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Several approaches to cognition and intelligence research rely on statistics-based model testing, namely, factor analysis. In the
present work, we exploit the emerging dynamical system perspective putting the focus on the role of the network topology
underlying the relationships between cognitive processes. We go through a couple of models of distinct cognitive phenomena
and yet find the conditions for them to be mathematically equivalent. We find a nontrivial attractor of the system that
corresponds to the exact definition of a well-known network centrality and hence stresses the interplay between the dynamics
and the underlying network connectivity, showing that both of the two are relevant. Correlation matrices evince there must be a
meaningful structure underlying real data. Nevertheless, the true architecture regarding the connectivity between cognitive
processes is still a burning issue of research. Regardless of the network considered, it is always possible to recover a positive
manifold of correlations. Furthermore, we show that different network topologies lead to different plausible statistical models
concerning the correlation structure, ranging from one to multiple factor models and richer correlation structures.

1. Introduction

Individuals differ from one another in their ability to learn
from experience, to adapt to new situations and overcome
challenges, to understand simple to complex ideas, to solve
real-world and abstract problems, and to engage in different
forms of reasoning and thinking. Such differences in perfor-
mance occur even in the same person, in different domains,
across time, and using distinct yardsticks [1–4].

These complex cognitive processes are intended to be
clarified and put together by the concept of intelligence.
Although many advances have been made, there are still
open questions regarding its building blocks and nature yet
to be solved [5–7].

There is a fair amount of research carried out and still
going on about the theory of intelligence, and few state-
ments have been unequivocally established. Nowadays,
there are several unsolved questions which lead to prevail-
ing discussions and active research. However, incorrect
generalizations or misleading results may bring forth social

and educational moves [6, 8, 9]. For this reason, there is
an urgent need to understand the most important root
causes, validate existing theories, and shed light to people
who are responsible of educational and even social and
health decision-making.

Nowadays, there are a significant number of approaches
to intelligence. Developmental psychologists are often more
concerned about intelligence as a subset of evolving processes
throughout life, rather than about individual differences [10].
Several theorists stress the role of culture in the very concep-
tualization of intelligence and its influence in individuals
[11], while others point to the existence of different intelli-
gences, either measurable or not [12]. There is also an
increasing interest in contributions coming from biology
and neuroscience [13–17]. Yet, the most influential approach
so far is based on psychometric testing [18–24].

Psychometrics has enabled successful and systematic
measures of a wide range of cognitive abilities like verbal,
visual-spatial, fluid reasoning, working memory, and pro-
cessing speed through standardized tests [25, 26]. Even if
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distinct, these assessed abilities turn out to be intercorrelated
rather than autonomous prowesses. That is, people who per-
form well in a given test tend to obtain higher scores on the
others as well. This well-documented evidence concerning
positive correlations between tests, regardless of its nature,
is called the positive manifold. And precisely because of the
existence of such complex relations, one of the main aims
of this approach is to unveil the structure which best
describes the relationships between a number of distinguish-
able factors or aptitudes that may exist. On this basis, many
studies use exploratory and confirmatory factor analysis tech-
niques, starting off from between-test correlation matrices.

Furthermore, there exists a complex correlation structure
between abilities which may unveil the underlying connec-
tion between cognitive processes. Factor analysis might help
clearing up such patterns and yet bring about discussion on
the meaning of the outcome.

A brief historical overview since the early days of intelli-
gence research and its development may help us understand
the spectrum of existing models. Some theorists relied on the
shared variance among abilities, which Charles Spearman,
pioneer of factor analysis, called the g factor or general
intelligence [27], that is, one common factor which explains
most of the variances within a population and source of
improvement or decline of all other abilities, and it is still
a cause for controversial.

Alternatively, hierarchical models of intelligence where
each layer accounts for the variations in the correlations
within the previous one were also well accepted [18, 28, 29].

Nevertheless, a fair number of scholars argued against
theories of cognitive abilities or intelligence drawn upon the
concept, measure, and meaning of general intelligence.
Namely, Howard Gardner, stated that an individual has a
number of relatively autonomous intellectual capacities, with
a degree of correlation empirically yet to be determined,
called multiple intelligences, among which noncognitive
abilities are included [12].

Two different approaches with reference to the rela-
tionship between observable variables and attributes or
constructs prevail in present research and theorizing not
only in psychology but also in clinical psychology, sociol-
ogy, and business research amongst others: formative and
reflective models [30]. In the first of this conceptualization,
observed scores define the attribute, whereas in the latter,
the attribute is considered as the common cause of all
observables. As an example, the classic definition of general
intelligence could fall into a reflective model. But also, in
clinical psychology, a mental disorder may be thought to
be a reflective construct that brings about its observable
symptoms [31]. Possible correlation between observables
might be therefore due to its underlying common cause.
Conversely, the aggregate outcome of education, job, neigh-
bourhood, and salary leads to socioeconomic status (SES), a
standard example of formative model.

A more recent approach aims to combine distinct possi-
ble factor models by only using the information about the
factorial structure found by each study [32].

Both formative and reflective models, along with similar
alternatives, may elicit discussion regarding two different

issues: one first source of debate is rooted in the meaning
and interpretation of such models, while a second cause
stems from disregarding the role of time, that is, the dynam-
ics of the system is not explicitly considered.

The abovementioned problems can potentially be over-
come if we consider that variables, that is, observables, scores,
or indicators, are the characteristics of nodes in a network.
These latter are directly connected through edges, which
reflect the coupling between variables. Dynamical systems
theory is therefore the proper framework to formalize and
study the behaviour of such systems [33]. Starting from an
initial state, the system evolves in time according to a system
of coupled differential equations and eventually reaches an
attractor state of the system.

Examples of previous works on a dynamic systems
approach to social and developmental psychology are the
modeling of language acquisition and growth, the dynamics
of scaffolding, dyadic interaction in children, teaching and
learning processes, and coconstruction of scientific under-
standing among many others [34–43].

Noteworthy, a substantive piece is prevalently missing:
the topology of the network on where the process is taking
place, which may be a determinant fact that enables nodes
to communicate between each other and brings about corre-
lations not explicitly enforced in the model. Therefore, the
objective and contribution of the present work is exploring
the significant role of the network topology or connectivity
structure between the variables deemed meaningful to the
case of cognitive abilities or intelligence models.

In this work, we evince the tight connection between a
centrality measure of the network and the stable solution of
the studied models. Moreover, we show that distinct network
topologies may explain different correlation structures.

The paper is organized as follows: Section 2 introduces
basic notions of networks and explored topologies. Section
3 describes and formalizes the two studied models of cogni-
tion. Section 4 and Section 5 go through the main results,
concerning dynamics and correlations, respectively. The final
discussion and the conclusions are presented in last section.
Further mathematical methods can be found in the appendix.

2. Network Topology

A network, G V , E , is a collection of vertices or nodes,
V G , linked by edges, E G , which are given meaning
and attributes. Networks can describe complex intercon-
nected systems such as social relationships, transportation
maps, and economic, biological, and ecological systems. We
consider networks that have neither self-edges nor multi-
edges, called simple networks [44].

The adjacency matrix of G, written A G , is the N-by-N
matrix which entries Aij equal 1 if node i is linked to node j
and 0 otherwise. Networks can be directed or undirected,
although we stay on the latter case.

The topology of a network characterizes its shape or
structure and the distribution of connections between nodes.
Besides the attributes of nodes and edges, the topology of a
network determines its main properties and makes it distin-
guishable from others. One main property is the degree of a
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node i, ki, which is the number of edges connected to it.
Although networks may describe particular real systems,
regardless of its nature, they can be classified to one of the most
well-known families of networks. Right after, we briefly
describe the four networkmodels explored in the present work.

(a) Complete network (Figure 1): within the family of
deterministic networks, a complete network is char-
acterized by its nodes being fully connected, that is,
each node is connected to the others, such that all
off-diagonal elements of the adjacency matrix are
equal to 1, Aij = 1∀i ≠ j.

(b) Erdös-Rényi network (Figure 2): one of the most
renowned random networks is generated by the
Erdös-Rényi (ER) model [45]. Given the number of
nodes, N , and the probability of an edge, p, this
model, G N , p , chooses each of the possible edges
with probability p. However, generally, real networks
are better described by heterogeneous rather than ER
networks. Therefore, ER networks are often used as
null hypothesis to reject or accept models concerning
more complex situations.

(c) Heterogeneous network (Figure 3): there is a wide
range of networks coming from real systems (either
found in nature or human driven) which topology
is far from being homogeneous, but it rather entails
degree distributions which are characterized by a
power law, also called scale-free when the networks
are large enough [46]. The Internet network, protein
regulatory network, research collaboration, online
social network, airline system, cellular metabolism,
company, and industry interlinks are few examples
of them [47, 48].

(d) Newman modular network (Figure 4): in addition
to the degree distribution, another important feature
is the presence of communities or modules within
a network, mainly in social but also in metabolic
or economic networks [49, 50]. A module or com-
munity can be defined as a subset of nodes which
is more densely linked within it than with other
subsets of nodes.

One particular method to generate such modules
within a network is the Newman model, which dis-
tributes the nodes in a number, Nmodules, of modules
not necessarily isolated from the others [51–53].
Similarly as ER networks, with a probability pin, an
edge between pairs of nodes belonging to the same
community is created, whereas pairs belonging to
different communities are linked with probability
pout. In the model, the number of nodes, N ; the total
average degree, k ; and kin , which stands for the
average degree within a community, are fixed. Hence,
pin and pout are given by

pin =
kin

nin − 1 ,

pout =
k − kin
nout

,
1

where nin ≡N/Nmodules and nout ≡N − nin.

As kin grows, the networkmodularity increases [54],
that is, the communities become easier to identify.

3. Models of Cognition

Within the framework of dynamical systems and network
theory, there exists a one-to-one map between variables and
nodes, such that variable i is represented by node i. The value
of variable i, xi, is set as an attribute of its corresponding
node. In this new space, the adjacency matrix, which maps
the interactions between variables on a network, can lump
exogenous effects together in a very compact way:

xi t = Fi xi, t +〠
j

Aij t Gij xi, xj, t 2

Therefore, (2) is the most general expression which
integration determines the temporal evolution of each
variable, xi t . Fi xi, t accounts for endogenous effects, that
is, a function that depends only on variable xi. Gij xi, xj, t
takes into account exogenous effects on i, that is, a function
that describes the influence of its neighbouring variables, xj.
The intensity of such individual interactions is included in
Gij in the form of weights. The adjacency matrix, A,

Figure 1: Complete network of size 16 nodes. Figure 2: Erdös-Rényi network of size 16 nodes.
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determines whether variables are coupled between them: if
variables i and j are directly linked, then the corresponding
element Aij = 1. Otherwise, Aij = 0. In addition, A, F, and G
can, in general, depend explicitly on time and could be
potentially inferred from data: firstly, static or time-based
correlations between observables may provide a reliable
approximation of the adjacency matrix. Secondly, endoge-
nous parameters could be inferred from single-variable
evolution or biological and genetic properties. Finally, exog-
enous parameters account for the temporal deviation of
self-evolution due to effect of other variables. Although real
data can be fitted to individual trajectories, we are mostly
interested in the qualitative and interpretable outcome.

Two models are addressed in this work: a networked
dynamical model to explain the development of excellent
human performance [43] and a dynamical model of general
intelligence [36], both sharing great resemblance (Section 4).

The equations describing both models share similar
function structures: logistic growth and bounded multiplica-
tive effect of connected variables. Developmental curves are
mostly characterized by a strong initial increase followed
by some kind of asymptote [55]. Furthermore, they make
the assumption that cognitive variables or processes are
mutually beneficial.

3.1. Model A: A Networked Dynamical Model to Explain the
Development of Excellent Human Performance. Den Hartigh
et al. [43] were interested in the excellent level of perfor-
mance of some individuals across different domains. They
argued that the key to excellence does not reside in specific
underlying components but rather in the ongoing interac-
tions among them and hence leading to the emergence of
excellence out of the network integrated by genetic endow-
ment, motivation, practice, and coaching inter alia.

They attempted to render well-known characteristics of
abilities leading to excellence: the absence of early indicators
of ultimate exceptional abilities, the fact that a similar ability
level may be shifted in time between individuals, the change
of abilities during a person’s life span, and the existence of
unique pathways leading to excellence, that is, individuals
may have diverse ways to achieve it.

They considered a networked dynamical model which
can be mathematically defined as a set of coupled logistic

growth equations, each of which represents the growth of a
single variable. One of such variables represents the
domain-specific ability. The growth of the variable depends
on the already attained level, available resources that remain
relatively constant during development (Ki), resources that
vary on the time scale of ability development, the degree in
which a variable profits from the constant resources (ri),
and a general limiting factor (C): the ultimate carrying capac-
ity, which captures the physical limits of growth. Moreover,
Wij accounts for the effect of variable xi on xj.

Using (2), model A can be written as

xi = rixi 1 − xi
Ki

1 − xi
C

+〠
j

W jixixj 1 − xi
C

3

Equation (3) is better understood as a modified
logistic growth:

xi = rixi 1 − xi
C

1 −
xi − Ki/ri〠jW jixj

Ki
4

Figure 5 shows 3 different possible temporal evolutions
of the system, determined by both the topology of the
connections between variables and the parameters of the
dynamical model.

3.2. Model B: Dynamical Model of General Intelligence.
Van Der Maas et al. [36] were concerned with the conceptu-
alization and models of intelligence or cognitive ability
system by means of a general latent factor, as widely stated.
They proposed an alternative explanation to the positive
manifold based on a dynamical model built upon mutualistic
interactions between cognitive processes, such as perception,
memory, decision, and reasoning, which are captured by
psychometric test scores to some extent. Such connections
between items bring about another plausible explanation to
the existence of one common factor. Hence, the latter being
used as a valid model does not imply that there is a real latent
process or cause, such as speed of processing or brain size, or
one general intelligence module in the brain.

Inspired by Lotka-Volterra models commonly used in
population dynamics [56, 57], they proposed to model the
cognitive system as a developing ecosystem with primarily

Figure 3: Heterogeneous network of size 16 nodes. Figure 4: Newman modular network of size 16 nodes.
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cooperative relations between cognitive processes. Variables
(xi) represent the distinct cognitive processes, in which
growth function is parametrized by the steepness of the
growth (ri) and the limited resources for each process (Ki).
Matrix W contains the relation between pairs of processes,
which they assume being positive, that is, involved cognitive
processes have mutual beneficial interactions.

Starting from uncorrelated initial conditions and param-
eters, that is, following uncorrelated random distributions,
the dynamical connections between variables gradually lead
the system to specific correlation patterns.

Using (2), model B can be written as

xi = rixi 1 − xi
Ki

+〠
j

W ji
ri
Ki

xixj 5

Equation (5) is better understood as a modified
logistic growth:

xi = rixi 1 −
xi −〠jW jixj

Ki
6

Section 4 puts stress on the resemblance between (4)
and (6).

A recently published paper [58] makes further comments
on the model and its framework.

4. Interplay between Dynamics and
Network Topology

A dynamical model which captures the network structure of
the connection between variables by using an expression
similar to (2) enables further analysis of the process as it
considers the effect of topology, embodied in the adjacency
matrix, A.

Neither of the two described models is geared toward a
particular cognitive architecture or brain model with regard
to connectivity structure. Rather, much effort is devoted to
understanding the effect of nonzero correlations between the
parameters of the models or a heterogeneous landscape of
parameters [36]. The former approach, however, requires
certain constrains or assumptions which, in general, may not
be easy to proof.Alternatively, in the presentworkwe consider
the dynamical model to be parametrized by a homogeneous
configuration, that is, all nodes with equally fixed parame-
ters, and explore the role of different connectivity structures
between variables, which can be mapped on a network.

Although a dynamical model describes the temporal
evolution of several variables, it is usually the final state that
provides more useful and interpretable information. For
instance, children may achieve a given level of achievement
regardless of its learning rate, as long as they have had
enough time to develop.

4.1. Mapping between Models through Weight Rescaling.
The space of parameters is large and hence so is the
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Figure 5: Temporal evolution of all variables in the case of model A, described in (3), for increasing values of the links’ weight: w = 0 01 (a),
w = 0 025 (b), and w = 0 05 (c). The system is attracted to one of the three possible global stable states, depending on both the parameters of
the dynamic model and the topology: metric stable state, x Wd (a), mixed stable state (b), and optimal stable state (c). All plots are
represented for an ER network with 50 nodes and edge probability p = 0 4. Parameters are equally set to C = 5, r = 0 5, K = 1 0 for all nodes.
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number of possible stable states. However, we focus our
interest on solutions given by one unique analytical
expression. Therefore, depending on the stability condi-
tions (Section 4.3), we can distinguish two of such stable
states. For model A, an optimal stable solution, x C , is
achieved when all variables reach the maximum allowed
value:

x C i ≡ C ∀i, 7

where we assume C < ki.
Otherwise, final state, x Wd , is determined by matrix

expression (8):

x Wd = I −Wd
−1K 8

Wd matrix in expression (8) captures the entanglement
between network topology, W, and the parameters of the
dynamical model. The influence of variable i on variable j is
thus rescaled by its carrying capacity, Ki, and growing rate,
ri, as follows:

Wd ij ≡
Ki

ri
Wji 9

All intermediate states, which lay in the transition
between metric and optimal stable states, are called mixed
stable states.

Analogously, for model B, there is one unique stable
state, x W :

x = I −WT −1
K 10

Expressions (8) and (10), referred to stable states, for
models A and B, respectively, are equivalent under rescal-
ing (9). Both models behave differently with regard to the
temporal evolution as well as possible states. However,
when their final state is given by the metric stable state,
a mapping between them exists. Moreover, we highlight
the absence of initial conditions in the attractor state.

The case when parameters are constant throughout vari-
ables, that is, when Ki ≡ K ∀i, ri ≡ r ∀i, and Wij ≡w∀ i, j ,
may enable an explicit average solution to (10). An individual
can be characterized by the average of the achieved values of
all variables. We follow the notation

x∗ ≡
1
N
〠
N

i

x∗i 11

For a complete network,

x∗ = K
1 −w N − 1 ,

var x W i = 0 ∀i
12

For an Erdös-Rényi network (Appendix A),

x∗ = K
1 −w k

,

var x W i ≈ K2w2 var k +O w3  ∀i,
13

where var k is the degree of node variance.
Average solutions to (8) for a complete network and

an Erdös-Rényi network are equivalent to (12) and (13),
respectively, with wd ≡ K/r w.

4.2. Katz-Bonacich Centrality as Stable State. Centrality mea-
sures seek the most important or central nodes in a network
[44]. Among many possible centralities, the generalized
Katz-Bonacich centrality [59] is given by the stable solution

x
t+1 = x

t
of the recursive equation:

x t+1
i = α〠

j

Ajix
t
j + βi 14

Solving (14), the vector x of centralities is given by

x = I − αAT −1
β 15

Unlike eigenvector centrality, Katz-Bonacich centrality
solves the issue of zero centrality values for acyclic or not
strongly connected networks by introducing a constant term
βi for each node. Therefore, Katz-Bonacich centrality gives
each node a score proportional to the sum of the scores of
its neighbours plus a constant value. α parameter rules the
balance between the first term in (14), which is the normal
eigenvector centrality [54], and the second. The longest walks
become more significant as α increases, and hence the global
topology of the network is considered, resembling eigenvec-
tor centrality. On the contrary, small values of α make
Katz-Bonacich centrality a local measure which approaches

degree centrality. When α→ 0, x = β , and as α increases,
so do the centralities until they diverge when

α = 1
λ A max

, 16

where λ A max is the maximum eigenvalue of A matrix.
Hence, Katz-Bonacich centrality is defined as long as
α < λ A −1

max [44].
Equivalently, for weighted networks, generalized Katz-

Bonacich centrality is defined as

x = I − αWT −1
β , 17

and α < λ W −1
max.

Equation (17) can also be expanded to

x = I + αWT + α2 WT 2 + α3 WT 3 +⋯ β

= 〠
p=∞

p=0
αWT p

β
18
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Element WT p
ij in (18) stands for the number of walks

of length p from node j to node i taking the strength of
connections into account. This value is attenuated by a factor
αp, and hence ∑=∞

p=0 αWT p

ij
accounts for the strength of

all walks from node j to node i, with greater weakening as
p gets larger.

Comparing (17) with (8) or (10), we conclude that gener-
alized Katz-Bonacich centrality vector is the exact solution of

the stable state of model B with α ≡ 1 and β ≡ K . Further-
more, when rescaling (9) is considered, so it is of model A
or any other model in which dynamics can be included in
the weighted adjacency matrix in a similar way.

In general, the stable state of a dynamic system may not
have an analytical solution but rather needs to be described
and characterized by means of numerical simulations. The
considered systems, however, can achieve a particular state
which can be mathematically obtained from the parameters
of the network and the model, without the full integration
of the coupled set of differential equations in time. This
finding has several implications:

(i) Firstly, variables which obtain the best score in
Katz-Bonacich centrality achieve the highest values
of performance on the long run. For this reason,
we call the stable state (8) as “metric” stable state.
The most central nodes according to (18) are those
which reach the largest number of nodes enabling
all possible path lengths, with a penalization to
greater longitudes. This, intuitively, is a characteri-
zation of the node’s ability to spread information
along the network. In case we consider the trans-
posed of the weighted adjacency matrix, the most
central nodes are those which are reached by the
largest number of nodes and hence can be inter-
preted as the best receiver nodes.

(ii) Secondly, we note that Katz-Bonacich centrality is the

stable solution of the process x t+1
i = α∑jW jix

t
j + βi.

Equation (14) corresponds to the equation of a non-
conservative process, that is, a process in which the
sum of the values of the variables is not constant over
time. We could provide further details, but these can
be easily found in the literature [60, 61]. The metric
stable state could hence be interpreted as the distri-
bution of a given quantity along the network if all
nodes are explored by a random walker with a bias
given by β. We stress the fact that these processes
are not restricted to the presented models of cogni-
tion but can be found in many other systems in
biology and society, which may be well described by
similar equations. For this reason, the generalization
of the models, as well as its interpretation in terms of
centrality measures, may help understanding cogni-
tive and other types of phenomena.

4.3. Stability Conditions. For model A, stability analysis is
rather complex since many different stable states may exist,
depending on a sizeable number of parameters which

characterize both the topology and the dynamics. Neverthe-
less, we focus our interest on the most extreme situations:
the optimal stable state, x C , given by (7), and the metric
stable state, x Wd , given by (8). All other configurations
are described by a mixed pattern which falls between optimal
and metric stable states.

x C solution is stable when (see Appendix C)

ri 1 − C
Ki

+ C〠
j

Wji > 0 ∀i 19

or using rescaled weighted matrix Wd defined in (9), when

〠
j

Wd ji > 1 − Ki

C
 ∀i 20

Provided that a given node i does not meet condition
(20), the stable state is no longer x C , and hence, starting
from node i, nodes will start getting values lower than
the C threshold.

On the other hand, x Wd solution is stable when
(Appendix C)

λmax S < 0, 21

where λmax S is the maximum eigenvalue of matrix S,
which is defined as follows:

S ≡D I −Wd ,

Dij ≡ −x Wd i 1 − x Wd i

C
δij

22

Eigenvalues ofS depend explicitly on x Wd and there-
fore can only be computed numerically (see equation C.51).
However, Perron-Frobenius theorem [62] allows us to obtain
an upper threshold for λmax S analytically:

λmax S <max 〠
j

S ij 23

Equations (21) and (23) imply the existence of an
upper bound for the stability condition of metric stable
state (Appendix C):

〠
j

Wd ij

max

< 1 24

For model B, stability analysis concerns only the metric
stable state (10), and stability conditions are given by
(21) with

S ≡D I −WT ,

Dij ≡ −
ri
Ki

x W iδij
25

From Figure 6, we conclude that network topology is
enough to obtain information about the stability of the
system. Due to the fact that we are in a situation of
homogeneous configuration, λ S max is tightly connected
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to λ W max, although it is not the same as seen in (22) and
(25). Concerning Erdös-Rényi network (Figure 6(a)), there
is little variability in λ S max, and therefore the critical value
of the p parameter for which stability changes, pC , is confined
within a narrow range. Using (24) and assuming a Poisson
degree distribution, we can obtain an approximate value for
pC in case of a homogeneous configuration:

〠
j

Wd ij

max

≈w k + var k

≈w pN + pN < 1⇒p < pC ,
26

where pC ≡ 2N/w +N −N 1 + 4/w /2N2.

The critical value of p obtained from (26) when the
parameters are the same as for the Erdös-Rényi network of
Figure 6 gives pC ≈ 0 56, which is in agreement with the
numerical solution.

Conversely, the stability with regard to heterogeneous
network is rather diffuse (Figure 6(b)). The broad spectrum
of λ W max [63] is somehow captured by the variability
on λ S max. Consequently, there exist outlier networks
which eventually break the stability condition. Neverthe-
less, they become less frequent as α exponent increases.
The effect of kin in a Newman modular network is
completely different (Figure 6(c)): in spite of being a
parameter which rules the modularity of the network,
the average total degree, ktotal = kin + kout , is still fixed
and hence both S matrix and solutions (8) and (10)
remain essentially the same, except fluctuations.

−0.8
0.1 0.2 0.3 0.4 0.5

p

0.6 0.7 0.8 0.9

−0.6

−0.4

−0.2

0.0

0.2

0.4
𝜆

 (S
) m

ax

p = 0.05 p = 0.5

(a)

2.0 2.13 2.25 2.38 2.5 2.63 2.75 2.88 3.0
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

𝜆
 (S

) m
ax

𝛼

(b)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

𝜆
 (S

) m
ax

(kin) = 2 (kin) = 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(kin)

(c)

Figure 6: Set of boxplots of λ S max, defined in (22), for different values of the characteristic parameter of the network: edge probability p for
an Erdös-Rényi network of size N = 50 (a), degree distribution exponent α for a heterogeneous network of size N = 200 (b), and intramodule
degree kin for a Newmanmodular network of sizeN = 256 and ktotal = 16 (c). Metric state is given by (8) and it is stable only if λ S max < 0
(dashed blue line). For each value of μ ,we make 1000 realization of the corresponding network class, each one representing one single
individual, to capture the distribution of the maximum eigenvalue of matrix S. Edge probability, p, of an Erdös-Rényi network makes for
a narrower threshold of stability than α exponent of a heterogeneous network. Conversely, kin parameter of the Newman modular
network does not lead to any change in stability. Parameters of the model are set for all nodes to C = 5 and K = 1 for all networks, r = 1
and w = 0 03 for Erdös-Rényi network, r = 0 5 and w = 0 025 for heterogeneous network, and r = 0 05 and w = 0 015 for Newman
modular network.
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5. Unveiling Correlation Structures from
Network Topology

Provided that condition (21) is met, the stable state is given
by (8) and (10), for models A and B, respectively. This latter
result provides one subject with as many values as the exist-
ing variables. However, studies based on large batteries of
psychometric tests rely on a sample from a population,
made up of tens to thousands of individuals, from where
intervariable correlations are inferred. Section 5.1 describes
the generation of distinct individuals from the models and
the handling of the correlation matrix out of them.

5.1. From Dynamics to Correlation Matrix. These models
have been studied by assuming that parameters correspond-
ing to different variables are correlated. If, in addition, all
variables are considered to be equally interconnected in a
mutualistic scenario, that is, positive interactions and a
complete network topology is considered, it is possible to
recover well-known correlation structures [36]. Alterna-
tively, our hypothesis is that the network topology, which
determines the connectivity between variables, is sufficient
to recover equivalent results concerning correlations and also
enables us to avoid stronger constraints on parameters.

Since we are interested in studying the effect of topology,
each individual is considered to be one random instance of
the same network class. In other words, a new individual
is obtained out of the possible random G N , μ , and
the corresponding correlation matrix is characterized by
fixed values of N and μ , where N is the number of vari-
ables or nodes and μ is the set of characteristic attributes
of a given network model. For instance, a network gener-
ated by Erdös-Rényi model has only one parameter corre-
sponding to μ = p (Section 2).

Despite each variable holding its own set of parameters,
we make all variables equivalent in what we call homoge-
neous configuration, such that individual differences result
only from topological properties:

Ki ≡ K ,
ri ≡ r ∀i,

Wij ≡w ∀ i, j
27

Independently of others, each individual reaches a stable
state given by (8) or (10), for models A or B, respectively, as
long as condition (21) is true. If this is not the case (see
Section 4.3), model A requires full temporal evolution being
simulated and model B comes to divergence, and hence the
considered configuration is not acceptable.

Once stable states of the entire population are obtained,
the computation of pairwise correlations between variables
is straightforward. In line with most studies conveyed by
psychometrics, Pearson standard correlation coefficient is
used to finally get the correlation matrix [64], although other
methods may excel this procedure [65, 66].

In conclusion, the variability within one same family of
networks G N , μ brings about individual differences
concerning variables which entail particular patterns or

structures of the correlation matrix (28), with no explicit
constrains on parameters, but considering them as homoge-
neous both along variables and individuals (see Figure 7).

R N , μ = f G N , μ 28

From Figure 8, we conclude that the positive manifold,
that is, positive correlations, Rij > 0, can come out regardless
of the topology, as long as μ of the network is properly set.
Thus, connectivity by itself allows positive interactions,
regardless of the structure and independently of further con-
strains on dynamic parameters. However, the structure of the
correlation matrix indeed relies on the topology: Erdös-Rényi
network’s correlation histogram displays a narrow symmet-
ric peak which captures the homogeneity of the topology,
that is, all nodes being equivalent. The distribution which
comes out when considering this topology and identical
parameters for all nodes is equivalent to the one obtained
by [36] in the case of a complete network and heterogeneity
in parameters. On the contrary, heterogeneous network’s
correlation histogram follows a much wider asymmetric

Generate
network
G (N, {𝜇})

Initialize
parameters:

homogenous

Is metric
solution
stable?

Numerical
solution

(temporal
evolution)

Analytic
solution

(equation
(8) or (10))

Get stable state

Any left
individual from

population?

Get correlation
matrix

No Yes

N
o

Yes

Figure 7: Flowchart to generate correlation matrix of variables out
of a population of individuals.
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distribution, with a longer tail for larger values. This behav-
iour captures the presence of few hubs, which leads to non-
trivial correlation structures, as we will see in Section 5.2.
Finally, the Newman modular network presents two charac-
teristic peaks corresponding to intracluster, that is, within the
same cluster, and intercluster, that is, between different clus-
ters, correlations. As kin increases, both peaks become
undistinguishable and the pattern more closely resembles
an Erdös-Rényi network. For large kin , intercluster correla-
tions tend to 0 value.

So far, in addition to considering a homogeneous config-
uration of parameters, we have constrained ourselves to
solutions within the regime where metric stable solution is
stable. Nevertheless, we expect richer phenomena when nei-
ther of the two restrictions exists. If we allow K parameter to
be a random variable distributed among variables following a
noncorrelated normal distribution, N μK , σK , increasing

values of σK lead to lower values of Rij , the average cor-
relation between variables.

Figure 9 captures not only the positive manifold but also
the effect of network topology on the correlations. Rij is
indeed modulated by the characteristic parameter of the
network, μ . For Erdös-Rényi and heterogeneous networks,
Rij peaks around the transition between metric and optimal
stable states, with a profile shaped by the network topology.
The average correlation increases as connectivity does so,
until nodes are recurrently being absorbed by the optimal
state and, consequently, Rij is scaled down. Namely,
Erdös-Rényi network peaks around pC , that is, when stability
changes landscape. As p increases, more and more variables
reach the optimal value and become independent from
others. The impact of more variability in K parameter across
variables is the decrease in the correlations, and the peak
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Figure 8: Histogram of the correlation between variables, Rij, for 3 distinct network topologies: Erdös-Rényi of size N = 50 and edge
probability p = 0 4 (a), heterogeneous network of size N = 200 and degree distribution exponent α = 2 9 (b), and Newman modular of size
N = 256, kin = 15 and ktotal = 16 (c). The histogram captures the effect of G N , μ on R N , μ . Correlation matrix is computed
from analytic metric stable state (8) of 5000 generated individuals. The distribution of correlations between variables connected as an ER
network is peaked at a certain value, whereas assuming a heterogeneous network leads to a much broader spectrum of correlation values.
The Newman modular network brings about two clear peaks, corresponding to intracluster and intercluster correlations. Parameters of
the model are set for all nodes to C = 5 and K = 1 for all networks, r = 1 and w = 0 03 for Erdös-Rényi network, r = 0 5 and w = 0 025 for
heterogeneous network, and r = 0 05 and w = 0 015 for Newman modular network.
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shifting towards lower values of p, since stability condition
(21) is more likely to be broken. The peak generated by a
heterogeneous network is more diffuse, owing to a wider
distribution of the spectra. Moreover, the effect of increasing
the variability in K has a stronger attenuation effect. On the
contrary, the absence of a peak coming out from the

Newman modular network is explained in Section 4.3.
Nevertheless, a clear pattern emerges if we split intracluster
from intercluster mean correlations. While intracluster
correlations increase as kin does so, intercluster correlations
decrease. However, the total mean correlation remains
unchanged, as long as condition (21) is true.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

〈
R
ij〉

(i
⇍
j)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1
p

𝜎k= 0.0
𝜎k= 0.1
𝜎k= 0.2

𝜎k= 0.3
𝜎k= 0.4
𝜎k= 0.5

(a)

𝜎k= 0.0
𝜎k= 0.1
𝜎k= 0.2

𝜎k= 0.3
𝜎k= 0.4
𝜎k= 0.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

〈
R
ij〉

(i
⇍
j)

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.02.0
𝛼

(b)

0.00

0.02

0.04

0.06

0.08

〈
R
ij〉

(i
⇍
j)

2 3 4 5 6 7 8 9 10 11 12 13 14 151
〈kin〉

𝜎k= 0.0
𝜎k= 0.1
𝜎k= 0.2

𝜎k= 0.3
𝜎k= 0.4
𝜎k= 0.5

(c)

Figure 9: For model A, defined in (3), the average correlation between variables, Rij , is plotted as a function of the characteristic network
parameter, μ , for 3 network topologies: Erdös-Rényi of sizeN = 50 (a), heterogeneous network of sizeN = 200 (b), and Newmanmodular of
size N = 256 and ktotal = 16, where intracluster (dimmer upper) and intercluster (solid bottom) correlations are held separately (c). The
distribution of each value is captured by a boxplot computed from 50 independent realizations. Six different values of σK account for the
variability of K parameter. As σK increases, Rij is scaled down, being the effect much larger in heterogeneous networks. In the case of ER
network, Rij grows with increasing p until metric state eventually becomes unstable, and nodes are gradually absorbed by optimal state.
Larger dispersion on K shifts the peak towards lower values of p. Conversely, for a heterogenous network, an increase on α exponent leads
to more stability of metric state, although stable conditions are more fragile. Larger dispersion on K shifts the peak towards much lower
values of α. Finally, in the case of Newman modular network, stability conditions of metric state, (21), are always true for these parameters
and hence the absence of the peak. For a better understanding of change of stability landscape, see Figure 6. The parameters of the model
are set as Figure 8.
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For model B, Rij continuously increases as connectivity
does so, until divergence conditions are met, and solutions do
not longer exist.

5.2. From Correlation Matrix to Statistical Models. When it
comes to describing variability among observed, correlated
variables, a bunch of statistical models comes along, aiming
to approximate and understand reality. Factor analysis is a
statistical method developed and widely used in psychomet-
rics [64, 67–69], inter alia. Observed variables are described
as linear combinations of unobserved latent variables or
factors, plus individual error terms, such that covariance or
correlation matrix may be explained by fewer latent variables.

Historically, the most widely held theories of cognition
and intelligence are built upon factor analysis raising from
large batteries of conducted psychometric tests. There is still
no agreement on the proper model and the underlying pro-
cess which bring about the observed outcome. We list the
models stood for the most outstanding theories: one factor
models, multifactorial models, hierarchical models, and
other more complex structural models [70].

Section 5.1 evinces that connectivity structure between
variables, mapped on a particular network topology, gives
rise to different correlation matrices, even no explicit con-
strains on correlations between parameters are imposed.
We show that certain factor models can be explained by
a mutualistic dynamical model running on a particular
network of variables.

In order to avoid subjective criteria when deciding
the number of factors, several methods have been devel-
oped: Horn’s parallel analysis, Velicer’s map test, Kaiser
criteria, Cattell scree plot, or variance explained criteria
[71–74]. We proceed to compute the scree plot so as
to obtain the number of main principal components
and hence potential latent factors. Thereupon, the statisti-
cal significance of the factor model is assessed by means
of the p value, which enables us to explore the effect of
changing the parameter which best characterizes the
network, μ .

In Figure 10, we have selected one specific network for
each topology, given by the value of the characteristic
parameter. The choice is such that solution is given by
the metric stable state (8).

The number of retained components, or factors, can be
obtained according to different criteria. We look at values
which are much larger than 1 and display rather straight
angles with the successive values.

With these criteria and from Figure 10, we hypothesize
that the correlation matrix of variables which are connected
following an Erdös-Rényi network is well described by a
1-factor model. In the case where their connectivity struc-
ture is better captured by a Newman modular network with
n clusters, then an n-factor model cannot be rejected. Con-
versely, considering a heterogeneous network, a factorial
model is no longer proposed, as eigenvalues are not clearly
separated according to former criteria, but rather they follow
a smooth decreasing curve. Alternatively, a statistical model
which accounts for hierarchy between variables or more
complex structural modelling and path analysis may be more

realistic. However, this latter analysis is out of the scope of
this paper.

For the cases of Erdös-Rényi and Newman modular
networks with 4 clusters, we show that a 1-factor model
and a 4-factor model, respectively, can be accurate
models to obtain results. To do so, we compute the p
value of such models for different numbers of retained
factors. p value in this case is testing the hypothesis that
the model fits the results perfectly, and hence we seek
values> 0.05.

In the case of an Erdös-Rényi network, p value≈ 1≫ 0.05
for nfactors ≥ 1, and hence a 1-factor model is highly likely.
Similarly, in the case of a Newman modular network with
n = 4, p value> 0.05 only when nfactors ≥ 4, as suggested
(see Figure 11).

Once we have figured out the number of factors with
respect to each network, we explore the effect of connectivity
on the reinforcement of the statistical models, by looking at
the explained variance of the most important components:

var R i =
λi

〠kλk
29

We make use of (29), which gives the proportion of
explained variance of R correlation matrix for each principal
component of PCA. Although PCA and FCA are not equiv-
alent statistical models [75, 76], after having sustained the
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Figure 10: Scree plot, in logarithmic vertical scale, calculated
from the correlation matrix, R, for 3 network topologies: Erdös-
Rényi (triangular orange markers), heterogeneous (circular blue
markers), and Newman modular (squared green markers)
networks, with parameters as in Figure 9. A scree plot shows the
value of eigenvalues, λ R , in descending order, as components
(principal orthogonal directions) are gradually being included (up
to the number of variables). λ = 1 is labelled in red, as a possible
selection criterion for the number of components or factors. Other
used criteria: λ R much larger than the others and describing
rather straight angles with successive values. 1-factor model and
4-factor model may be suitable for ER and Newman modular
networks, respectively, whereas a more complex model is needed
for heterogeneous network.
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validity of a factor model, the former approach is acceptable
in order to justify the suitability of the number of factors or
components considered.

Figure 12 confirms the assumptions underlying the
models for both networks: in the case of an Erdös-Rényi
network, the first eigenvalue increases as connectivity,

characterized by p, does so, and hence a 1-factor model is
being reinforced. Similarly, in the case of a Newman modular
network, besides the first eigenvalue, which is always large,
second to fourth eigenvalues increase as modularity, charac-
terized by kin , does so, in contrast to eigenvalues on further
positions, which remain unchanged or smaller.
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Figure 12: Percentage of the total explained variance of correlation matrix %var R , (29), for each of the first five components λ R as a
function of the edge probability, p, for an Erdös-Rényi of sizeN = 50 (a), and intracluster degree, kin , for a Newmanmodular network of size
N = 256 and ktotal = 16 (b). Both networks enable a factor model as a good descriptor of the outcome. Selected significant number of
components are highlighted in orange and green colors, for ER and Newman modular networks, respectively. As nodes become more
connected and communities more delimited, factor model moves from mirroring a noisy identity matrix to be a clear indicator of the
correlation structure. First component (circular orange marker) increases as p does so, strengthening the validity of a 1-factor model (a),
while second to fourth components (circular, starry, and triangular green markers) increase as kin does so. Hence, an increase in
modularity reinforces the validity of a 4-factor model (b). Parameters are set as in Figure 6, constraining the values to lay within the
metric stable state regime.
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Figure 11: P-values obtained for a factorial model with a number of factors ranging 1 to 5, for 2 network topologies: Erdös-Rényi of size
N = 50 and p = 0 4 (a) and Newman modular of size N = 256, ktotal = 16, and kin = 15 (b) networks, with parameters as in Figure 9.
p value = 0.05 is labelled in orange, as threshold for not rejecting the model.
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We are mostly interested in the qualitative results. Differ-
ent network sizes and dynamic parameters lead to different
values for the eigenvalues and variances, while showing the
same patterns [77].

We have provided an alternative explanation of data
being well described by different factor models. However,
alternative statistical models ought to be considered in
the case of Newman modular network to obtain more pre-
cise insights, namely, bifactor and second-order factor
models, which are the most popular factor models in the
intelligence literature.

Covariance matrix can be analytically computed in the
case of a complete network and a heterogeneous parameter
landscape, K~N μK , σK (Appendix B).

6. Conclusions

Despite mainstream approaches to cognition and intelligence
research are built on static and statistics-based models, we
explore the emerging dynamical systems perspective putting
a greater emphasis on the role of the network topology
underlying the relationships between cognitive processes.

We go through a couple of models of distinct cognitive
phenomena and yet find the conditions for them to be
mathematically equivalent. Both models meet the require-
ments set out by empirical observations and established
theories regarding the corresponding cognitive phenomena
to which they aim to provide an explanation, namely, the
positive manifold and the suitability of several statistical
models. Furthermore, the applied mathematical formulation
may well enlight models of many real mutualistic systems,
other than cognitive.

The topology of the network defined by the dynamical
influence between processes indeed underlays further analy-
sis of the results. We find the principal attractor of the system
to be the exact definition of Katz-Bonacich centrality, a
measure of a node importance which can also be understood
as a nonconservative biased random walk along a network.
We propose that heterogeneities in the dynamical parameters
can be absorbed by a rescaling of the adjacency matrix
weights and hence leading to the same result.

Individuals may differ not only in the genetic-
environmental markers captured by the parameters of the
model, but also in the connectivity structure between brain
regions, either structural or functional. Two individuals
might achieve the same performance through different
neuronal routes or architectures and cognitive strategies
when solving cognitive tasks. Certain common brain struc-
tures and functional pathways may be more likely to be
involved in intelligence than others. However, despite of
the heterogeneity between subjects, cognitive outcomes
may result similar [14]. For instance, as Newman modular
network increases its modularity, the corresponding corre-
lation matrix becomes more and more likely to be well
described by a factorial model with as many factors as
communities it has. However, whereas the inner structure
gradually changes, the average result of its stable state
remains unchanged.

The connectivity structure between cognitive processes
is not known but yet it is not any. We show that network
topology by its own leads to different plausible statistical
models. Regardless of the network considered, it is always
possible to set a parameter configuration such that the pos-
itive manifold results from the dynamical model. However,
the correlation structure is determined by the network
topology. Complete and Erdös-Rényi networks are con-
strained to bring about a one-factor model, more clearly
defined as connectivity increases. The Newman modular
network enables higher-order factor models, depending on
the number of defined communities. Latent factors turn
to be more distinguishable as modules grow to be more
isolated. Conversely, heterogeneous networks lead to richer
correlation structures, which may be better described by
more complex statistical models.

In the present article, we exploit the interplay between the
dynamics and the underlying network topology to model
cognitive abilities, and we conclude that both of the two are
relevant. Although scholars are not yet sure of the relation-
ship between cognitive processes and of the nature of
intelligence, we can shed a bit of light by proposing an
alternative framework which captures the real meaning of
“process” and “relationship”: a dynamic complex network
framework to model cognition.

This work is an open door to further research: we show
that different network topologies lead to different correlation
structures. Still, richer topologies can be considered and may
bring about other interesting and eventually more realistic
structures. We have restricted ourselves to static networks,
though the more general definition of a network is not time
constrained. What if the network which captures the connec-
tion between cognitive processes or brain modules was time
dependent? What if cognitive processes could be modelled
as a multilayer network, from generalists to specialists layers?
Moreover, when looking only at the attractors of the system,
we are missing the temporal evolution of such processes and
its real causality. Therefore, are these models able to explain
evolving properties of the considered variables? We finally
highlight that there exist several limitations in models
based on ecologic systems, as exhaustively studied in pop-
ulation dynamics research, namely, inconsistent results
coming from unbounded models and discrepancy with
the behaviour of some real systems [78–81]. Hence, alterna-
tive mathematical models which overcome some of these
problems shall be investigated.

Appendix

A. Average and Variance of Stable Solution for a
Complete and an Erdös-Rényi Network

We define homogeneous configuration as follows:

Ki ≡ K ∀i,
ri ≡ r ∀i,

Wij ≡w ∀ i, j
A 1
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In this case, metric stable solution (10) for a complete
network is straighforward:

xi = 0⇒ 1 − x∗ − N − 1 wx∗

K
= 0⇒x∗ = K

1 −w N − 1  ∀i

A 2

In the case of a complete network, as solutions are
exactly the same for all nodes, the variance of stable state
is null.

For an Erdös-Rényi network, we compute the average of
metric stable state:

x∗ = 1
N
〠
i

〠
j

I −WT −1

ij
K j A 3

Using (18) and considering W is a symmetric matrix,
though the expression is equivalent,

I −WT −1

ij
= I −W −1

ij

= δij +Wij +〠
k

WikWkj

+〠
k

〠
l

WikWklWlj +⋯

A 4

Taking the average on (A.4),

1
N
〠
i

〠
j

I −WT −1

ij
K j

= K
1
N
〠
i

〠
j

I −WT −1

ij

= K
1
N
〠
i

〠
j

δij +Wij +〠
k

WikWkj

+〠
k

〠
l

WikWklWlk +⋯

= K
1
N
〠
i

〠
j

δij +
1
N
〠
i

〠
j

Wij +
1
N
〠
i

〠
j

〠
k

WikWkj

+ 1
N
〠
i

〠
j

〠
k

〠
l

WikWklWlj +⋯

A 5

We proceed to calculate each term of the average:

1
N
〠
i

〠
j

δij = 1, A 6

1
N
〠
i

〠
j

Wij =wk, A 7

where k ≡ 1/N ∑iki is the mean degree of a node.

Second and following terms account for the average
number of m next-nearest neighbours, denoted with zm.
The general expression for any network is given by [82]

zm = z2
z1

m−1
z1, A 8

where z1 = k.
In the case of an Erdös-Rényi network following a

Poisson distribution, we get

zm = km ∀m A 9

Using (A.6), (A.7), and (A.9),

x∗ER =
1
N
〠
i

〠
j

I −WT −1

ij
K j

= 1 +wk +w2k2 +w3k3 +⋯ = K
1 −wk

 ∀i

A 10

We point out the fact that a Poisson distribution is not
always a good model for an Erdös-Rényi network, and hence
(A.10) is considered an approximation for x∗ER.

The variance of x∗i , var x∗i ER, is a rather difficult compu-
tation, and therefore we explore the behaviour at the second
order of w, ~O w2 :

cov x∗i , x∗j ≡ cov = xixj − xi xi , A 11

where · corresponds to the average of the ensemble.
The second term, xi , is already known (A.10), as it is

given by x∗ in the thermodynamic limit. Using (10), the first
term can be expanded as

xixj
K2 =〠

q

δjq +w〠
q

Ajq +w2〠
q

〠
k′
Ajk′Ak′q

+w〠
q

δjq〠
p

Aip + +w2〠
q

Ajq〠
p

Aip

+w2〠
q

δjq〠
p

〠
k

AikAkp +O w3

A 12

Using (A.8) and splitting the cases i = j and i ≠ j,

cov x∗i , x∗j ER
≈O w3  ∀i, j,

var x∗i ER ≈ k2w2var k +O w3  ∀i
A 13

Therefore, in order to obtain further information of the
structure of the covariance and correlation matrices, we
ought to compute higher orders on w.

Nevertheless, we have proved that the covariance matrix
is made out of two different values: the diagonal and off-
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diagonal elements. The covariance matrix, Σ, can be written
as follows:

Σ =

a b ⋯ b

b a ⋯ b

⋯ ⋯ ⋯ ⋯

b b ⋯ a

A 14

A requirement for a covariance matrix, Σ, to be explained
by a one-factor model is that the spectral gap λ1 − λ2 is large
enough, that is, λ1 ≫ λ2:

λ1 = a + N − 1 b,
λ2⋯N = a − b

A 15

Hence, λ1 − λ2 =Nb, which increases as the number of
variables or b do so and enables a one-factor model to fit
the results.

B. Covariance Matrix for a Complete
Network and Heterogeneous
Parameter Configuration

Although the solution when connectivity structure is
captured by a complete network is trivial, we can go a step
further when taking into account variability in the dynamic
parameters, as it was similarly done in the appendix of [36].

Let us consider K parameter taken from a normal uncorre-
lated distribution, Ki~N μK , σK :

KiK j =
Ki K j = μ2K ,

σ2K + Ki
2 = σ2

K + μ2K ,
if i ≠ j

B 1

If we separate xixj according to the contribution
regarding K parameter,

xixj = a2 KiK j + ab Ki〠
q≠j

Kq + ab 〠
p≠i

KpK j

+ b2 〠
q≠j

Kq〠
p≠i

Kp ,
B 2

where a ≡ 1 − N − 2 w / 1 − N − 2 w − N − 1 w2 and
b ≡w/ 1 − N − 2 w − N − 1 w2 .

Using (A.11), covariance matrix can finally be written
as follows:

cov ≡

var x cov x ⋯ cov
cov x var x ⋯ cov x

⋯ ⋯ ⋯ ⋯

cov x cov x ⋯ var x

, B 3

where

and

vov ≡ K2 −w2 N − 2 2 + 2w N − 2 N − 2 − 1 + σ2
Kw

2 N − 2
1 +w 2 1 − N − 1 w 2

B 5

From (B.3), it turns out that a 1-factor model is indeed
valid for the description of the covariance matrix. In cases
where cov x ~ var x , then adequacy decreases. The partic-
ular case cov x = var x is achieved when w = 1/ N − 3 .
However, such condition is never reached:

w > 1
N − 1 B 6

As seen from (12), stable state diverges when
w > 1/ N − 1 .

C. Stability Conditions

To obtain the stability conditions of optimal fixed point (7),
we expand (3) around this fixed point xi ≡ x C i + ϵi:

ϵi = ri C + ϵi 1 − C + ϵi
C

1 −
C + ϵi − Ki/ri〠jW ji C + ϵi

Ki

C 1

If we linearize (C.1) keeping only terms ~O ϵi , we
obtain

ϵi ≈ −ϵi ri 1 − C
Ki

+ C〠
j

W ji ≡ −βiϵi C 2

var x ≡
K2 −w2 N − 2 2 + 2w N − 2 − 1 + σ2K w2 N − 2 + 1 − N − 3 w

1 +w 2 1 − N − 1 w 2 B 4
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On the other hand, to obtain the stability conditions of
metric fixed point (8), we expand (3) around this fixed point
xi ≡ x Wd i + ϵi:

ϵi ≈ −x Wd i 1 − x Wd i

C
ϵi −

Ki

ri
〠
j

W jiϵj C 3

Equation (C.3) can be written in matrix forms as (22).
We can derive a threshold for the stability condition

using the Perron-Frobenius theorem, (23), applied to (22)
which enables us to write

λmax S < −x Wd i 1 − x Wd i

C
1 − Ki

ri
〠
j

Wji

max

< 0

C 4

Looking into the extreme conditions of (C.4), we
conclude

1 − Ki

ri
〠
j

W ji > 0⇒Ki

ri
〠
j

Wji

max

≡ 〠
j

Wd ij

max

< 1

C 5
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