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Abstract We consider the use of interventions for resolving a problem of

unidentified statistical models. The leading examples are from latent variable

modelling, an influential statistical tool in the social sciences. We first explain the

problem of statistical identifiability and contrast it with the identifiability of causal

models. We then draw a parallel between the latent variable models and Bayesian

networks with hidden nodes. This allows us to clarify the use of interventions for

dealing with unidentified statistical models. We end by discussing the philosophical

and methodological import of our result.

Keywords Interventions � Statistical inference � Identifiability � Latent
variable modelling

1 Introduction

A statistical model may include hypotheses that have identical likelihood functions

over the entire sample space. This is the problem of statistical identifiability: several

statistical hypotheses fit the data equally well, hence we cannot identify the best one

by data alone. So-called unidentified models exhibit a form of underdetermination,

though not the radical form that often features in arguments against scientific

realism. The standard response to underdetermination is to look for theoretical

criteria, such as simplicity or explanatory force, that help us choose between the
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rivals. In factor analytic models, for example, one might use criteria pertaining to

the variation among the estimations of the statistical parameters to force a unique

solution of the estimation of factor loadings.

In this paper we investigate a particular solution to the problem of statistical

identifiability in the context of causal modelling. Given the context, let us stress that

the statistical identifiability problem must not be confused with the problem of

identifying so-called causal effects (cf. Pearl 2000, chapter 3). The latter concerns

the determination of how a system responds to interventions, i.e., determining

causal structure. Statistical identifiability is different because it does not involve

uncertainty about causal structure. Instead it concerns the determination of

statistical parameters within a model whose causal structure is fully specified. It

occurs when the statistical hypotheses under consideration say the very same things

about what observations to expect, i.e., they have exactly the same likelihood

functions and thus perform equally well on the observed data.

That said, the solution that we investigate does rely on the causal interpretation of

the statistical models. In fact, the solution assumes that certain aspects of the causal

model are known, and therefore that the problem of causal identifiability has to

some extent been resolved. It trades on the fact that the otherwise identical

statistical hypotheses need not be equivalent in a causal sense. We can consider

specific changes to the setup of the study, i.e., specific interventions, such that the

hypotheses get different likelihood functions over the additional results. The

hypotheses are then told apart by their differing causal content. For this solution to

work, we need to presume that we have already determined how the system behaves

after intervention.

Our solution to statistical identifiability conveys two messages. The first is

philosophical: we want to bring to the fore an important and, to our mind,

undervalued aspect of scientific confirmation, namely the use of intervention data.

We believe that insights from the philosophy of experiment (e.g. Hacking 1980;

Gooding 1990) can come to fruition in confirmation theory and we hope to make a

modest start with that. A further message is methodological: we hope to contribute

to a better understanding of the benefits of interventions and stimulate the uptake of

statistical tools for modeling interventions in social science. Despite the availability

of statistical theories and methodological tools for exploiting intervention data,

scientists are often not aware of their potential. Moreover, insofar as there is

awareness, this mostly concentrates on the identification of causal effects or the use

of intervention data for determining causal structure (e.g., Spirtes et al. 2001;

Eberhardt et al. 2010; Hyttinen et al. 2012; Silva and Scheines 2003). This paper

suggests a different use of intervention data.

We present our argument in the setting of latent variable modelling, a statistical

modelling tool from the social sciences that remains understudied in the philosophy

of science, with one or two exceptions. Johnson (2014) offers a wonderful overview

of the philosophical import of factor analysis in connection to the problem of

underdetermination. Interestingly, although our papers target different problems and

were written independently, they reach similar general conclusions. Factor analysis

makes another appearance in Haig (2005) and Schurz (2008), namely as a model for

abductive inference, and thus as a tool for generating and selecting theory. In this
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paper we take a different perspective. We employ exploratory factor analysis as an

illustration of a more general problem concerning statistical unidentifiability, and

we focus on the role of interventions in resolving it.

The paper is set up in the following way. In Sect. 2 we introduce statistical

identifiability abstractly and in Sect. 3 we make these problems concrete for latent

class analysis and factor analysis. We show in Sect. 4 that latent variable modelling

is for our purposes identical to estimating parameters in a Bayesian network with

hidden nodes. Just as is the case with causal Bayesian networks, data obtained after

intervention can be used to identify features of models in factor analysis. In

particular, we argue in Sect. 4.3 that intervention data can, under the right

conditions, be used to resolve problems of statistical identifiability. In Sect. 5,

finally, we briefly suggest how this model for intervention may prove useful to the

philosophy of science in general.

We see the topic of this paper as an opportunity for a fruitful interaction between

philosophers of science and social science methodologists. Our own expertise is first

and foremost in the former: we mostly consider identifiability problems and causal

models from an abstract point of view. Social science methodologists, on the other

hand, regularly encounter such problems in practice. We believe that insights from

the applications can shed valuable light on the theoretical problem. Similarly, we

hope that our more theoretical insights will be of use to the methodologists.

2 Unidentified Models

In what follows we characterize the problem of unidentified statistical models, and

make it precise for latent class analysis (LCA), a well-known statistical technique

in, e.g., psychometrics. LCA is a close cousin to factor analysis (FA). LCA and FA

are both routinely used to interpret psychological test data, and working

psychologists face the problem that the data often do not allow for a complete

determination of the underlying classes or factors. This presents psychological

science with its own version of the philosophical problem of underdetermination (cf.

Johnson 2014).

2.1 Identifiability in Statistics

Here we illustrate the concept of statistical identifiability using some toy examples.

A more realistic setting will be introduced in Sect. 2.2.

Consider a simple statistical problem, in which we estimate the chances of events

in independent and identical trials, e.g., results in psychological tests. An

observation at time t is denoted by the assignment of a value to a binary variable

Qt, with possible values failing and passing the test. We denote a sequence of t

observations or test results by means of the variable St. For example, if

St ¼ 010. . .1, then Q1 ¼ 0, Q2 ¼ 1, and so on. The hypothesis Hh says that the

chance of observing Qtþ1 ¼ 1 is h irrespective of which sequence of outcomes St
precedes it.
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PðQtþ1 ¼ 1jHh; StÞ ¼ h ð1Þ

for every St and for each trial Qtþ1, an expression involving what is often called the

likelihood function of Hh.
1

The chance h of the event Qtþ1 ¼ 1 may be any value in [0, 1], so we have a

whole continuum of hypotheses Hh gathered in what we call a statistical model,

denoted H. On the basis of some sequence of events St, we can provide an estimate

of h. We can do so either by defining a prior PðHhÞ and then computing a posterior

by Bayesian conditioning, or by defining an estimator function over the event space,

typically the observed relative frequency:

ĥðStÞ ¼
1

t

Xt

i¼1

Qi;

The above estimation problem is completely unproblematic. The observations have

a different bearing on each of the hypotheses in the model, i.e. each member of the

set of hypotheses. If there is indeed a true hypothesis in the set, then according to

well-known convergence theorems (cf. Earman 1992, pp. 141–149), the probability

of assigning a probability 1 to this hypothesis will tend to one. In the limit, we can

therefore almost always, in the technical sense of this expression, tell the statistical

hypotheses apart.2

This situation is different if we take a slightly different set of statistical

hypotheses Gn, characterized as follows:

PðQtþ1 ¼ 1jGn; StÞ ¼ n2; n 2 ½� 1; 1�:

This set of hypotheses covers the same set of possibilities, only they are doubly

labelled. The hypotheses Gn and G�n are indistinguishable, because they both assign

exactly the same probability to all the observations: PðQtþ1 ¼ 1jGn \ StÞ ¼
PðQtþ1 ¼ 1jG�n \ StÞ. In such a case, we speak of an unidentifiable model. Notice

that this situation is much like having a single equation with two unknowns, for

instance xþ y ¼ 1 with x; y 2 ½0; 1�. We cannot find a unique solution for x and y,

rather we have a whole collection of solutions. To force uniqueness, we need a

further equation, e.g., x� y ¼ 0.

Unidentifiable models are in a sense underdetermined by the observations.

Importantly, this kind of statistical underdetermination is not of the kind most feared

by scientific realists, because there may well be experiments or additional

observations that would allow one to disentangle the statistical hypotheses. This

paper shows how additional experiments can achieve this.

1 We follow the Bayesian idea that hypotheses Hh can serve as arguments of the probability function.

Further conventions are that equations, like Qtþ1 ¼ 1, can appear as arguments of a probability function,

and that expressions like St function as variables.
2 Any infinitely long sequence of results is in principle consistent with any of the hypotheses Hh, and in

that sense we are encountering an underdetermination problem in the estimation. However, here we will

not consider this type of identifiability.
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2.2 Latent Variable Models

The above example of statistical underdetermination is rather contrived: no reason is

given for distinguishing between the regions n[ 0 and n\0. However, there are

cases in which it makes perfect sense to introduce distinctions between hypotheses

that do not differ in their likelihood functions. This subsection is devoted to

presenting one of these cases, involving a so-called latent class model. The

exposition is partly borrowed from [omitted for purpose of blind review].

A latent variable model posits hidden, or latent, random variables on the basis of

an analysis of the correlational structure of observed, or manifest, random variables.

Examples are latent class models, which are discussed below, and factor models, in

which latent and manifest variables are continuous.3 Suppose that in some

experiment we observe (continuously or discretely varying) levels of fear F and

loathing L in a number of individuals who are represented via the index i, and we

find a positive correlation between these two variables,

PðFi; LiÞ[PðFiÞPðLiÞ:

One way of accounting for the correlation is by positing a statistical model over the

variables in which fear and loathing may be related directly.

We may feel that it is neither the loathing that instills fear in people, nor the fear

that invites loathing. Instead we might think that both feelings are correlated

because of a latent characteristic of the individuals, namely a depression from they

might be suffering. Conditional on the level of the depression, denoted Di, fear and

loathing might be uncorrelated:

PðDi;Fi; LiÞ ¼ PðDiÞPðFijDiÞPðLijDiÞ:

In the case in which all the variables vary continuously, we speak of a factor model.

We then say that the depression is the common factor to the observable, or manifest,

variables of fear and loathing, and the correlations between the depression variable

and the levels of fear and loathing we call the factor loadings.

Latent variable models come in several shapes and sizes, subdivided according to

whether the manifest and latent variables are categorical or continuous. In what

follows we discuss one of the most straightforward applications of such models, in

which both the manifest and latent variables are binary: latent class analysis. Our

reason is that we are making a conceptual point about interventions and

underdetermination. For this purpose the simplest format of factor analysis suffices.

To illustrate the latent class analysis, say that the depression is either present in

subject i, Di ¼ 1, or absent, Di ¼ 0, and similarly for fear and loathing. We assume

that over time the variables are independent and identically distributed. That is, for

i 6¼ i0 the variable Di is independent of Di0 , Fi0 and Li0 , and similarly for Fi and Li.

3 See Lawley and Maxwell (1971) for a classical statistical overview, Mulaik (1985) for a

philosophically-minded discussion, and Bartholomew and Knott (1999) for a very insightful introduction

from a Bayesian perspective. All these treatises introduce exploratory factor analysis as well as the much

less problematic statistical tool of confirmatory factor analysis. In this paper we concentrate on the

former, and simply call it factor analysis.

Intervention and Identifiability in Latent Variable... 247

123



Out of the possible probabilistic dependencies among Fi, Li and Di, we confine

ourselves to

PðFi ¼ 1jDi ¼ jÞ ¼ /j; ð2Þ

PðLi ¼ 1jDi ¼ jÞ ¼ kj; ð3Þ

for j ¼ 0; 1, a conditional version of the Bernoulli model of Eq. (1). Similarly for

the variable Di,

PðDi ¼ 1Þ ¼ d ð4Þ

The probability over the variables Di, Li and Fi is thus given by five Bernoulli

distributions, each characterized independently by a single chance parameter.

There may be experimental conditions in which the latent class that enhances or

reduces fear and loathing is observable, e.g., when the individuals all take a drug

E which reduces fear and loathing. But the depression variable D in our example is

latent: it cannot be observed directly. Although the causal or mechanistic

underpinning is unknown, we might nevertheless posit such a variable. Exploratory

factor analysis is a technique for arriving at such common factors in a systematic

way, in cases where the variables aer continuous. When given a set of correlations

among manifest variables, it produces a statistical model of latent common factors

that accounts for exactly these correlations.4

Perhaps unsurprisingly, latent variable models suffer from problems of identi-

fiability. They posit the theoretical structure of unobservable common causes, over

and above the observed correlations between observable variables. There will

generally be many latent variable models, and accordingly many different causal

structures, that fit the data. This is the problem of causal identifiability alluded to

earlier. However, even if all modeling choices have been made and if the list of

salient variables and their causal structure have been fixed, either by assumption or

by background knowledge, the problem of statistical underdetermination may

appear. In what follows we focus specifically on this restricted identification

problem.

2.3 Unidentifiability of Latent Variable Models

We now show that the model of Eqs. (2), (3) and (4) cannot be identified by the

data.

Focus on the dimensions of this model. We count 5 parameters, namely d, and /j

and kj for j ¼ 0; 1. On the other hand, we have the binary observations Fi and Li that

can be used to determine these parameters. But because we are using Bernoulli

hypotheses, only the observed relative frequencies of the possible combinations of

Fi and Li matter. And because we have 4 possible combinations of Fi and Li, whose

relative frequencies must add up to 1, we have 3 frequencies to determine the 5

4 See Bartholomew and Knott (1999) for a general introduction. Seeing that exploratory factor analysis

generates a structure that explains the observed correlations, it is rather natural that Haig (2005) and

Schurz (2008) present it as a formal model of abduction.
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parameters in the model. After having used the observations in the determination of

the parameters, therefore, we still have 2 degrees of freedom left. Hence the values

of the parameters in the model cannot be determined by the observation data

uniquely.

We can state this problem in more detail by looking at the likelihoods for the

observations of possible combinations of Fi and Li. We write h ¼ hd;/0;/1; k0; k1i.
For the likelihoods we write

PðFi ¼ 0; Li ¼ 1jHhÞ ¼ h01 ¼ dð1� /1Þk1 þ ð1� dÞð1� /0Þk0;
PðFi ¼ 1; Li ¼ 0jHhÞ ¼ h10 ¼ d/1ð1� k1Þ þ ð1� dÞ/0ð1� k0Þ;
PðFi ¼ 1; Li ¼ 1jHhÞ ¼ h11 ¼ d/1k1 þ ð1� dÞ/0k0;

ð5Þ

where we omitted mention of the other individuals Si�1. The fourth likelihood,

PðFi ¼ 0; Li ¼ 0jHhÞ, can be derived from these expressions. The salient point is

that the system of equations resulting from filling in particular values for the above

likelihoods has infinitely many solutions in terms of the components of h: for any
value of the likelihoods, the space of solutions in h has 2 dimensions. The statistical

model is thus unidentifiable.

Let us briefly elaborate on the unidentifiability of the model. It means that the

likelihood function over the model does not have a unique maximum, and so that the

maximum-likelihood estimator does not point to a uniquely best hypothesis. In fact

there are infinitely many hypotheses compatible with the data. Say that we observe

the following relative frequencies:

r11 ¼
1

t

Xt

i¼1

FiLi; r10 ¼
1

t

Xt

i¼1

Fið1� LiÞ; r01 ¼
1

t

Xt

i¼1

ð1� FiÞLi: ð6Þ

The likelihood PðStjHhÞ is maximal if the observed relative frequencies rjk match

the corresponding likelihoods hjk for all j and k:

hjk ¼ rjk: ð7Þ

But as said, there are infinitely many hypotheses Hh that have these particular values

for the likelihoods. Consequently, there is no unique hypothesis Hh that has max-

imal overall likelihood PðStjHhÞ.
For future reference we note that, by means of the likelihoods given in Eqs. (5),

we can determine a posterior probability for the hypotheses in the model, PðHhjStÞ.
And from the posterior distribution over the hypotheses we can generate the

expectation value of the parameter h of the model H, according to

E½h� ¼
Z

H
h PðHhjStÞ dh: ð8Þ

Here h runs over ½0; 1�5 because the model is spanned by five independent chances.

Like the posterior, the estimations will suffer from the fact that the hypotheses

cannot be told apart: they will depend on the prior probability over the hypotheses.

Of course, this is usually the case in a Bayesian analysis. What is troublesome is that
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no amount of additional data can eliminate this dependence of the estimations on the

prior.

One reaction is to downplay the identifiability problem and say that it only

concerns the values of these abstract parameters and not the empirical conse-

quences. But because the estimations and expectations are not fully determined, the

nature of the latent variable underlying the manifest variables is not determined

either: it is not clear what causal role it plays. Different values for the parameters /j

and kj entail different systematic relations between depression, fear and loathing,

and ultimately this reflects back on our understanding of the posited notion of

depression itself.

3 Identifiability in Multivariate Linear Regression

The foregoing mostly concerned a latent class model, and such models are a lot

simpler than the models of factor analysis. In this section we argue that the problem

outlined above also shows up there. Furthermore, we will note that in factor analysis

there are actually two statistical identifiability problems. The first is made more

concrete in the first subsection. It presents an analogous problem to that described in

Sect. 2.3. The second type is briefly mentioned in the second subsection, mostly

because it has been hotly debated in psychological methodology, but also because

the present paper can offer a specific angle on it.

3.1 The Rotation Problem

In factor analysis the variables are not binary but continuous, the probabilistic

relations between the variables are linear regressions with normal errors, and the

latent variable is assumed to be governed by some continuous distribution as well.

In our example we may write Fi ¼ f for the event that the level of fear is f 2 R, and

similarly for depression Di ¼ d. Then the relation between Fi and Di, for example,

is

PðFi ¼ f jDi ¼ dÞ ¼ NðkFd; rFÞ ð9Þ

in which Nðkx; rÞ is a normal distribution over the values f of Fi. So the relation

between the variables Di and Fi is characterized by a richer family of distributions,

parameterized by a regression parameter kF and an error of size rF .
Despite these differences, the same kind of statistical identifiability problems

occur. Note that we can extend factor models like the one above to include any

number of common factors. However, once a model includes more than one

common factor, we find that the factor loadings are not completely determined.

Suppose, for example, that we analyze fear F, loathing L, and sleeplessness S in

terms of two common factors, one of them depression D, and the other the latent

variable C. Every individual is supposed to occupy a specific position in the C � D

surface. We might feel that a more natural way of understanding the surface of

latent variables is by labeling the states in this surface differently, for example by
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introducing variables A and B, both of which are linear combinations of C and

D. The factors in a model may be linearly combined or, in more spatial terms,

rotated to form any new pair of factors.5

The problem with this is that any rotation of factors, e.g., from fC;Dg to some

fA;Bg, will perform equally well on the estimation criterion, be it maximum

likelihood, generalized least squares, or similar, as long as we can adapt the factor

loadings and perhaps the correlations among the factors accordingly. This problem

is known as the problem of the rotation of factor scores. Neither the estimation

criteria—often maximum likelihood—nor Bayesian methods of incorporating the

data lead to a single best hypothesis in the factor model. The result is rather a

collection of such hypotheses that all fit optimally. That is, the factor model is not

identifiable.

A standard reaction to the rotation problem is to adopt further theoretical

criteria that can constrain the latent variables. For example, it may be considered

desirable to have maximal variation among the regression coefficients which,

intuitively, comes down to coupling each latent variable with a distinct subset of

manifest variables.6 The thing to note is that, from the point of view of statistics,

the choice for how to parameterize the space of latent variables is underdeter-

mined: we cannot decide between these parameterizations on the basis of the

observations alone.

In this paper we will not elaborate the mathematical details of identifiability

problems in these more complicated models. For present purposes, it suffices to use

the simpler factor model of Eqs. (2) to (4). The crucial characteristic in all of what

follows is that there are latent variables explaining the correlational structure among

the manifest variables, and that these structures are not fully determined by the

correlations among the manifest variables. Admittedly, this paper thereby falls short

of providing practical guidelines for dealing with the rotation problem, but we hope

that our suggestions about a means to remedy it are valuable in their own right.

3.2 Factor Score Indeterminacy

There is another problem with factor analysis that can be framed as an identifiability

problem, and that has received considerable attention within statistical psychology.7

Say that we have rotated the factors to meet the theoretical criterion of our

choice. Can we then reconstruct the latent variable itself, that is, can we provide a

labeling in which each individual, i.e., each assignment of values to the observable

variables, is assigned a determinate expected latent score? Sadly, the classical

statistical answer here is negative. We still have to deal with the so-called

indeterminacy of factor scores, meaning that there is a variety of ways in which we

5 This is a coordinate transformation in the space of latent variables, characterizing it in terms of different

bases.
6 This criterion is known as ‘‘varimax’’; see, e.g., Lawley and Maxwell (1971).
7 See Steiger (1979) for some historical context, Maraun (1996) for a philosophical evaluation,

McDonald (1974) for an excellent classical statistical discussion, and Bartholomew and Knott (1999) for

a Bayesian account of it.
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can organize the allocation of the individuals on the latent scores, all of them

perfectly consistent with the estimations.8

The type of unidentifiability presented by factor score indeterminacy depends on

what we take to be the statistical inference underlying factor analysis. In the context

of this paper, we take the factor analysis to specify a complete probability

assignment over the latent and manifest variables, including a prior probability over

the latent variables. As explained in Bartholomew and Knott (1999), factor score

indeterminacy is thereby eliminated, as long as there are sufficiently many manifest

variables that are related to the latent variables according to distributions of a

suitable, namely exponential, form. In this paper we will therefore ignore most of

the discussion on factor score indeterminacy.

There is one point at which the problem of factor score indeterminacy enters the

present discussion. We will show in what follows that intervention data can also be

used to choose among a class of priors. But as indicated, the problem of choosing a

prior probability is related to the problem of factor score indeterminacy. Therefore

the use of intervention data, which resolves the identifiability problem discussed

above, provides a new perspective on the problem of the indeterminacy of factor

scores as well. We will return to this idea in Sect. 5.2.

4 Interventions to Resolve Identifiability

In the foregoing we have shown that latent variable models suffer from

identifiability problems. We now explain these problems by revealing analogous

problems in the estimation of parameters in Bayesian networks. This leads us to

consider a specific solution, namely by means of intervention data. We first

introduce Bayesian networks in Sect. 4.1, then the notion of intervention in

Sect. 4.2, and finally its use in identifying latent variable models in Sect. 4.3. To the

best of our knowledge, this solution to the problem of statistical identifiability has

not yet been offered in the literature. The fact that the solution is not worked out in

full generality here is hopefully compensated for by the fact that it offers a new

insight into the use of intervention data.

4.1 Bayesian Networks and Factor Analysis

In general, a Bayesian network consists of a directed acyclic graph on a finite set of

variables fD;F; L;E. . .g together with the probability distributions of each variable

conditional on its parents in the graph, e.g., PðE j ParEÞ. The graph is related to the

probability distribution over the variables by an assumption known as the Markov

Condition: each variable is probabilistically independent of its non-descendants in

the graph, conditional on its parents, e.g., E ⊥⊥ NonDescE | ParE; see Pearl

8 There are some restrictions to this allocation. For example, as worked out in Ellis and Junker (1997), if

we let the number of manifest variables increase and assume that there is a single latent variable that is

tail-measurable in terms of these manifest variables, then the factor scores are determined up to a

monotonic transformation.
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(2000). Under this assumption the network suffices to determine the joint

probability distribution over the variables, via the identity:

PðD;F; L; . . .Þ ¼ PðD j ParDÞ � PðF j ParFÞ � PðL j ParLÞ � . . . ð10Þ

The probability of any assignment of values to the variables on the left hand side of

this equation can be computed by filling in these valuations on the right hand side.

It is well-known that Bayesian networks and latent variable modeling are closely

related. In fact, the introduction of the latent class models for the binary variables

fF; L;Dg was already an introduction to a specific class of Bayesian networks. To

ease exposition, suppose that there are no inter-subject dependencies and that the

same probability assignment describes all subjects,

PðDi;Fi; LiÞ ¼ PðDi0 ;Fi0 ; Li0 Þ; ð11Þ

so that we can omit the subscripts i. For each subject, the factor analysis determines

a probability function P(F, L, D) that satisfies a specific symmetry: conditional on

the latent depression D there is no correlation between the manifest fear F and

loathing L,

PðD;F; LÞ ¼ PðDÞPðFjDÞPðLjDÞ: ð12Þ

On this basis we can build a network, with the variables F, L and D as nodes. The

probability function determined by factor analysis can thus be represented in a

Bayesian network whose graph is depicted in Fig. 1.

There are also differences between the theory of Bayesian networks and that of

latent variable models. For one, the latter entails a rather specific network structure:

there are hidden parent nodes, observable child nodes, there are typically fewer

parents than children, and any child can be connected to any parent. On the other

hand, applications of the former are usually restricted to probability functions over

finite or at least countable domains. Nodes with continuous domains are not that

commonly discussed, although they have been studied in the context of structural

equation models, for example by Pearl (2000), and, from the side of latent variable

modeling, by von Eye and Clogg (1994). A related difference is that in most

applications of factor analysis, the probability functions that are considered are

restricted to normal distributions over latent nodes, and to linear regressions with

normal errors between latent and observable nodes. Applications of Bayesian

networks are typically, but not necessarily, restricted to Bernoulli distributions.

In this section we approach latent variable modelling from the angle of Bayesian

networks, using the framework for inference over Bayesian networks presented in

Romeijn et al. (2009). Hence the statistical underdetermination presented in

F

D

L

Fig. 1 The graphical structure
representing the independence
relations in a factor analysis of
depression, fear and loathing
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Sect. 2.3 is framed as a problem to do with determining the posterior probability

distribution over the parameters that characterize the Bayesian network of Fig. 1.

The aim is to resolve this statistical underdetermination by means of intervention

data. In order to do this, we first introduce interventions in the context of Bayesian

networks.

4.2 Interventions

A causally interpreted Bayesian network, or causal net for short, is a Bayesian

network where the graph is interpreted as a causal graph. That is, each arrow in the

graph is interpreted as denoting a direct causal relationship from the parent variable

to the child variable. Under this interpretation, the Markov Condition is called the

Causal Markov Condition. It says that each variable is probabilistically independent

of its non-effects conditional on its direct causes. It is often assumed that the Causal

Markov Condition is bound to hold if the graph in the net is correct and is closed

under common causes (i.e., any common causes of variables in the net are also

included in the net). While there are situations in which the Causal Markov

Condition is implausible, it can nevertheless be justified as a default assumption

(Williamson 2005), and we shall take it for granted here.

Causal nets are helpful for predicting the effects of interventions. When an

experimenter intervenes to fix the value of a target variable, she interrupts the

normal course of affairs and sets the variable exogenously. The usual mechanisms

by which the target variable is determined are thereby replaced by new mechanisms;

these new mechanisms allow the experimenter to fix a value of the variable. An

‘ideal’ or ‘divine’ intervention is one in which the intervention only changes the

intended target variable, without changing other variables under consideration and

without changing other causal relationships under consideration. By means of

Eq. (10) we can determine the probability P0 that some variable F takes value 0 after

an ideal intervention has been performed that sets D to 1, say. Note that the causal

net determines two different probability distributions, P before and P0 after

intervention. While P and P0 will coincide in the probability assignments to non-

descendants of D, and also in the probability assignments conditional on D, the

unconditional probabilities for the variables downstream from D will be different.

Not all interventions are ideal. Other forms of intervention are ham-fisted in that

they change the values of several variables at once, or non-modular in that they

change other causal relationships, or parametric in the sense that they change the

conditional probability distribution of the target variable without deterministically

fixing its value. One subspecies of parametric intervention, which we shall refer to

as a stochastic intervention, is central to our concerns: an intervention in which one

sets the probability of the target variable to a new value P0ðD ¼ 1Þ ¼ d0 while
leaving the rest of the network intact. In other words, the causal net is transformed

by eliminating arrows into the target D, setting its unconditional distribution to

P0ðD ¼ 1Þ ¼ d0, and then determining the new probabilities for other variables.9

9 See Korb et al. (2004) and Eberhardt and Scheines (2007) for further discussion of kinds of

intervention.
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Generally, interventions can help with identifiability problems in two ways. First,

they can help with the identifiability of causal effects, as alluded to at the start of

this paper. If more than one causal structure is compatible with evidence or if the

specific relation between two variables is not known, then one can intervene, collect

more evidence, and use this new evidence to decide over the matter. To take the

example presented in the foregoing, suppose variables F, L and D are all measured,

and that the resulting data shows that F and L are probabilistically independent

conditional on D, written F ⊥⊥ L | D. This evidence is compatible with the causal

graph of Fig. 1, but equally with Figs. 2 and 3. The evidence can be used to fill in

the conditional probability distributions on these causal models, but cannot decide

between them. An intervention can decide between them, however. If, after

intervening to change the distribution of D, the distribution of F and L are changed,

then that favours Fig. 1. Otherwise if only the distribution of L is changed after

intervention, then Fig. 2 is supported, and if only the distribution of F is changed

then Fig. 3 is supported.

By contrast, the point of this paper is that interventions can be used to make a

statistical model with a given causal structure identifiable. Suppose that the causal

structure is known and that data is collected which helps to estimate the probability

distributions of some variables conditional on their parents, but which does not

determine conditional distributions that attach to other variables. By carrying out an

intervention, an experimenter changes the conditional distribution of one variable

without changing the distributions of other variables. The data obtained after the

intervention can then be used in conjunction with the old data to further constrain

the values of the underdetermined distributions.

4.3 Interventions and Model Identifiability

In this section we show how interventions, in a wide reading of this term, can be

used to resolve the statistical identifiability problem for latent class models,

introduced in Sect. 2.3 with the example on depression, fear, and loathing.

Let us briefly explain the general idea. We need to assume that the latent variable

model is more than a convenient way of representing the probability functions

involved. The arrows in the model need to be interpreted causally, that is, the latent

variables must be taken as the causes of the observed variables. With this causal

assumption in place, an intervention on the subjects will indeed change the

distribution over the latent variables of the subjects. Importantly, in the application

F D L

Fig. 2 A chain of fear F causing depression D, which causes loathing L

L D F

Fig. 3 A chain of loathing L causing depression D, which causes fear F
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of interventions that we are currently considering it is not required that we have

detailed knowledge of how the intervention has influenced the target variable, as

long as we know that this change is not an effect of other variables in the model.

Note, in particular, that a stochastic intervention is taken to be modular: the

probabilistic relations between the latent and the manifest variables does not change

as a result of the intervention. As explained in the foregoing, after an intervention

we obtain an entirely new estimation problem for the parameters in the Bayesian

network. However, we assume that the parameters associated with the relations

between latent and manifest variables do not change: the values of /i and ki are not
affected. In the following we show that, depending on the model, the data obtained

after an intervention of this type can be used to select a unique best estimate for the

parameter values in the latent variable model.

Consider again the model characterized by Eqs. (2) to (4), (11) and (12). As

explained in the foregoing, an intervention is an exogenous change to the probability

assignment. In this particular case, some change is made to the node D, e.g., all the

subjects are given a treatment intended to change the probability for depression. We

thus change the probability of depression, PðDi ¼ 1Þ ¼ d, to a new value,

P0ðDi ¼ 1Þ ¼ d0;

which—we assume—is less than than d. The relation of the depression variable to

the variables of fear and loathing, given by P0ðFi ¼ 1jDi ¼ jÞ ¼ /j and

P0ðLi ¼ 1jDi ¼ jÞ ¼ kj, is not changed by the intervention: the treatment changes

the probability for depression but not how depression, whether absent or present,

affects feelings of fear and loathing.

It is important to stress that the intervention under consideration covers a wider

class than what is usually taken as an intervention in the literature of Bayesian

networks. We do not need to suppose that the details of the exogenous change to the

probability of depression is known but merely that it has particular qualitative

characteristics, e.g., that d0\d. Moreover, we need not even suppose that we only

target the depression variable D. Any ham-fisted intervention that makes an

exogenous change to other variables that are not causes of the observables under

consideration, in addition to the change on the latent variable under consideration, is

suitable as an intervention. This means that the solution of the statistical

identifiability problem considered here may also work in the context of a so-called

‘natural experiment’.

After the intervention, or exogenous change to the system, we record the

observations S0t in the same set of t individuals. By analogy to Eq. (6), we observe

the numbers of the occurrences in the new sequence of observations S0t,

r011 ¼
1

t

Xt

i¼1

FiLi; . . .:

So r0jk are the relative frequencies of the variables F and L as observed after the

intervention. They present three further constraints on the parameters of the latent

variable model.
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To get the point across quickly, we focus again on the dimensions of the model.

This time we count a number of 6 parameters, namely d, /j and kj for j ¼ 0; 1, and

finally d0. On the other hand, we have a richer set of observations that can be used to

determine these parameters. Specifically, we have 3 observed relative frequencies of

f
j
i ^ lki before intervention, and 3 of them after intervention, so 6 in total. Whereas

previously we had two degrees of freedom left after the incorporation of the data,

we can now fill in all the parameter values of the factor model.

Let us make this more precise. As before, we have the likelihoods of Eqs. (5).

But to these expressions we now add the likelihoods of the hypotheses after the

intervention:

P0ðFi ¼ 0; Li ¼ 1jHhÞ ¼ h001 ¼ d0ð1� /1Þk1 þ ð1� d0Þð1� /0Þk0;
P0ðFi ¼ 1; Li ¼ 0jHhÞ ¼ h010 ¼ d0/1ð1� k1Þ þ ð1� d0Þ/0ð1� k0Þ;
P0ðFi ¼ 1; Li ¼ 1jHhÞ ¼ h011 ¼ d0/1k1 þ ð1� d0Þ/0k0:

ð13Þ

The system of equations that results from equating likelihoods and observed relative

frequencies before and after intervention is

hjk ¼ rjk and h0jk ¼ r0jk ð14Þ

for all j and k. Each of these constrains the parameters in h and h0 in a particular

way.

The ‘‘Appendix’’ to this paper shows that if this system of equations has a

solution, then the solution is unique up to a transformation of the two values for D.

Solutions thus come in mirror-image pairs, differing in the interpretation of the

values for the variable D or, in other words, differing in whether the intervention has

beneficial or adverse effects on the probability of being depressed. On the

assumption that the treatment reduces the probability for depression, every

hypothesis Hh in the model is associated with a unique set of values for the

likelihoods hjk and h0jk. The conclusion is that if the data are generated by a chance

process specified by a hypothesis Hh, then we can identify this hypothesis, in the

same way as we were able to identify the true Hh in the model of Eq. (1).

Note that this does not hold for the entire range of possible values for the

observed frequencies. For extremal values there is still an infinity of solutions.

Moreover, certain combinations of frequencies simply do not match with any of the

statistical hypotheses within the model. In those cases the intervention data

overdetermine the latent variable model, i.e., it fails to fit all the correlations. We

must then look for a richer statistical model. It would be rather natural to incorporate

this aspect of scientific reasoning into our account, by describing how statistical

models are adapted when intervention data yield a bad fit. The idea is that the

overdetermination due to intervention may lead to controlled and formally specified

changes in the model, and that this may lead to a formal account of theory change.

However, such an account is beyond the scope of the current paper.

The main conclusion for now is that intervention data can indeed be used to

resolve the identifiability problem introduced in Sect. 2.1. If there are parameter

values matching the relative frequencies exactly, then on the assumption that the
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treatment is beneficial, these values are unique: the likelihood function has a unique

maximum after the normal and the intervention data are incorporated. While we

have only shown this for a simple example, it is readily seen, and briefly considered

in the ‘‘Appendix’’, that the example generalizes. The example serves as a proof of

principle and supports the central idea of this paper, which is that interventions can

help to resolve statistical identifiability problems.

5 Philosophical and Practical Implications

We now discuss the philosophical and practical implications of the approach of this

paper. After that we briefly revisit the indeterminacy of factor scores and suggest

how intervention data can be used to resolve this indeterminacy, at least in the form

it takes within a Bayesian statistical model.

5.1 Interventions Replace Theoretical Criteria

Our paper suggests a novel way to use intervention data, namely to resolve

statistical identifiability problems. Where we had otherwise to use a theoretical

criterion to choose among the equally well fitting alternative hypotheses, we can

now make this choice on the basis of additional data, obtained after intervention.

One might say that within statistics the identifiability problem has fuzzy edges: it

can be resolved by an appeal to theoretical criteria, as routinely done for the rotation

problem in factor analysis, but it can also be resolved by extending the realm of

observations to include intervention data.

It is worth reiterating that we do not need to know anything about the exact

impact of the intervention. That is, we do not need to know the exact value of d0. It
suffices that we have changed the probability of the latent variable. Clearly, this is

not to say that the use of intervention data requires no assumptions whatsoever. As

indicated in the foregoing, the new data can only be taken as pertaining to the same

parameters if we assume that the causal structure of the latent and observed

variables is, at least roughly, correct. More specifically, we need to assume that the

probabilistic relations between the latent and the observed variables, expressed in /i

and ki, remain invariant under intervention. So in order to employ the intervention

data for a resolution of the identifiability problem, we have to make particular causal

assumptions. In a sense these modeling assumptions help us to get more out of the

data than would otherwise be possible.10

We think that this resolution by causal assumptions and further empirical data is

preferable to a resolution that employs a theoretical criterion only. This may be

interesting for philosophers concerned with the interplay between theory and

empirical fact in confirmation relations. Additionally, the result may help to put

latent variable modelling on a firmer footing—in particular factor analysis, which

has long been regarded by some as somewhat speculative (Furfey and Daly 1937).

Finally, the use of interventions to resolve identifiability problems in factor analysis

10 We thank an anonymous reviewer for suggesting this formulation to us.
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may be of practical interest. The rotation problem is a live one for designers of

clinical and personality tests: how do we relate clusters of test items to specific

personality traits? And what traits should we distinguish in the first place? Our

suggestion would be that intervention data may help constrain the latent structure

behind psychometric tests, thereby providing a clearer view of what the tests are

measuring.11

5.2 Interventions and the Indeterminacy of Factor Scores

We briefly remark on the problem of the indeterminacy of factor scores, as

discussed in Sect. 3.2. Insofar as there is a problem with factor scores in the

Bayesian treatment, intervention data can play an interesting role.

Recall that the expected value E½h�, given in Eq. (7), depends on the posterior

probability over the parameter PðHhjStÞ, and that this posterior depends on the prior

probability PðHhÞ. As shown by Bartholomew and Knott (1999), the indeterminacy

of factor scores in classical factor analysis derives directly from the fact that a prior

probability is not provided. And because in a Bayesian treatment such a prior is

assumed, we can say that Bayesian factor analysis is not affected by factor score

indeterminacy. However, the prior is assumed, not derived, so a classical statistician

may well ask for a motivation of the prior probability assignment.

Following the ideas set out above, the prior probability may be determined by

means of intervention data. Instead of choosing a single prior, we might consider a

range of priors over the parameter values, labeled by q say. We thereby increase the

dimension of the parameter space by one. But we might know from a different study

that the chance of being depressed after the treatment d0 has some particular value,

or is functionally related to the chance on depression before treatment. This reduces

the number of parameters by one again, because d0 is then fixed, or every d0 is
coupled to a unique value d. The net effect is that we can again estimate all the

parameters, namely d, /j and kj for j ¼ 0; 1, and finally the second-order parameter

q.12

In other words, just as we can estimate the effects of an intervention, d0, we can

estimate the prior probability assignment that best suits the factor model. Of course,

this is just a simple example. We have not said anything about the more realistic

continuous case, in which we typically assume a normal distribution over the

continuous variable Di as prior. Moreover, it is unrealistic to suppose that there is a

clear and deterministic relation between the parameters governing the distribution

11 It is a topic of ongoing debate whether latent variables have to be taken as real in some sense (cf.

Borsboom et al. 2003). This debate is relevant to our concerns, but not sufficiently to motivate an indepth

discussion here. We need not adopt a realist or an instrumentalist view on latent variables to appreciate

the point that theoretical criteria, formulated in terms of such latents, can be replaced by causal

assumptions and intervention data. Similarly, the insightful discussion in Weinberger (2015) on latents

and ideal interventions is relevant but not crucial: our points do not hinge on the interventions on latents

being ideal.
12 In the statistical literature, the idea that we can confirm or disconfirm probability distributions over

statistical parameters has become known as hierarchical Bayesian modelling. See, for instance, Chapter 5

of Gelman et al. (2013), and the philosophical appraisals in Henderson et al. (2010) and Romeijn (2013).
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over the variables Di before and after the intervention. Nevertheless, we suggest that

the analysis presented here illuminates how intervention data can be of use in

dealing with the rightful heir of the problem of factor score indeterminacy in

Bayesian factor analysis, namely the problem of how to choose a prior.

6 Conclusion

In this paper we have investigated the use of interventions for the problem of statistical

identifiability: if two hypotheses have exactly the same likelihoods for all the possible

observations, then how do we choose between them? While an answer to this question

often invokes theoretical criteria such as simplicity and explanatory considerations, we

have provided a partial answer in terms of empirical criteria. The idea is to use the

background theory that generates the hypotheses, namely the causal structure. This

theory provides us with a recipe for how to deal with interventions. Together with

some assumptions on the causal structure of the latent and observed variables, the

intervention data enable us to tell the statistically equivalent hypotheses apart.

We illustrated the identifiability problem by means of a latent class model. That

is, we showed how interventions can be framed in terms of alterations to such a

model, and how the intervention data can then be employed. In this paper we have

not developed the same ideas for the more practical setting of factor analysis with

normal distributions over continuous variables. But we believe that the problems

identified in discrete Bayesian networks is in all the relevant respects similar to the

rotation problem in the continuous setting, and we suggest that future work can

resolve this problem of rotation by appealing to intervention data. On the other hand

we realize that there is still a long way to go from the theoretical considerations in

this work to the practical concerns of psychometricians.13

We will mention one specific theme for future research. We suggested that,

relative to a given causal structure that links latent and observable variables,

intervention data can also guide extensions of the statistical model. The rough idea

is that the specifics of the misfit between model and intervention data will suggest

how the latent structure might be adapted to repair the fit. Model selection

techniques and further considerations of complexity or conservativity might then

determine which of these adaptations is most appropriate. The methods and

algorithms for putting this idea to work have yet to be determined, but we think that

there are many potential applications of the idea. A tool for guiding extensions of

statistical models can be of use to experimental scientists, but also to computer

scientists working on the automated search of network structures.

Such applications lie within the realm of statistical methodology. However, there

may be a further application of these ideas within the philosophy of science. The

13 In many cases psychometricians will have more pressing concerns than the exact identifiability of the

parameters. See, for example, Hayduk and Littvay (2012), who argue that it is often preferable to accept

some uncertainty in the determination of the model. In their view it is better to use the few best indicators,

and direct further observation efforts towards developing more sophisticated theoretical models, so as to

bring mediating and confounding variables into view. However, this does not take away from our point

that intervention data may be highly informative.
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confirmatory practice of scientists has received a lot of attention from formally

oriented philosophers of science, often with the aim of explaining or rationalizing

science, or of providing scientists with norms that guide the inference from data to

theory. Experimental practice, on the other hand, has not been subject to the same

scrutiny by formal modelers. It has been the subject of science and technology

studies, but not of formal philosophy of science. We believe formal philosophy of

science will have interesting things to say about experimentation because the tools

to describe interventions in mathematical terms are available. We hope that with the

present study, we are contributing to the development of such a formal philosophy

of experiment.
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Appendix

This appendix substantiates the claim that if the system of Eqs. (14) has a solution,

then this solution is unique. We are only dealing with the specific example of this

paper and do not generalize the result. The generalization will bring rather

cumbersome algebraic expressions and, we believe, little added insight. The reader

may glean the strategy for an analytical investigation of the solution space, and an

associated proof strategy for the general case, from what follows.14

We first combine the expressions of Eqs. (5) and (13) to obtain

h10 þ h11 ¼ d/1 þ ð1� dÞ/0 � f ;

h01 þ h11 ¼ dk1 þ ð1� dÞk0 � l;

h010 þ h011 ¼ d0/1 þ ð1� d0Þ/0 � f 0;

h001 þ h011 ¼ d0k1 þ ð1� d0Þk0 � l0;

ð15Þ

where f ¼ r10 þ r11 and l ¼ r01 þ r11 are the frequencies of fear and loathing

observed before intervention, and f 0 and l0 are those frequencies after intervention.

We can now solve for d as well as d0 by combining Eqs. (15), thus deriving the first

four constraints on the parameters:

14 With the aid of the solver in Mathematica, we have also investigated this space numerically. Special

thanks go to David Atkinson for providing help with this, and for initially presenting us with an

alternative, more elegant proof of uniqueness.
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d ¼ f � /0

/1 � /0

¼ l� k0
k1 � k0

;

d0 ¼ f 0 � /0

/1 � /0

¼ l0 � k0
k1 � k0

:

ð16Þ

The intuitive meaning is that f and f 0 must both sit in between /0 and /1, as

determined by d and d0, and that the relative positions of f and f 0 within this interval

must be matched by the relative positions of l and l0 in between k0 and k1. In terms

of freedom in the parameter space, there are thus two degrees of freedom left. If, for

example, we fix /0 and /1 by hand, the values for k0 and k1 as well as the values for
d and d0 follow.

We now determine these two constraints by a further set of two equations.

Consider the expressions for fear and loathing occurring together:

h11 ¼ d/1k1 þ ð1� dÞ/0k0 � c; ð17Þ

h011 ¼ d0/1k1 þ ð1� d0Þ/0k0 � c0: ð18Þ

We abbreviate the frequencies of them occurring together as c and c0. We can now

substitute terms appearing in Eqs. (15) into Eq. (17). With some reformulation these

substitutions lead to

k0/1 ¼ fk0 þ l/1 � c; ð19Þ

k1/0 ¼ fk1 þ l/0 � c: ð20Þ

We can derive the analogous expressions for the parameters by using the frequency

after intervention c0, now substituting terms from Eqs. (15) into Eq. (18). Com-

bining Eqs. (19) and (20) with the analogous expressions involving c0, we obtain

k0 ¼
l0 � l

f � f 0
/1 �

c0 � c

f � f 0
; ð21Þ

k1 ¼
l0 � l

f � f 0
/0 �

c0 � c

f � f 0
: ð22Þ

Together with the constraints of Eq. (16) these two linear relations between the k’s
and /’s are sufficient for determining all the values of the parameters.

To solve the equations we fill in the expression for k0 of Eq. (21) into Eq. (19),

thereby obtaining a quadratic equation for /1:

l0 � l

f � f 0
/1 �

c0 � c

f � f 0

� �
/1 ¼ f

l0 � l

f � f 0
/1 �

c0 � c

f � f 0

� �
þ l/1 � b:

A parallel expression for /0 can be obtained by filling in k1 of Eq. (22) into

Eq. (20), but if soluble within the domain [0, 1], this expression will yield the same

two solutions. Once we choose either of the two solutions for /1, the parameter /0

takes on the other value. And once we have solved for /1 and chosen whether it
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obtains the higher or the lower of the two values, we thereby fix the values of all the

other parameters. Swapping around the two solutions will effectively swap around

the ordering among d and d0, according to the expressions above.

With respect to the interpretation of depression, fear, loathing, and treatment, the

normal case will have f 0\f , l0\l and c0\c so that k0\k1, /0\/1, and d0\d. A
further investigation of the space of solutions can be undertaken by identifying of

each point in the space of frequencies whether or not the constraints can all be met.

However, for present purposes the abstract characterization suffices, alongside the

remark that the space of solutions is non-empty.
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50(2), 329–355.

Korb, K., Hope, L., Nicholson, A., & Axnick, K. (2004). Varieties of causal intervention. In Proceedings

of the Pacific rim international conference on AI. New York: Springer.

Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical method. London: Butterworths.

Maraun, M. D. (1996). Metaphor taken as math: Indeterminancy in the factor analysis model.

Multivariate Behavioral Research, 31, 517–538.

McDonald, R. P. (1974). The measurement of factor indeterminacy. Psychometrika, 39, 203–222.

Mulaik, S. M. (1985). Factor analysis and psychometrika: Major developments. Psychometrika, 51,

23–33.

Pearl, J. (2000). Causality. New York: MIT Press.

Romeijn, J. W. (2013). Abducted by Bayesians. Journal of Applied Logic, 11(4), 430–439.

Romeijn, J. W., Haenni, R., Wheeler, G., & Williamson, J. (2009). Logical relations in a statistical

problem. In B. Loewe, et al. (Eds.), Proceedings of foundations of the formal sciences VI. London:

College Publications.

Intervention and Identifiability in Latent Variable... 263

123



Schurz, G. (2008). Common cause abduction and the formation of theoretical concepts. TPD preprints,

No. 2.

Silva, R., & Scheines, R. (2003). Learning measurement models for unobserved variables. In:

Proceedings of the 18th conference on uncertainty in artificial intelligence. AAAI Press,

pp. 543–550.

Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation, prediction, and search (2nd ed.). MIT Press.

Steiger, J. H. (1979). Factor indeterminacy in the 1930s and the 1970s some interesting parallels.

Psychometrika, 44, 157–167.

von Eye, A., & Clogg, C. C. (1994). Latent variables analysis: Applications for developmental research.

Thousand Oaks (CA): Sage.

Weinberger, N. (2015). If intelligence is a cause, it is a within-subjects cause. Theory and Psychology,

25(3), 346–61.

Williamson, J. (2005). Bayesian nets and causality: Philosophical and computational foundations.

Oxford: Oxford University Press.

264 J.-W. Romeijn, J. Williamson

123


	Intervention and Identifiability in Latent Variable Modelling
	Abstract
	Introduction
	Unidentified Models
	Identifiability in Statistics
	Latent Variable Models
	Unidentifiability of Latent Variable Models

	Identifiability in Multivariate Linear Regression
	The Rotation Problem
	Factor Score Indeterminacy

	Interventions to Resolve Identifiability
	Bayesian Networks and Factor Analysis
	Interventions
	Interventions and Model Identifiability

	Philosophical and Practical Implications
	Interventions Replace Theoretical Criteria
	Interventions and the Indeterminacy of Factor Scores

	Conclusion
	Acknowledgements
	Appendix
	References




