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Abstract Many cognitive scientists, having discovered that some computational-
level characterization f of a cognitive capacity φ is intractable, invoke heuristics as
algorithmic-level explanations of how cognizers compute f . We argue that such expla-
nations are actually dysfunctional, and rebut five possible objections. We then propose
computational-level theory revision as a principled and workable alternative.

Keywords Psychological explanation · Computational-level theory ·
Computational complexity · Intractability · Heuristics · NP-hard · Algorithm ·
Approximation

1 Introduction

Crucial to the progress of cognitive science and psychology are not only good func-
tional characterizations of a given cognitive capacity φ, such as, e.g., visual perception,
analogical reasoning, or judgments of grammaticality, but also good explanations of
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how those functions are actually computed.1 The basic framework for telling such
stories, developed in part by Marr (1982), rests on the widely-accepted distinction
between computational- and algorithmic-level explanations. A computational-level
explanation of some capacity φ is a well-defined input/output function f : I → O , in
which inputs i ∈ I are mapped to outputs f (i) ∈ O .2 An algorithmic-level explanation
of φ is a precise characterization of one or more specific algorithms A1, A2, . . . , An
that a cognitive system may be running whenever it computes (or “solves”) f . Each
such algorithm A ∈ {A1, A2, . . . , An} is a possible explanation of how f , as a model
of φ, is computed.

It is well known that not every function f is computable (Turing 1936). Moreover,
many functions that are computable in principle are not computable in practice (Garey
and Johnson 1979). This wrinkle introduces the question of how then to explain the
computation of intractable functions. This is particularly the case in cognitive science,
where it is not uncommon for theorists to postulate or otherwise discover that the
functional characterization of some cognitive capacity φ is computationally intracta-
ble—i.e., characterized by some f that is too hard to compute exactly with a practical
or psychologically realistic amount of computational resources.3

For many cognitive scientists (philosophers included), coping with intractability at
the computational level—particularly with those f that are NP-hard—requires switch-
ing from algorithms that compute exactly to inexact algorithms (or heuristics) that do
not.4 ‘When you discover a problem is …hard in principle,’ stated Elijah Millgram,
‘the sensible approach is to start looking for ways to solve the problem approximately’
(2000, p. 87). Likewise, Paul Thagard averred that intractable (NP-hard) problems
‘must be handled by computational approximation, not an exhaustive algorithm’ (1998,
p. 55). Such recommendations are in line with the conventional wisdom in computer

1 We take cognitive capacities φ1, φ2, . . . ,φn to be analyzable in terms of composite activities that can
be decomposed into hierarchical systems of organized component parts and operations. Consequently, we
assume that psychological explanations of these capacities are typically a subclass of mechanistic expla-
nations (note that it does not follow that all psychological explanation just is mechanistic explanation (see
Piccinini 2004; Wright and Bechtel 2007; Bechtel and Wright 2009)). We will also assume that norms of
descriptive adequacy and completeness dictate that the functional characterization of a given φ requires
an explanation of how it is computed; but see Piccinini (2010) for an argument that functionalism and
computationalism are disjoint theses.
2 In the theory of computation, functions are often also referred to as ‘(computational) problems’ (cf. Marr’s
idea that a computational-level theory specifies ‘the nature of the problem being solved’ (Marr 1982, p.
27; see also Marr and Poggio 1977). The terms ‘problem’ and ‘function’ may invite different perspectives:
whereas ‘problem’ may be more prescriptively connotative of an input–output mapping that is to be realized
(i.e., a problem is to be solved), the term ‘function’ may be more descriptively connotative of an input–
output that is being realized (i.e., a function is computed). Yet, from a mathematical perspective, these two
terms co-refer, viz., to the mathematical object of an input–output mapping. In the context of this paper,
‘problem’ will be used to mean a computational problem, a function, or an input–output mapping—not
only in accordance with how Marr intended the term, but, more importantly, in accordance with how our
interlocutors use the term (see quotes in §1).
3 The problem of intractable functional characterizations of cognitive capacities seems to span the whole
gamut of cognitive domains; examples can be found in vision (Tsotsos 1990), reasoning (Levesque 1988),
planning (Bylander 1994), analogy derivation (Veale and Keane 1997), decision-making (Gigerenzer and
Goldstein 1996), and natural language processing (Barton et al. 1987) to note a few.
4 Here, we accept that all NP-hard functions are computationally intractable. See van Rooij (2008) for
qualification of this claim.
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science that, when faced with NP-hard problems, ‘the search for an efficient, exact
algorithm should be accorded low priority [and it is] more appropriate to concentrate
on other, less ambitious, approaches’ (Garey and Johnson 1979, p. 3). Many cognitive
scientists seem to accept this wisdom as applying also to psychological explanation,
possibly reasoning as follows: If inexact algorithms are the only tractable algorithms
when facing intractability, they must be acceptable explanations of how intractable
functions are computed.

The presumed acceptability of pursuing inexact algorithms in the context of psy-
chological explanation is illustrated by quotes from leading researchers in cognitive
science. For example, when observing that Dedre Gentner’s (1983) original charac-
terization of analogical mapping as a graph matching problem is NP-hard, Markman
and Gentner saw inexact (in this case, sub-optimal) algorithms as the only acceptable
explanatory approach:

Graph matching is known to be in the class of NP-hard problems, meaning that
the running time needed for any algorithm that is guaranteed to find the best match
increases as an exponential function of the size of the domains being compared.
Thus, any psychologically plausible process for finding analogical correspon-
dences must either restrict itself to trivial problems (an unacceptable course) or
simplify the solution process (at the risk of finding sub-optimal matches). (2000,
p. 507)

In a similar vein, Chater et al. point to the possibility of inexact algorithms as a way
of coping with the intractability of the currently popular probabilistic (or Bayesian)
cognitive models:

…we may take models such as stochastic grammars for language or vision, or
Bayesian networks, as candidate hypotheses about cognitive representation. Yet,
when scaled-up to real-world problems, full Bayesian computations are intracta-
ble …From this perspective, the fields of machine learning, artificial intelligence,
statistics, informational theory and control theory can be viewed as rich sources
of hypotheses concerning tractable, approximate algorithms that might underlie
probabilistic cognition. (2006, p. 290)

Lastly, Thagard, when confronted with the fact that ‘Abduction characterized in terms
of coherence is …intractable’, is comforted by the idea that ‘efficient approximation
algorithms exist’ and ‘the possibility that heuristic search …[can] improve the com-
putability of abductions’ (Thagard and Shelley 1997, p. 426). With co-author Karsten
Verbeurgt, Thagard expressed a similar optimism:

Coherence problems are inherently intractable computationally, in the sense that,
under widely-held assumptions of computational complexity theory, there are no
efficient (polynomial-time) procedures for solving them. There exist, however,
several effective approximation algorithms for maximizing coherence problems,
including one using connectionist (neural network) techniques. (1998, p. 2)

It is not difficult to empathize with theorists who appeal to heuristics (or otherwise
inexact algorithms) as algorithmic-level explanations of how some intractable f is
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computed, given that no exact polynomial-time algorithm A could exist for doing so.5

Nevertheless, such coping strategies are (fundamentally) misguided. In this paper, we
argue that appeals to one or more tractable heuristics H cannot explain how cognizers
actually compute an intractable function f . The suggestion otherwise, upon which
appeals to heuristics are motivated, leaves these kinds of psychological explanations
dysfunctional.6 We end the paper with a positive suggestion about properly refining
this strategy so that the appeal to heuristics can abide by a normative constraint on
good psychological explanations.

2 The wrong way to cope with intractability

Most generally, a procedure A is said to be an algorithm just in case A is a procedure
with a finite description, and, for any given input to process, A halts in a finite number
of steps, possibly producing some output.7 Useful for cognitive science is also a more
circumscribed concept of algorithms—one that explicitly relates them to the particular
function (or problem) being computed by them. Accordingly, let A be an algorithm
for computing function f : I → O iff A is an algorithm, and, for any input i ∈ I , the
algorithm A produces as output A(i) = f (i). To emphasize that A computes exactly
f for all inputs in its domain, we sometimes also refer to A as an exact algorithm.

If a function f is NP-hard, there is no algorithm A for computing f that runs
in a time which is bounded by some polynomial function of the size of the input
(e.g., the running time of the algorithm is upper bounded by |i |a , for each i ∈ I with
|i | > b, where a and b are constants). Because nonpolynomial-time algorithms require
an excessive amount of time for their completion, even for intermediate input sizes,
they are considered to be computationally intractable. Consequently, computationally
intractable algorithms are unfeasible algorithmic-level explanations of how subjects
compute the functions characterizing their cognitive capacities.8

This consequence raises the question of whether the computation of some cognitive
capacity φ, characterized by intractable function f , is simply inexplicable if only
polynomial-time algorithms count as legitimate algorithmic-level explanations. Cur-
rently, a popular view among philosophers and cognitive scientists is the contrarian
one: good psychological explanations are still possible, intractability notwithstand-
ing. As the earlier quotes from cognitive scientists suggest, one need only posit a
polynomial-time heuristic H for f as an algorithmic-level explanation of how it is
computed.

5 This is, of course, modulo the assumption that P #= NP. This assumption remains unproven, but is nev-
ertheless widely conjectured by mathematicians and computer scientists to be true on both intuitive and
empirical grounds (Garey and Johnson 1979; Fortnow 2009). As do our intended interlocutors, we will
likewise here assume that the P #= NP conjecture is indeed true.
6 A preliminary version of the argument has appeared in van Rooij (2008). The version herein is signifi-
cantly expanded and strengthened and also rebuts several additional objections.
7 Along with terms like ‘function’ and ‘computation’, ‘algorithm’ has been used in various senses; unfor-
tunately, the result has often been confusion rather than gains in expressive power (Piccinini 2004, 2010).
8 See, e.g., Frixione (2001).
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Following convention in computer science (see Ausiello et al. 1999), let some
procedure H be a heuristic just in case the following two conditions obtain. Firstly,
H is known to not compute f exactly (i.e., it will output something different from
f (i) for at least some i ∈ I ). Secondly, some relationship—weaker than equality—
obtains between f and the particular function fH computed exactly by H . (Note that
it may be conjectured that f (i) and fH (i) are the same for many inputs i , or it may
be conjectured that the difference between f (i) and fH (i) is small for many inputs
i ∈ I .)

There are two fundamental problems with this view, popular as it is. Not only does
the appeal to heuristics introduce an inconsistency between the computational- and
algorithmic-level explanations, but it also leaves the computation of f unexplained
for any and all i ∈ I with f (i) #= fH (i).

Firstly, to demonstrate the inconsistency, let H be a heuristic for f , and let fH be
the function computed by H . From the definition of heuristics, it follows that there
exists a nonempty set of inputs I ′ ⊆ I , such that fH (i) #= f (i) for all i ∈ I ′. Suppose
further that a cognitive scientist—as represented by the aforementioned—maintains
that f (i) is a computational-level explanation of some φ and that H is its associ-
ated algorithmic-level explanation. Now, what should she predict as the observable
outcome of presenting a subject directly with some input i ∈ I ′ as produced by the
capacity of interest? According to the computational-level explanation, she should
predict the output will be f (i); but, according to the algorithmic-level explanation,
the predicted output should be fH (i). But since fH (i) #= f (i), the two predictions are
inconsistent competitors: the computational-level explanation is confirmed by the data
only if the algorithmic-level theory is disconfirmed, and the algorithmic-level theory
is confirmed by the data only if the computational-level explanation is disconfirmed.

Besides the inconsistency between the computational- and algorithmic-level expla-
nations that is introduced by maintaining the heuristic H as an algorithmic-level expla-
nation, H also fails as an explanation of how the computation of f is achieved by
cognizers. This follows simply from the fact that H does not compute f , but instead
computes fH , which is a distinct computational problem from f . After all, there exist
(possibly many) i ∈ I such that f (i) #= fH (i), and for all those i , the heuristic H
cannot explain how f (i) is computed.

Cognitive scientists who persist in maintaining that H is a legitimate and accurate
algorithmic-level explanation certainly can resolve the aforementioned problems of
inconsistency and explanatory failure. Perhaps the most obvious resolution would be
to revise the computational-level explanation, such that the cognitive capacity char-
acterized is the function fH instead of f . Although ad hoc, the upshot of this revision
is that the function-algorithm pair ( fH , H) turns out to be a viable (that is, internally
consistent) psychological explanation of φ: after all, H is a tractable and exact algo-
rithm for fH , and therefore a feasible explanation of how the computational problem
fH is computed. Of course, since the two functions fH and f differ according to their
tractability, this sort of ad hoc revision makes plain that the cognitive capacity actually
explained is the φ′ characterized by fH , not the φ that cognitive scientists initially
set out to explain. On the other hand, refinements to descriptions of the target explan-
andum are often crucial for establishing good psychological explanations, although,
prima facie there is at least some difference between redescribing an explanandum
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versus describing an altogether different explanandum. Hence, whether one takes this
sort of revision to be tantamount to an admission that the target explanandum has been
mischaracterized, or merely just a stage in refining it, we leave up to the reader.

3 Objections and replies

Having demonstrated why a currently popular view among cognitive scientists is mis-
guided, in this section we reply to five common objections, both implicit and explicit
in the work of cognitive scientists and philosophers such as John R. Anderson, Peter
Carruthers, Nick Chater, Kenneth Forbus, Dedre Gentner, Gerd Gigerenzer, Richard
Samuels, and Paul Thagard.

Before doing so, however, it is important to forestall a series of related and superfi-
cial complaints that are based primarily on misreading or otherwise misunderstanding
the argument of this paper. First, worries about teleology and normativity are orthogo-
nal. For to say that computational-level explanations of φ are well-defined input/output
mappings is in no way to abnegate the normative or teleological dimensions of com-
putational or functional characterizations, and so in no way to say that non-normative
specifications of input/output mapping functions are sufficient for good computa-
tional-level explanations, or that those explanations are reducible to those functions.
Consequently, the observation that the exact computation of functions characteriz-
ing cognitive capacities is a constraint on good computational explanations does not
prohibit theories of psychological explanation from proposing additional constraints
on good computational-level explanations (such as the constraint dictating that those
functions’ normative or teleological dimensions may be important to account for).
Hence, the argument of this paper is independent of claims about the relationship
between normative stories and computational-level explanations because such norma-
tive stories are orthogonal to the assessment of the tractability or intractability of the
input/output mapping function that is being postulated. Tractability is a property of
functions, not normative stories.

This misreading is also sometimes rephrased in terms of the distinction between
‘why’-explanations and ‘how-’ or ‘how-possibly’ explanations; but, here too, the argu-
ment of this paper neither denies, nor depends on denying the importance and utility of
purely computational-level ‘why’-explanations. Relatedly, neither does it involve the
assertion that ‘how-’ or ‘how-possibly’ mechanistic explanations about the computa-
tion of those functions are the only legitimate kinds of psychological explanations.

It might also be complained that the argument of this paper depends on a skewed
view of the research of actual practitioners in the psychological and cognitive sci-
ences, and, in particular, on the implausible claim that those researchers are primarily
concerned with showing in the abstract how to compute tractable functions for a given
cognitive capacity. As an objection, this complaint also misses the mark. For starters,
it badly conflates the argument’s prescriptive conclusion about there being a normative
constraint on good psychological explanation with a descriptive assumption about the
current practice of research in the cognitive sciences. Moreover, even if there were
no conflation, the argument of this paper involves no such assumption or pretense
that researchers are primarily concerned with computational-level modeling or with
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abstractly characterizing all and only the tractable functions. And even if the argument
did so depend, it is sufficiently clear that practitioners take both computational- and
algorithmic-level modeling to be useful and important, and are, in fact, concerned with
how their research is constrained by issues of complexity, tractability, and norms of
explanation.

With these various misreadings out of the way, we can now turn to the five objections
to our claim that heuristics are inapposite explanations of how intractable functions
are computed. First, consider the objection from optimism [Forbus, Gentner, Samuels,
Thagard]:9 H may be a heuristic that computes f inexactly, but it does process the
correct output for most, or even all, of the inputs that it was tested on—namely, Iχ .
Therefore, since H performed so well on our trials, we believe it is a good algorith-
mic-level explanation for f .

This objection is simply an ignoratio elenchus. Regardless of whether f (i) = fH (i)
for all i ∈ Iχ , where Iχ is some—possibly large—set of tested inputs, it is known that
there also exist inputs i ∈ I ′, with I ′ ⋂ Iχ = ∅ such that fH (i) #= f (i). Otherwise,
H would be an exact algorithm for fH , which would contradict both the heuristic
status of H and the NP-hardness of f . For all those i ∈ I ′ for which f (i) #= fH (i),
there still exists an inconsistency between the computational- and algorithmic-level
explanations that this objection fails to address. Again, H fails to explain how f is
actually computed; at worst, it fails in general, and at best it fails for all those i ∈ I ′

for which f (i) #= fH (i).
A successor to the objection from optimism is the objection from persistent opti-

mism [Forbus, Gentner, Samuels]:10. H may return the wrong output for some inputs
to f , but there appear to be only a small number of these inputs. Hence, H can still
be a good algorithmic-level explanation for f .

As it were, this condition cannot be met, even granting that a (very) small number of
errors may render an explanation (more-or-less) acceptable. This result follows from
an observation by Schöning (1990, p. 232) that the existence of a polynomial-time
algorithm H for a function f which misbehaves on a finite set of inputs (by, e.g., giv-
ing the wrong outputs or running in super-polynomial time on those inputs) implies
the existence of an algorithm H ′ which computes f correctly on all inputs in polyno-
mial time. This algorithm H ′ first checks if a given input is in a table of misbehaving
inputs. If so, the answer associated with that input in the table is returned; otherwise,
the answer is computed by running H on that input. As the set of misbehaving inputs
is finite, the lookup table preprocessing can be done in constant time, allowing H ′ to
run in polynomial time. This implies the following lemma, which in turn addresses
the objection as phrased.

Lemma 1 If f : I → O is an NP-hard function, then there cannot exist a polyno-
mial-time heuristic H for f that returns f (i) for all i ∈ (I − I ′) where I ′ ⊂ I is finite
(assuming P #= NP; see footnote 5).

9 See, e.g., Forbus and Oblinger (1990, pp. 5–6); Genter and Markman (1995, p. 133); Samuels (2005,
p. 109, footnote 2); Thagard and Verbeurgt (1998, p. 33).
10 See, e.g., Forbus and Oblinger (1990, pp. 5–6); Genter and Markman (1995, p. 133); Samuels (2005,
p. 109, footnote 2).
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Third is the objection from implicit revision [Anderson, Gigerenzer]:11 H may be a
heuristic for f , but it does process the correct output for all (psychologically) relevant
inputs, and it was these inputs that were always intended. Hence, H can still be a good
algorithmic-level explanation for f .

This objection suggests two things, each of which is possible in principle but in
need of verification; and yet, once verified, the objection becomes vacuous. Firstly, the
objection states that not all possible inputs to f : I → O are relevant for explaining φ

but only a proper subset I ′ ⊂ I is. This raises the question of what I ′ is (i.e., the set is
in need of characterization if H is to explain how f is computed for inputs restricted
to I ′ and why only inputs in I ′ are relevant (possibly this is because only i ∈ I ′ are
believed to occur in the real world whenever φ is manifest)). Of course, not every
ad hoc revision that appeals to the ‘relevant’, ‘plausible’, ‘interesting’, etc. subset of
inputs is inappropriate. Yet, the danger is that the theorist is playing a shell game; for
such appeals are only as acceptable as the warrant for targeting precisely that subset
as opposed to any other.

Either way, grant for the sake of argument that I ′ ⊂ I can both be characterized and
(psychologically) motivated, and now let us consider the function f ′ : I ′ → O , which
denotes the function f restricted to inputs I ′ ⊂ I (i.e., f (i) = f ′(i) for all i ∈ I ′

and f ′(i) is undefined otherwise). The objection states that it is f ′, rather than f , that
properly characterizes the cognitive capacity φ as is to be explained. Moreover, since
H is claimed to compute f ′ correctly for all i ∈ I ′, and H is a tractable algorithm, the
objection entails that f ′ is tractable. This raises the question of whether ‘ f ′ is tracta-
ble’ is true. Yet, if we grant that f ′ is indeed tractable and that H computes it, then
plainly the objector has not actually maintained the intractable f as a psychological
explanation of φ and H as a heuristic for explaining how f is computed. Rather, she
is merely maintaining tractable f ′, as a characterization of φ and the exact algorithm
H is the algorithmic-level explanation of how f ′ is computed. The restriction is such
that the target subset is being now claimed to be tractable; yet, intractability was what
motivated the shift to an inexact algorithm in the first place.

A fourth objection is the objection from approximation [Chater, Thagard]:12 H may
be a heuristic (i.e. nonexact) algorithm for f , but its output fH (i) may approximate the
correct output f (i) for all inputs i . Hence, H appears to be a good algorithmic-level
explanation for f .

Much of the force of this objection depends on what is meant by ‘approximate’, but
unfortunately that meaning is unclear. We suspect a variety of its meanings may be
subsumed by the following.13 Firstly, it is implicitly understood that approximate out-
puts for f (i) are drawn from a set of candidate outputs, which is a superset including
f (i). We denote the candidate-output set function by ‘ fc’. To illustrate, consider the

11 Although we are not aware of any cognitive scientist who explicitly defends this position, we think it is
a natural objection that in our view improves upon the two previous ones. We see the idea that tractability
of cognitive processes can in part be explained by exploiting ecological constraints on the inputs as being
implicit in the work of both Anderson (1990, p. 29) and Gigerenzer (2000, p. 736).
12 See, e.g., Chater et al. (2006, p. 290); Thagard and Verbeurgt (1998, p. 2).
13 For conceptions of approximation relevant to cognitive science, see e.g., Ausiello et al. (1999) and
Kieseppä (1996).
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well-known NP-hard computational-level explanation of coherence by Paul Thagard.
This theory postulates a function that takes as input a network of pair-wise positive
and negative constraints, and gives as output a truth assignment on the nodes of the
network that satisfies a maximum number of constraints. For this function the candi-
date-output set is naturally defined as the set of all possible truth assignments. Sec-
ondly, it is implicitly assumed that there is some distance function d(o, o′) measuring
the distance between o, o′ ∈ fc(i) for any given i ∈ I . For example, a possible mea-
sure of the distance between two truth assignments is the number of values on which
they differ, also known as the Hamming distance (e.g., distance between TTTFFF and
TFTFTF would be 2 in this case). Finally, given a candidate-output set function fc and
a distance function d, we say that outputs of a heuristic H ε-approximate the outputs
of f iff fH (i) ∈ fc and d( f (i), fH (i)) < ε, for some (preferably small) constant ε

for all i ∈ I .
We prove that it is not possible for a polynomial-time algorithm, like H , to approxi-

mate a significant set of NP-hard functions in this sense. This set of functions is defined
by the property neighborhood-searchability, a property known to hold for many (if not
all) NP-hard functions—including Thagard’s constraint satisfaction theory of coher-
ence—for natural choices of fc and d. Without loss of generality, in the following we
assume for simplicity that ε is a non-negative integer.

Definition 1 A function f is neighborhood-searchable relative to a distance function
d if, for any input i ∈ I, o ∈ fc(i), and constant ε both of the following conditions
are met:

1. when given o, it is possible to generate all outputs o′ ∈ fc(i) with d(o, o′) ≤ ε in
time polynomial in the size |i | of input i , and

2. when given all the outputs o′ ∈ fc(i), with d(o, o′) ≤ ε, it is possible to recognize
which of the outputs in this ε-neighborhood is f (i) in time polynomial in the size
|i | of input i .

To see that Thagard’s constraint satisfaction theory of coherence satisfies condi-
tion 1, for fc and d as proposed above, consider that for any given truth assignment
o ∈ fc(i) of length n, there are at most n possible truth assignments that are distance 1

from o, at most
(

n
2

)
that are at distance 2 from o, …and at most

(
n
ε

)
that are at dis-

tance ε from o. In total, the set of all outputs o′ ∈ fc(i) with d(o, o′) ≤ ε contains no
more than εnε possible truth assignments. Generating all these truth assignments, can
be done in no more than εnε+1 computational steps—which is polynomial time since
n ≤ |i | and ε is a constant—simply by writing out each n-length truth assignment one
by one.

We note that condition 2 is met, by definition, by all NP-hard functions that are in
NP (i.e., all NP-complete functions). To see that Thagard’s theory (which is not in NP)
satisfies condition 2, observe that checking the number of constraints that are satisfied
by a given truth assignment can be done in a time that is linear in the number of
constraints in the network: for every positive constraint, simply check if the two nodes
that it connects have the same truth value (in which case it is satisfied), and for every
negative constraint, check if the two nodes that it connects have the opposite truth
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value (in which case it is satisfied). If we know that the ε-neighborhood of o contains
f (i), we can thus recognize f (i) in polynomial-time, by verifying that it satisfies the
maximum number of constraints of all the truth assignments in o′s ε-neighborhood.
To verify this, we need at worst to compute the number of constraints satisfied by all
other o′ in the ε-neighborhood of o and verify that the number is lower than for truth
assignment f (i).

Lemma 2 If f is an NP-hard function that is neighborhood-searchable for a distance
function d, then no polynomial-time algorithm can ε-approximate f (assuming P #=
NP; see footnote 5).

The proof is by reductio ad absurdum. Assume P #= NP and assume that there
is a polynomial-time algorithm H that ε-approximates. Then we can run H on i to
create output o such that d(o, f (i)) ≤ ε. Consider a second algorithm A that takes
as input the output of H , and determines for all o′ ∈ fc(i) with d(o, o′) ≤ ε whether
o′ = f (i). Because we know that d(o, f (i)) ≤ ε, at least one such o′ = f (i), and
hence H and A together afford the exact computation of f (i). Since H is a polynomial
time algorithm and, by clause 2 of Definition 1, A is a polynomial time algorithm,
f (i) can be computed in polynomial time. However, as f is an NP-hard function, this
implies that P = NP, and is thus a contradiction.

Corollary 1 If f is an NP-hard function that is neighborhood- searchable relative to
a distance function d, and H is a polynomial-time algorithm, then there exist inputs
i of f such that d( f (i), fH (i)) > ε for any (possibly large) constant ε (assuming P
#= NP; see footnote 5).

The above establishes that, under reasonable operationalizations of “approxima-
tion”, intractable functions are not tractably approximable. This counters the objec-
tion as phrased. To avoid any misreading of our argument, we emphasize that we do
not wish to suggest that algorithmic-level explanations cannot, or should not ever be,
approximations of computational-level theories. We merely argue that, at best, they
can be approximations only when the to-be-approximated computational-level theory
is tractable.14

Up to this point, all objections and replies have dealt with attempts to have sin-
gle-heuristic explanations of tractably computing an intractable function. We have

14 The point is worth emphasizing, as it addresses the common misconception that computational-level
intractability is acceptable because explanations at that level are either false-but-useful idealizations, or
are otherwise braced by the competence/performance distinction. We do not deny that computational-level
theories can serve as competence theories or that they can be idealizations. Yet, tractability is a minimal
requirement on computational feasibility of any computation running on any machine, and therefore best
seen as a fundamental constraint on what competences can exist rather than just a performance limitation (for
a full argument see e.g. Frixione 2001). We also do not deny the usefulness of a competence / performance
disctinction and recognize that certain competences can at best be approximated when implemented in
machines with performance-level limitations. However, as our response to the ‘objection from approxima-
tion’ shows, such implementations are impossible for computational-level theories that construe competence
in terms of intractable functions. For a computational-level idealization to be a proper idealization (and not
an ‘overidealization’) there should minimally exist algorithms that can tractably approximate the compe-
tence postulated by that computational-level theory; otherwise the idealization has failed to capture the
nature of the competence and instead has mischaracterized it (cf. Franks 1995).
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argued that none such attempts can work. Some may still counter that a combination
of multiple heuristics (of any mix of the previously discussed types) may suffice to
tractably compute such a function. In that event, each heuristic in the set, although by
itself insufficient, can be rightly said to be a partial explanation of how the function is
tractably computed despite its intractability.

This is the intuition behind the fifth and final objection, the objection from partial
explanation [Carruthers, Gigerenzer]:15 Although H is a heuristic (i.e. inexact algo-
rithm) for f , and admittedly cannot explain by itself how f is computed, it could be a
member of a finite set of heuristics H = {H1, . . . , Hn} that together can explain the
computation of f . If indeed H explains the computation of f and H ∈ H, then one
could say that H is a (possibly necessary) part of an explanation of the intractable
function f .

In response to the objection, we will show that no finite set of tractable heuristics
can be used to create a tractable algorithm for an intractable function. The proof is
by reductio ad absurdum. Assume P #= NP, and let f : I → O be some intracta-
ble function. Further, assume that there is a finite set of polynomial-time heuristics
H = {H1, . . . , Hk} for some constant n > 0, such that, for each input i ∈ I , there
is at least one heuristic that computes f (i). Observe that as k is a constant, we can
run all heuristics in H on any i ∈ I in polynomial time. Call this procedure A, and
let A(i) be the set of outputs produced by A on i ∈ I . Note that among the |H| = k
outputs in the set produced by A, there is at least one correct output f (i). This does
not mean that A has computed f (i) yet, because in order to do that we still need a
procedure to select from A(i) the output corresponding to f (i). If there were to exist
a polynomial-time procedure B that selects a correct output from A(i), observe that A
and B can be combined, simply by running the algorithms in sequence, to produce a
polynomial-time algorithm for solving f . However, as f is an NP-hard function, this
implies that P = NP, and is thus a contradiction.

Lemma 3 If f : I → O is an NP-hard function which has an associated finite set of
polynomial-time heuristics H such that for each i ∈ I there is at least one heuristic in
H that computes f (i), then there cannot exist a polynomial-time procedure that uses
H to solve f (assuming P #= NP; see footnote 5).

Note that this lemma implies that the heuristic-set approach is doubly problem-
atic—not only are we not guaranteed that our NP-hard function f has a requisite set
H, but even if it does, we cannot use such an H to solve f in polynomial time.

4 The right way to cope with intractability

We have explained why postulating heuristics as (inexact) algorithmic-level explana-
tions is the wrong way of dealing with the intractability of one’s computational-level

15 Even though strictly speaking neither Gigerenzer nor Carruthers have formulated a formal computa-
tional-level theory of known intractability, they often postulate that minds ensure tractability of cognitive
computations by invoking a set of tractable modules (Carruthers 2005) or a set of tractable heuristics
(Gigerenzer 2008; Todd and Gigerenzer 2000).
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theory. The only way to ensure consistency between algorithmic- and computational-
level theories in cognitive science, given the constraint that algorithmic-level theories
can posit only tractable (polynomial-time) algorithms, is that computational-level the-
ories posit functions that are tractably computable (see also Frixione 2001; van Rooij
2008). This means that when a cognitive scientist attempting to characterize some
cognitive capacity φ accidentally posits an intractable function f , she must conclude
that either she has mischaracterized the capacity φ or that φ resists any computational
explanation. As the latter option is near blasphemy for cognitive scientists in the busi-
ness of computational explanation, it seems that only the former option remains open.

Having concluded that cognitive capacity φ has indeed been mischaracterized by
some function f , again two options seem open to the cognitive scientist: she may
conjecture that φ is still a basic cognitive capacity, but it should be characterized by a
different function f ′, or φ is not a basic cognitive capacity, yet possibly some other
capacity φ′ is which can be characterized by function f ′. In the following, we will
not distinguish between the two cases, as either will lead to the same revised com-
putational-level theory—namely f ′. Moreover, since cognitive capacities are only
intuitively and informally understood prior to their characterization as a well-defined
computational-level theory, often it is difficult or impossible to unequivocally distin-
guish between the intuitively understood φ and φ′.

A classic example of the revision approach to dealing with intractability can be
found in the work of philosopher Christopher Cherniak (see e.g., his 1986 book Mini-
mal Rationality). Cherniak points out that the ‘ideal rationality’ condition—i.e., ‘make
all and only deductively sound inferences from [one’s] belief set that are apparently
appropriate’ (p. 77)—yields a mischaracterization of the human capacity for belief
fixation. Ideal rationality would imply that humans can use their capacity for belief
fixation to solve problems in logic that are proven to be intractable (or even worse,
uncomputable). Therefore, so Cherniak argues, humans cannot be in possession of
such a capacity.

As an alternative to the ideal rationality assumption, Cherniak proposes that the
human capacity for belief fixation meets only what he calls the ‘minimal rationality’
condition—i.e., ‘make some, but not necessarily all, sound inferences from [one’s]
belief set that are apparently appropriate’ (p. 81). Cherniak admits that the ‘minimal
rationality’ condition can at best be a necessary condition for (human) rationality, and
hence his characterization of the human capacity for belief fixation is incomplete.
Nevertheless, it is clear that Cherniak pursued a revision of the computational-level
theory of human belief fixation in order to evade the problem that an existing theory
at the time—ideal rationality—characterized human belief fixation by an intractable
function.

A similar move has been made by decision-making researcher Gerd Gigerenzer
(2008). Like Cherniak, Gigerenzer rejects the ideal rationality attributed to humans
by classic economic theory, though his interest is more in decision-making than in
belief fixation. Gigerenzer replaces the ideal rationality model of decision-making
(i.e., maximizing expected utility) by what he calls ‘ecological rationality’ (i.e., mak-
ing decisions that are ‘good enough’). Gigerenzer fails so far to present a complete
characterization of the purported human capacity for ecological rationality, but in any
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event, it is clear that he pursues a revision of the ideal rationality model of human
decision-making in an attempt to avoid its intractability.16

We consider the computational-level theory revisions alluded to by researchers such
as Cherniak and Gigerenzer to be the right way of trying to cope with intractability of
computational-level theories. Whether or not such revisions are effective—i.e., that
they yield tractable functions—remains to be seen. This is important to emphasize,
as the need for verifying the effectiveness of a revision seems to be underappreciated
in the literature and sometimes revisions are claimed to be tractable without proof.
For example, both Cherniak and Gigerenzer, in more than one place, suggest that
the intractability of ideal rationalization is due to the assumption of ‘perfection’ in
deductive inference or ‘optimization’ in decision making, and that, instead, making
inferences that are ‘better than random guesses’ and choices that are ‘good enough’
are tractable. It is known from computational complexity theory, however, that perfec-
tion or optimization are neither necessary nor sufficient conditions for intractability
(cf. Gigerenzer 2008, pp. 21–22, for example).

To illustrate the above considerations17, consider the logic problem called SAT (for
‘Satisfiability’) and a closely related optimization problem called MAX-SAT. The
problem SAT is defined as a function that takes as input a conjunction of disjunctions
of (possibly negated) variables (e.g., (¬a ∨b)∧ (b∨c∨¬d ∨e)∧ · · ·∧ (u ∨v∨¬w))
and gives output ‘Yes’ if there exists a possible truth assignment to the variables such
that the conjunction is true, and ‘No’ otherwise. The problem MAX-SAT is defined as
a function that takes the same inputs as SAT but instead outputs a truth assignment that
ensures that a maximum number of clauses of disjunctions in the given conjunction
are true.18

Both SAT and MAX-SAT are known to be intractable (NP-hard) (Garey and Johnson
1979).19 This means neither problem can be (part of) a feasible computational-level
theory of human reasoning abilities. Let us now revise SAT into guess-SAT, where
the solution of guess-SAT requires only that the output (‘Yes’ or ‘No’) is correct with
probability > 0.5 (i.e., outperform a random guess, cf. Cherniak 1986, p. 81). Further,
let us revise MAX-SAT into good-enough-SAT such that the solution of good-enough-
SAT requires only that λ clauses of disjunctions in the input are true, where λ is some
aspiration level set by the decision-maker (cf. Gigerenzer 2008, p. 20). Both revisions
appear to be easier that the original problem, and for the untrained eye they may
appear to be (obviously) tractable. Such intuition would be mistaken, however. To the

16 Gigerenzer has proposed that the type of ‘ecological rationality’ he attributes to humans can be com-
puted by a toolbox of heuristics that are fast and frugal, where each heuristic works well for different
decision-making environments. Neither this suggestion nor the set of concrete models for several heuristics
in the toolbox, however, yet constitutes a computational-level characterization of the human capacity for
ecologically rational decision-making.
17 The same underlying ideas can be found in van Rooij (2008), which are illustrated by way of the
coherence theory of Thagard (2000).
18 In the event that this number equals the total number of clauses in a given input, solving MAX-SAT
effectively amounts to also solving SAT.
19 SAT is famous for being the first problem to be proven NP-hard. The result is due to Cook (1971).
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best of current (mathematical) knowledge, guess-SAT and good-enough-SAT are both
intractable (Garey and Johnson 1979; Wigderson 2007).20

This illustration, so far, establishes that weakening conditions of perfection or opti-
mization are not sufficient for rendering computational-level theories tractable. Does
this mean that no revision can be tractable? Surely not. Many alternative forms of
revision can be pursued, instead or in addition. Consider, for example, that we revise
SAT to 2-SAT, where 2-SAT takes the same types of inputs as SAT with the constraint
that clauses can contain at most 2 variables. Such a revision ensures tractability of
the revised problem, as 2-SAT is known to be polynomial-time computable (Garey
and Johnson 1979). This example now also illustrates that perfection is not always
intractable. An analogous revision for MAX-SAT does not work, as 2-MAX-SAT is
known to be still intractable. Yet, if we combine the ‘good enough’ revision with
the ‘restricted input domain’ revision, then we get the problem 2-good-enough-SAT,
which is tractable for relatively small aspiration levels (Mahajan and Raman 1999).21

To sum up, theory revision is the right way of dealing with intractability at the
computational-level and several options for revision strategies seem open to cognitive
scientists. Cognitive scientists are warned, however, that not every computational-level
theory revision will yield a tractable function. Moreover, even functions that appear
to be intuitively tractable in fact may not be. Verification of tractability, by means
of mathematical proof, is indispensable for cognitive scientists that hope to devise
tractable computational-level characterizations of cognitive capacities.

5 Conclusion

It is a necessary condition on the provision of good scientific explanation that the
phenomena to be explained be, for obvious reasons, appropriately and veridically
characterized. In the psychological sciences, explanation of a cognitive capacity φ is
often construed as computational explanation. Subsequently, it stands to reason that
a minimal, normative constraint on the provision of good computational explanations
of φ is that the function f characterizing φ should be computable using a realistic
amount of computational resources.

Currently, however, many cognitive capacities are characterized with intractable
functions, and so fail to satisfy this normative constraint. An ubiquitous and attrac-
tive strategy for addressing that failure—one proposed by many cognitive scientists,
philosophers and psychologists included—has been to maintain that an intractable

20 The intractability of guess-SAT and good-enough-SAT assumes that P #= NP and that P = BPP (BPP
stands for bounded-error probabilistic polynomial-time). These are mathematical conjectures that are
unproven to date, but nevertheless believed by the majority of living mathematicians (see, e.g., Garey
and Johnson 1979, §2.1, and Wigderson 2007, §5.2). Although one is free to doubt the conjectures, doing
so in order to claim tractability of a computational-level theory would seem to pose the burden of proof on
the cognitive scientist to present some argument for why we should not trust, in this particular case, the
intuitions of the majority of living mathematicians. Moreover, if cognitive scientists were to doubt the P #=
NP conjecture, then SAT and MAX-SAT would be tractable, as would be all other NP-hard problems in
NP, and few computational-level theories would be intractable to begin with.
21 2-λ-SAT is known to be fixed-parameter tractable (Downey and Fellows 1999), meaning the problem is
efficiently solvable if the aspiration level λ is relatively small.

123



Synthese (2012) 187:471–487 485

function f intended to characterize some φ can be dealt with by positing heuristics as
algorithmic-level explanations. As we have shown, however, such heuristics turn out to
be inapposite candidates for algorithmic-level explanation; their employment induces
a conceptual confusion between attempting to achieve a computation and explaining
how a computation is achieved. This reminder has major ramifications for what has
previously passed for good computationally-construed psychological explanation.

We have suggested that theorists can abide by the aforementioned normative con-
straint on good computational explanation by engaging in computational-level theory
revision in lieu of positing heuristics. On our view, the initial mischaracterization of
some cognitive capacity φ by an intractable function f is not an insurmountable prob-
lem in itself, much less an unforgivable one. After all, an intractable function may be
revised, such that it becomes tractable while still capturing much of the assumptions
and thoughts that prompted the initial characterization.

Cognitive scientists should welcome the normative constraint of tractability on
their computational-level theorizing, if only because of the in-principle unbounded
space of possible characterizations to consider. Without that constraint, the realiza-
tion that some putative characterization is actually a mischaracterization could only
be identified, if at all, by the laborious and time-consuming method of experimental
testing.

Unfortunately, there is no definitive protocol for computational-level theory revi-
sion that guarantees the transformation of an intractable function into a (psychologi-
cally-plausible) tractable one, let alone in a veridical one. (Cognitive scientists should
therefore expect to entertain and reject many mischaracterizations before formulating
the set of all and only appropriate and veridical ones.) But there are plausible strategies,
one of which we end with. Given some φ, theorists might devise a tractable heuristic
H for the function f that characterizes φ, followed by substitution of f by the function
computed exactly by H , designated here as fH . Such a revision would ensure that the
algorithmic-level explanation H is not a heuristic, but rather an exact algorithm for
the function whose computation is to be explained. The revision would also ensure
that the function fH is tractable. Plainly, the success of this strategy depends, inter
alia, on whether the cognitive capacity being characterized, φ, can be appropriately
and veridically characterized by the substituend, fH . Answering that question is the
hard part, but not so hard as to be harder than any of the other hardest problems in
cognitive science. And for that, cognitive scientists can take solace.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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