce’s insights, but he goes one step

SReichenbach defines the rule of quantitative induction as follows: “If an
initial section of n elements of a sequence x; is given, resulting in the frequency
f", and if, furthermore, nothing is known about the probability of the second
level for the occurrence of a certain limit p, we posit that the frequency f'(i > n)
will approach a limit p within f" + § when the sequence is continued [italics
added]” (Reichenbach, 1949, p.446).



further and contends that quantitative induction is at the core of
scientific discovery. For instance, he writes: “the method of sci-
entific inquiry may be considered as a concatenation of [quan-
titative] inductive inferences” (Reichenbach, 1938, p.364). His
reasons, although not strongly defended, come from his belief
that other forms of inference are reducible to that form of infer-
ence.®

Interestingly, Peirce was writing before the development of
modern statistics, but the sort of inferential process that he had
in mind lives on in frequentist statistics.” Some philosophers
have pointed out the connection between Peirce’s ideas about
self-correction and the Neyman-Pearson approach to hypoth-
esis testing. For instance, Rescher (1978), Levi (1980), and
Hacking (1980) contend that contemporary frequentist statis-
tics instantiates Peirce’s ideas about self-correction in science.
And more recently, Mayo (1996, 2005) argues that frequentist
statistical methods provide mathematical rigor to Peirce’s SCT,
and that Peirce’s SCT offers a rationale for such methods as a
form of scientific induction.

Despite the prima facie plausibility and desirability of SCT,
Peirce’s case for SCT is questionable because he seems to as-
sume that proving the self-correction of quantitative induction
suffices to establish SCT.® In this paper, however, I focus on
quantitative induction. The reason is not that I endorse either
the Peircean implicit idea that discussing quantitative induc-
tion exhausts the problem, or the Reichenbachian assumption
that all other methods are reducible to quantitative induction.
Rather, I want to show that even when we put aside the justifica-
tion of the self-corrective character of other forms of inference,
the justification of the self-corrective character of quantitative
induction in its strongest version (namely, its instantiation in
modern frequentist statistics) still faces problems.

In what follows, I refine a frequentist statistical formulation
of SCT, which I call SCT*. I take this formulation to be in line
with the philosophical tradition that I just discussed. But more
importantly, I think that if we want to assess whether science
self-corrects we have to look at the methods that scientists use,
and frequentist statistical inference is the standard methodolog-
ical approach in many disciplines. I first review quickly some
basic concepts of frequentist statistics using the flag-priming
experiment as an example (Section 2.2), and then proceed to
the formulation of SCT* (Section 2.3). Readers familiar with

He says, “All non deductive methods of the calculus of probability reduce
to one kind of inference: the inference of induction by enumeration. Since all
inductive methods of science, including the theory of indirect evidence and the
formation of scientific theories, are interpretable in terms of inferences supplied
by the calculus of probability, this result establishes the thesis that all forms of
inductive inference are reducible to one form, to the inference of induction by
enumeration” (Reichenbach, 1949, p.viii).

TReichenbach, on the other hand, was aware of such developments. He
cites the work of R. A. Fisher, J. Neyman, and E. Pearson in The Theory of
Probability (Reichenbach, 1949).

8Peirce famously characterized different forms of scientific inference (e.g.,
qualitative induction and abduction), but he does not offer separate arguments
for those forms being self-corrective, nor does he show that the self-corrective
character of quantitative induction generalizes. For this reason, Laudan (1981,
p-293) and von Wright (1965, p.226), while accepting Peirce’s conclusion that
quantitative induction is self-corrective, conclude that his defense of SCT more
generally falls short.

null hypothesis significance testing, parameter estimation, and
meta-analysis can skip to Section 2.3.

2.2. Hypothesis Testing, Parameter Estimation, and Meta-
analysis

Within frequentist statistics, one dominant approach is Null
Hypothesis Significance Testing (NHST). This approach is con-
troversial because it synthesizes two procedures with differ-
ent philosophical assumptions, Fisher’s test of significance and
Neyman-Pearson decision theory (Gigerenzer, 2004). Despite
the criticism, NSHT has been dominant in the behavioral sci-
ences. Here I summarize the basics. The flag-priming exper-
iment has two hypotheses. (I refer specifically to experiment
2 in the original article). One, the null (Hp), is the hypoth-
esis that there is no difference between the two groups (i.e.,
flag-priming condition and control condition) in terms of their
mean endorsement of a Republican worldview. That is, if y;
and p, are the mean values of Republican endorsement for the
flag-priming condition and control condition respectively, then
Hy : u; — pp = 0. The alternative hypothesis (Hy), is that there
is actually a difference, that is Hy : pu; — o # 0. Now, sup-
pose the null hypothesis is true. If you repeat the experiment a
large number of times, then, given random variation (i.e., fluc-
tuations in your measurements due to chance), some of your
results will suggest that the difference is positive and some will
suggest that it is negative; but overall, most results will show
that there is no difference between the two groups. To analyze
the data from such an experiment, it is common to perform a
t-test, that is, a test that examines whether the difference be-
tween two groups (control and treatment) could have happened
if there were no genuine effect. Figure 1 shows the distribution
of possible outcomes if the null hypothesis is true. The x-axis
is the possible outcome of your experiment, or ¢-value (for our
purposes, it suffices to say that a 7-value is computed using the
means of the two samples, their size, and their pooled standard
deviation). The y-axis is the likelihood of getting such an out-
come. For instance, if the null hypothesis is true, then it is more
likely to get a result closer to zero.

NHST offers a procedure for “rejecting” the null hypothe-
sis. You assume that the null hypothesis is true. You then
define a significance threshold (e.g., the vertical lines in Fig-
ure 1) that demarcates the area for unlikely results. In standard
practice, scientists define the thresholds to make the area com-
prise a small part of the whole distribution (e.g., 5%). You then
compute a p-value, which is the probability of obtaining your
datum or more extreme data, under the assumption that the null
hypothesis is true. If your experimental result is unlikely (i.e.,
p < 0.05), you have a statistically significant result, and you re-
ject the null hypothesis. For example, if you observe a positive
t-value and a p-value less than 0.05, then an alternative distribu-
tion that is centered more to the right, like the one in Figure 2,
makes the datum likely.’

Under the assumption that a particular alternative distribution
is true (e.g, one in which most results are distributed around a

9The distribution depends on the sample size n and the effect size d. I ex-
plain the notion of effect size below. In this figure, d = 0.5 and n = 32.
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Figure 1: t-distribution for the null hypothesis.

0.4

P(1)
02 03

0.0 0.1

Figure 2: r-distribution for an alternative hypothesis.

positive magnitude because participants in the flag-prime con-
dition have a stronger endorsement of the Republican world-
view), there is a probability of detecting the result, called szatis-
tical power, which corresponds to the area of that distribution
outside the boundaries of the significance threshold (roughly
50% in Figure 2). All other things being equal, having a larger
sample in your experiment gives you a more powerful experi-
ment.

Now, it is possible to reject the null hypothesis when it is
true. This error is called a false positive or Type I error. For ex-
ample, you conclude that there is a difference between the two

groups when there actually isn’t. One of the virtues of NHST
(if not the most important) is that it allows you to control the
long-run probability of such errors. The procedure does not say
that if you get a significant result, then the null is necessarily
false. Neither does it imply that the alternative hypothesis is
true. Instead, assuming frequentism is correct, after obtaining a
significant result, you are justified in acting as if there is an ef-
fect, because in the long run, you would be rejecting a true null
hypothesis by mistake only 5% of the time, which is regarded
as an acceptable risk.'?

As I said earlier, the flag-priming experiment is very likely a
false positive. How do we know this? In response to the grow-
ing skepticism about psychological findings, in 2013 a group
of psychologists launched a collaborative replication project
(Klein et al., 2014). 36 labs all over the world attempted to
replicate a set of 13 studies, one of which was the flag-priming
experiment. (In this particular experiment, only the data from
replications attempted in the United States were counted, a to-
tal of 25 labs.) None of the labs found the flag-priming effect.
The original study yields an effect size d = 0.5 and p < 0.05.
But of the twenty-five replication attempts reported by Klein
et al. (2014) only one reported p < 0.05, with an effect in the
opposite direction. (See explanation of d values below.)

NHST, and in particular the practice of rejecting and accept-
ing hypotheses based uniquely on p-values, has been strongly
criticized on the basis that NHST practitioners have had a ten-
dency to confuse statistical significance with scientific import
(Ziliak & McCloskey, 2008). As a result, some methodologists
have suggested that researchers should abandon NHST and es-
timate more informative parameters, effect sizes and confidence
intervals in particular (Schmidt, 1996; Cumming, 2012):

Effect size. An effect size is a measure of the difference
for the value of the parameter between the control and the
experimental condition. One common way to report it is
Cohen’s d: the difference between the means of the distri-
butions for the null and the alternative hypotheses in stan-
dard deviation units (e.g., imagine the two distributions in
Figure 1 and Figure 2 are in the same plot, and measure
a standardized distance between the top of the two). Psy-
chologists have conventions to interpret Cohen’s d values:
d around 0.2 is considered small, around 0.5 is considered
medium, and around 0.8 is considered large. In the origi-
nal flag-priming experiment d = 0.5 (non-negligible).'!

Confidence interval. Confidence intervals give an idea of
how precise the estimation is: more precise estimates have
narrower confidence intervals. A common practice is to
report a 95% confidence interval. More precisely, if we

10Critics of frequentism question this interpretation of significant results, par-
ticularly for effects with low probabilities. I assume this interpretation here,
however, because it is common in practice. For a philosophical discussion about
how statistical evidence should be interpreted see Sprenger (2016).

"The use of standardized effect size measures such as Cohen’s d is question-
able, particularly to report treatment effectiveness in clinical trials (Stegenga,
2015). However, I use Cohen’s d as it is still the most popular measure of effect
sizes in cognitive science research.



repeat the experiment long enough, 95% of the computed
intervals (one for each experiment) will contain the true
effect size. The original flag-priming experiment has the
95% confidence interval [.01, .99] (computed by Klein et
al., 2014).

In an example, the shift from NHST to the estimation of ef-
fect sizes and confidence intervals is a move from the question
“Are people subject to the flag-priming effect?” to “How strong
is people’s endorsement of a Republican world view after be-
ing flag-primed?” While the answer to the first question could
be “yes”, the answer to the second could give more insights
about the importance and noticeability of the effect. Now, esti-
mating effect sizes accurately makes apparent the need of two
practices, replication and meta-analysis:

Replication. Replicability is the gold standard of scientific
findings. Methodologists in psychology distinguish two
types of replications (Schmidt, 2009). On the one hand,
direct replications are experiments that mirror the origi-
nal experimental design, allowing variations only in fac-
tors that shouldn’t be regarded as causally relevant to the
original result (e.g., sample size).'> On the other hand,
conceptual replications are experiments designed to find
an effect that would be expected were the original effect
real. While these terms are used mostly in psychology,
a similar distinction applies to other fields. Cartwright
(1991), for instance, discusses the distinction in the con-
text of economics.

Meta-analysis. Meta-analyses aggregate data from mul-
tiple experiments that investigate the same phenomenon
(direct or conceptual replications) (Schmidt, 1992). The
standard models work by computing weighted averages of
effect sizes and confidence intervals. For instance, the ag-
gregated effect size of the 25 replication attempts of the
flag-priming experiment is d = 0.03 (contrast this value
with the d = 0.5 reported in the original experiment), and
not statistically significant (p = 0.38) (Klein et al., 2014).
Assuming that the replication attempts were properly car-
ried out, this result is thought to be closer to the true value.

2.3. SCT*: SCT in Modern Frequentist Statistics

The concepts of null hypothesis significance testing (NHST)
and meta-analysis relate in the following way. For the frequen-
tist, when we measure an effect size we are justified in positing
that estimate as the true effect for practical purposes. The esti-
mate could be far from the true value, but replications of the ex-
periment will give us other estimates, and their aggregation by
meta-analysis will correct the estimation. The larger the num-
ber of experiments we aggregate, the narrower the confidence
intervals, and, therefore, the more precise the estimate. Using
these concepts, we can state a strong contemporary formulation

12Direct replicability does not entail scientific importance, although any sci-
entifically important finding is in principle directly replicable. Also, direct
replicability does not rule out methodological flaws in the experiment’s design.

of the self-corrective thesis, in terms of frequentist statistics,
and in line with the philosophy of science tradition mentioned
above:

SCT#*: Given a series of replications of an experiment, the meta-

analytical aggregation of their effect sizes will converge on
the true effect size (with a narrow confidence interval) as
the length of the series of replications increases.

SCT* offers a rationale for core scientific practices (here il-
lustrated in the context of frequentist statistics): experiments
using random samples,'? estimation of parameters, and aggre-
gation of multiple experimental results.

Now, notice that SCT* (and SCT in general) is completely
silent about social aspects of the process it describes. However,
we can more realistically think of the process as one in which
multiple scientists intervene. In the next section, therefore, I
discuss the conditions under which SCT* is true as well as its
limitations from a social epistemological perspective.

3. Scientific Utopia and SCT#* In Silico

Imagine an ideal scenario for scientists to make discoveries,
to confirm their theories up to a more than merely acceptable
degree, and to disconfirm false ones. I will call this scenario
scientific utopia.'* In this section I present a computer simula-
tion study of SCT* in the scientific utopia and in less utopian
scenarios. '

Suppose a community of frequentist scientists is interested
in one purported effect. The epistemic goal of the community
is to discover that effect. To do so, they perform experimen-
tal replications and cumulative meta-analyses (Cumming, 2012;
de Winter & Happee, 2013; van Assen et al., 2014). The basic
set-up is as follows. Suppose scientists A and B are part of
the community. First, A performs the original experiment. The
background assumptions for frequentist statistics to work are
met: A succeeds in randomizing her samples and applying the
treatment selectively. Then, B attempts a replication of A’s ex-
periment, and performs a meta-analysis aggregating her results
and A’s results. A third scientist C, then, runs another replica-
tion, and aggregates her results with A’s and B’s results, and so
on. The long-run performance of the community is assessed in
terms of the reliability (i.e., how disperse the estimates are) and

13See Worrall (2010) for a critical discussion about the epistemic weight of
randomized control trials.

14The scientific utopia that I describe here is an echo of Sir Francis Bacon’s
utopian society in New Atlantis (1627). In his novel, Bacon portrays an in-
stitution called Solomon’s House, which is structured with the ultimate end
of expanding human knowledge. Division of labor plays an important role at
Solomon’s House: some members design experiments, others execute them,
and others compile results and generalize findings. For a recent use of the term
“scientific utopia” see Nosek & Bar-Anan (2012) and Nosek et al. (2012), who
used it in discussions about bad practices in psychological research.

150ne could label this computer simulation study as systems-oriented social
epistemology: a study of an epistemic system in terms of its practices and pro-
tocols and how they affect the epistemic outcomes of its members (Goldman,
2009). In this case, the epistemic system is the institution of science (or more
precisely, a scientific community of frequentist scientists) and the epistemic
outcome is the estimation of a parameter of interest.



validity (i.e., how close to the truth the aggregate estimate is) of
the parameter given by the meta-analyses as more evidence is
gathered. In a computer simulation study it is possible to assess
these properties since the value for the real effect is part of the
simulation assumptions.

I characterize the utopia in terms of social conditions re-
quired for such a procedure to succeed. The conditions are the
following:

1. SurrICIENT RESOURCES: In the utopia, scientists have enough
time, participants, assistants, and funds to run all the ex-
periments and direct replications they want. In what sense
can these resources be sufficient? These resources deter-
mine how large the experiment’s sample size n is, so they
determine the experiment’s statistical power (i.e., the prob-
ability of detecting an effect of a given magnitude under
the assumption that the effect is real).!® In other words,
what I mean by resources being sufficient to find an effect
d is that n is large enough to yield a statistical power for
detecting d or a larger effect.

2. No pirecTION Bias: In the utopia, scientists report the re-
sults of their experiments regardless of whether they are
consistent or not with previous theoretical expectations. In
particular, they report their findings regardless of whether
the direction (sign) of the effect d is expected. A direction
bias could be a mistake of an individual scientist, and in
this sense they wouldn’t be aspects of the social structure
of science. However, direction bias also results from insti-
tutional pressures, and it is in this sense that they constitute
a social structural problem.

3. NEGATIVE RESULTS ARE PUBLISHED: In the utopia, the edito-
rial system publishes results related to the effect regardless
of their statistical significance. That is, publication is not
based on whether the test’s significance level (p-value) is
below some threshold, so negative (i.e., non statistically
significant) results are published.!”

Perhaps unsurprisingly, SCT* is true in a scenario in which
conditions 1-3 are satisfied. To illustrate this, in the next section
I show a simulation example in which the conditions are met.

3.1. SCT* in Utopia

Suppose that the community is trying to find an effect. Let’s
assume that if the effect is true, then it is the typical effect re-
ported in social psychological research. This corresponds to
d = 0.41 (Richard et al., 2003; Fraley & Vazire, 2014). Here |

161n frequentist statistics there is a relation between four variables: sample
size, effect size, statistical power, and the false positive rate (Cohen, 1992).
Standard practices fix the false positive rate. If we fix the false positive rate
and the effect size, the two remaining variables covary: as the sample size of an
experiment increases, its power also increases. In other words, if the effect is
real, then the larger (or smaller) the sample, the more (or less) likely one will be
to detect the effect (or a larger effect). In theory, this means that when scientists
have limited resources, understood as limited access to samples, they will be
more likely to run low-power experiments.

17Negative results should not be confused with an effect of negative magni-
tude, since non-significant results can have either positive or negative magni-
tudes.

give the intuition of how this process works in the utopia using
a simulation run. For the reader interested in technical details,
the footnotes in this section contain the mathematical functions
used in the simulations.

Consider the sufficient resources condition. The standard
recommendation (Cohen, 1992) is that the sample size n should
be sufficient for a statistical power of 0.8 (i.e., n should be such
that 80% of the time scientists would detect the effect). Strictly
speaking for any n an experiment with n + 1 subjects yields
higher statistical power, but experiments cannot have infinite
sample sizes, so n has to be a specific value. I will assume that
in utopia scientists have enough resources to go beyond the de-
sirable 0.8 power requirement, and can run their experiments to
obtain 0.95 power, assuming that they aim to detect the typical
effect size.!® In this example, that means that if scientists run
their experiments with n = 156 and the effect is d = 0.41, then
95% of the time they will reject the null hypothesis.'® Figure 3
shows the theoretical 7-distribution for the assumed real effect
size and sample size.°
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Figure 3: r-distribution for d = 0.41 and n = 156.

Suppose A runs the first experiment. I simulate this process
as a function that produces a random deviate from the theoret-
ical 7-distribution and gives the result (i.e., an observed effect

81ndeed, it is difficult to justify the 0.8 value since it is asymmetrical with
the significance level. 0.95 would be symmetrical (Machery, 2012, fn.4).

19To compute this sample size, one has to produce the right theoretical dis-
tribution associated with the effect that would have the desired percentage of
its area falling outside the significance threshold(s). This is usually done by
numerical approximation. I used G*power, a tool to compute power analysis
for different tests (Faul et al., 2007).

20The distribution is a non-central ¢-distribution, which represents the possi-
ble outcomes of a two-tailed between-subjects 7-test when there is an effect. In
the distribution for the null hypothesis, ¢ is distributed around 0. When there
is a real effect, ¢ is distributed around a different value. To generate the dis-
tribution, one requires the degrees of freedom df, given by df = 2n — 2; and a
non-centrality parameter ncp, given by ncp = d/ \/(2/n).



size) in Cohen’s d units as output.?! Suppose A finds an effect
size of 0.46. Given condition 1, A publishes the result. Figure 4
shows the published studies. A’s finding is the first data point
in the figure, with the 95% confidence interval.?> The dotted
horizontal line shows the real effect size (d = 0.41).
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Figure 4: Publications of experiment replications.

Now, B thinks A’s experiment is well designed. But they are
in a scientific utopia, so B does not need to trust A. Given condi-
tion 2, B can directly replicate the experiment herself, because
that is not going to slow her down in her other projects, and it
is not going to drain her funding sources. So B calls A and A
kindly sends B a detailed description of the protocols and mate-
rials. B draws 156 subjects from her infinite pool to ensure high
statistical power, and runs a direct replication (i.e., we take an-
other random deviate from the same theoretical 7-distribution).
Suppose B finds an effect size of 0.25, which corresponds to the
second data point in Figure 4.

Now, B does not make an assessment of the effect based only
on her result. She aggregates the effect size she found and the
one A reported in a meta-analysis to get a more precise estimate
of the real effect size.>? Figure 5 shows the progression of meta-
analyses in time (or cumulative meta-analysis). Because A is

2ISuppose ¢ is the random deviate from the ¢-distribution. The standard for-
mula to obtain d is d = t+/(2/n). This formula, however, produces a biased d
when 7 is small. The formula d,, = (1-3/(4df—1))Xxd is an unbiased estimate.
Here what I refer to as d is really dypp. See Cumming (2014, pp.294-295) for
discussion of this correction.

22The confidence intervals depend on the variance of the observed effect size.
Given an observed effect size d, a good approximation of d’s variance is given
byv = % + % (Borenstein et al., 2009, p.27). The variance not as sensitive
to d as it is to n (at least for the ranges of both values that I consider here). In
all simulations, replications in the same scenario have the same sample size.
Hence it is expected in Figure 4 to see very similar confidence intervals (even
though they are slightly different).

231 use the fixed-effect model of meta-analysis. This model assumes that all
experiments under consideration are estimating the same true effect size. It pro-

the first person running the experiment, A’s meta-analysis sim-
ply yields the effect size of her experiment. B’s meta-analytical
result is the second data point in the figure. Now, the process
repeats for the rest of the community. Each scientist runs her
own replication and aggregates her finding with all the previous
findings. And as expected, the estimated effect size gets closer
to the true effect, and the corresponding confidence intervals get
more precise.

Effect Size (d)
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Figure 5: Meta-analyses of previous publications.

This scenario constitutes a baseline. It captures the intuitions
that motivate SCT*, and illustrates how self-correction occurs
in the long run, within a frequentist statistical framework, as the
tradition that I traced back to Peirce contends.

But what happens to SCT* when the social organization of
science is less than utopian? I address this question in the next
two sections.

3.2. Non-utopian Scenarios: Setup

As many authors have pointed out, scientists work with lim-
ited resources (Kitcher, 1990, 1993), they are subject to biases
(Ioannidis et al., 2014; Anderson, 2015, §5), and negative re-
sults are typically not published (Rosenthal, 1979). In the next
two sections, I show quantitatively in the model how this real-
ity theoretically affects SCT*, and could practically affect self-
correction of social psychological research. But first I discuss
some philosophical work and empirical evidence regarding how
conditions 1-3 are often violated, along with an explanation of
how I capture them in the model. The particular values for the

duces a weighted mean of the experiments’ effect sizes, in which the weighting
factors depend on the variance v; (see previous footnote) of each experiment.
More precisely, suppose we have a series of experiments. Then, the mean ef-
fect size M is given by M = Z;f" , for all i in the series, where w; = 1/v; (i.e.,
i
the inverse of the variance). The variance of M is given by vy = ﬁ
i

Cumming (2012, pp.210-213) and Borenstein et al. (2009, pp.63-67).

See
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Table 1: Simulation Scenarios

parameters intend to capture the context of social and person-
ality psychology. However, importantly, the qualitative conclu-
sions and philosophical implications that I will derive are not
tied to particular parameter values so they apply to the behav-
ioral sciences more generally.

1. LiviTeD RESOURCES: The economic structure of society has
played an important role in shaping scientific research in
the past century (Stephan, 2012). These days, science is a
professional activity, and scientists have more pressures to
find and secure funding sources, which could impact the
quality of their scientific output.>* In most research pro-
grams, scarce resources of different kinds, such as money
to pay participants, staff to collect data, and time lead
experimenters to work with small samples (e.g., collect-
ing data from babies in developmental psychology experi-
ments requires a great deal of patience and time), These re-
sources deficiencies and extreme pressure to publish forces
researchers to run low-power experiments. Now, in prac-
tice we know that statistical power in published research
in psychology has been historically low —slightly below
0.5 for medium effects.”> Shockingly, this means that re-
searchers have been roughly as good as a fair coin to detect
effects, assuming that the effects are real. This fact may
not be fully explained by lack of resources.?® Nonetheless,
keeping everything else constant, in cases where scientists
do have limited access to participants, power tends to be
lower.

In the model: 1 relax the “sufficient resources” condition
by reducing the sample size n from 156 to 36, which, for
a real effect size d = 0.41, reduces statistical power to 0.4
—a value that is slightly below 0.5, as common in practice
in psychology.

24This is arguably a recent challenge. At the origins of modern science and
up to a transition period that started around the 19th century, scientists were
supported largely by private wealthy patrons, and their enterprise was fairly
protected from a market economy.

Z5Cohen (1962) reviewed 70 articles in the Journal of Abnormal Psychol-
ogy and found a that statistical power was on average 0.48. Twenty-four years
later, Sedlmeier & Gigerenzer (1989) repeated the same study in the same jour-
nal, and they found power to be (median) 0.44. Maxwell (2004) reported little
improvement, as did Fraley & Vazire (2014) more recently for social and per-
sonality research.

26 Another possible explanation is that, for a good while, most psychologists
didn’t really care about statistical power, in part because it was not central in
the statistics curricula, nor a requirement for journal submissions.

2. Drection Bias: Feminist philosophers of science have

identified multiple sources of bias and their negative (and
sometimes positive) impact in scientific objectivity in spe-
cific cases (Longino, 1990; Solomon, 1992; Anderson,
2015). The form of bias that concerns me here arises when
scientists have theoretical commitments. Such commit-
ments help them to envisage experiments and also expect
particular patterns of results. This kind of expectation may
not be a problem in early stages of a research program, but
it is in later stages (Douglas, 2009, p.102). In particular,
this expectation could lead to motivated reasoning and cre-
ate an “egocentric bias towards one’s own data” (Solomon,
2001, p.57) in which the researcher filters the available
data to only a subset that gets processed and published. For
example, the firm believer in social priming theory is less
likely to predict an effect in the opposite direction for the
flag-priming effect (i.e., that participants in the flag prime
condition would exhibit a decrease in Republican voting
intentions). This could lead her to disregard evidence for
that prediction. In the best case, researchers are unaware
of their direction biases. In the worst case, direction bi-
ases are a conscious practice. As a consequence of the
professionalization of contemporary science, researchers
have substantially less freedom and incentives to pursue
research programs that their colleagues think are miscon-
ceived (Stanford, 2015, §1.1). These pressures influence
the publication system. For example, after a journal has
published a series of articles supporting a trend, its thresh-
old for accepting articles with contradictory evidence is
higher. Evidence of biases at the editorial level (Lee,
2013) and peer review level (Lee et al., 2013) make this
story plausible. Also, direction biases explain why results
that researchers think are striking and have positive magni-
tude have higher odds of being published (Hopewell et al.,
2009).

In the model: 1 relax the “no direction bias” condition
by filtering effects depending on their sign. Specifically,
scientists have a bias for effects of positive magnitude
(d > 0). This means that scientists do not produce results
of negative magnitude (d < 0).

. PUBLICATION OF POSITIVE RESULTS ONLY: In practice, there is

a tacit rule in many disciplines that says that only statisti-
cally significant results (also referred to in the literature as
“positive results”) are to be published. This is intuitively



expected given the widespread practice of null hypoth-
esis significance testing (NHST). Fanelli (2010) reports
shocking metrics of this phenomenon. He analyzed 2434
papers from all disciplines that report hypothesis testing,
and shows that as we go down in “the hierarchy of sci-
ences” (i.e., a hypothesized hierarchy that Fanelli traces
back to Comte, in which physics is at the top and the be-
havioral sciences at the bottom—of course, we need not
agree that there is such a hierarchy), published results tend
to be more significant than non-significant. In particular,
psychology and psychiatry have the highest percentage of
significant results (91.5%). And the rate of published non-
significant results has also diminished in the last decades
(Fanelli, 2012).

In the model: 1 relax the “negative results are published”
condition by making statistical significance the threshold
for publication. As explained before, an original exper-
iment (or a replication) is a random deviate from a #-
distribution. Publishing a result only if it is statistically
significant means that the result will be published and in-
cluded in the meta-analysis only if the deviate produces
a p-value below 0.05. There is an interdependence be-
tween direction bias and publication of positive results
only. When scientists publish only statistically significant
results and there is an effect, having a direction bias that is
consistent with the effect or not makes no difference.

Another parameter in the model that is worth examining ex-
plicitly is the assumed real effect size. A good heuristic to de-
sign experiments is to try to find a theoretically expected effect
(e.g., such as the typical d = 0.41). In reality, of course, the
effect could be larger or non-existent. In the former case the
effect would be easier to detect. But what happens when there
is not a real effect? To model such a possibility, I consider sce-
narios in which scientists assume that the effect they are trying
to find is the typical effect, but in reality d = O (or close enough
to zero to be of any scientific import). Being mistaken in such
a case renders a false positive.

Relaxing conditions 1-3 in the way just discussed, and con-
sidering that effects might be non-existent produces 16 possible
scenarios (i.e., 4 parameter changes, each of which has 2 pos-
sible states). Table 1 lists all these scenarios. I discuss all of
them in the next three sections. In section 3.3 I focus on the
effects of relaxing only conditions 1 and 2 (scenarios S1-S8)
—the scenarios in which non-significant results are published.
Condition 3 is studied in section 3.4. In section 3.5 I discuss
some implications for replicability controversies.

3.3. Non-utopian Scenarios: Relaxing Conditions 1 and 2.

Scenarios S1-S8 in Table 1 are the scenarios in which nega-
tive results are published. These will be sufficient to establish
my main social epistemological conclusion. The check mark
(v) states whether the utopian assumption is in place. S1, for
example, is the utopia (all conditions are met); and S6 is a sce-
nario in which negative results are published, scientists don’t

have direction biases, they work with limited resources to de-
tect a typical effect, but they are pursuing a phenomenon that
does not exist.

I simulate and aggregate the results of 500 communities of
50 scientists. In reality it does not happen that 500 teams pur-
sue the same effect. However, I use this value to obtain an idea
of the spread of possible estimations that a single community
can make. On the other hand, I chose 50 scientists in each com-
munity to have an idea of an upper value that may occur in
practice (i.e., 50 independent teams replicating a single exper-
iment). This value is optimistic. As mentioned before, Klein
et al. (2014) reported 36 independent attempts to replicate the
same experiments, but most experiments in psychology are not
replicated that many times.

Figure 6 and Figure 7 show the simulation results. The hor-
izontal dotted line shows the real effect (d = 0.41 or d = 0).
The shaded area shows one standard deviation above and be-
low the mean effect size. That is, most communities fell within
the shaded area.

Here are some qualitative observations about these simula-
tion scenarios. The first observation is

e In all scenarios, at the beginning, a community’s assess-
ment of an effect size is very imprecise. This can be seen
in the gap between the standard deviation lines. However,
by the time the community performs the 50th experiment,
the 50th meta-analysis converges on some effect size with
a reduced margin of error.

e Reducing samples size (and therefore lowering statistical
power) reduces the speed of convergence. This can be seen
clearly by comparing the limited resources scenarios S2
and S6 with the sufficient resources scenarios S1 and S5
respectively: the spread in the standard deviation lines is
wider in the former than in the latter.

e Direction biases might be intuitively expected to have an
important impact on SCT*. This is partially confirmed.
When there is not a real effect, direction bias leads com-
munities to systematically report an effect when there isn’t
really one, as shown in S7 and S8. Less intuitive perhaps is
that direction bias has no noticeable impact when there is a
real effect and resources are sufficient. That is, directional
bias in reporting results does not entail a directional bias in
the long run estimation: compare S3 (direction bias) with
S1.

e Limited resources and direction bias jointly inflate effect
size estimates, as shown in S4 and S8.

e Looking only at scenarios S1-S4, someone might think
that SCT* is not seriously compromised by social con-
ditions, because most communities are is still finding the
effects, just more slowly (S2) and with slight overestima-
tions (S4). Such an assessment is too optimistic. Scenarios
S1-S4 are favorable for SCT* because they assume that
there is always an effect to be discovered. Importantly, the
more worrisome cases, however, are S7 and S8: scientists
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Figure 6: Simulation Results for Scenarios S1-S4: Real effect size d = 0.41

systematically report that effects exists when they don’t
exist at all.

Scenarios S1-S8 show how the social structure of science
affects SCT*. In order for the process described by SCT* (i.e.,
experimental replications and aggregation of evidence by meta-
analysis) to be effectively self-corrective, certain specific highly
idealized social conditions have to be in place. That is, SCT*
is true in a scientific utopia (S1), but its truth is compromised
in non-utopian scenarios that reflect the social organization of
contemporary practice. Of course, scenarios S1-S8 model the
context of psychological research, so claims about magnitudes
do not generalize, but the same social conditions affect research
programs in the behavioral science more broadly.

Now, I will turn to the second set of scenarios: those in which
we relax the condition that negative results are published.

3.4. Non-utopian scenarios: Critique of NHST and Critique of
the Critique

As mentioned earlier, NHST is widely used and therefore

utopian “negative results are published” condition is system-

atically not met in practice. This leads to the “file drawer

problem” (Rosenthal, 1979)—the problem that negative results

might stay in file drawers because scientists lack incentives to

10

publish them, which introduces biases for significant results in
the literature. The file drawer problem constitutes a strong criti-
cism of NHST. In this section I show what this critique consists
in using the model, and then proceed to some important qual-
ifications. Figure 8 and Figure 9 show the scenarios in which
condition 3 is not met.

Why did the practice of publishing only statistical significant
results gain traction and momentum in the life sciences? Pri-
marily perhaps because of its simplicity. Also because of dif-
ficulties inherent to non-significant results. Traditionally, non-
significant results are regarded as inconclusive: a result could
be non-significant because there is actually no effect to find, but
also due to other complications that prevent experimenters from
detecting a real effect. Additionally, the null understood as the
hypothesis that an effect size is exactly zero, is almost certainly
always rejected: an experiment with a sufficiently large sample
size, almost certainly detects some difference (Meehl, 1967).7
For these reasons, the rules for accepting and publishing null
hypotheses (and whether we should do it at all) are controver-
sial.

2THowever, scientists aware of this problem do not try to reject the hypothesis
that an effect size is exactly zero, but that the effect is trivially small (Friston,
2012). See also Machery (2014, pp.271-273).
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Figure 7: Simulation Results for Scenarios S5-S8: Real effect size d = 0

Considering these difficulties, one can be tempted to reason
incorrectly as follows: the rule of not publishing non-significant
results filters noise out of the system; hence, a system in which
this rule is in place is in a better position to converge on the true
value of the effect in the long run. S9 shows, however, that this
reasoning is incorrect. Given the sufficient resources condition,
95% of all experiments would be statistically significant. In
S9, communities overestimate the effect when they ignore the
non-significant results (5%).%

Now, in addition to the observations about the relation be-
tween sample size and speed of convergence, and direction bias
and overestimation discussed in the previous section, here are
some observations about these scenarios:

e S10 shows that if the community publishes only significant
results and resources are not sufficient to detect the effect,
there is a large overestimation of the effect size in the long
run. This effect has been previously discussed by Ioannidis

28For simplicity, in this scenario non-significant results don’t get published
at all, which is not the case in practice. Nonetheless, this does not threaten
the qualitative conclusion: so long as the majority of significant results get
published and some of the non-significant results don’t get published, there
will be overestimations.

(2008) and Button et al. (2013).2° To grasp intuitively why
such large overestimation occurs, consider Figures 2 and 3
again. In both distributions, the effect size is the same (d =
0.41). But Figure 2 is a low-power context (0.5), whereas
Figure 3 is a high-power context (0.95). Now, notice that
while increasing statistical power shifts the distribution for
the same effect more to the right, the significance threshold
that determines what gets published is roughly the same
(it is not exactly the same, but the difference is negligible)
in both situations. Hence, in the low-power context more
results that suggest a small effect will not be published in
comparison to the high-power context, which leads to a
larger overestimation of the effect size in the former.

e The overestimation in S9 and S11 is small (at least for
what is considered a difference in psychology). This sug-
gests that, at least in the long run, not publishing non-
significant results is not dramatic if resources are suffi-
cient.

oannidis (2008) offers a theoretical argument and a survey of empirical
evidence that early discovery effects are inflated. He calls this problem the
“Winner’s curse”: the scientist who finds an effect with a low-power study is
more likely to find an overestimated effect.

11
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Figure 8: Simulation Results for Scenarios S9-S12: Real effect size d = 0.41

e Looking at the simulation scenarios before the 10th repli-
cation attempt can give us an idea of how (in)accurate
estimations are in practice since in fact few experiments
get replicated that many times. Recall (Section 2.2) the
qualitative categories to interpret effect sizes: d = 0.2
is a small effect, d = 0.5 medium, and d = 0.8 large.
Now, notice that in several scenarios many communities
would disagree in this respect (i.e., one slice of the shaded
area covers different qualitative categories). For instance,
in S2 before the 10th replication some communities find
a small effect while others find that it is medium. Also,
in S14 before 10 replications, some communities commu-
nities could think that an effect is small or even medium
when in reality there is no effect.

At this point one may wonder whether some technique could
correct the overestimations shown in S9-S12. Some techniques
help assess the file drawer problem (and publication bias more
generally), but there is not a general correction technique for
it. The two most popular techniques are Funnel Plots (a detec-
tion technique) and the Trim and Fill algorithm (a detection/ad-
justment technique based on funnel plots).’* These techniques,

30Funnel Plots show asymmetries in distributions of effect sizes that are sup-

12

however, do not work in this simulation study. They can de-
tect/adjust publication bias only when there is a large amount
of dispersion in the sample sizes of the experiments in a meta-
analysis (Borenstein et al., 2009, p.290).3' Here all the replica-
tions in a single meta-analysis have the same sample size. This
limitation illustrates one reason why there is not yet a reliable
procedure to adjust meta-analyses. More generally, trim and fill
gives adjusted estimates that are quantitatively different from
the unbiased estimate (Duval, 2005, p.134). Hence, methodol-
ogists recommend this and other techniques only to assess how

posed to be symmetrical if there is no publication bias in a set of studies. The
technique does not correct the overestimation, but at least it is useful to raise
flags about its possibility. See Palmer (2000) for an application of Funnel Plots
in biology. The Trim and Fill algorithm computes adjusted effect sizes by elim-
inating the asymmetry in a funnel plot.

31Techniques to assess publication bias (including Funnel Plots and Trim and
Fill) exploit one assumption: small studies have more variance in their effect
sizes than large studies. If there is publication bias due to publishing only sta-
tistically significant results, then published small studies will not report small
effect sizes (because small studies will only obtain statistical significance with
large effect sizes). Hence, the sensitivity of the techniques depends on having
multiple studies with different sample sizes. Another caveat is that these tech-
niques depend on strong assumptions about the missing studies. Borenstein
et al. (2009, pp.277-291) discuss these and other techniques and their limita-
tions in detail.
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Figure 9: Simulation Results for Scenarios S13-S16: Real effect size d = 0

sensitive a meta-analysis is to possibly missing studies, not to
correct biased estimations (Sutton, 2009, p.448).

Now, I will turn to an important observation about these sce-
narios that causes us to re-evaluate the impact of the file drawer
problem. In his early work about the file drawer problem,
Rosenthal worries about the extreme possibility “that journals
are filled with the 5% of the studies that show Type I errors,
while the file drawers are filled with the 95% of the studies that
show non-significant results” (Rosenthal, 1979, p.638). The un-
derlying question is, what happens in scenarios where there is
not a real effect and only statistically significant results get pub-
lished?

Consider again scenarios S9 and S10. In these scenarios,
we observe that communities vastly overestimate effects due to
negative (non-significant) results not being published (contrast
these scenarios with scenarios S1 and S2, in which negative re-
sults are published), and the overestimations are larger when
power is low. Scenarios S13 and S14 model the same arrange-
ment of conditions but in a context in which the real effect is
zero. An intuitive prediction for these scenarios is that, in the
same way as in scenarios S9 and S10, effects would be overes-
timated (that was, indeed, my prediction when I designed the
scenarios). The simulation results for S13 and S14, however,

13

contradict that prediction. Communities in S13 and S14 con-
verge on the true non-existent effect. There is no bias. To un-
derstand why, consider that when there is not a real effect, the
replications in the simulations are produced by sampling from a
null distribution (e.g., Figure 1), and there are significant results
at both of its tails. For example, Figure 10 shows the publica-
tions of one single community. In such a case, scientists find
very extreme opposite results. In the long run, however, such
results are balanced in number and strength, which makes them
cancel out in the meta-analysis.

In other words, scenarios S13 and S14 show that if there is
not an effect to find, most communities, even when publishing
only statistically significant results and underpowered studies,
find that there is not an effect in the long run. That is, in the
context in which the file drawer problem would intuitively seem
to be more troublesome it is not. This is a positive theoretical
lesson about NHST.

There is a caveat, however. It would be too optimistic to
think that in practice science could recover from false positives
in this way. Recall that the tails of the distribution after the
significance threshold correspond to 5% of it, so this procedure
is slow. Also, the amplitude of estimations (i.e., extreme results
in both directions), which can be seen in the dotted lines in S14,
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Figure 10: Extreme opposite results - No real effect.

show that the estimation is less reliable, relative to the other
scenarios in the set.

The file drawer problem is commonly used in attacks to
NHST (Schmidt, 1996; Gill, 1999; Gelman, 2015). The argu-
ment is that NHST introduces biases in the literature, such as
the overestimations that scenarios S10 and S12 illustrate. And
it is followed by the prescriptive conclusion that NHST should
be banned. Such a prescription should be qualified, because it
assumes that NHST plays a negative role in all circumstances,
and I have shown that it does not. Furthermore, the critique
is misleading because it overemphasizes the role of inference
methods in scientific self-correction. Here I have framed NHST
as one of the many conditions that could affect SCT*. In this
way, we can see that NHST has flaws in some contexts but not
in others. Other factors interact with NHST, and these are by
themselves problematic, and even more in some contexts than
NHST.

I will now turn to a general discussion, considering impli-
cations for replicability controversies, and proposals for future
work.

4. General Discussion

4.1. Scientific Self-Correction as an Interaction Effect

Laudan (1981) complains that Peirce and philosophers after
him have trivialized SCT by focusing on technical investiga-
tions of quantitative induction, and neglecting the study of the
self-corrective character of scientific inference in general. My
study is consistent with his conclusion, but I take it one step
further. It is indeed important to study the long-run properties
of inference methods in the abstract. But such studies disre-
gard social conditions that ultimately matter for SCT. Based on
such utopian studies it would be a mistake to draw conclusions
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about whether science (either actual or nomologically possible)
is self-corrective or not.

The set of utopian conditions 1-3 is by no means exhaus-
tive. The reader might envisage other ways in which the so-
cial structure of science is not utopian, which may affect SCT*.
But conditions 1-3 are sufficient to illustrate my main conclu-
sion: while SCT* is true in a scientific utopia, self-correction
is a fragile property: once we move away from the utopia and
consider less utopian scenarios, the procedure of aggregating
experimental evidence by meta-analysis can easily lead com-
munities of frequentist scientists astray.

An advocate of SCT* could try to relativize my conclusions
about fragility by saying that it is all just pragmatics: every
inference method has conditions under which it works, and of
course, if the conditions are violated, then the method will not
work as expected. In particular, if frequentist scientists fail to
satisfy conditions 1-3, then this would be a failure in their con-
duct, and not a failure of SCT* itself. Nonetheless, I think this
response misses the problem. For, what would it take for fre-
quentist scientists to do things correctly? The answer cannot
be that they should move to a utopia: that they should pub-
lish every single study, significant or not, in equally prestigious
venues, or that every study should be run with massive sample
sizes, or that they should purge themselves from all possible bi-
ases, and so on. Failing to meet the utopian conditions is not
malpractice, but an unavoidable reality. The “correct” way of
doing things is infeasible because it is too demanding.

I suggest viewing scientific self-correction appealing infor-
mally to the notion of interaction effect (i.e., given two vari-
ables, the effect on one of them depends on the value of the
other). That is, scientific self-correction depends on two vari-
ables: inference methods and social structures, and these two
variables interact. The long-run performance of an inference
method (i.e., it’s reliability and validity) depends on the par-
ticular social structure in which that method is used. I would
propose that in the same way as a car would not work if it uses
the wrong kind of fuel, inference methods malfunction if they
are deployed in an inappropriate social structure. Of course,
the present study concerns the context of frequentist statistics,
so further work is necessary to understand better this interaction
outside of this context. Consider two issues:

e How do other forms of inference interact with their social
context? For instance, Bayesian inference would not be
subject to problems I discussed here (e.g. Bayesian infer-
ence does not use the statistical significance as a threshold
in a decision procedure). However, before drawing norma-
tive recommendations from that fact, we have to consider
that Bayesian convergence might be fragile with respect to
other social structural conditions. A different simulation
study would be required to explore this issue in detail.

e What are the implications of the fragility of particular in-
ference methods to the more general self-corrective thesis
(SCT)? If my arguments are sound, we face a dilemma: ei-
ther the research programs that use frequentist statistics do
not self-correct, or there is an alternative to SCT* that ex-
plains how they do. We have a reason to reject the first



alternative: the history of superseded scientific theories
suggests that error gets corrected.> However, it is not ob-
vious how to substantiate the second alternative. Notice
that a story according to which error gets corrected by for-
tunate accidents is inconsistent with SCT (e.g., scientists
discover accidentally that a theory is false when testing
some unrelated hypothesis but this form of error correc-
tion is not guaranteed to work in the long run). We need
analytic work characterizing how error correction is (and
can be) a result of a “scientific method” as SCT contends.

Now, I will turn to some implications of this study for the repli-
cability crisis in psychology.

4.2. Replicability Controversies Revisited

One central aspect to the replicability crisis in social psy-
chology is that the psychological community has systematically
produced false positives. How do we explain this fact? Multiple
causes may contribute, and I don’t intend to give a full account
of them. But I want to stress four implications of this simulation
study.

First, as shown in Section 3.4, based on scenarios S13 and
S14 we can see that NHST and low power do not produce long-
run overestimations in the context in which the effects in ques-
tion are truly non-existent. To be clear, individual scientists do
err in this context. But the self-corrective procedure works for
the community after a series of replications. This implies that
these two factors should play a smaller role as an explanation
of the crisis than some methodologists and psychologists have
suggested.

Second, direction biases could be an important contribut-
ing factor in the replicability crisis. As illustrated in scenar-
ios S15 and S16, direction biases can explain overestimations
when there are no real effects better than the other violations
of the conditions. This explanation is not a full actual explana-
tion. In particular, I have no empirical evidence of the extent to
which direction bias is present in e.g. social priming research.
Nonetheless, consider that given the high attractiveness of so-
cial priming hypotheses, researchers could be subject to moti-
vated reasoning (that would lead to direction biases) more than
in other research programs. If this story is correct, then S15
and S16 show sufficient conditions under which communities of
frequentist scientists studying these hypotheses could systemat-
ically produce large overestimations of non-existent effects.

Third, this study shows the limits of meta-analyses to settle
replicability disputes.>®> Both psychologists and philosophers
(Doris, 2015, p.49) hope that meta-analysis will eventually help
us with these issues. However, we have non-skeptical reasons to

32 Although, as Toannidis points out, “The fact that some practical progress is
made does not mean that scientific progress is happening in an efficient way or
that we cannot become even more efficient” (Ioannidis, 2012, p.648).

33Recent literature has been concerned with the evidential import of meta-
analysis. Stegenga (2011) casts doubts on meta-analysis as a high standard
of evidence on the grounds that designing a meta-analysis involves numerous
decisions that compromise the reliability of its outcomes. In response, Jukola
(2015) argues that the reliability of meta-analysis requires taking into account
the social context in which meta-analyses are designed and used.
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think that the experiments that could constitute the input to ret-
rospective meta-analyses for social priming research have been
produced in a context that is far from the utopia, in particular
with regard to utopian conditions 1 and 3. If this is right, then
the study that I have presented here gives us reasons to qualify
that hope.

Now, recall (section 1) the distinction between direct repli-
cations (i.e., those that mirror the original experimental design)
and conceptual replications (i.e., those that intend to test the ro-
bustness of underlying hypotheses). In psychology most repli-
cations are conceptual and not direct. Makel et al. (2012) sys-
tematically analyzed articles in the top 100 psychology journals
since 1900, and they found that only 1.07% of them reported
replication attempts. And even worse, only 14% of all replica-
tions were direct replications. For Pashler & Harris (2012) this
is a problem because the preference for conceptual replications
over direct replications plus publication bias opens the door for
producing false positives, and they strongly advocate for more
direct replications. In response to this, my fourth point is that
in all scenarios in the present simulation study scientists run
long series of direct replications, and many don’t self-correct.
Hence, regardless of whether the assessment that conceptual
replications have played a role in the crisis, my study calls into
question the efficacy of the normative recommendation of en-
couraging more direct replications tout court. In particular, nor-
mative recommendations should consider the possibility that
replicators could be systematically biased.

Now, the fact that we are not in the utopia does not mean that
all non-utopian scenarios stand on the same ground. In particu-
lar, institutional interventions can address in part the problems
of the three utopian conditions.

Institutionalize sample size/power requirements to address
limited resources problems. One way of alleviating the
consequences of limited resources is to place editorial
policies that discourage authors from producing small
sample studies. For instance, the journal Social Psycho-
logical and Personality Science amongst its recent edito-
rial policies states that “authors will be asked to disclose
how sample size was determined” and “manuscripts that
present underpowered studies without adequate justifica-
tion will have a greater chance of being rejected without
review” (Vazire, 2015, p.2).

Open Science to address direction biases. The “Open Sci-
ence” movement encourages open access to all informa-
tion associated with a research project (e.g., data, methods,
materials, tools, code etc.) This initiative could counteract
direction bias under the assumption that it be practically
enforced. See Ioannidis et al. (2014) for other recommen-
dations to reduce reporting biases.

Pre-registration of studies to address problems of publi-
cation of only positive results. Pre-registration of studies
has been increasingly implemented in clinical research.
The International Committee of Medical Journal Editors
(ICMIJE) “requires, and recommends that all medical jour-
nal editors require, registration of clinical trials in a pub-



lic trials registry at or before the time of first patient en-
rollment as a condition of consideration for publication”
(ICMIE, 2015, p.12). This practice has shown its bene-
fits. For instance, Kaplan & Irvin (2015) show that pre-
registration was strongly associated with the trend toward
null findings. This practice could alleviate the problems of
publication bias without requiring the publication of every
non-significant result.>*

We need work on assessing the extent to which these nor-
mative interventions can make the behavioral sciences more
self-corrective. Another set of proposals are what I call “self-
corrective labor schemes”, i.e. ways of organizing replication
work to increase replicability. These proposals include per-
forming multi-site replication projects (Klein et al., 2014), edu-
cational replication (Frank & Saxe, 2012; Standing et al., 2014),
and adversarial collaboration (Rakow et al., 2015). Additional
analyses are required to assess and compare their efficiency.

5. Conclusion

Is science an enterprise that corrects its mistakes? The as-
sumption that it is lies at the core of the justification of science.
I have argued by example, however, that when we approach
the question as a social epistemological one, we have strong
reasons to think that self-correction is very fragile: the social
structure of the community in which frequentist inference is de-
ployed greatly affects its long-run performance. I have shown
that the kinds of resources scientists have, their theoretical com-
mitments, and the rules for publishing results impact the esti-
mation of parameters in communities of frequentist scientists.
The general lesson is not necessarily pessimism about scientific
self-correction. Rather, it is that philosophical attention to infer-
ence methods in isolation from social context can only give us a
partial understanding of the mechanisms of self-correction. In
addition to studying whether particular forms of inference self-
correct, it is necessary to ask how they interact with their social
and institutional context.
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