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Intervention and Identifiability

in Latent Variable Modelling

Abstract

We consider the use of interventions for resolving a problem of uniden-

tified statistical models. The leading examples are from latent variable

modelling, an influential statistical tool in the social sciences. We first

explain the problem of statistical identifiability and contrast it with the

identifiability of causal models. We then draw a parallel between the

latent variable models and Bayesian networks with hidden nodes. This

allows us to clarify the use of interventions for dealing with uniden-

tified statistical models. We end by discussing the philosophical and

methodological import of our result.

1 Introduction

A statistical model may include hypotheses that have identical likelihood

functions over the entire sample space. This is the problem of statistical

identifiability: several statistical hypotheses fit the data equally well, hence

we cannot identify the best one by data alone. So-called unidentified models

exhibit a form of underdetermination, though not the radical form that of-

ten features in arguments against scientific realism. The standard response

to underdetermination is to look for theoretical criteria, such as simplic-

ity or explanatory force, that help us choose between the rivals. In factor

analytic models, for example, one might use criteria pertaining to the vari-

ation among the estimations of the statistical parameters to force a unique

solution of the estimation of factor loadings.

In this paper we investigate a particular solution to the problem of sta-

tistical identifiability in the context of causal modelling. Given the context,

let us stress that the statistical identifiability problem must not be confused

with the problem of identifying so-called causal effects (cf. Pearl, 2000, chap-

ter 3). The latter concerns the determination of how a system responds to
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interventions, i.e., determining causal structure. Statistical identifiability is

different because it does not involve uncertainty about causal structure. In-

stead it concerns the determination of statistical parameters within a model

whose causal structure is fully specified. It occurs when the statistical hy-

potheses under consideration say the very same things about what obser-

vations to expect, i.e., they have exactly the same likelihood functions and

thus perform equally well on the observed data.

That said, the solution that we investigate does rely on the causal inter-

pretation of the statistical models. In fact, the solution assumes that certain

aspects of the causal model are known, and therefore that the problem of

causal identifiability has to some extent been resolved. It trades on the fact

that the otherwise identical statistical hypotheses need not be equivalent in

a causal sense. We can consider specific changes to the setup of the study,

i.e., specific interventions, such that the hypotheses get different likelihood

functions over the additional results. The hypotheses are then told apart by

their differing causal content. For this solution to work, we need to presume

that we have already determined how the system behaves after intervention.

Our solution to statistical identifiability conveys two messages. The first

is philosophical: we want to bring to the fore an important and, to our mind,

undervalued aspect of scientific confirmation, namely the use of intervention

data. We believe that insights from the philosophy of experiment (e.g. Hack-

ing (1980); Gooding (1990)) can come to fruition in confirmation theory and

we hope to make a modest start with that. A further message is method-

ological: we hope to contribute to a better understanding of the benefits of

interventions and stimulate the uptake of statistical tools for modeling inter-

ventions in social science. Despite the availability of statistical theories and

methodological tools for exploiting intervention data, scientists are often not

aware of their potential. Moreover, insofar as there is awareness, this mostly

concentrates on the identification of causal effects or the use of intervention

data for determining causal structure (e.g., Spirtes et al. (1993); Eberhardt

et al (2010); Hyttinen et al (2012); Silva and Scheines (2003)). This paper

suggests a different use of intervention data.

We present our argument in the setting of latent variable modelling, a

statistical modelling tool from the social sciences that remains understudied

in the philosophy of science, with one or two exceptions. Johnson (2014)

offers a wonderful overview of the philosophical import of factor analysis in
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connection to the problem of underdetermination. Interestingly, although

our papers target different problems and were written independently, they

reach similar general conclusions. Factor analysis makes another appearance

in Haig (2005) and Schurz (2008), namely as a model for abductive inference,

and thus as a tool for generating and selecting theory. In this paper we

take a different perspective. We employ exploratory factor analysis as an

illustration of a more general problem concerning statistical unidentifiability,

and we focus on the role of interventions in resolving it.

The paper is set up in the following way. In §2 we introduce statis-

tical identifiability abstractly and in §3 we make these problems concrete

for latent class analysis and factor analysis. We show in §4 that latent

variable modelling is for our purposes identical to estimating parameters

in a Bayesian network with hidden nodes. Just as is the case with causal

Bayesian networks, data obtained after intervention can be used to identify

features of models in factor analysis. In particular, we argue in §4.3 that in-

tervention data can, under the right conditions, be used to resolve problems

of statistical identifiability. In §5, finally, we briefly suggest how this model

for intervention may prove useful to the philosophy of science in general.

We see the topic of this paper as an opportunity for a fruitful interaction

between philosophers of science, who often consider the theoretical problem

of underdetermination of models by evidence and who study causal models

from an abstract point of view, and social science methodologists, who reg-

ularly encounter underdetermination in practice and who can use insights

gleaned from applications to shed valuable light on this problem.

2 Unidentified models

In what follows we characterize the problem of unidentified statistical mod-

els, and make it precise for latent class analysis (LCA), a well-known sta-

tistical technique in, e.g., psychometrics. LCA is a close cousin to factor

analysis (FA). LCA and FA are both routinely used to interpret psycho-

logical test data, and working psychologists face the problem that the data

often do not allow for a complete determination of the underlying classes

or factors. This presents psychological science with its own version of the

philosophical problem of underdetermination (cf. Johnson, 2014).
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2.1 Identifiability in statistics

Here we illustrate the concept of statistical identifiability using some toy

examples. A more realistic setting will be introduced in §2.2.

Consider a simple statistical problem, in which we estimate the chances

of events in independent and identical trials, e.g., results in psychological

tests. An observation at time t is denoted by the assignment of a value to

a binary variable Qt, with possible values failing and passing the test. We

denote a sequence of t observations or test results by means of the variable

St. For example, if St = 010 . . . 1, then Q1 = 0, Q2 = 1, and so on. The

hypothesis Hθ says that the chance of observing Qt+1 = 1 is θ irrespective

of which sequence of outcomes St precedes it.

P (Qt+1 = 1|Hθ, St) = θ (1)

for every St and for each trial Qt+1, an expression involving what is often

called the likelihood function of Hθ.
1

The chance θ of the event Qt+1 = 1 may be any value in [0, 1], so we have

a whole continuum of hypotheses Hθ gathered in what we call a statistical

model, denoted H. On the basis of some sequence of events St, we can

provide an estimate of θ. We can do so either by defining a prior P (Hθ)

and then computing a posterior by Bayesian conditioning, or by defining

an estimator function over the event space, typically the observed relative

frequency :

θ̂(St) =
1

t

t
∑

i=1

Qi,

The above estimation problem is completely unproblematic. The observa-

tions have a different bearing on each of the hypotheses in the model, i.e.

each member of the set of hypotheses. If there is indeed a true hypothesis

in the set, then according to well-known convergence theorems (cf. Earman

(1992), pp. 141–149), the probability of assigning a probability 1 to this

hypothesis will tend to one. In the limit, we can therefore almost always, in

the technical sense of this expression, tell the statistical hypotheses apart.2

1We follow the Bayesian idea that hypotheses Hθ can serve as arguments of the prob-

ability function. Further conventions are that equations, like Qt+1 = 1, can appear as

arguments of a probability function, and that expressions like St function as variables.
2Any infinitely long sequence of results is in principle consistent with any of the hy-

potheses Hθ, and in that sense we are encountering an underdetermination problem in the

estimation. However, here we will not consider this type of identifiability.
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This situation is different if we take a slightly different set of statistical

hypotheses Gξ, characterized as follows:

P (Qt+1 = 1|Gξ, St) = ξ2 , ξ ∈ [−1, 1].

This set of hypotheses covers the same set of possibilities, only they are

doubly labelled. The hypotheses Gξ and G−ξ are indistinguishable, be-

cause they both assign exactly the same probability to all the observations:

P (Qt+1 = 1|Gξ∩St) = P (Qt+1 = 1|G−ξ∩St). In such a case, we speak of an

unidentifiable model. Notice that this situation is much like having a single

equation with two unknowns, for instance x + y = 1 with x, y ∈ [0, 1]. We

cannot find a unique solution for x and y, rather we have a whole collection

of solutions. To force uniqueness, we need a further equation, e.g., x−y = 0.

Unidentifiable models are in a sense underdetermined by the observa-

tions. Importantly, this kind of statistical underdetermination is not of the

kind most feared by scientific realists, because there may well be experi-

ments or additional observations that would allow one to disentangle the

statistical hypotheses. This paper shows how additional experiments can

achieve this.

2.2 Latent variable models

The above example of statistical underdetermination is rather contrived: no

reason is given for distinguishing between the regions ξ > 0 and ξ < 0.

However, there are cases in which it makes perfect sense to introduce dis-

tinctions between hypotheses that do not differ in their likelihood functions.

This subsection is devoted to presenting one of these cases, involving a so-

called latent class model. The exposition is partly borrowed from [omitted

for purpose of blind review].

A latent variable model posits hidden, or latent, random variables on the

basis of an analysis of the correlational structure of observed, or manifest,

random variables. Examples are latent class models, which are discussed

below, and factor models, in which latent and manifest variables are con-

tinuous.3 Suppose that in some experiment we observe (continuously or

3See Lawley and Maxwell (1971) for a classical statistical overview, Mulaik (1985) for a

philosophically-minded discussion, and Bartholomew and Knott (1999) for a very insight-

ful introduction from a Bayesian perspective. All these treatises introduce exploratory

factor analysis as well as the much less problematic statistical tool of confirmatory factor

analysis. In this paper we concentrate on the former, and simply call it factor analysis.
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discretely varying) levels of fear F and loathing L in a number of individu-

als who are represented via the index i, and we find a positive correlation

between these two variables,

P (Fi, Li) > P (Fi)P (Li).

One way of accounting for the correlation is by positing a statistical model

over the variables in which fear and loathing may be related directly.

We may feel that it is neither the loathing that instills fear in people,

nor the fear that invites loathing. Instead we might think that both feelings

are correlated because of a latent characteristic of the individuals, namely

a depression from they might be suffering. Conditional on the level of the

depression, denoted Di, fear and loathing might be uncorrelated:

P (Di, Fi, Li) = P (Di)P (Fi|Di)P (Li|Di).

In the case in which all the variables vary continuously, we speak of a fac-

tor model. We then say that the depression is the common factor to the

observable, or manifest, variables of fear and loathing, and the correlations

between the depression variable and the levels of fear and loathing we call

the factor loadings.

Latent variable models come in several shapes and sizes, subdivided

according to whether the manifest and latent variables are categorical or

continuous. In what follows we discuss one of the most straightforward ap-

plications of such models, in which both the manifest and latent variables

are binary: latent class analysis. Our reason is that we are making a con-

ceptual point about interventions and underdetermination. For this purpose

the simplest format of factor analysis suffices.

To illustrate the latent class analysis, say that the depression is either

present in subject i, Di = 1, or absent, Di = 0, and similarly for fear

and loathing. We assume that over time the variables are independent and

identically distributed. That is, for i 6= i′ the variable Di is independent of

Di′ , Fi′ and Li′ , and similarly for Fi and Li. Out of the possible probabilistic

dependencies among Fi, Li and Di, we confine ourselves to

P (Fi = 1|Di = j) = φj , (2)

P (Li = 1|Di = j) = λj , (3)
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for j = 0, 1, a conditional version of the Bernoulli model of Equation (1).

Similarly for the variable Di,

P (Di = 1) = δ (4)

The probability over the variables Di, Li and Fi is thus given by five

Bernoulli distributions, each characterized independently by a single chance

parameter.

There may be experimental conditions in which the latent class that en-

hances or reduces fear and loathing is observable, e.g., when the individuals

all take a drug E which reduces fear and loathing. But the depression vari-

able D in our example is latent: it cannot be observed directly. Although

the causal or mechanistic underpinning is unknown, we might nevertheless

posit such a variable. Exploratory factor analysis is a technique for arriving

at such common factors in a systematic way, in cases where the variables

aer continuous. When given a set of correlations among manifest variables,

it produces a statistical model of latent common factors that accounts for

exactly these correlations.4

Perhaps unsurprisingly, latent variable models suffer from problems of

identifiability. They posit the theoretical structure of unobservable common

causes, over and above the observed correlations between observable vari-

ables. There will generally be many latent variable models, and accordingly

many different causal structures, that fit the data. This is the problem of

causal identifiability alluded to earlier. However, even if all modeling choices

have been made and if the list of salient variables and their causal struc-

ture have been fixed, either by assumption or by background knowledge, the

problem of statistical underdetermination may appear. In what follows we

focus specifically on this restricted identification problem.

2.3 Unidentifiability of latent variable models

We now show that the model of Equations (2), (3) and (4) cannot be iden-

tified by the data.

Focus on the dimensions of this model. We count 5 parameters, namely

δ, and φj and λj for j = 0, 1. On the other hand, we have the binary

4See Bartholomew and Knott (1999) for a general introduction. Seeing that exploratory

factor analysis generates a structure that explains the observed correlations, it is rather

natural that Haig (2005) and Schurz (2008) present it as a formal model of abduction.
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observations Fi and Li that can be used to determine these parameters.

But because we are using Bernoulli hypotheses, only the observed relative

frequencies of the possible combinations of Fi and Li matter. And because

we have 4 possible combinations of Fi and Li, whose relative frequencies

must add up to 1, we have 3 frequencies to determine the 5 parameters

in the model. After having used the observations in the determination of

the parameters, therefore, we still have 2 degrees of freedom left. Hence

the values of the parameters in the model cannot be determined by the

observation data uniquely.

We can state this problem in more detail by looking at the likelihoods

for the observations of possible combinations of Fi and Li. We write θ =

〈δ, φ0, φ1, λ0, λ1〉. For the likelihoods we write

P (Fi = 0, Li = 1|Hθ) = θ01 = δ(1− φ1)λ1 + (1− δ)(1− φ0)λ0 ,

P (Fi = 1, Li = 0|Hθ) = θ10 = δφ1(1− λ1) + (1− δ)φ0(1− λ0) , (5)

P (Fi = 1, Li = 1|Hθ) = θ11 = δφ1λ1 + (1− δ)φ0λ0 ,

where we omitted mention of the other individuals Si−1. The fourth like-

lihood, P (Fi = 0, Li = 0|Hθ), can be derived from these expressions. The

salient point is that the system of equations resulting from filling in particu-

lar values for the above likelihoods has infinitely many solutions in terms of

the components of θ: for any value of the likelihoods, the space of solutions

in θ has 2 dimensions. The statistical model is thus unidentifiable.

Let us briefly elaborate on the unidentifiability of the model. It means

that the likelihood function over the model does not have a unique maxi-

mum, and so that the maximum-likelihood estimator does not point to a

uniquely best hypothesis. In fact there are infinitely many hypotheses com-

patible with the data. Say that we observe the following relative frequencies:

r11 =
1

t

t
∑

i=1

FiLi, r10 =
1

t

t
∑

i=1

Fi(1−Li), r01 =
1

t

t
∑

i=1

(1−Fi)Li. (6)

The likelihood P (St|Hθ) is maximal if the observed relative frequencies rjk

match the corresponding likelihoods θjk for all j and k:

θjk = rjk. (7)

But as said, there are infinitely many hypotheses Hθ that have these partic-

ular values for the likelihoods. Consequently, there is no unique hypothesis

Hθ that has maximal overall likelihood P (St|Hθ).
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For future reference we note that, by means of the likelihoods given in

Equations (5), we can determine a posterior probability for the hypotheses

in the model, P (Hθ|St). And from the posterior distribution over the hy-

potheses we can generate the expectation value of the parameter θ of the

model H, according to

E[θ] =

∫

H

θ P (Hθ|St) dθ . (8)

Here θ runs over [0, 1]5 because the model is spanned by five independent

chances. Like the posterior, the estimations will suffer from the fact that the

hypotheses cannot be told apart: they will depend on the prior probability

over the hypotheses. Of course, this is usually the case in a Bayesian analysis.

What is troublesome is that no amount of additional data can eliminate this

dependence of the estimations on the prior.

One reaction is to downplay the identifiability problem and say that it

only concerns the values of these abstract parameters and not the empir-

ical consequences. But because the estimations and expectations are not

fully determined, the nature of the latent variable underlying the manifest

variables is not determined either: it is not clear what causal role it plays.

Different values for the parameters φj and λj entail different systematic re-

lations between depression, fear and loathing, and ultimately this reflects

back on our understanding of the posited notion of depression itself.

3 Identifiability in multivariate linear regression

The foregoing mostly concerned a latent class model, and such models are

a lot simpler than the models of factor analysis. In this section we argue

that the problem outlined above also shows up there. Furthermore, we will

note that in factor analysis there are actually two statistical identifiability

problems. The first is made more concrete in the first subsection. It presents

an analogous problem to that described in §2.3. The second type is briefly

mentioned in the second subsection, mostly because it has been hotly de-

bated in psychological methodology, but also because the present paper can

offer a specific angle on it.

9



3.1 The rotation problem

In factor analysis the variables are not binary but continuous, the prob-

abilistic relations between the variables are linear regressions with normal

errors, and the latent variable is assumed to be governed by some continuous

distribution as well. In our example we may write Fi = f for the event that

the level of fear is f ∈ R, and similarly for depression Di = d. Then the

relation between Fi and Di, for example, is

P (Fi = f |Di = d) = N(λFd, σF ) (9)

in which N(λx, σ) is a normal distribution over the values f of Fi. So the

relation between the variables Di and Fi is characterized by a richer family

of distributions, parameterized by a regression parameter λF and an error

of size σF .

Despite these differences, the same kind of statistical identifiability prob-

lems occur. Note that we can extend factor models like the one above to

include any number of common factors. However, once a model includes

more than one common factor, we find that the factor loadings are not com-

pletely determined. Suppose, for example, that we analyze fear F , loathing

L, and sleeplessness S in terms of two common factors, one of them depres-

sion D, and the other the latent variable C. Every individual is supposed to

occupy a specific position in the C ×D surface. We might feel that a more

natural way of understanding the surface of latent variables is by labeling

the states in this surface differently, for example by introducing variables A

and B, both of which are linear combinations of C and D. The factors in a

model may be linearly combined or, in more spatial terms, rotated to form

any new pair of factors.5

The problem with this is that any rotation of factors, e.g., from {C,D}

to some {A,B}, will perform equally well on the estimation criterion, be it

maximum likelihood, generalized least squares, or similar, as long as we can

adapt the factor loadings and perhaps the correlations among the factors

accordingly. This problem is known as the problem of the rotation of fac-

tor scores. Neither the estimation criteria—often maximum likelihood—nor

Bayesian methods of incorporating the data lead to a single best hypothesis

5This is a coordinate transformation in the space of latent variables, characterizing it

in terms of different bases.
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in the factor model. The result is rather a collection of such hypotheses that

all fit optimally. That is, the factor model is not identifiable.

A standard reaction to the rotation problem is to adopt further theoret-

ical criteria that can constrain the latent variables. For example, it may be

considered desirable to have maximal variation among the regression coeffi-

cients which, intuitively, comes down to coupling each latent variable with

a distinct subset of manifest variables.6 The thing to note is that, from the

point of view of statistics, the choice for how to parameterize the space of

latent variables is underdetermined: we cannot decide between these param-

eterizations on the basis of the observations alone.

In this paper we will not elaborate the mathematical details of identifia-

bility problems in these more complicated models. For present purposes, it

suffices to use the simpler factor model of Equations (2) to (4). The crucial

characteristic in all of what follows is that there are latent variables explain-

ing the correlational structure among the manifest variables, and that these

structures are not fully determined by the correlations among the manifest

variables. Admittedly, this paper thereby falls short of providing practi-

cal guidelines for dealing with the rotation problem, but we hope that our

suggestions about a means to remedy it are valuable in their own right.

3.2 Factor score indeterminacy

There is another problem with factor analysis that can be framed as an

identifiability problem, and that has received considerable attention within

statistical psychology.7

Say that we have rotated the factors to meet the theoretical criterion of

our choice. Can we then reconstruct the latent variable itself, that is, can we

provide a labeling in which each individual, i.e., each assignment of values

to the observable variables, is assigned a determinate expected latent score?

Sadly, the classical statistical answer here is negative. We still have to deal

with the so-called indeterminacy of factor scores, meaning that there is a

6This criterion is known as “varimax”; see, e.g., Lawley and Maxwell (1971).
7See Steiger (1979) for some historical context, Maraun (1996) for a philosophical eval-

uation, McDonald (1974) for an excellent classical statistical discussion, and Bartholomew

and Knott (1999) for a Bayesian account of it.
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variety of ways in which we can organize the allocation of the individuals

on the latent scores, all of them perfectly consistent with the estimations.8

The type of unidentifiability presented by factor score indeterminacy

depends on what we take to be the statistical inference underlying fac-

tor analysis. In the context of this paper, we take the factor analysis to

specify a complete probability assignment over the latent and manifest vari-

ables, including a prior probability over the latent variables. As explained

in Bartholomew and Knott (1999), factor score indeterminacy is thereby

eliminated, as long as there are sufficiently many manifest variables that

are related to the latent variables according to distributions of a suitable,

namely exponential, form. In this paper we will therefore ignore most of the

discussion on factor score indeterminacy.

There is one point at which the problem of factor score indeterminacy

enters the present discussion. We will show in what follows that intervention

data can also be used to choose among a class of priors. But as indicated, the

problem of choosing a prior probability is related to the problem of factor

score indeterminacy. Therefore the use of intervention data, which resolves

the identifiability problem discussed above, provides a new perspective on

the problem of the indeterminacy of factor scores as well. We will return to

this idea in §5.2.

4 Interventions to resolve identifiability

In the foregoing we have shown that latent variable models suffer from iden-

tifiability problems. We now explain these problems by revealing analogous

problems in the estimation of parameters in Bayesian networks. This leads

us to consider a specific solution, namely by means of intervention data. We

first introduce Bayesian networks in §4.1, then the notion of intervention in

§4.2, and finally its use in identifying latent variable models in §4.3. To the

best of our knowledge, this solution to the problem of statistical identifia-

bility has not yet been offered in the literature. The fact that the solution

is not worked out in full generality here is hopefully compensated for by the

fact that it offers a new insight into the use of intervention data.

8There are some restrictions to this allocation. For example, as worked out in Ellis and

Junker (1997), if we let the number of manifest variables increase and assume that there

is a single latent variable that is tail-measurable in terms of these manifest variables, then

the factor scores are determined up to a monotonic transformation.
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4.1 Bayesian networks and factor analysis

In general, a Bayesian network consists of a directed acyclic graph on a finite

set of variables {D,F, L,E . . .} together with the probability distributions

of each variable conditional on its parents in the graph, e.g., P (E | ParE).

The graph is related to the probability distribution over the variables by

an assumption known as the Markov Condition: each variable is probabilis-

tically independent of its non-descendants in the graph, conditional on its

parents, e.g., E ⊥⊥ NonDescE | ParE ; see Pearl (2000). Under this assump-

tion the network suffices to determine the joint probability distribution over

the variables, via the identity:

P (D,F, L, . . .) = P (D | ParD)× P (F | ParF )× P (L | ParL)× . . . (10)

The probability of any assignment of values to the variables on the left hand

side of this equation can be computed by filling in these valuations on the

right hand side.

It is well-known that Bayesian networks and latent variable modeling

are closely related. In fact, the introduction of the latent class models for

the binary variables {F,L,D} was already an introduction to a specific class

of Bayesian networks. To ease exposition, suppose that there are no inter-

subject dependencies and that the same probability assignment describes all

subjects,

P (Di, Fi, Li) = P (Di′ , Fi′ , Li′), (11)

so that we can omit the subscripts i. For each subject, the factor analysis

determines a probability function P (F,L,D) that satisfies a specific symme-

try: conditional on the latent depression D there is no correlation between

the manifest fear F and loathing L,

P (D,F, L) = P (D)P (F |D)P (L|D). (12)

On this basis we can build a network, with the variables F , L and D as

nodes. The probability function determined by factor analysis can thus be

represented in a Bayesian network whose graph is depicted in figure 1.

There are also differences between the theory of Bayesian networks and

that of latent variable models. For one, the latter entails a rather specific

network structure: there are hidden parent nodes, observable child nodes,

there are typically fewer parents than children, and any child can be con-

nected to any parent. On the other hand, applications of the former are
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Figure 1: The graphical structure representing the independence relations in a factor

analysis of depression, fear and loathing.

usually restricted to probability functions over finite or at least countable

domains. Nodes with continuous domains are not that commonly discussed,

although they have been studied in the context of structural equation mod-

els, for example by Pearl (2000), and, from the side of latent variable mod-

eling, by von Eye and Clogg (1994). A related difference is that in most

applications of factor analysis, the probability functions that are consid-

ered are restricted to normal distributions over latent nodes, and to linear

regressions with normal errors between latent and observable nodes. Appli-

cations of Bayesian networks are typically, but not necessarily, restricted to

Bernoulli distributions.

In this section we approach latent variable modelling from the angle of

Bayesian networks, using the framework for inference over Bayesian networks

presented in ?. Hence the statistical underdetermination presented in §2.3

is framed as a problem to do with determining the posterior probability

distribution over the parameters that characterize the Bayesian network of

Figure 1. The aim is to resolve this statistical underdetermination by means

of intervention data. In order to do this, we first introduce interventions in

the context of Bayesian networks.

4.2 Interventions

A causally interpreted Bayesian network, or causal net for short, is a Bayes-

ian network where the graph is interpreted as a causal graph. That is, each

arrow in the graph is interpreted as denoting a direct causal relationship

from the parent variable to the child variable. Under this interpretation,

the Markov Condition is called the Causal Markov Condition. It says that

each variable is probabilistically independent of its non-effects conditional

on its direct causes. It is often assumed that the Causal Markov Condition is
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bound to hold if the graph in the net is correct and is closed under common

causes (i.e., any common causes of variables in the net are also included in

the net). While there are situations in which the Causal Markov Condi-

tion is implausible, it can nevertheless be justified as a default assumption

(Williamson, 2005), and we shall take it for granted here.

Causal nets are helpful for predicting the effects of interventions. When

an experimenter intervenes to fix the value of a target variable, she inter-

rupts the normal course of affairs and sets the variable exogenously. The

usual mechanisms by which the target variable is determined are thereby re-

placed by new mechanisms; these new mechanisms allow the experimenter

to fix a value of the variable. An ‘ideal’ or ‘divine’ intervention is one in

which the intervention only changes the intended target variable, without

changing other variables under consideration and without changing other

causal relationships under consideration. By means of Equation (10) we can

determine the probability P ′ that some variable F takes value 0 after an

ideal intervention has been performed that sets D to 1, say. Note that the

causal net determines two different probability distributions, P before and

P ′ after intervention. While P and P ′ will coincide on the non-descendants

of D, the probabilities for the variables downstream from D will be different.

Not all interventions are ideal. Other forms of intervention are ham-

fisted in that they change the values of several variables at once, or non-

modular in that they change other causal relationships, or parametric in

the sense that they change the conditional probability distribution of the

target variable without deterministically fixing its value. One subspecies of

parametric intervention, which we shall refer to as a stochastic intervention,

is central to our concerns: an intervention in which one sets the probability

of the target variable to a new value P ′(D = 1) = δ′ while leaving the rest

of the network intact. In other words, the causal net is transformed by

eliminating arrows into the target D, setting its unconditional distribution

to P ′(D = 1) = δ′, and then determining the new probabilities for other

variables.9

Generally, interventions can help with identifiability problems in two

ways. First, they can help with the identifiability of causal effects, as alluded

to at the start of this paper. If more than one causal structure is compatible

9See Korb et al (2004) and Eberhardt and Scheines (2007) for further discussion of

kinds of intervention.
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with evidence or if the specific relation between two variables is not known,

then one can intervene, collect more evidence, and use this new evidence

to decide over the matter. To take the example presented in the foregoing,

suppose variables F , L and D are all measured, and that the resulting data

shows that F and L are probabilistically independent conditional on D,

written F ⊥⊥ L | D. This evidence is compatible with the causal graph of

Figure 1, but equally with Figures 2 and 3. The evidence can be used to fill in

the conditional probability distributions on these causal models, but cannot

decide between them. An intervention can decide between them, however.

If, after intervening to change the distribution of D, the distribution of

F and L are changed, then that favours Figure 1. Otherwise if only the

distribution of L is changed after intervention, then Figure 2 is supported,

and if only the distribution of F is changed then Figure 3 is supported.

��
��
F -��

��
D -��

��
L

Figure 2: A chain of fear F causing depression D, which causes loathing L.

��
��
L -��

��
D -��

��
F

Figure 3: A chain of loathing L causing depression D, which causes fear F .

By contrast, the point of this paper is that interventions can be used to

make a statistical model with a given causal structure identifiable. Suppose

that the causal structure is known and that data is collected which helps

to estimate the probability distributions of some variables conditional on

their parents, but which does not determine conditional distributions that

attach to other variables. By carrying out an intervention, an experimenter

changes the conditional distribution of one variable without changing the

distributions of other variables. The data obtained after the intervention

can then be used in conjunction with the old data to further constrain the

values of the underdetermined distributions.
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4.3 Interventions and model identifiability

In this section we show how interventions, in a wide reading of this term, can

be used to resolve the statistical identifiability problem for latent class mod-

els, introduced in §2.3 with the example on depression, fear, and loathing.

Let us briefly explain the general idea. We need to assume that the latent

variable model is more than a convenient way of representing the probabil-

ity functions involved. The arrows in the model need to be interpreted

causally, that is, the latent variables must be taken as the causes of the

observed variables. With this causal assumption in place, an intervention

on the subjects will indeed change the distribution over the latent variables

of the subjects. Importantly, in the application of interventions that we are

currently considering it is not required that we have detailed knowledge of

how the intervention has influenced the target variable, as long as we know

that this change is not an effect of other variables in the model—i.e., it is a

stochastic intervention.

Note, in particular, that a stochastic intervention is taken to be modular:

the probabilistic relations between the latent and the manifest variables does

not change as a result of the intervention. As explained in the foregoing,

after an intervention we obtain an entirely new estimation problem for the

parameters in the Bayesian network. However, we assume that the param-

eters associated with the relations between latent and manifest variables do

not change: the values of φi and λi are not affected. In the following we

show that, depending on the model, the data obtained after an intervention

of this type can be used to select a unique best estimate for the parameter

values in the latent variable model.

Consider again the model characterized by Equations (2) to (4), (11)

and (12). As explained in the foregoing, an intervention is an exogenous

change to the probability assignment. In this particular case, some change

is made to the node D, e.g., all the subjects are given a treatment intended

to change the probability for depression. We thus change the probability of

depression, P (Di = 1) = δ, to a new value,

P ′(Di = 1) = δ′,

which—we assume—is less than than δ. The relation of the depression

variable to the variables of fear and loathing, given by P ′(Fi = 1|Di = j) =

φj and P ′(Li = 1|Di = j) = λj , is not changed by the intervention: the
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treatment changes the probability for depression but not how depression,

whether absent or present, affects feelings of fear and loathing.

It is important to stress that the intervention under consideration covers

a wider class than what is usually taken as an intervention in the literature

of Bayesian networks. We do not need to suppose that the details of the

exogenous change to the probability of depression is known but merely that

it has particular qualitative characteristics, e.g., that δ′ < δ. Moreover, we

need not even suppose that we only target the depression variable D. Any

ham-fisted intervention that makes an exogenous change to other variables

that are not causes of the observables under consideration, in addition to

the change on the latent variable under consideration, is suitable as an

intervention. This means that the solution of the statistical identifiability

problem considered here may also work in the context of a so-called ‘natural

experiment’.

After the intervention, or exogenous change to the system, we record

the observations S′
t in the same set of t individuals. By analogy to Equa-

tion (6), we observe the numbers of the occurrences in the new sequence of

observations S′
t,

r′11 =
1

t

t
∑

i=1

FiLi, . . . .

So r′jk are the relative frequencies of the variables F and L as observed after

the intervention. They present three further constraints on the parameters

of the latent variable model.

To get the point across quickly, we focus again on the dimensions of the

model. This time we count a number of 6 parameters, namely δ, φj and

λj for j = 0, 1, and finally δ′. On the other hand, we have a richer set of

observations that can be used to determine these parameters. Specifically,

we have 3 observed relative frequencies of f j
i ∧ lki before intervention, and

3 of them after intervention, so 6 in total. Whereas previously we had two

degrees of freedom left after the incorporation of the data, we can now fill

in all the parameter values of the factor model.

Let us make this more precise. As before, we have the likelihoods of

Equations (5). But to these expressions we now add the likelihoods of the
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hypotheses after the intervention:

P ′(Fi = 0, Li = 1|Hθ) = θ′01 = δ′(1− φ1)λ1 + (1− δ′)(1− φ0)λ0 ,

P ′(Fi = 1, Li = 0|Hθ) = θ′10 = δ′φ1(1− λ1) + (1− δ′)φ0(1− λ0) ,(13)

P ′(Fi = 1, Li = 1|Hθ) = θ′11 = δ′φ1λ1 + (1− δ′)φ0λ0 .

The system of equations that results from equating likelihoods and observed

relative frequencies before and after intervention is

θjk = rjk and θ′jk = r′jk (14)

for all j and k. Each of these constrains the parameters in θ and θ′ in a

particular way.

The Appendix to this paper shows that if this system of equations has

a solution, then the solution is unique up to a transformation of the two

values for D. Solutions thus come in mirror-image pairs, differing in the

interpretation of the values for the variable D or, in other words, differing in

whether the intervention has beneficial or adverse effects on the probability

of being depressed. On the assumption that the treatment reduces the

probability for depression, every hypothesis Hθ in the model is associated

with a unique set of values for the likelihoods θjk and θ′jk. The conclusion is

that if the data are generated by a chance process specified by a hypothesis

Hθ, then we can identify this hypothesis, in the same way as we were able

to identify the true Hθ in the model of Equation (1).

Note that this does not hold for the entire range of possible values for

the observed frequencies. For extremal values there is still an infinity of so-

lutions. Moreover, certain combinations of frequencies simply do not match

with any of the statistical hypotheses within the model. In those cases the

intervention data overdetermine the latent variable model, i.e., it fails to

fit all the correlations. We must then look for a richer statistical model.

It would be rather natural to incorporate this aspect of scientific reasoning

into our account, by describing how statistical models are adapted when

intervention data yield a bad fit. The idea is that the overdetermination

due to intervention may lead to controlled and formally specified changes

in the model, and that this may lead to a formal account of theory change.

However, such an account is beyond the scope of the current paper.

The main conclusion for now is that intervention data can indeed be used

to resolve the identifiability problem introduced in §2.1. If there are parame-

ter values matching the relative frequencies exactly, then on the assumption
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that the treatment is beneficial, these values are unique: the likelihood func-

tion has a unique maximum after the normal and the intervention data are

incorporated. While we have only shown this for a simple example, it is

readily seen, and briefly considered in the Appendix, that the example gen-

eralizes. The example serves as a proof of principle and supports the central

idea of this paper, which is that interventions can help to resolve statistical

identifiability problems.

5 Philosophical and practical implications

We now discuss the philosophical and practical implications of the approach

of this paper. After that we briefly revisit the indeterminacy of factor scores

and suggest how intervention data can be used to resolve this indeterminacy,

at least in the form it takes within a Bayesian statistical model.

5.1 Interventions replace theoretical criteria

Our paper suggests a novel way to use intervention data, namely to resolve

statistical identifiability problems. Where we had otherwise to use a theoret-

ical criterion to choose among the equally well fitting alternative hypotheses,

we can now make this choice on the basis of additional data, obtained after

intervention. One might say that within statistics the identifiability problem

has fuzzy edges: it can be resolved by an appeal to theoretical criteria, as

routinely done for the rotation problem in factor analysis, but it can also

be resolved by extending the realm of observations to include intervention

data.

It is worth reiterating that we do not need to know anything about the

exact impact of the intervention. That is, we do not need to know the exact

value of δ′. It suffices that we have changed the probability of the latent

variable. Clearly, this is not to say that the use of intervention data requires

no assumptions whatsoever. As indicated in the foregoing, the new data

can only be taken as pertaining to the same parameters if we assume that

the causal structure of the latent and observed variables is, at least roughly,

correct. More specifically, we need to assume that the probabilistic relations

between the latent and the observed variables, expressed in φi and λi, remain

invariant under intervention. So in order to employ the intervention data

for a resolution of the identifiability problem, we have to make particular
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causal assumptions. In a sense these modeling assumptions help us to get

more out of the data than would otherwise be possible.10

We think that this resolution by causal assumptions and further empir-

ical data is preferable to a resolution that employs a theoretical criterion

only. This may be interesting for philosophers concerned with the interplay

between theory and empirical fact in confirmation relations. Additionally,

the result may help to put latent variable modelling on a firmer footing—in

particular factor analysis, which has long been regarded by some as some-

what speculative (Furfey and Daly, 1937). Finally, the use of interventions

to resolve underdetermination in factor analysis may be of practical interest.

The rotation problem is a live one for designers of clinical and personality

tests: how do we relate clusters of test items to specific personality traits?

And what traits should we distinguish in the first place? Our suggestion

would be that intervention data may help constrain the latent structure be-

hind psychometric tests, thereby providing a clearer view of what the tests

are measuring.

5.2 Interventions and the indeterminacy of factor scores

We briefly remark on the problem of the indeterminacy of factor scores, as

discussed in §3.2. Insofar as there is a problem with factor scores in the

Bayesian treatment, intervention data can play an interesting role.

Recall that the expected value E[θ], given in Equation (7), depends on

the posterior probability over the parameter P (Hθ|St), and that this pos-

terior depends on the prior probability P (Hθ). As shown by Bartholomew

and Knott (1999), the indeterminacy of factor scores in classical factor anal-

ysis derives directly from the fact that a prior probability is not provided.

And because in a Bayesian treatment such a prior is assumed, we can say

that Bayesian factor analysis is not affected by factor score indeterminacy.

However, the prior is assumed, not derived, so a classical statistician may

well ask for a motivation of the prior probability assignment.

Following the ideas set out above, the prior probability may be deter-

mined by means of intervention data. Instead of choosing a single prior,

we might consider a range of priors over the parameter values, labeled by ρ

say. We thereby increase the dimension of the parameter space by one. But

we might know from a different study that the chance of being depressed

10We thank an anonymous reviewer for suggesting this formulation to us.
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after the treatment δ′ has some particular value, or is functionally related

to the chance on depression before treatment. This reduces the number of

parameters by one again, because δ′ is then fixed, or every δ′ is coupled

to a unique value δ. The net effect is that we can again estimate all the

parameters, namely δ, φj and λj for j = 0, 1, and finally the second-order

parameter ρ.11

In other words, just as we can estimate the effects of an intervention, δ′,

we can estimate the prior probability assignment that best suits the factor

model. Of course, this is just a simple example. We have not said anything

about the more realistic continuous case, in which we typically assume a

normal distribution over the continuous variable Di as prior. Moreover, it is

unrealistic to suppose that there is a clear and deterministic relation between

the parameters governing the distribution over the variables Di before and

after the intervention. Nevertheless, we suggest that the analysis presented

here illuminates how intervention data can be of use in dealing with the

rightful heir of the problem of factor score indeterminacy in Bayesian factor

analysis, namely the problem of how to choose a prior.

6 Conclusion

In this paper we have investigated the use of interventions for the problem of

statistical identifiability: if two hypotheses have exactly the same likelihoods

for all the possible observations, then how do we choose between them?

While an answer to this question often invokes theoretical criteria such as

simplicity and explanatory considerations, we have provided a partial answer

in terms of empirical criteria. The idea is to use the background theory that

generates the hypotheses, namely the causal structure. This theory provides

us with a recipe for how to deal with interventions. Together with some

assumptions on the causal structure of the latent and observed variables,

the intervention data enable us to tell the statistically equivalent hypotheses

apart.

We illustrated the identifiability problem by means of a latent class

model. That is, we showed how interventions can be framed in terms of

11In the statistical literature, the idea that we can confirm or disconfirm probability

distributions over statistical parameters has become known as hierarchical Bayesian mod-

elling. See, for instance, Chapter 5 of Gelman (2004), and the philosophical appraisals in

Henderson et al (2010) and ?.
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alterations to such a model, and how the intervention data can then be em-

ployed. In this paper we have not developed the same ideas for the more

practical setting of factor analysis with normal distributions over continuous

variables. But we believe that the problems identified in discrete Bayesian

networks is in all the relevant respects similar to the rotation problem in the

continuous setting, and we suggest that future work can resolve this problem

of rotation by appealing to intervention data. On the other hand we realize

that there is still a long way to go from the theoretical considerations in this

work to the practical concerns of psychometricians.

We will mention one specific theme for future research. We suggested

that, relative to a given causal structure that links latent and observable vari-

ables, intervention data can also guide extensions of the statistical model.

The rough idea is that the specifics of the misfit between model and interven-

tion data will suggest how the latent structure might be adapted to repair

the fit. Model selection techniques and further considerations of complexity

or conservativity might then determine which of these adaptations is most

appropriate. The methods and algorithms for putting this idea to work have

yet to be determined, but we think that there are many potential applica-

tions of the idea. A tool for guiding extensions of statistical models can be

of use to experimental scientists, but also to computer scientists working on

the automated search of network structures.

Such applications lie within the realm of statistical methodology. How-

ever, there may be a further application of these ideas within the philosophy

of science. The confirmatory practice of scientists has received a lot of at-

tention from formally oriented philosophers of science, often with the aim

of explaining or rationalizing science, or of providing scientists with norms

that guide the inference from data to theory. Experimental practice, on the

other hand, has not been subject to the same scrutiny by formal model-

ers. It has been the subject of science and technology studies, but not of

formal philosophy of science. We believe formal philosophy of science will

have interesting things to say about experimentation because the tools to

describe interventions in mathematical terms are available. We hope that

with the present study, we are contributing to the development of such a

formal philosophy of experiment.
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Appendix

This appendix substantiates the claim that if the system of Equations (14)

has a solution, then this solution is unique. We are only dealing with the

specific example of this paper and do not generalize the result. The general-

ization will bring rather cumbersome algebraic expressions and, we believe,

little added insight. The reader may glean the strategy for an analytical

investigation of the solution space, and an associated proof strategy for the

general case, from what follows.12

We first combine the expressions of Equations (5) and (13) to obtain

θ10 + θ11 = δφ1 + (1− δ)φ0 ≡ f ,

θ01 + θ11 = δλ1 + (1− δ)λ0 ≡ l ,

θ′10 + θ′11 = δ′φ1 + (1− δ′)φ0 ≡ f ′ ,

θ′01 + θ′11 = δ′λ1 + (1− δ′)λ0 ≡ l′ , (15)

where f = r10+r11 and l = r01+r11 are the frequencies of fear and loathing

observed before intervention, and f ′ and l′ are those frequencies after inter-

vention. We can now solve for δ as well as δ′ by combining Equations (15),

12With the aid of the solver in Mathematica, we have also investigated this space numer-

ically. Special thanks go to David Atkinson for providing help with this, and for initially

presenting us with an alternative, more elegant proof of uniqueness.
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thus deriving the first four constraints on the parameters:

δ =
f − φ0

φ1 − φ0

=
l − λ0

λ1 − λ0

,

δ′ =
f ′ − φ0

φ1 − φ0

=
l′ − λ0

λ1 − λ0

. (16)

The intuitive meaning is that f and f ′ must both sit in between φ0 and

φ1, as determined by δ and δ′, and that the relative positions of f and f ′

within this interval must be matched by the relative positions of l and l′ in

between λ0 and λ1. In terms of freedom in the parameter space, there are

thus two degrees of freedom left. If, for example, we fix φ0 and φ1 by hand,

the values for λ0 and λ1 as well as the values for δ and δ′ follow.

We now determine these two constraints by a further set of two equations.

Consider the expressions for fear and loathing occurring together:

θ11 = δφ1λ1 + (1− δ)φ0λ0 ≡ c , (17)

θ′11 = δ′φ1λ1 + (1− δ′)φ0λ0 ≡ c′ . (18)

We abbreviate the frequencies of them occurring together as c and c′. We

can now substitute terms appearing in Equations (15) into Equation (17).

With some reformulation these substitutions lead to

λ0φ1 = fλ0 + lφ1 − c , (19)

λ1φ0 = fλ1 + lφ0 − c . (20)

We can derive the analogous expressions for the parameters by using the

frequency after intervention c′, now substituting terms from Equations (15)

into Equation (18). Combining Equations (19) and (20) with the analogous

expressions involving c′, we obtain

λ0 =
l′ − l

f − f ′
φ1 −

c′ − c

f − f ′
, (21)

λ1 =
l′ − l

f − f ′
φ0 −

c′ − c

f − f ′
. (22)

Together with the constraints of Equation (16) these two linear relations

between the λ’s and φ’s are sufficient for determining all the values of the

parameters.

To solve the equations we fill in the expression for λ0 of Equation (21)

into Equation (19), thereby obtaining a quadratic equation for φ1:
(

l′ − l

f − f ′
φ1 −

c′ − c

f − f ′

)

φ1 = f

(

l′ − l

f − f ′
φ1 −

c′ − c

f − f ′

)

+ lφ1 − b.
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A parallel expression for φ0 can be obtained by filling in λ1 of Equation (22)

into Equation (20), but if soluble within the domain [0, 1], this expression

will yield the same two solutions. Once we choose either of the two solutions

for φ1, the parameter φ0 takes on the other value. And once we have solved

for φ1 and chosen whether it obtains the higher or the lower of the two

values, we thereby fix the values of all the other parameters. Swapping

around the two solutions will effectively swap around the ordering among δ

and δ′, according to the expressions above.

With respect to the interpretation of depression, fear, loathing, and

treatment, the normal case will have f ′ < f , l′ < l and c′ < c so that

λ0 < λ1, φ0 < φ1, and δ′ < δ. A further investigation of the space of

solutions can be undertaken by identifying of each point in the space of fre-

quencies whether or not the constraints can all be met. However, for present

purposes the abstract characterization suffices, alongside the remark that the

space of solutions is non-empty.
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