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Abstract

We investigate the notion of a signature in Polyadic Inductive Logic and study
the probability functions satisfying the Principle of Signature Exchangeabil-
ity. In the binary case, we prove a representation theorem for such functions
and show that they satisfy a binary version of the Principle of Instantial Rel-
evance. We discuss polyadic versions of the Principle of Instantial Relevance
and Johnson’s Sufficientness Postulate.

Keywords: Constant Exchangeability, Pure Inductive Logic, Polyadic
Atoms, Polyadic Signature, Instantial Relevance, Johnson’s Sufficientness
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1. Introduction

This paper is set in Pure Inductive Logic (PIL), see for example [10], which
the reader is referred to for background and an extensive bibliography. In this
subject, we are concerned with assigning subjective probabilities to sentences
of a language according to rational considerations, traditionally based on the
notions of symmetry, relevance and irrelevance.

The principle of Constant Exchangeability (Ex) or in Carnap’s terms, the
Axiom of Symmetry [1, 3], is a widely accepted and commonly assumed ra-
tional requirement in Pure Inductive Logic. Informally, this is the statement
that in the absence of further knowledge, different individuals of our universe
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should be treated equally. In the usual framework of Inductive Logic it means
that the probability assigned to a sentence is independent of the particular
constants instantiating it. In addition, in the thoroughly studied unary con-
text, this principle exists in an equivalent formulation - as invariance under
signatures of state descriptions. This unary characterisation of the principle
has led to some of the most significant results in Unary Inductive Logic thus
far. These include, for example, a complete characterisation of functions sat-
isfying Ex, and the Principle of Instantial Relevance (see page 5) following
as a logical consequence of Constant Exchangeability.

In contrast, such results have so far not translated satisfactorily into the
polyadic. Having extended the concept of atoms to polyadic languages (see
[10, 12]), in this account we generalise the notion of a signature to polyadic
Inductive Logic and investigate the theory this yields for higher arity lan-
guages. We begin by giving a brief account of the unary portion we shall be
concerned with for the purpose of this paper, then suggest new methods and
formulations for these concepts for general polyadic languages. Specifically,
we present a polyadic definition of a signature and a principle of invariance
under this notion, an independence principle characterising the basic func-
tions satisfying this new signature-based principle, and polyadic versions of
the Principle of Instantial Relevance and Johnson’s Sufficientness Postulate.
We present this initially for languages with at most binary relation symbols
and then, in the second part of the paper, we focus on the general case.

The context of this paper is as follows. We work with a first order language
L containing finitely many relation symbols R1, . . . , Rq of arities r1, . . . , rq
respectively and countably many constant symbols a1, a2, a3, . . ., using the
usual logical connectives and quantifiers. SL denotes the set of all sentences
of the language L and QFSL the set of all quantifier free sentences of the
language. b1, . . . , bn or sometimes also b′1, . . . , b

′
n are used to denote some

distinct constants from amongst the a1, a2, . . ., and Sn stands for the set of
permutations of {1, 2, . . . , n}.
We say that a language is unary if it contains only unary predicate symbols;
it is r-ary if all its relation symbols are at most r-ary and at least one is
r-ary. If r = 2, we say binary rather than 2-ary. In addition, since we are
interested in formulae only up to logical equivalence, we will often use ‘=’ in
place of ‘≡’.

Definition. A function w : SL → [0, 1] is a probability function if for all
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θ, φ and ∃xψ(x) ∈ SL
(P1) If θ is logically valid then w(θ) = 1.
(P2) If θ and φ are mutually exclusive then w(θ ∨ φ) = w(θ) + w(φ).
(P3) w(∃xψ(x)) = limn→∞w(ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an)).

Probability functions have a number of desirable properties, see for example
[10]; note in particular that logically equivalent sentences always get the same
probability.

The conditional probability of θ given φ, for φ such that w(φ) 6= 0, is defined
as follows:

w(θ |φ) =
w(θ ∧ φ)

w(φ)
.

We adopt the convention that expressions like w(θ |φ) = a stand for
w(θ ∧ φ) = aw(φ) even if w(φ) = 0.

Any w satisfying just (P1) and (P2) on the quantifier free sentences of L
has a unique extension to a probability function on SL, see [6], so in many
situations it suffices to think of probability functions as defined on quantifier
free sentences only, and satisfying (P1) and (P2).

As explained in [10, Chapter 7], this can be further reduced to a special class
of such sentences called state descriptions, that is, to sentences Θ(b1, . . . , bm)
of the form

q∧
i=1

∧
〈j1...,jri 〉∈{1,...,m}

ri

±Ri(bj1 . . . , bjri ) (1)

where ±Ri(bj1 . . . , bjri ) denotes one of Ri(bj1 . . . , bjri ), ¬Ri(bj1 . . . , bjri ). Fur-
thermore, any w defined on state descriptions Θ(a1, a2, . . . , am), m ∈ N to
satisfy
(i) w(Θ(a1, a2, . . . , am)) ≥ 0,
(ii) w(>) = 1,
(iii) w(Θ(a1, a2, . . . , am)) =

∑
Φ(a1,a2,...,am+1)|=Θ(a1,a2,...,am)

w(Φ(a1, a2, . . . , am+1))

extends uniquely to a probability function on QFSL and hence on SL.

If Θ(b1, . . . , bm) is a state description then Θ(x1, . . . , xm) is called a state
formula. We use the capital Greek letters Θ,Φ,Ψ for state descriptions and
state formulae.
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For a state description Θ(b1, . . . , bm) and distinct k1, . . . , kg from {1, . . . ,m},

Θ(b1, . . . , bm)[bk1 , . . . , bkg ] ,

or simply Θ[bk1 , . . . , bkg ], denotes the restriction of Θ(b1, . . . , bm) to bk1 , . . . , bkg .
That is, the conjunction of the literals from (1) with {j1, . . . , jri} ⊆ {k1, . . . , kg}.
When the language is r-ary, the state formulae for r variables are called
(polyadic) atoms, see [12] or [10]. In the case of a unary language, the atoms
are the conjunctions

∧q
i=1±Ri(x) and they are usually denoted α1(x), . . . , α2q(x).

The idea of atoms has played an essential role in the study of Unary Induc-
tive Logic since its conception by Johnson and Carnap, even if their formal
expression of it differed [7, 2]. In particular, unary atoms have been used
to formulate and investigate basic principles of the subject. This is possible,
since unary state descriptions are the conjunctions of (instantiated) atoms,

Θ(b1, . . . , bm) =
m∧
j=1

αhj(bj) (2)

(where hj ∈ {1, . . . , 2q}), and thus unary atoms form the basic building
blocks of all sentences of a unary language.

Some Basic Principles of Unary Inductive Logic

The Principle of Constant Exchangeability is usually stated for a general (not
necessarily unary) language as follows:

Constant Exchangeability, Ex Let θ(a1, . . . , am) ∈ SL and let b1, . . . , bm
be any other choice of distinct constant symbols from amongst the a1, a2, . . ..
Then

w(θ(a1, . . . , am)) = w(θ(b1, . . . , bm)) . (3)

It can be equivalently expressed as requiring (3) to hold only for state de-
scriptions Θ instead of general θ ∈ SL, see [10, Chapter 8]. This leads to a
simpler formulation of Ex for unary languages (as mentioned above), based
on the notion of a signature. The signature of a state description Θ as in (2)
is defined to be the vector 〈m1, . . . ,m2q〉 where mi is the number of times
that αi appears amongst the αhj . Ex in the unary case thus amounts to

Constant Exchangeability, unary version The probability of a state
description depends only on its signature.
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We now mention a collection of important principles from Unary Inductive
Logic that are stated in terms of (unary) atoms.

Atom Exchangeability, Ax Let Θ(b1, . . . , bm) =
∧m
j=1 αhj(bj) be a state

description and σ ∈ S2q . Then

w

(
m∧
j=1

αhj(bj)

)
= w

(
m∧
j=1

ασ(hj)(bj)

)
.

This principle can be equivalently expressed as requiring that state descrip-
tions

∧m
j=1 αhj(bj) and

∧m
j=1 αgj(bj) satisfying

hj = hl ⇐⇒ gj = gl

must have the same probability.

Principle of Instantial Relevance, PIR

w

(
αi(am+2) |

m∧
j=1

αhj(aj)

)
≤ w

(
αi(am+2) | αi(am+1) ∧

m∧
j=1

αhj(aj)

)
.

This principle was suggested by Carnap [2, Chapter 13] and expresses the
idea that having witnessed an event in the past should enhance (or at least
should not decrease) our belief that we might see it again in future.

Johnson’s Sufficientness Postulate, JSP w
(
αi(am+1) |

∧m
j=1 αhj(aj)

)
depends only on m and on mi, where mi is the number of times that αi
appears amongst the αhj .

First appearing in [7], JSP states that our belief in seeing an individual
with a certain combination of properties should depend only on how many
individuals we have seen, and how many of them have satisfied exactly the
same combination of properties.

Principle of Induction, PI Assume that mi ≤ ms, where mi, ms are the
numbers of times that αi, αs respectively appear amongst the αhj . Then

w

(
αi(am+1) |

m∧
j=1

αhj(aj)

)
≤ w

(
αs(am+1) |

m∧
j=1

αhj(aj)

)
.

5



This principle [10, Chapter 21] says that if we have already seen at least as
many individuals with a certain combination of properties as with another
combination, we should think the next individual at least as likely to have
the first combination of properties as the second.

Finally, we mention the (not necessarily unary) Constant Irrelevance or In-
dependence Principle. It is not stated in terms of atoms, but it plays a role
in what follows.

Constant Independence Principle, IP Let θ, φ ∈ QFSL have no con-
stant symbols in common. Then

w(θ ∧ φ) = w(θ) · w(φ).

In the unary context [10, Chapter 8], the only probability functions satisfying
IP together with Ex are the w~x functions, where ~x = 〈x1, . . . , x2q〉 is from

D2q =

{
〈x1, . . . , x2q〉 | x1, x2, . . . x2q ≥ 0 and

2q∑
i=1

xi = 1

}
and w~x is determined by

w~x

(
m∧
j=1

αhj(bj)

)
=

m∏
j=1

xhj =
2q∏
i=1

xmii ,

where mi is again the number of times that αi appears amongst the αhj .
Thus w~x is the (unique) function that assigns the probability xi to all αi(aj)
regardless of j, and treats instantiations of atoms (both the same or differ-
ent) by distinct constants as stochastically independent. These functions are
remarkably useful because they are simple and since all unary probability
functions satisfying Ex can be generated from them as continuous convex
combinations (integrals). The precise statement of this claim [5] is

de Finetti’s Representation Theorem. Let L be a unary language with
q predicate symbols and let w be a probability function on SL satisfying Ex.
Then there is a normalised, σ-additive measure µ on the Borel subsets of D2q

such that

w(Θ) =

∫
D2q

w~x(Θ) dµ(~x)

for any state description Θ of L, and conversely, given such a µ, w as above
extends uniquely to a probability function on SL satisfying Ex.

6



Early results of Unary Inductive Logic show that any probability function sat-
isfying Ex also satisfies PIR (as already mentioned, [6]), and that - provided
the language has at least two predicate symbols - any probability function
satisfying Ex and JSP must be one of rather special functions called the
Carnap Continuum functions ([7], and others). A later result due to Paris
and Waterhouse [9] shows that any probability function satisfying Ex and
Ax must also satisfy PI.

These are pleasing results in Pure Inductive Logic, since we know that if we
make these rational requirements, we also gain their consequences - a PIL
version of ‘buy one (or two), get one free’. So, for example, if we are happy
to accept Ex and Ax we also gain PI.

2. An Atom-based Approach for Binary Languages

We shall now consider how atoms can aid us to understand the properties
of probability functions in the case when r is 2. That is, when L contains
some binary relation symbols and possibly some unary predicate symbols,
but no symbols of higher arity. We shall denote the unary predicate symbols
by P1, . . . , Pq1 and the binary symbols by Q1, . . . , Qq2 (rather than by Ri as
we do for a general language), with q1 + q2 = q.

In this language, the state formulae for one variable have the form

q1∧
i=1

±Pi(x) ∧
q2∧
i=1

±Qi(x, x)

and we will write
β1(x), . . . , β2q(x)

for them (in some fixed order). We also refer to these formulae as 1-atoms.

The atoms of the language3, that is, the state formulae for two variables,
have the form

βk(x) ∧ βc(y) ∧
q2∧
i=1

±Qi(x, y) ∧
q2∧
i=1

±Qi(y, x) .

3We sometimes say binary atoms for emphasis or, in some contexts later on, also 2-
atoms. Note that 2-atoms will mean the same thing as atoms just when the language is
binary.
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There are N = 22q22q2 atoms, and we shall denote them

γ1(x, y), . . . , γN(x, y) .

In order to help visualise the binary case, we introduce the notation δs(x, y)
for the conjunctions

∧q2
i=1±Qi(x, y), where s = 1, . . . , 2q2 . Any atom γh(x, y)

can then be written as

βk(x) ∧ βc(y) ∧ δe(x, y) ∧ δd(y, x) (4)

for some 1 ≤ k, c ≤ 2q, 1 ≤ e, d ≤ 2q2 . We shall represent such an atom by
the matrix (

k e
d c

)
.

We refer to βk(x) ∧ βc(y) as the unary trace of the atom (4).

Example. When L has just one, binary, relation symbol Q (that is, when
q1 = 0, q2 = 1) then β1(x) and β2(x) are Q(x, x) and ¬Q(x, x) respectively,
and δ1(x, y) and δ2(x, y) are Q(x, y) and ¬Q(x, y) respectively. One possible
atom of this language is

Q(x, x) ∧Q(y, y) ∧ ¬Q(x, y) ∧Q(y, x),

and it is represented by the matrix(
1 2
1 1

)
.

Using atoms, a state description of L can be written as

Θ(b1, . . . , bm) =
∧

1≤i,t≤m

γhi,t(bi, bt) (5)

and it can be represented by an m×m matrix
k1 e1,2 e1,3 . . . e1,m

d1,2 k2 e2,3 . . . e2,m

d1,3 d2,3 k3 . . . e3,m
...

...
...

. . .
...

d1,m d2,m d3,m . . . km

 (6)

8



for some
1 ≤ ki ≤ 2q, 1 ≤ ei,t , di,t ≤ 2q2 .

This means that depending on whether i < t or t < i, γhi,t is(
ki ei,t
di,t kt

)
or

(
kt di,t
ei,t ki

)
respectively, and γhi,i is (

ki e
e ki

)
for that e for which Θ(b1, . . . , bm) |= δe(bi, bi).

Clearly, there is much over-specification in the expression (5); for example,
we must have γht,i(x, y) = γhi,t(y, x). A more efficient way of writing a state
description (for at least two individuals) in terms of atoms is to restrict i, t
in (5) to i < t,

Θ(b1, . . . , bm) =
∧

1≤i<t≤m

γhi,t(bi, bt) .

This contains all the information about Θ and it still over-specifies all that
concerns single individuals. In this paper we will find it convenient to make
this part of the state description visible, so we shall write it as

Θ(b1, . . . , bm) =
∧

1≤i≤m

βki(bi) ∧
∧

1≤i<t≤m

γhi,t(bi, bt). (7)

This works even when m = 1. We adopt a convention that if needed we still
write γht,i(x, y) for γhi,t(y, x).

Definition. For Θ as in (7), we define∧
1≤i≤m

βki(bi) (8)

to be the unary trace of Θ. Any conjunction of this form is called a unary
trace for b1, . . . , bm.

We remark that when using atoms, some over-specification is unavoidable.
It is possible to develop an approach to Polyadic Inductive Logic using just
elements4 rather than atoms (where elements in the binary case are the βk

4See [11].
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and δs, and analogously for higher arity languages), and thus to avoid over-
specification. However, such a ‘disjointed’ approach fails to capture much of
the structure of the sentences we wish to work with. For example, in the
disjointed approach, the ordered pairs obtained from each other by changing
the order of the two individuals are treated separately, and although there
are some advantages to doing this, some crucial connections are lost.

Using the alternative formulation of the unary Atom Exchangeability prin-
ciple from page 5, and (5), it is straightforward to see how to formulate a
binary counterpart of the Atom Exchangeability principle. The same ap-
proach works also for higher arity languages. This was investigated in [12]
and it appears also in [10], so we will not pursue it in the present paper any
further.

For the other principles we will need also the concept of a partial state de-
scription. These are sentences which, like state descriptions, specify all that
can be said about all single individuals from amongst the b1, . . . , bm, and all
that can be said about some pairs of them:

Definition. A partial state description for b1, . . . , bm is a sentence

∆(b1, . . . , bm) =
∧

1≤i≤m

βki(bi) ∧
∧

{bi,bt}∈C
i<t

γhi,t(bi, bt) , (9)

where C is some set of 2-element subsets of {b1, . . . , bm}.
We use capital Greek letters also for partial state descriptions.

Example. Using the representation described above for L containing just one
binary relation symbol Q, the matrix

1 1 1 2

1 1 1 2

1 1 1 2

2 2 2 1

represents the (full) state description

3∧
i,t=1

Q(bi, bt) ∧
3∧
i=1

(¬Q(bi, b4) ∧ ¬Q(b4, bi)) ∧Q(b4, b4) ,
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while
1 1

1

2 1 2

2 1

represents the partial state description

4∧
i=1

Q(bi, bi) ∧ (Q(b1, b3) ∧ ¬Q(b3, b1)) ∧ (¬Q(b3, b4) ∧ ¬Q(b4, b3)).

The matrix
1 1

1 2

2 1 2

2 1

represents no partial state description since it gives some - but not all -
information about the pair b2, b3. Specifying also Q(b3, b2) or ¬Q(b3, b2) would
turn it into a partial state description.

We remark that if C in (9) contains no 2-element subsets, that is C = ∅,
then (9) is still a partial state description. In particular, a unary trace for
b1, . . . , bm is a partial state description for b1, . . . , bm. Secondly, we mention
that partial state formulae are defined analogously to partial state descrip-
tions, with b1, . . . , bm replaced by (distinct) variables x1, . . . , xm.

2.1. Binary Signatures

In Unary Inductive Logic, it is almost always the case that Ex is assumed.
If we wish to continue assuming Ex and to base our theory on polyadic
atoms, we need to be able to work with the atoms in a way which reflects
that atoms obtained from each other by permuting the variables are in some
sense equivalent and represent the same thing.

In the binary case, atoms have two variables and there is only one non-trivial
permutation of {x, y}. If γ(x, y) is the atom represented by(

k e
d c

)
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then permuting x and y yields the atom represented by(
c d
e k

)
.

If k = c and e = d then these are the same atom.

Hence, when wishing to disregard the order, the behaviour of pairs of individ-
uals should be classified by the atom they satisfy, only up to the equivalence
defined on atoms by (

k e
d c

)
∼
(
c d
e k

)
.

This means that rather than N different ways a pair can behave, there are
p < N of them, where p is the number5 of ∼-equivalence classes.

It will be convenient to introduce notation for these equivalence classes; we
shall denote them by Γ1, . . . ,Γp. From above, it follows that each class is{ (

k e
d c

)
,

(
c d
e k

) }
(10)

for some k, c, e, d, and it has either two elements, or just one (when k = c
and e = d). For fixed k and c, A(k, c) will denote the set of all j such that
Γj consists of the atoms (10) for some e, d.

Within the equivalence class (10), the unary trace of an atom determines
the atom, except when k = c and e 6= d. We shall associate a number with
each class Γj accordingly: 1 if the unary traces do determine its atoms and
2 otherwise. We denote this number sj.

Definition. For a state description

Θ(b1, . . . , bm) =
∧

1≤i≤m

βki(bi) ∧
∧

1≤i<t≤m

γhi,t(bi, bt),

we define the signature of Θ to be the vector 〈n1, . . . , np〉, where nj is the
number of 〈i, t〉 such that 1 ≤ i < t ≤ m and γhi,t ∈ Γj. If Θ is represented
by (6) and Γj is (10), then nj is the number of times one of the atoms from
(10) appears as a submatrix of (6).

5Explicitly, p = (N + 2q · 2q2)/2.
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We shall define also the extended signature of Θ to be

~m~n = 〈m1, . . . ,m2q ; n1, . . . , np〉,

wheremk is the number of times that k appears amongst the ki, i = 1, . . . ,m.

We remark that the extended signature is derivable from the signature, but
it will be convenient for us to record the ~m part explicitly.

Note that if ~m~n is the extended signature of some state description Θ(b1, . . . , bm)
then

2q∑
k=1

mk = m, (11)

for k 6= c ∑
j∈A(k,c)

nj = mkmc , (12)

and ∑
j∈A(k,k)

nj =
mk(mk − 1)

2
. (13)

Conversely, thinking about state descriptions in terms of matrices as in (6),
we can see that any ~m~n = 〈m1, . . . ,m2q ; n1, . . . , np〉 such that (12) and (13)
hold, is an extended signature of some Θ(b1, . . . , bm) for m defined by (11),
so we refer to such vectors as extended signatures on m.

If the binary case behaved like the unary, Ex would be equivalent to the
requirement that the probability of a state description depends only on its
signature. However, as we shall see below, this is not the case and so we are
led to define the

Signature Exchangeability Principle (binary), BEx Let L be a binary
language and let w be a probability function on SL. Then the probability of
a state description depends only on its signature.

BEx clearly still implies Ex but the converse implication does not hold: BEx
is strictly stronger than Ex. Rather than providing a general proof, we will
illustrate why this is so on the case of the language L containing just one
binary relation symbol Q.
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The state descriptions represented by

1 1 1 2

1 1 1 2

1 1 1 2

2 2 2 1

1 1 2 2

1 1 1 2

2 1 1 1

2 2 1 1

have the same signature but there are probability functions satisfying Ex
that give these state descriptions different probabilities. For example, up̄,L

with p̄ = 〈0, 1
2
, 1

2
, 0, 0, . . .〉, see [10, Chapter 29], is one such function.

The probability functions satisfying BEx share a number of properties with
those satisfying Ex in the unary case. In particular, there is a large class
of relatively simply defined probability functions similar to the unary w~x (as
described on Page 6) which satisfy BEx. These functions are characterised
by an independence principle similar to the Constant Independence Principle
(IP). In addition, there is a de Finetti-style representation theorem telling us
that any probability function satisfying BEx can be expressed as a convex
combination of these special functions (as an integral). This, in turn, yields a
proof of a binary generalisation of the Principle of Instantial Relevance, and
a characterisation of a binary Carnap Continuum as the unique functions
satisfying a binary generalisation of Johnson’s Sufficientness Postulate. We
begin with independence.

2.2. Binary Independence

The Constant Independence Principle IP (for any language), see page 6,
requires that any two quantifier free sentences which have no constants in
common are stochastically independent. In other words, probability func-
tions satisfying this principle have the property that evidence concerning
certain individuals has no impact on probabilities assigned to sentences in-
volving different individuals.

In sentences involving only unary predicate symbols, occurrences of predi-
cates are instantiated by single constants; no predicate can bring two con-
stants together in the way binary relations do. Hence, when the language is
unary, the notion of independence used in IP is the strongest one, based on
requiring that individuals do not interfere with others. In the binary case,
however, beyond simply requiring that individuals do not interfere, we may
require the same of pairs of individuals in the following sense.
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Definition. For a sentence ψ of a binary language L we define C2
ψ to be the

set of (unordered) pairs of constants {ai, aj}, i 6= j, such that ai and aj are
brought together instantiating a relation in ψ.

That is, for some binary relation symbol Q of L - either ±Q(ai, aj) or
±Q(aj, ai) appears in ψ. We say that sentences φ, ψ such that C2

φ and C2
ψ are

disjoint instantiate no pairs in common. Such sentences cannot reasonably be
required to be independent outright because of information each may contain
concerning single individuals, but they can be independent conditionally.

Strong Independence Principle (binary), BIP Let L be a binary lan-
guage and assume that φ, ψ ∈ QFSL instantiate no pairs in common. Let
b1, . . . , bs be the constants that φ and ψ have in common (if any) and let
∆(b1, . . . , bs) be a unary trace for these constants. Then

w(φ ∧ ψ |∆) = w(φ |∆) · w(ψ |∆). (14)

If s = 0 (the sentences have no constants in common) then ∆ = > (tautol-
ogy), so BIP implies IP.

We shall now define the binary versions w~Y of the unary w~x mentioned on
page 6. Let DL be the set of all

~Y = 〈x1, . . . , x2q ; y1, . . . , yp〉

such that xk, yj ≥ 0 and
∑2q

k=1 xk = 1, and such that for any 1 ≤ k, c ≤ 2q,∑
j ∈A(k,c)

sjyj = 1 (15)

(A(k, c) was defined on page 12). We intend to define w~Y so that these
functions satisfy Ex, BIP, w~Y (βk(ai)) = xk and if γh is the atom(

k e
d c

)
and Γj its equivalence class - that is, Γj is (10) - then

w~Y (γh(ai, at) | βk(ai) ∧ βc(at)) = yj .

To this end, it is convenient to write j(h) for j such that γh ∈ Γj. To make
the notation more manageable, we also write zh for yj(h). Hence the yj are
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associated with the equivalence classes Γj of atoms, and the zh assign these
same values to the individual atoms in these classes. In terms of the zh, (15)
says that the sum over zh for those γh with a given unary trace is 1.

For a state description

Θ(a1, . . . , am) =
∧

1≤i≤m

βki(ai) ∧
∧

1≤i<t≤m

γhi,t(ai, at)

we define
w~Y (Θ(a1, . . . , am)) =

∏
1≤i≤m

xki
∏

1≤i<t≤m

zhi,t . (16)

Note that if σ ∈ Sm and

Ψ(a1, . . . , am) = Θ(aσ(1), . . . , aσ(m))

then w~Y (Ψ) = w~Y (Θ) since6

Ψ(a1, . . . , am) =
∧

1≤i≤m

βkσ−1(i)
(ai) ∧

∧
1≤i<t≤m

γhσ−1(i),σ−1(t)
(ai, at),

the multiset {kσ−1(i) : 1 ≤ i ≤ m} equals the multiset {ki : 1 ≤ i ≤ m}, and
the multisets {hσ−1(i),σ−1(t) : 1 ≤ i < t ≤ m}, {hi,t : 1 ≤ i < t ≤ m} can only
differ in that the former contains hi′,t′ in place of ht′,i′ when i′ = σ−1(i) >
σ−1(t) = t′. We have γhi′,t′ ∼ γht′,i′ so zhi′,t′ = zht′,i′ and consequently w~Y (Ψ),
w~Y (Θ) must be equal.

Theorem 1. Let L be a binary language. The functions w~Y defined above
determine probability functions on SL that satisfy BEx and BIP (and hence
also Ex and IP).

Furthermore, any probability function satisfying Ex and BIP is equal to w~Y

for some ~Y .

Proof. w = w~Y clearly satisfies properties (i), (ii) from page 3. To show that
it satisfies (iii), let Θ(a1, . . . , am) be as above. The Θ+(a1, . . . , am, am+1)
which extend Θ(a1, . . . , am) have the form

Θ(a1, . . . , am) ∧ βc(am+1) ∧
m∧
i=1

γhi,m+1
(ai, am+1) , (17)

6Recall the convention from page 9 needed below when σ−1(i) > σ−1(t).
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where c is any of 1, . . . , 2q and the unary trace of γhi,m+1
(x, y) is βki(x)∧βc(y).

The value of w~Y (Θ+) for Θ+ as in (17) is( ∏
1≤i≤m

xki

)
xc

( ∏
1≤i<t≤m

zhi,t

)(
m∏
i=1

zhi,m+1

)
.

For a given c and for each i = 1, . . . ,m, the sum of the eligible zhi,m+1

is 1, since we are summing over all the zhi,m+1
such that γhi,m+1

has trace
βki(x) ∧ βc(y). So summing the w~Y (Θ+) successively over these hi,m+1 and
then over c yields w~Y (Θ). Hence (iii) holds, too. It follows that w~Y extends
to a probability function on SL which moreover, by the remark preceding the
theorem, satisfies Ex.

A similar argument now shows that (16) remains valid even when we replace
the a1, . . . , am by other distinct constants b1, . . . , bm (we sum the probabil-
ities of state descriptions for a1, . . . , aM extending Θ(b1, . . . , bm), where M
is sufficiently large so that all the b1, . . . , bm are amongst the a1, . . . , aM).
Thus w~Y satisfies BEx since the right hand side of (16) depends only on the
signature of Θ.

To show BIP, we note that continuing with the same reasoning, we can show
also that for a partial state description

Φ(b1, . . . , bm) =
∧

1≤i≤m

βki(bi) ∧
∧

{bi,bt}∈C
i<t

γhi,t(bi, bt) (18)

we have
w~Y (Φ(b1, . . . , bm)) =

∏
1≤i≤m

xki
∏

{bi,bt}∈C
i<t

zhi,t .

Assume that Φ and Ψ are some partial state descriptions which instantiate
no pairs in common. Let b1, . . . , bs be the constants that Φ and Ψ have in
common and let ∆ be a unary trace for these constants. If ∆ is not consistent
with Φ or Ψ, then we clearly have

w~Y (Φ ∧Ψ |∆) = w~Y (Φ |∆)w~Y (Ψ |∆) (19)
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because both sides are 0. So suppose Φ is as in (18), s ≤ m,

Ψ(b1, . . . , bs, bm+1, . . . , bm+n) =∧
1≤i≤s

βki(bi) ∧
∧

m+1≤i≤m+n

βki(bi) ∧
∧

{bi,bt}∈D
i<t

γhi,t(bi, bt) (20)

where D is some set of 2-element subsets of {b1, . . . , bs, bm+1, . . . , bm+n}, D∩
C = ∅, and

∆(b1, . . . , bs) =
∧

1≤i≤s

βki(bi).

We can now use the above observation regarding values of w~Y for partial
state descriptions to prove that (19) holds in this case, too, since both sides
are ∏

s+1≤i≤m+n

xki
∏

{bi,bt}∈C∪D
i<t

zhi,t .

Hence BIP holds when φ, ψ are partial state descriptions.

To prove that (14) holds with general φ, ψ ∈ QFSL, note that any quantifier
free sentence φ(b1, . . . , bm) is equivalent to a disjunction of partial state de-
scriptions Φu as in (18), with C = C2

φ. Assume that ψ ∈ QFSL instantiates
no pairs in common with φ. Without loss of generality, let b1, . . . , bs be the
constants that φ and ψ have in common and bm+1, . . . , bm+n the remaining
constants appearing in ψ. ψ is equivalent to a disjunction of partial state
descriptions Ψf as in (20) where D = C2

ψ, and so by the above, for any unary
trace ∆ for b1, . . . , bs,

w~Y (φ∧ψ |∆) = w~Y

(∨
u

Φu ∧
∨
f

Ψf

∣∣∣∣∣ ∆

)
=
∑
u,f

w~Y ( Φu∧Ψf |∆) =

∑
u,f

w~Y (Φu | ∆) · w~Y (Ψf | ∆) =
∑
u

w~Y (Φu | ∆) ·
∑
f

w~Y (Ψf | ∆) =

w~Y

(∨
u

Φu

∣∣∣∣∣ ∆

)
· w~Y

(∨
f

Ψf

∣∣∣∣∣ ∆

)
= w~Y (φ |∆) · w~Y (ψ |∆),

as required.

18



For the final part of the theorem, assume that w satisfies Ex and BIP. We
define

xk = w(βk(ai))

and
yj(h) = zh = w(γh(ai, at) | βk(ai) ∧ βc(at))

where βk(x) ∧ βc(y) is the unary trace of γh(x, y). Note that by Ex, this
definition is correct in that it does not matter which ai, at we take, and
when j = j(h) = j(g) (that is, when γh ∼ γg), then zh = zg, and yj is given

the same value. Using BIP, we can check that with ~Y defined in this way,
w~Y equals w for state descriptions, and hence w = w~Y for all sentences. �

2.3. Representation Theorem

We showed in Theorem 1 that the probability functions w~Y satisfy BEx. We
now prove that the functions satisfying BEx are exactly the convex combi-
nations of the w~Y functions in the following sense.

Theorem 2. Let w be a probability function for a binary language L satis-
fying BEx. Then there exists a (normalised, σ-additive) measure µ on the
Borel subsets of DL such that for any θ ∈ SL,

w(θ) =

∫
DL
w~Y (θ)dµ(~Y ). (21)

Conversely, for a given measure µ on the Borel subsets of DL, the function
defined by (21) is a probability function on SL satisfying BEx.

Proof. Let w be a probability function for L satisfying BEx. It suffices to
prove (21) for state descriptions, the rest follows, for instance, as in Corol-
lary 9.2 of [10]. The proof is based on the fact that for a state description
Θ(b1, . . . , bm) and u > m

w(Θ(b1, . . . , bm)) =
∑

Ψ(b1,...,bm,bm+1,...,bu)|=Θ(b1,...,bm)

w(Ψ(b1, . . . , bm, bm+1, . . . , bu)) ,

(22)

and it proceeds via grouping state descriptions for u individuals according to
their extended signature and counting their numbers.
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Let t1, . . . , tn ∈ N, t1 + t2 + · · ·+ tn = t. We define(
t

{ti : i ∈ {1, . . . , n}}

)
=

(
t

t1, t2, . . . , tn

)
=

t!

t1!t2! . . . tn!
.

Let u ∈ N+ and let ~u~t = 〈u1, . . . , u2q ; t1, . . . , tp〉 be an extended signature
on u. First, we wish to count the number of all state descriptions with this
extended signature. Thinking about state descriptions in terms of u × u
matrices as in (6), this involves placing, on the diagonal, the number 1 u1

times, the number 2 u2 times and so on. We are thus creating ukuc many
spaces (when k 6= c) or uk(uk−1)

2
many spaces in which to place atoms from

the classes Γj, j ∈ A(k, c) (k 6= c) or j ∈ A(k, k) respectively. Once a place
for an atom from a given Γj is chosen, no freedom remains over which atom
from this class it is when k 6= c or when k = c and e = d (that is, when
sj = 1). When k = c and e 6= d (i.e., when sj = 2), either one of the two
atoms from this class can be chosen to fill the place.

It follows that the number of state descriptions with extended signature ~u~t,
denoted by N (∅, ~u~t), is(

u

u1, . . . , u2q

) ∏
1≤k<c≤2q

(
ukuc

{tj : j ∈ A(k, c)}

)

×
∏

1≤k≤2q

( uk(uk−1)
2

{tj : j ∈ A(k, k)}

) ∏
j∈A(k,k)

s
tj
j

 . (23)

Now let ~m~n be an extended signature, m < u and let Θ(b1, . . . , bm) be a state
description with this signature. Arguing similarly to above, we find that
the number of state descriptions with signature ~u~t extending Θ(b1, . . . , bm),
denoted by N (~m~n, ~u~t), is(

u−m
u1 −m1, . . . , u2q −m2q

) ∏
1≤k<c≤2q

(
ukuc −mkmc

{tj − nj : j ∈ A(k, c)}

)

×
∏

1≤k≤2q

( uk(uk−1)
2

− mk(mk−1)
2

{tj − nj : j ∈ A(k, k)}

) ∏
j∈A(k,k)

s
(tj−nj)
j

 . (24)
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We make the convention that our multinomial expression is 0 if any of the
terms are negative. Note that the number calculated in (24) depends only
on the signature ~m~n and not on the particular choice of Θ(b1, . . . , bm).

We shall write w(~m~n) for w(Θ(b1, . . . , bm)); by BEx this is unambiguous. Let
Sign(u) denote the set containing all extended signatures ~u~t on u. From (22)

1 = w(>) =
∑

~u~t∈Sign(u)

N (∅, ~u~t)w(~u~t),

w(~m~n) =
∑

~u~t∈Sign(u)

N (~m~n, ~u~t) w(~u~t),

and hence

w(~m~n) =
∑

~u~t∈Sign(u)

N (~m~n, ~u~t)

N (∅, ~u~t)
N (∅, ~u~t) w(~u~t). (25)

We shall show that∣∣∣∣∣∣
(
N (~m~n, ~u~t)

N (∅, ~u~t)

)
−

 ∏
1≤k≤2q

(uk
u

)mk ∏
1≤k<c≤2q

 ∏
j∈A(k,c)

(
tj
ukuc

)nj
∏

1≤k≤2q

 ∏
j∈A(k,k)

 tjs
−1
j(

uk(uk−1)
2

)
nj∣∣∣∣∣∣ (26)

is of the order O
(√

u
−1
)

(independently of u1, . . . , u2q , t1, . . . , tp). We make

a convention that if some uk = 0 or some tj = 0 then terms involving these
are missing from the product above.

First, let mk ≤ uk and nj ≤ tj for every j, k, so that none of the terms in

(24) are negative. The term
(
N (~m~n,~u~t)

N (∅,~u~t)

)
in (26) can be written as ∏

1≤k≤2q

(uk
u

)mk ∏
1≤k<c≤2q

 ∏
j∈A(k,c)

(
tj
ukuc

)nj ∏
1≤k≤2q

 ∏
j∈A(k,k)

 tjs
−1
j(

uk(uk−1)
2

)
nj

(27)

×
∏

1≤k≤2q

∏
0≤i≤mk−1

(
1− i u−1

k

)∏
0≤l≤m−1 (1− l u−1)

(28)
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×
∏

1≤k<c≤2q

(∏
j∈A(k,c)

∏
0≤i≤nj−1

(
1− i t−1

j

)∏
0≤l≤mkmc−1

(
1− l (ukuc)

−1)
)

(29)

×
∏

1≤k≤2q


∏

j∈A(k,k)

∏
0≤i≤nj−1

(
1− i t−1

j

)
∏

0≤l≤(mk(mk−1)/2)−1

(
1− l

(
uk(uk−1)

2

)−1
)
 . (30)

Let P stand for the product of (28), (29) and (30).

We observe that P is bounded by a constant independent of u, the uk and
the tj. For example,

(28) <

(
1

1− (m− 1)m−1

)m
and similarly for (29) and (30).

Furthermore, we need only consider those k where mk > 0 in the limit of (26)
since otherwise nj = 0 for j ∈ A(k, c) and factors involving corresponding

uk, tj cancel out from N (~m~n,~u~t)

N (∅,~u~t) , and they are all 1 in the product which is

being subtracted.

We shall prove the claim about (26) by cases. Consider first the case that
for some k with mk > 0 we have uk ≤

√
u. Then∏

1≤k≤2q

(uk
u

)mk
≤ (
√
u)−1,

each of the other products in (27) is at most 1, so (26) = | (27) · (1− P ) | =
O(
√
u
−1

). A similar argument works if uk >
√
u for every k with mk > 0

but for some j we have nj > 0 and tj ≤
√
u.

The second case is when for every k such that mk > 0, uk >
√
u and for

every j with nj > 0, tj >
√
u. In this case, P is close to 1. To see this, note

that (28) can be written as a product of m fractions of the form 1−αuk−1

1−βu−1 ,

α, β ∈ {1, . . . ,m} and that the distance of each fraction from 1 is∣∣∣∣1− αuk−1

1− βu−1
− 1

∣∣∣∣ < 2
(
βu−1 + αuk

−1
)
< 2
√
u
−1

(α + β) ≤ 4m
√
u
−1
.
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Hence (28) is 1 + O
(√

u
−1
)

. A similar argument works for the other two

products, (29) and (30), so P is 1 +O
(√

u
−1
)

. It follows that (26) is again

of order O
(√

u
−1
)

.

Now suppose uk < mk for some k (the case when uk > mk for every k but

some j is such that tj < nj is similar). Note that then N (~m~n,~u~t)

N (∅,~u~t) = 0. In

addition, mk > 0 and uk <
√
u, so arguing as above (27) would be of order

O(
√
u
−1

) and consequently so would (26), which exhausts all cases.

Define ~Y~u~t by

xk =
uk
u
, yj =


tj

ukuc
for j ∈ A(k, c), uk, uc 6= 0, k < c,

tjsj
−1(

uk(uk−1)

2

) for j ∈ A(k, k), uk 6= 0, 1,

0 otherwise.

(31)

In what follows, we will write w~u~t for w~Y~u~t
. Note that w~u~t(~m~n) is equal to

(27).

We shall now employ methods from Nonstandard Analysis, particularly Loeb
Measure Theory [8, 4] to complete the proof. An alternative classical proof
may be found in [11].

Let U∗ be a nonstandard ω1-saturated elementary extension of a sufficiently
large portion U of the set theoretic universe containing w. As usual, c∗

denotes the image in U∗ of c ∈ U where these differ. Working now in U∗, let
u ∈ N∗ be nonstandard. Then (from (25)) we still have

w∗(~m~n) =
∑

~u~t∈Sign∗(u)

N ∗(~m~n, ~u~t)
N ∗(∅, ~u~t)

N ∗(∅, ~u~t)w∗(~u~t). (32)

Loeb Measure Theory enables us to conclude from (32) that for some σ-
additive measure µ′ on Sign∗(u) we have (for all standard extended signatures
~m~n)

w(~m~n) =

∫
Sign∗(u)

◦
(
N ∗(~m~n, ~u~t)
N ∗(∅, ~u~t)

)
dµ′(~u~t) . (33)
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Since, in U , (26) is O
(√

u
−1
)

, this gives

w(~m~n) =

∫
Sign∗(u)

◦(w∗
~u~t

(~m~n)) dµ′(~u~t) . (34)

Moreover, ◦
(
w∗
~u~t

(~m~n)
)

equals w(◦(~Y~u~t))
(~m~n). So defining µ on the Borel sub-

sets A of DL by

µ(A) = µ′
{
~u~t | ◦(~Y~u~t) = 〈◦x1, . . . ,

◦x2q ;
◦y1, . . . ,

◦yp〉 ∈ A
}

where the xk, yj are as defined in (31), means (34) becomes (using, for ex-
ample, Proposition 1, Chapter 15 of [13])

w(~m~n) =

∫
DL
w~Y (~m~n) dµ(~Y ),

as required.

In the opposite direction, a function on SL defined by (21) clearly satisfies
P1 and P2, and by the Lebesgue Dominated Convergence Theorem it also
satisfies P3. So it is a probability function. This function satisfies BEx
because all the w~Y do. �

We shall now use the above representation theorem to show that the w~Y

functions, which by Theorem 1 are the only probability functions satisfying
BIP and Ex, can be characterised alternatively as the only probability func-
tions satisfying IP and BEx. The fact that the w~Y satisfy BEx and IP follows
from Theorem 1 and the other part follows from the following theorem.

Theorem 3. Let w be a probability function on SL satisfying BEx and IP.
Then w is equal to w~Y for some ~Y ∈ DL.

Proof. 7 Let µ be the σ-additive normalised measure guaranteed to exist by
Theorem 2 such that

w =

∫
DL
w~Y dµ(~Y ) .

7We use the method of the proof of [10, Theorem 20.6].
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Let θ(b1, . . . , bm) ∈ QFSL and let θ′ be the result of replacing each bi in θ
by bi+m. By IP and since w(θ) = w(θ′) by (B)Ex, we have

0 = 2 (w(θ ∧ θ′)− w(θ) · w(θ′))

=

∫
DL
w~Y (θ ∧ θ′) dµ(~Y ) +

∫
DL
w ~Y ′(θ ∧ θ

′) dµ( ~Y ′)

−2

(∫
DL
w~Y (θ) dµ(~Y )

)
·
(∫

DL
w ~Y ′(θ

′) dµ( ~Y ′)

)
=

∫
DL
w~Y (θ) · w~Y (θ′) dµ(~Y ) +

∫
DL
w ~Y ′(θ) · w ~Y ′(θ

′) dµ( ~Y ′)

−2

(∫
DL
w~Y (θ) dµ(~Y )

)
·
(∫

DL
w ~Y ′(θ

′) dµ( ~Y ′)

)
=

∫
DL

∫
DL

(
w~Y (θ)− w ~Y ′(θ

′)
)2

dµ(~Y ) dµ( ~Y ′).

It follows that there exists a subset A of DL with µ measure 1 such that
w~Y (θ) as a function of ~Y is constant on A for every θ ∈ QFSL, see e.g. [11]

for details. Therefore, for any ~Y ∈ A we must have that w and w~Y are equal
for quantifier free sentences and hence for all sentences, as required. �

2.4. Binary Instantial Relevance

In this section we consider how the idea of instantial relevance might be
captured in our atom-based binary context. Assuming that the available
evidence is in the form of a partial state description, the evidence may be
extended to another partial state description either by adding unary infor-
mation about a new individual, or by adding a binary atom instantiated by
a pair of individuals each of which may or may not be new. In each of these
cases, if we have already learnt (and added to the evidence) the same infor-
mation about another individual or pair of individuals, it should enhance our
probability that this information will be learnt about the given individual or
pair of individuals too.

Adding unary information about a single constant does not involve any intri-
cacies, and instantial relevance amounts to requiring that for a partial state
description ∆(a1, . . . , am) and any βk,

w(βk(am+2) |∆) ≤ w(βk(am+2) | βk(am+1) ∧∆). (35)
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Adding an atom instantiated by some constants b1, b2 is more complicated,
since such sentences are already determined to some degree by ∆ when one
or both of b1, b2 are amongst the a1, . . . , am. More precisely, assume that

γh(b1, b2) ∧∆(a1, . . . , am)

is consistent and that βk(x) ∧ βc(y) is the unary trace of γh(x, y). Then
∆(a1, . . . , am) may already imply γh(b1, b2), or imply only βk(b1) ∧ βc(b2), or
only βk(b1), or only βc(b2), or none of these. According to which of these
holds, we define the Extra in γh(b1, b2) over ∆(a1, . . . , am) to be, in order,

∅, {{1, 2}}, {{1, 2}, {2}}, {{1, 2}, {1}}, {{1, 2}, {1}, {2}}

respectively. Clearly, conditional probabilities of instantiated atoms given
partial state descriptions should only be compared if the Extra in them over
the evidence is the same.

Binary Principle of Instantial Relevance Let ∆(a1, . . . , am) be a partial
state description. Then (35) holds for any βk. Furthermore, if γh is an atom
and b1, b2, b

′
1, b
′
2 are constants such that ∆∧γh(b1, b2)∧γh(b′1, b′2) is consistent

and the Extras in γh(b1, b2) over ∆ ∧ γ(b′1, b
′
2), in γh(b1, b2) over ∆ and in

γh(b
′
1, b
′
2) over ∆ are all the same then

w(γh(b1, b2) |∆) ≤ w(γh(b1, b2) |∆ ∧ γh(b′1, b′2)) . (36)

Theorem 4. Let w be a probability function on SL satisfying BEx. Then w
satisfies the Binary Principle of Instantial Relevance.

Proof. First, note that every w~Y satisfies (35) and (36) with equality by
the definition of these functions. This is the case since

w~Y (∆ ∧ βk(am+2)) = w~Y (∆) · xk ,

w~Y (∆ ∧ βk(am+2) ∧ βk(am+1)) = w~Y (∆) · x2
k ,

and, for example, when the above Extra is {{1, 2}, {2}} and the unary trace
of γh(x, y) is βk(x) ∧ βc(y), then

w(∆ ∧ γh(b1, b2)) = w(∆ ∧ γh(b′1, b′2)) = w(∆) · yh · xc ,
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w(∆ ∧ γh(b1, b2) ∧ γ(b′1, b
′
2)) = w(∆) · y2

h · x2
c .

By Theorem 2, since w satisfies BEx, w is an integral of the w~Y . Let µ be
the corresponding measure. Then (35) and any instance of (36) become(∫

DL
f(~Y )w~Y (∆)dµ(~Y )

)2

≤
(∫

DL
(f(~Y ))2w~Y (∆)dµ(~Y )

)(∫
DL
w~Y (∆)dµ(~Y )

)
for some function f (in the above cases, f(~Y ) is xk or yhxc respectively), and
this integral inequality holds for any f , as required. �

We remark that the same method yields the following related result:

Theorem 5. Let w be a probability function on SL satisfying BEx. Let
∆(a1, . . . , am) be a partial state description. If γh is an atom and b1, b2, b

′
1, b
′
2

are constants such that ∆ ∧ γh(b1, b2) ∧ γh(b′1, b′2) is consistent and the Extra
in γh(b

′
1, b
′
2) over ∆ is the same as the Extra in γh(b1, b2) over ∆ ∧ γ(b′1, b

′
2)

then
w(γh(b

′
1, b
′
2) |∆) ≤ w(γh(b1, b2) |∆ ∧ γh(b′1, b′2)) . (37)

2.5. Binary Sufficientness Postulate

Finally, we turn our attention to disregarding irrelevant information. A clas-
sical principle in the unary case is Johnson’s Sufficientness Postulate (see
Page 5). This principle says that the conditional probability of a new con-
stant satisfying an atom, given a state description, should not depend on
what the other atoms in the state description do, only on how many con-
stants the state description is about and how many of them satisfy this very
same atom.

An earlier attempt at generalising Johnson’s Sufficientness Postulate to the
binary context was made in [14], but it proved very restrictive in the sense
that only two probability functions satisfied it. This earlier approach was not
based on atoms, but rather focused on the conditional probability of a full
state description for a1, . . . , am+1 given a full state description for a1, . . . , am.
Such an approach corresponds to assuming that an agent learns about the
world through successively encountering new individuals and learning every-
thing about each of them - including all their connections to all individuals
encountered previously - in one go.
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However, suppose instead that the agent only learns all about (one or) two
individuals at a time and learns nothing about their connections to other
individuals. That is, the agent is always focusing on (at most) two individuals
at any one time. The fact that the language is binary makes this a plausible
assumption. Then it is clear that the evidence should be a partial state
description, and that we need to consider the conditional probability of an
instantiated atom - some γh(au, av), or a 1-atom - some βk(au).

Furthermore, for a partial state description

∆(a1, . . . , am) =
∧

1≤i≤m

βki(ai) ∧
∧

{ai,at}∈C
i<t

γhi,t(ai, at) ,

the probability of an extension of it by some βk(am+1) (how a new individual
behaves in isolation), should arguably depend only on the βki (how other
individuals behave in isolation), rather than on the γhi,t . An extension of ∆
by some γh(au, av) for 1 ≤ u < v ≤ m, {au, av} /∈ C (how au and av relate to
each other given how each of them behaves in isolation), should depend only
on those γhi,t where ai and at behave in isolation just as au and av do.

Accordingly, we broaden the notion of the extended signature of a state
description to partial state descriptions. We define the extended signature
of ∆ as above, to be the vector 〈m1, . . . ,m2q ; n1, . . . , np〉, where mk is the
number of times that k appears amongst the ki and nj is the number of 〈i, t〉
such that {ai, at} ∈ C and γhi,t ∈ Γj.

Recall that j(h) denotes the j for which γh ∈ Γj and A(k, c) denotes the set
of all j = j(h) such that the unary trace of γh(x, y) is βk(x) ∧ βc(y). The
extended signature of ∆ still satisfies

2q∑
k=1

mk = m, (38)

but the sums of nj for j ∈ A(k, c) or A(k, k) no longer need to be as in (12),
(13) and we define∑

j∈A(k,c)

nj = nk,c
∑

j∈A(k,k)

nj = nk,k .

Note that nk,c = nc,k.
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Taking our argument further along the lines of the Unary Johnson’s Suffi-
cientness Postulate, we are led to the requirement that

• the conditional probability of βk(am+1) given ∆ should depend only on mk

and m,

and noting that for j ∈ A(ku, kv) there are sj (that is, 1 or 2) atoms γh in Γj
such that γh(au, av) is consistent with ∆ (because the unary trace is fixed),
we further require that

• for 1 ≤ u < v ≤ m, j ∈ A(ku, kv) and h ∈ Γj, the conditional probability
of γh(au, av) given ∆ should depend only on nj, sj and nku,kv .

The (atom-based) Binary Sufficientness Postulate consists of the two
requirements above. It is shown in [15] that the unique regular8 probability
functions w satisfying Ex and this principle, are those for which the above
conditional probabilities satisfy

w(βk(am+1) |∆) =
mk + µ

2q

m+ µ
, w(γh(au, av)|∆) =

nj
sj

+ λ
22q2

nku,kv + λ

for some 0 < µ, λ ≤ ∞.

3. An Atom-based Approach for Polyadic Languages

For the rest of this paper, we assume again that L is a language with relation
symbols R1, . . . , Rq of arities r1, . . . , rq. Moreover, we assume that it is r-ary
for some r > 1, so the maximum of the ri is r.

The atoms of L are the state formulae for r variables. We denote them9

γ1(x1, . . . , xr), . . . , γN(x1, . . . , xr) .

As in the binary case, state descriptions for at least r constants can be
expressed as a conjunction of (instantiated) atoms,

Θ(b1, . . . , bm) =
∧

1<i1<...<ir≤m

γhi1,...,ir (bi1 , . . . , bir) . (39)

8Regular probability functions are those that give all state descriptions non-zero prob-
abilities.

9Note that N (as well as the Ng defined below) depend on L.
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Clearly, we have γhi1,...,ir (bi1 , . . . , bir) = Θ[bi1 , . . . , bir ]; these sentences express
all the information contained in Θ that involves bi1 , . . . , bir and no other
constants. Polyadic atoms thus again act as the basic building blocks for
all sentences of the language. Note that no ‘smaller units’ involving fewer
variables could play this role, since the language is r-ary.

Even so, we will find it convenient to have a way of referring to blocks smaller
than atoms.

Definition. The g-atoms for g ≤ r are the state formulae of L for g vari-
ables. They are denoted by

γg1(x1, . . . , xg), . . . , γ
g
Ng

(x1, . . . , xg) .

Thus the γrh(x1, . . . , xr) are just the atoms γh(x1, . . . , xr) and Nr = N . Note
that in the binary case there are the γ2

h = γh (the binary atoms) and the
γ1
k (1-atoms), which we referred to as βk in the previous section to avoid

superscripts altogether.

Every state description for at least r constants can be expressed as a conjunc-
tion (39). Conversely, such a conjunction is consistent (and hence defines a
state description) just when any pair of the γhi1,...,ir (bi1 , . . . , bir) agree when
restricted to the constants they have in common. We will find it useful to
make these shared components visible so we write

Θ(b1, . . . , bm) =
∧

1≤s≤r

∧
1≤i1<...<is≤m

γshi1,...,is (bi1 , . . . , bis) . (40)

This works even when m < r. Note that the γshi1,...,is
are such that

γshi1,...,is (bi1 , . . . , bis) = Θ[bi1 , . . . , bis ].

Let g < r. The following definition is motivated by the need to isolate the
part of a state description in which at most g constants are brought together
instantiating a relation. We refer to this part as to the g-ary trace of the
state description. More precisely,

Definition. The g-ary trace of the state description (40), denoted by

(Θ�g)(b1, . . . , bm),
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or sometimes simply (Θ�g), is defined to be∧
1≤s≤g

∧
1≤i1<...<is≤m

γshi1,...,is (bi1 , . . . , bis) . (41)

Note that this agrees with the definition of the unary trace we made in the
previous section (on page 9). Any consistent conjunction of the form (41) is
called a g-ary trace for the constants b1, . . . , bm.

Partial state descriptions are composed of instantiated s-atoms in a similar
way to state descriptions, but the sentences do not necessarily combine to
give a full state description.

Definition. A partial state description for b1, . . . , bm is a sentence of the
form

∆(b1, . . . , bm) =
∧

1≤s≤r

∧
{bi1 ,...,bis}∈C

s

i1<...<is

γshi1,...,is (bi1 , . . . , bis) , (42)

where Cs is some set of s-element subsets of {b1, . . . , bm}.
We will assume that (42), like (40), displays all the instantiated γsh implied
by ∆. In other words, we assume that

⋃r
s=1C

s contains along with any
{bi1 , . . . , bis}, also all its subsets.

In addition, when writing ∆(b1, . . . , bm) for a partial state description, we
mean that all of b1, . . . , bm actually appear in it, so C1 contains all singletons
{bi} for i = 1, . . . ,m. We remark also that a partial state description (42) is a
state description just when Cr contains all r-element subsets of {b1, . . . , bm}.
Note that any g-ary trace of a state description is a partial state description.

We define the g-ary trace of a state formula, and a partial state formula
analogously to the definitions for state descriptions.

3.1. Polyadic Signatures

As in the binary case, we need to introduce an equivalence between atoms
(and more generally, between g-atoms) to capture the fact that g-atoms
obtained from each other by permuting the variables represent the same
thing.

Accordingly, we define γgh ∼ γgk if there exists a permutation σ ∈ Sg such
that

γgh(x1, . . . , xg) ≡ γgk(xσ(1), . . . , xσ(g)) (43)
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and we denote the equivalence classes of ∼ by Γg1, . . . ,Γ
g
pg . When g = r we

drop the superscript and write just Γ1 . . . , ,Γp, and we write p for pr. If (43)
holds, we say that γgh obtains from γgk via σ. Note that the equivalence classes
Γ1
j are singletons and p1 = N1 = 2q, so they are not necessary and we can

work with the γ1
k instead, as we did with the βk in the previous section, for

r = 2.

For 1 < g ≤ r, every Γgj can be split into subclasses, each subclass containing
all γgh with the same (g−1)-ary trace. Define sgj to be the number of elements
in these subclasses (given g and j, these subclasses of Γgj all have the same
number of elements). In the binary case, we wrote just sj for s2

j . Thus sgj
expresses in how many ways the (g − 1)-ary trace of some/any γgh from Γgj
can be extended to a γgk ∈ Γgj ; one of these ways is to γgh itself but there may
be other possibilities. Furthermore, we define sg to be the total number of
g-atoms with a given (g − 1)-ary trace. Note that this is independent of the
trace chosen, and that for any given (g − 1)-ary trace, sg is the sum of the
sgj over the j for which Γgj contains an atom with this trace.

We extend the definition of a signature from binary languages to r-ary lan-
guages for r > 2 in the obvious way:

Definition. The signature of a state description Θ as in (39) (or (40)) is
defined to be the vector 〈n1, . . . , np〉, where nj is the number of 〈i1, . . . , ir〉
such that 1 ≤ i1 < . . . < ir ≤ m and γhi1,...,ir ∈ Γj.

Thus, the signature records how many atoms from each equivalence class
there are within Θ(b1, . . . , bm). When m < r, the signature is not defined,
but the notion of extended signature still makes sense, where the extended
signature of Θ as in (40) is the vector

〈n1
1, . . . , n

1
p1

; . . . ; nr−1
1 , . . . , nr−1

pr−1
; n1, . . . , np〉 ,

and ngj is the number of 〈i1, . . . , ig〉 such that 1 ≤ i1 < . . . < ig ≤ m
and γghi1,...,ig

∈ Γgj . Note that the extended signature is derivable from the

signature (when m ≥ r) and that it is defined even when m < r.

Signature Exchangeability Principle, Sgx The probability of a state
description depends only on its signature.

Sgx for L unary or binary is the same as Ex or BEx respectively. Sgx implies
Ex but the converse implication does not hold in general. We gave an example
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of a probability function satisfying Ex but not Sgx (BEx) for r = 2 in the
previous section.

3.2. Polyadic Independence

The following definition aims to capture exactly which sets of g constants
are brought together instantiating a relation within a sentence:

Definition. For a sentence φ(b1, . . . , bm) ∈ QFSL we define Cs
φ to be the

set of all sets {bk1 , . . . , bks} with s elements such that all of bk1 , . . . , bks appear
in some ±Rd(bi1 , . . . , bird ), d ∈ {1, . . . , q} featuring in φ.

We refer to Cs
φ as the set of s-sets of constants appearing in φ. For example,

consider a language containing one binary relation symbol R1 and one ternary
relation symbol R2. For

φ = R1(a7, a2) ∨R2(a4, a2, a4)

we have C1
φ = {{a2}, {a7}, {a4}}, C2

φ = {{a2, a7}, {a2, a4}} and Ck
φ = ∅ for

k ≥ 3. Note that
⋃r
s=1C

s
φ is closed under taking subsets.

A modification of the Disjunctive Normal Form Theorem yields the following
lemma:

Lemma 6. Let φ(b1, . . . , bm) ∈ QFSL. Then φ(b1, . . . , bm) is equivalent
to a disjunction of partial state descriptions as in (42), with Cs = Cs

φ for
s = 1, . . . , r.

We are now in a position to formulate a general version of the Independence
Principle based on atoms, as stated on Page 6 for r = 1 and on page 15
for r = 2. In this generalised version we require that the following holds for
any g < r: if two quantifier free sentences have no (g + 1)-sets of constants
in common then they are conditionally independent given a g-trace for the
constants that they share.

Strong Independence Principle, SIP Let L be an r-ary language and let
0 ≤ g < r. Assume that φ, ψ ∈ QFSL are such that

Cg+1
φ ∩ Cg+1

ψ = ∅

and let b1, . . . , bt be the constants that φ and ψ have in common (if any). Let
∆ be a g-trace for the constants b1, . . . , bt when t > 0, and ∆ = > (tautology)
if φ and ψ have no constants in common. Then

w(φ ∧ ψ |∆) = w(φ |∆) · w(ψ |∆) .
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The Basic SIP Functions. Recall that for g ≤ r, Ng is the number of
g-atoms and pg is the number of equivalence classes of g-atoms under ∼.

Let ~Y = 〈y1
1, . . . , y

1
p1

; y2
1, . . . , y

2
p2

; . . . ; yr1, . . . , y
r
pr〉 be a vector of real num-

bers such that

0 ≤ ygj ≤ 1,

p1∑
j=1

y1
j = 1,

and such that for 1 < g ≤ r the following holds: For any (g − 1)-ary trace ψ
for x1, . . . , xg, ∑

j

sgj y
g
j = 1 (44)

where the sum is taken over those j ∈ {1, . . . , pg} for which Γgj contains some
γgh with the (g − 1)-ary trace ψ.

We use DL to denote the set of vectors satisfying the above conditions. In a
bid to keep our formulae simpler, we will write

zgh = ygj(h)

where j(h) is that j for which γgh ∈ Γgj . Note that (44) is the same as requiring∑
(γgh� g−1)=ψ

zgh = 1 . (45)

The vectors ~Y ∈ DL play a similar role in the polyadic to the role the vectors
~x ∈ D2q from w~x play in the unary. For a given ~Y , the corresponding function
w~Y assigns a state description Θ(b1, . . . , bm) the probability of obtaining it by
the following process: First the γ1

h are chosen for b1, . . . , bm, independently
according to the probabilities z1

h. Then the γ2
h are chosen for bi1 , bi2 with

i1 < i2 from amongst the eligible ones, i.e. from amongst those γ2
h for which

(γ2
h � 1)(x1, x2) ≡ γ1

hi1
(x1) ∧ γ1

hi2
(x2), independently and according to the

probabilities z2
h, and so on. Note that this works by virtue of (45), because

when choosing γgh for bi1 , . . . , big , (γgh �g − 1) is determined.

More formally, given ~Y as above, for a state description Θ(a1, . . . , am) such
that

Θ(a1, . . . , am) ≡
∧

1≤s≤r
1≤i1<...<is≤m

γshi1,...,is (ai1 , . . . , ais) (46)
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we define
w~Y (Θ(a1, . . . , am)) =

∏
1≤s≤r

1≤i1<...<is≤m

zshi1,...,is . (47)

Note that, as in the binary case, if σ ∈ Sm and Ψ(a1, . . . , am) = Θ(aσ(1), . . . , aσ(m))
then w~Y (Θ) = w~Y (Ψ).

Theorem 7. The functions w~Y determine probability functions that satisfy
Sgx and SIP (and hence also Ex and IP).

Furthermore, any probability function satisfying Ex and SIP is equal to w~Y

for some ~Y .

Proof. To show that w~Y determines a probability function note that (i)
and (ii) from page 3 clearly hold. For (iii), we will prove that for any state
description Θ(a1, . . . , am) we have

w~Y (Θ(a1, . . . , am)) =
∑

Θ+(a1,...,am,am+1)|=Θ(a1,...,am)

w~Y (Θ+(a1, . . . , am, am+1)) .

Let Θ+(a1, . . . , am, am+1) extend Θ. Then w~Y (Θ+(a1, . . . , am, am+1)) is the
product  ∏

1≤s≤r
1≤i1<...<is≤m

zshi1,...,is


 ∏

1≤s≤r
1≤i1<...<is−1≤m

zshi1,...,is−1,(m+1)


where the first product is as for Θ and hi1,...,is−1,(m+1) is that h for which

γsh(ai1 , . . . , ais−1 , am+1) = Θ+[ai1 , . . . , ais−1 , am+1] .

That is, where Θ+ is

Θ(a1, . . . , am) ∧
∧

1≤s≤r
1≤i1<...<is−1≤m

γshi1,...,is−1,(m+1)
(ai1 , . . . , ais−1 , am+1). (48)

Consider some r-tuple 〈i1, . . . , ir−1, (m + 1)〉 with 1 ≤ i1 < . . . < ir−1 ≤ m.
If some Θ+ |= Θ satisfies

Θ+[ai1 , . . . , air−1 , am+1] = γrh(ai1 , . . . , air−1 , am+1) ,
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then any conjunction that differs from (48) only by having γrk(ai1 , . . . , air−1 , am+1)
in place of γrh(ai1 , . . . , air−1 , am+1), where γrh and γrk have the same (r−1)-ary
trace, is also a state description extending Θ. Since the zrk for all such k sum
to 1 (from (45)), we can sum them out. Similarly, we can deal with the other
r-tuples, then the (r − 1)-tuples and so on, working our way down.

Similar reasoning gives us that (47) holds even when a1, . . . , am are replaced
by any other distinct constants b1, . . . , bm, and that we have an analogous
formula for the probability of partial state descriptions:

w~Y

 ∧
1≤s≤r

∧
{i1,...,is}∈Cs
i1<...<is

γshi1,...,is (bi1 , . . . , bis)

 =
∏

1≤s≤r

∏
{i1,...,is}∈Cs
i1<...<is

zshi1,...,is .

Using this, SIP is first seen to hold for partial state descriptions φ, ψ, and
then employing Lemma 6, in general. We omit the details.

To prove the last part of the theorem, assume that w satisfies Ex and SIP.
We define ~Y by

ygj(h) = zgh = w(γgh(a1, . . . , am) | (γgh(a1, . . . , am)�g − 1))

where γgh ∈ Γgj and (γgh(a1, . . . , am)�g−1) stands for a tautology when g = 1.
Note that by Ex it does not matter which γgh from Γgj we take, and that (44)
must hold. Writing any state description in the form (46) and using Ex and
SIP, we can show by induction (adding the conjuncts for increasing numbers
of constants one by one) that its probability is given by (47). �

Corollary 8. Let L be an r-ary language and let µ be a normalised σ-additive
measure on the Borel subsets of DL. For any θ ∈ SL define

w(θ) =

∫
DL
w~Y (θ) dµ(~Y ). (49)

Then the function w is a probability function on SL satisfying Sgx.

Proof. This can be proved by a straightforward checking of (P1), (P2), (P3)
and Sgx, using the Lebesgue Dominated Convergence Theorem for (P3). �

However, whether or not the converse to Corollary 8 holds, that is, whether
any probability function satisfying Sgx can be expressed in the form (49)
remains to be investigated.
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3.3. Polyadic PIR and JSP

For a general r-ary language, instantial relevance based on atoms can be
captured similarly to the binary case. To do this, we first generalise the
concept of Extra to describe how much information a g-atom instantiated by
b1, . . . , bg adds to a partial state description.

Let
∆(a1, . . . , am) =

∧
1≤s≤r

∧
{ai1 ,...,ais}∈C

s

i1<...<is

γshi1,...,is (ai1 , . . . , ais) (50)

be a partial state description. Recall that
⋃r
s=1C

s is assumed to be closed
under taking subsets. Let b1, . . . , bg be distinct constants, some of which may
be amongst a1, . . . , am. Assume that γgh(b1, . . . , bg) is consistent with ∆.

Definition. The Extra in γgh(b1, . . . , bg) over ∆ is the set E of those subsets
{t1, . . . , ts} of {1, . . . , g} such that {bt1 , . . . , bts} is not in

⋃r
s=1C

s.

Note that E is empty just if ∆(a1, . . . , am) implies γgh(b1, . . . , bg), otherwise
{1, . . . , g} is in E. E contains the singleton {i} just when bi is a new con-
stant not featuring in ∆. E is the whole power set of {1, . . . , g} when all of
b1, . . . , bg are new. The Extra is closed under supersets, and the additional
information in γgh(b1, . . . , bg) over ∆ consists of all ±Rd(bi1 , . . . , bird ) implied
by γgh(b1, . . . , bg) and such that {bi1 , . . . , bird} ∈ E.

Polyadic Principle of Instantial Relevance, PPIR Let ∆(a1, . . . , am)
be a partial state description, 1 ≤ g ≤ r, and let γgh be a g-atom. Let
b1, . . . , bg, b

′
1, . . . , b

′
g be such that

∆ ∧ γgh(b1, . . . , bg) ∧ γgh(b′1, . . . , b
′
g)

is consistent. Assume that the Extras in γgh(b1, . . . , bg) over ∆∧γgh(b′1, . . . , b
′
g),

in γgh(b1, . . . , bg) over ∆ and in γgh(b′1, . . . , b
′
g) over ∆ are all the same. Then

w(γgh(b1, . . . , bg) |∆) ≤ w(γgh(b1, . . . , bg) |∆ ∧ γgh(b′1, . . . , b
′
g)) . (51)

Theorem 9. Any convex combination (or integral) of the functions w~Y sat-
isfies PPIR.

Proof. Let ∆, γgh and b1, . . . , bg, b
′
1, . . . , b

′
g be as in the statement of PPIR.

Assume ∆ is as in (50). Let E be the Extra in γgh(b1, . . . , bg) over ∆. We
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have
w~Y (∆) =

∏
1≤s≤r

∏
{ai1 ,...,ais}∈C

s

i1<...<is

zshi1,...,is ,

w~Y (∆∧γgh(b1, . . . , bg)) = w~Y (∆∧γgh(b′1, . . . , b
′
g)) = w~Y (∆) ·

∏
{t1,...,ts}∈E

zskt1,...,ts ,

w~Y (∆ ∧ γgh(b1, . . . , bg) ∧ γgh(b′1, . . . , b
′
g)) = w~Y (∆) ·

 ∏
{t1,...,ts}∈E

zskt1,...,ts

2

.

It follows that for w = w~Y , (51) holds with equality.

The proof for w defined by (49), and hence also for any convex combination
of the w~Y , follows from the above equations exactly as in the binary case. �

By the same method we also obtain that under the same assumptions as those
in PPIR except that merely the Extras in γgh(b1, . . . , bg) over ∆∧γgh(b′1, . . . , b

′
g)

and in γgh(b′1, . . . , b
′
g) over ∆ are required to be the same, we obtain that any

convex combination (or integral) w of the functions w~Y satisfies

w(γgh(b′1, . . . , b
′
g) |∆) ≤ w(γgh(b1, . . . , bg) |∆ ∧ γgh(b′1, . . . , b

′
g)) .

We now address irrelevance. Searching for a polyadic variant of JSP, we are
again led to consider the conditional probability of some γgh(b1, . . . , bg) given
a partial state description ∆(a1, . . . , am) as in (50). For 1 < g ≤ r, we will
require the partial state description to be (g − 1)-complete, that is, Cg−1

contain all the (g − 1)-element subsets of {a1, . . . , am}. In other words, ∆
implies a state description for any (g − 1)-tuple of constants from amongst
the a1, . . . , am.10 Furthermore, we will require that the Extra in γgh(b1, . . . , bg)
over ∆ contains just the set {1, 2, . . . , g}, that is, either g = 1 and we consider
the conditional probability of a 1-atom instantiated by a new constant, or
g > 1 and we consider the conditional probability of a g-atom instantiated
by constants already appearing in the evidence.

These conditions held in the binary case (that is, when r = 2) considered in
the previous section. For a general r, we propose the following generalisation
of the Binary Sufficientness Postulate:

10Note that by the convention from page 31, any partial state description ∆(a1, . . . , am)
is 1-complete.
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The Polyadic Sufficientness Postulate Let ∆(a1, . . . , am) be a partial
state description as in (50).

(i) w(γ1
h(am+1) |∆) depends only m and on the number of times that γ1

h ap-
pears amongst the γ1

hi1
, i1 = 1, . . . ,m.

(ii) Let 1 < g ≤ r and assume that ∆ is (g − 1)-complete. Let b1, . . . , bg be
from amongst the a1, . . . , am, and such that {b1, . . . , bg} /∈ Cg. Assume that
γgh(b1, . . . , bg) ∧∆ is consistent. Then

w(γgh(b1, . . . , bg) |∆)

depends only on g and on

1. the number of times that γgh or an equivalent atom appear amongst the
γghi1,...,ig

, {ai1 , . . . , aig} ∈ Cg.

2. the number of times that γgh or an equivalent atom could have appeared
amongst the γghi1,...,ig

in ∆. That is, the number of g-sets {ai1 , . . . , aig} ∈
Cg, such that

γghi1,...,ig
(ai1 , . . . , aig)�(g − 1)

is the (g − 1)-ary trace of γgf (ai1 , . . . , aig) for some γgf ∼ γgh.

3. sgj where j = j(h) is such that γgh ∈ Γgj ; that is, the number of atoms
γgf such that γgf ∼ γgh and ∆ ∧ γgf (b1, . . . , bg) is also consistent.

It might be hoped and expected that the Polyadic Sufficientness Postulate
determines an interesting class of probability functions just like Johnson’s
Sufficientness Postulate and the Binary Sufficientness Postulate do in the
unary and binary cases respectively. A natural class of probability functions
satisfying this principle, are the probability functions wλ1,...,λr for λg ∈ (0,∞]
determined as follows:

If we refer to the number from (i) above11 as mh, then

w(γ1
h(am+1) |∆) =

mh + λ1
2q

m+ λ1

.

11That is, if mh is the number of times that γ1h appears amongst the γ1hi1
.
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If j = j(h) and we refer to the numbers12 from (ii-1) and (ii-2) as ngj and vgj
respectively, then

w(γgh(b1, . . . , bg) |∆) =

ngj
sgj

+ λg
sg

vgj + λg

(recall that q is the total number of relation symbols in our language and
sg was defined on page 32). We know that in the binary case discussed
in the previous section, these are the unique regular probability functions
satisfying Ex and the above principle. The general case remains to be further
investigated.

4. Conclusion

We based our investigation on the notion of (polyadic) atoms as our central
building blocks, since they provide the smallest complete units from which
state descriptions (and hence all sentences) can be built. Using this, we were
able to propose, first in the binary context and then for general polyadic
languages, generalisations of the unary concept of a signature, and principles
based on invariance under signatures (BEx, Sgx), independence, instantial
relevance and an irrelevance principle generalising Johnson’s Sufficientness
Postulate, as well as probability functions satisfying these. We have also
introduced the more general g-atoms for g ≤ r (where r is the arity of the
language), and used these to define partial state descriptions. In addition,
we were able to completely characterise the probability functions satisfying
BEx, BEx+IP and Ex+BIP for binary languages. We have seen that Ex
does not imply Sgx and that the signature of a state description is not a
determining characteristic of it (up to a permutation of constants) as in the
unary case.

This opens the door to many new questions arising from these ideas. For
example, considering a fixed r-ary language, let g-atoms again be the state
formulae for g variables, but this time for any positive natural number g. We

12That is, ngj is the number of times that γgh or an equivalent atom appear amongst the
γghi1,...,ig

, and vgj is the number of times that γgh or an equivalent atom could have appeared

amongst the γghi1,...,ig
in ∆.
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may define the g-signature of a state description for m individuals (where g ≤
m) analogously to (r-)signatures. We end this paper with some observations
regarding these g-signatures, a direction to be further researched.

It is easy to see that the g-signature of a state description determines its
s-signature for s < g. Hence, for such s, g, a probability function which gives
state descriptions with the same s-signature the same probability, must also
give the same probability to state descriptions with the same g-signature.

Conversely, however, it is not the case that the s-signature of a state descrip-
tion determines its g-signature for s < g, not even when r ≤ s < g. One
example, for r = 2, s = 2 and g = 3, is provided by the state descriptions on
page 14. Here we give another example, for r = 2, s = 3 and g = 4:

Example. Let L contain one binary relation symbol. Then the 6 state formu-
lae (3-atoms) represented by

1 1 1

2 1 1

2 2 1

1 2 2

1 1 2

1 1 1

1 1 2

2 1 2

1 1 1

1 2 1

1 1 1

2 2 1

1 2 2

1 1 1

1 2 1

1 1 1

2 1 2

2 1 1

are equivalent. Furthermore, the following two are also equivalent:

1 1 2

2 1 1

1 2 1

1 2 1

1 1 2

2 1 1

.

However,
1 1 2 1 1 1

2 1 1 1 1 1

1 2 1 1 1 1

2 2 2 1 1 2

2 2 2 2 1 1

2 2 2 1 2 1

1 1 1 2 1 1

2 1 1 1 1 1

2 2 1 1 1 1

1 2 2 1 1 1

2 2 2 2 1 1

2 2 2 2 2 1

feature only the above 3-atoms and it can be checked that they have the same
3-signature but not the same 4-signature.
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