Skip to main content
Log in

Constructivism and Realism in Boltzmann’s Thermodynamics’ Atomism

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Ludwig Boltzmann is one of the foremost responsible for the development of modern atomism in thermodynamics. His proposition was revolutionary not only because it brought a new vision for Thermodynamics, merging a statistical approach with Newtonian physics, but also because he produced an entirely new perspective on the way of thinking about and describing physical phenomena. Boltzmann dared to flirt with constructivism and realism simultaneously, by hypothesizing the reality of atoms and claiming an inherent probabilistic nature related to many particles systems. Boltzmann faced criticism from the positivists, who rejected the hypothesis of the atom as a matter of principle, and also from physicists, who rejected the idea of a classical bounded system that does not follow deterministic mechanical laws. We consider that Boltzmann thermodynamics has emerged as a systemic theory that deals with macroscopic bodies using collective variables; it was reformulated to a kinetic theory of gases, and subsequently to statistical mechanics. From the theoretical physical point of view, Boltzmann advocates an approach to thermodynamics based on mechanics and was one of the founders of statistical mechanics, together with ideas by Maxwell, Clausius and Gibbs. Subsequently, statistical mechanics has also influenced the development of quantum mechanics and information theory. Using an evolutionary epistemological perspective as a metaphor to describe the physical entities claimed in Boltzmann propositions, we interpret his work as a selected theory that gained attributes of reality and “survived” during a scientific-contextual competition to be more adapted, in the sense that it was able to better explain physical phenomena, and also generated “descendants”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In 1928 Ralph Hartley, in his article entitled “Transmission of Information”, had already defined information as a measurable quantity, which also referred to the ability of a receiver of an X message to distinguish a sequence of symbols, using the concept H = nlog(X), where X represents the number of possible symbols in a transmission. Likewise, Alan Turing, in 1940, had also worked on similar concepts in his work decoding the German messages during World War II [112] Grime (2012).

References

  1. Bradie, M.: Assessing Evolutionary Epistemology. Biol. Philos. 1, 401–459 (1986)

    Google Scholar 

  2. Bradie, M.: Epistemology from an Evolutionary Point of View. In: Sober, E. (ed.) Conceptual Issues in Evolutionary Biology, pp. 453–475. The MIT Press, Cambridge, MA (1994)

    Google Scholar 

  3. Campbell, D.T.: Evolutionary epistemology. In: Schilpp, P.A. (ed.) The philosophy of Karl R Popper, pp. 412–463. Open Court, LaSalle, IL (1974)

    Google Scholar 

  4. Campbell, D.T., Paller, B.T.: Extending evolutionary epistemology to “Justifying” Scientific Beliefs (A sociological rapprochement with a fallibilist perceptual foundationalism?). In: Hahlweg, K., Hooker, C.A. (eds.) Issues in evolutionary epistemology, pp. 231–257. State University of New York Press, Albany (1989)

    Google Scholar 

  5. Derksen, A.A.: Evolutionary epistemology in defense of the reliability of our everyday perceptual knowledge: a promise of evolutionary epistemology. Philosophia-Naturalis 38(2), 245–270 (2001)

    MathSciNet  Google Scholar 

  6. Hull, D.L.: Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science. The University of Chicago Press, Chicago and London (1988)

    Google Scholar 

  7. Hull, D.L.: In search of epistemological warrant. In: Heyes, C., Hull, D.L. (eds.) Selection Theory and Social Construction: The Evolutionary Naturalistic Epistemology of Donald T, pp. 155–167. SUNY Press, Albany, Campbell (2001)

    Google Scholar 

  8. Lakatos, I., Musgrave, A.: Criticism and the Growth of Knowledge. Proceedings of the International Colloquium in the Philosophy of Science, London, 1965. Cambridge: Cambridge University Press (1970).

  9. Lorenz, K.: Behind The Mirror: A Search for a Natural History of Human Knowledge. Methuen, London (1978)

    Google Scholar 

  10. Munz, P.: Philosophical Darwinism: On the Origin of Knowledge by Means of Natural Selection. Routledge, London (1993)

    Google Scholar 

  11. Popper, K.R.: Evolutionary epistemology. In: Tarozzi, G., van der Merwe, A. (eds.) Open Questions in Quantum Physics. Fundamental Theories of Physics (A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application), vol. 10. Springer, Dordrecht (1985)

    Google Scholar 

  12. Popper, K.R.: Objective Knowledge: An Evolutionary Approach. The Clarendon Press, Oxford (1972)

    Google Scholar 

  13. Popper, K.R.: Unended Quest: An Intellectual Autobiography, p. 2002. Routledge, London and New York (1976)

    Google Scholar 

  14. Radnitzky, G., Bartley, I.I.I., Warren, W.: Evolutionary Epistemology, Theory of Rationality and the Sociology of Knowledge. Open Court, LaSalle (1987)

    Google Scholar 

  15. Rescher, N.: A Useful Inheritance: Evolutionary Aspects of the Theory of Knowledge. Rowman, Lanham (1990)

    Google Scholar 

  16. Ter Mark, M.: Popper, Otto Selz and the Rise of Evolutionary Epistemology. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  17. Toulmin, S.E.: The evolutionary development of natural science. Am. Sci. 55(4), 456–471 (1967)

    Google Scholar 

  18. Toulmin, S.E.: Human Understanding: The Collective Use and Evolution of Concepts. Princeton University Press, Princeton (1972)

    Google Scholar 

  19. Andrade, E.M.P., Faber, J., Pinguelli-Rosa, L.: A spontaneous physics philosophy on the concept of ether throughout the history of science: birth death and revival. Found. Sci. 18(3), 559–577 (2013)

    MathSciNet  Google Scholar 

  20. Althusser, L.: Philosophie et Philosophie Spontanée des Savants. Ed. François Maspero, (1974).

  21. Boltzmann L (1872) Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen (Further Studies on the Thermal Equilibrium of Gas Molecules). In: Friedrich JF (ed) Wissenschaftliche Abhandlungen.

  22. Jones, D.G.C.: Two slit interference-classical and quantum pictures. Eur J Phys 15(4), 170 (1994)

    Google Scholar 

  23. Zeilinger, A., Weihs, G., Jennewein, T., et al.: Happy centenary, photon. Nature 433, 230–238 (2005). https://doi.org/10.1038/nature03280

    Article  ADS  Google Scholar 

  24. Kuntz, M.: The postmodern assault on science; If all truths are equal, who cares what science has to say? EMBO Rep. 13(10), 885–889 (2012)

    Google Scholar 

  25. Davidson, D.: The structure and content of truth. J. Philos. 87, 279–328 (1990)

    Google Scholar 

  26. Horwich, P.: Truth. Basil Blackwell Ltd, Oxford (1990)

    MATH  Google Scholar 

  27. Kirkham, R.: Theories of Truth: A Critical Introduction. MIT Press, Cambridge (1992)

    Google Scholar 

  28. Quine, W.V.: “Truth”, in Quiddities: An Intermittently Philosophical Dictionary. The Belknap Press of Harvard University Press, Harvard (1987)

    Google Scholar 

  29. Müller, I.: A History of Thermodynamics. The Doctrine of Energy and Entropy. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-46227-9

    Book  MATH  Google Scholar 

  30. Thomson, W.: On the dynamical theory of heat part V. Thermo-electric currents. Trans. R. Soc. Edinburgh. 21(1), 123 (1854). https://doi.org/10.1017/s0080456800032014

    Article  Google Scholar 

  31. Hall, A.R.: The Scientific Revolution 1500–1800: The formation of the Modern Scientific Attitude. Longmans, Green and Co, London and Colchester (1954)

    Google Scholar 

  32. Hellyer, M.: The Scientific Revolution. Blackwell Publishing Ltd, Oxford (2003)

    Google Scholar 

  33. Kauzmann, W.: Kinetic Theory of Gasses, pp. 232–235. W.A. Benjamin, New York (1966)

    Google Scholar 

  34. Brush, S.G.: The Kind of Motion We Call Heat. North Holland, Amsterdam (1976)

    Google Scholar 

  35. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer's principle linking information and thermodynamics. Nature 483(7388), 187–190 (2012). https://doi.org/10.1038/nature10872

    Article  ADS  Google Scholar 

  36. Gao, X., Gallicchio, E., Roitberg, A.: The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy. J. Chem. Phys. 151(3): 034113 (2019). arXiv:1903.02121. Bibcode:2019JChPh.151c4113G. https://doi.org/10.1063/1.5111333. PMID 31325924.

  37. Lesovik, G., Lebedev, A., Sadovskyy, I., et al.: H-theorem in quantum physics. Sci Rep 6, 32815 (2016). https://doi.org/10.1038/srep32815

    Article  ADS  Google Scholar 

  38. Stotland, A., Pomeransky, A.A., Bachmat, E., Cohen, D.: The information entropy of quantum mechanical states. Europhys. Lett. 67(5), 700–706 (2004). https://doi.org/10.1209/epl/i2004-10110-1

    Article  ADS  MathSciNet  Google Scholar 

  39. Renzi, B.G., Napolitano, G.: Evolutionary Analogies: Is the Process of Scientific Change, Analogous to the Organic Change?. Cambridge Scholars Publishing, Cambridge (2011)

    Google Scholar 

  40. Napolitano, G., Renzi, B.G.: Evolutionary Analogies: Is the Process of Scientific Change Analogous to the Organic Change? Unabridged edition (2011).

  41. Laranjeiras, C.C., Chiappin, J.R.N.: A heurística de Boltzmann e a emergência do programa mecânico-estatístico. Rev. Brasil. Ensino de Física 28(3), 297–312 (2006)

    Google Scholar 

  42. Bribiesca, L.B.: Memetics: a dangerous idea. Int. Rev. Ciencia y Technol. Am. 26(1), 29–31 (2001)

    Google Scholar 

  43. Dawkins, R.: The Selfish Gene, 2nd edn, p. 192. Oxford University Press, Oxford (1989)

    Google Scholar 

  44. Wilkins, J.S.: What's in a Meme? Reflections from the perspective of the history and philosophy of evolutionary biology. J Memetics 2, archived from the original on 2009–12–01, Retrieved 13, December, 2008 (1998)

  45. Iqbal, A., Toor, A.: Darwinism in quantum systems? Phys. Lett. A 294(5–6), 261–270 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Zurek, W.H.: Quantum darwinism and invariance. In: Barrow, J.D., Davies, P.C.W., Harper Jr., C.L. (eds.) Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, pp. 121–137. Cambridge University Press, London (2004)

    Google Scholar 

  47. Faber, J. Quantum Games from Biophysical Hamiltonians and a Sub-Neuronal Optimization Criterium of Information, PhD thesis, LNCC, 2005. In portuguese. https://qubit.lncc.br/files/jfaber_phd.pdf

  48. Edelman, G.M., Mountcastle, V.B.: The Mindful Brain. Cortical Organization and the Group-Selective Theory of Higher Brain Function, Revised edn. MIT Press, Cambridge (1982)

    Google Scholar 

  49. Edelman, G.: Neural Darwinism. The Theory of Neuronal Group Selection. Basic Books, New York (1987)

    Google Scholar 

  50. Fernando, C., Goldstein, R., Szathmáry, E.: The neuronal replicator hypothesis. Neural Comput. 22(11), 2809–2857 (2010). https://doi.org/10.1162/NECO_a_00031.PMID20804380

    Article  MathSciNet  MATH  Google Scholar 

  51. Herrmann-Pillath, C.: The brain, its sensory order and the evolutionary concept of mind, on Hayek's contribution to evolutionary epistemology. J. Soc. Biol. Struct. 15(2), 145–187 (2006). https://doi.org/10.1016/1061-7361(92)90003-v.SSRN950592

    Article  Google Scholar 

  52. Piaget, J.: Genetic Epistemology. Columbia University Press, New York (1968)

    Google Scholar 

  53. Dennett, D.C.: Darwin's Dangerous Idea Evolution and the Meanings of Life. Penguin Books, London (1995)

    Google Scholar 

  54. Kelley, D.B.: The Origin of Everything, via Universal Selection, or the Preservation (2013)

  55. Hodgson, G.M.: Generalizing Darwinism to social evolution: Some early attempts. J. Econ. Issues. 39(4), 899–914 (2005). https://doi.org/10.1080/00213624.2005.11506859.ISSN0021-3624

    Article  Google Scholar 

  56. Von Sydow, M.: From Darwinian Metaphysics towards Understanding the Evolution of Evolutionary Mechanisms. A Historical and Philosophical Analysis of Gene-Darwinism and Universal Darwinism. Universitätsverlag Göttingen, Göttingen (2012)

    Google Scholar 

  57. Campbell, J.: Bayesian methods and Universal Darwinism. AIP Conf. Proc. 1193, 40 (2009). https://doi.org/10.1063/1.3275642.40-47

    Article  ADS  Google Scholar 

  58. Campbell, D.T.: Epistemological roles for selection theory. Evolution, cognition, and realism: Studies in evolutionary epistemology, 1–19 (1990).

  59. Gontier, N.: Evolutionary Epistemology. Internet Encyclopedia of Philosophy. (2006) https://www.iep.utm.edu/evo-epis/

  60. Plotkin, H.C.: Darwin Machines and the Nature of Knowledge. Harvard University Press, Cambridge (1997)

    Google Scholar 

  61. Clausius, R.: On a modified form of the second fundamental theorem in the mechanical theory of heat. Philos. Magn. Ser. 4. 12(77), 81–98 (1856)

    Google Scholar 

  62. Clausius, R.: Über die Art der Bewegung, die wir Wärme nennen. Ann. Phys. 176(3), 353–380 (1857)

    Google Scholar 

  63. Davy, H.: An essay on heat, light, and the combinations of light. In: T. Beddoes (ed) Contributions to Physical and Medical Knowledge, Principally from the West of England. London: Biggs & Cottle, for T. N. Longman and O. Rees, Paternoster-Row, pp 5–150 (1799).

  64. Clausius, R.: Über die mittlere Länge der Wege, welche bei Molecularbewegung gasförmigen Körper von den einzelnen Molecülen zurückgelegt werden, nebst einigen anderen Bemerkungen über die mechanischen Wärmetheorie. Ann. Phys. 105, 239–258 (1858)

    Google Scholar 

  65. Krönig, A.K.: Grundzüge einer Theorie der Gase. Ann. Phys. 99, 315–322 (1856)

    Google Scholar 

  66. Mott-Smith, M.C.: The concept of energy simply explained: Formerly titled: The story of energy. Dover Publications, New York (1934)

    Google Scholar 

  67. Buijs Ballot, C. H. D.: On the Nature of the Motion which we Call Heat and Electricity, Poggendorff Annalen, 10 (1858).

  68. Waterston, J.J.: On the Physics of Media that Are Composed of Free and Elastic Molecules in a State of Motion, 1845, reprinted in Lindsay (1979).

  69. Maxwell, J.C.: Illustrations of the dynamical theory of gases—Part I. On the motions and collisions of perfectly elastic spheres. Philos. Mag. Ser. 4 19(124), 19–32 (1860)

    Google Scholar 

  70. Boltzmann, L.: Vorlesungen über Gastheorie. J. A. Barth, Leipzig (1896)

    MATH  Google Scholar 

  71. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    ADS  Google Scholar 

  72. Ross, J.F.: Pascal's legacy. EMBO Rep. 5(1), S7–S10 (2004). https://doi.org/10.1038/sj.embor.7400229

    Article  Google Scholar 

  73. Diderot, D., D´Alembert, J.R.: Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers. The Encyclopedia of Diderot & d'Alembert Collaborative Translation Project. Michigan Publishing. https://quod.lib.umich.edu/d/did/index.html. Accessed 24 Oct. 2018 (1765).

  74. Laplace, P.-S.: Essai philosophique sur les probabilités. Bachelier, Paris (1814)

    MATH  Google Scholar 

  75. Quêtelet, A.: Sur l'homme et le développement de ses facultés: ou, Essai de physique sociale. Bachelier, Paris (1835)

    Google Scholar 

  76. Maxwell, J.C.: Molecules. Nature 8(204), 437–441 (1873)

    Google Scholar 

  77. Boltzmann, L.: Über die Mechanische Bedeutung des Zweiten Hauptsatzes der Wärmetheorie. Wien. Ber. 53, 195–220 (1866)

    Google Scholar 

  78. Loschmidt, J.: Über die Zustand des Wärmegleichgewicht eines Systems von Körpern mit Rücksicht auf die Schwerkraft. Wiener Berichte 73, 366–372 (1876)

    Google Scholar 

  79. Daub, E.: Maxwell’s Demon. In: Leff, S., Rex, A.F. (eds.) Maxwell's Demon, Entropy, Information, Computing Harvey, pp. 37–51. Adam-Hilger, Bristol (1990)

    Google Scholar 

  80. Schrödinger, E.: In: Kilmister, C.W. (ed.) FLAMM, Dieter, Boltzmann Influence in Schroedinger. (1929)

  81. Maxwell, J.C.: Theory of Heat. Longmans, Green and Co, London (1871)

    Google Scholar 

  82. Leff, H.S., Rex, A.F.: Maxwell’s Demon—Entropy, Information, Computing. Princeton University Press, Princeton (1990)

    Google Scholar 

  83. Loschmidt, J.: Der zweite Satz der mechanischen Wärmetheorie. Akademie der Wissenschaften, Wien Math.-Naturw. Klasse, Sitzungsberichte 59(2): 395–418 (1869)

  84. Knott, C. G.: Life and scientific work of Peter Guthrie Tait, supplementing the two volumes of Scientific papers published in 1898 and 1900. Cambridge University Press, Cambridge (1911)

  85. Maxwell, J.C.: Diffusion, pp. 214–221. Encyclopedia Britannica, VII (1877)

    Google Scholar 

  86. Dias, C., Penha, M.: “Will someone say exactly what the H-theorem proves?” A study of Burbury's Condition A and Maxwell's Proposition II. Arch. Hist. Exact Sci. 46(4), 341–366 (1994)

    MathSciNet  Google Scholar 

  87. Dias, C., Penha, M.: Clausius and Maxwell: the statistics of molecular collisions (1857–1862). Ann. Sci. 51(3), 249–261 (1994)

    Google Scholar 

  88. Boltzmann, L.: Bermerkungen über einige Probleme der mechanische Wärmetheorie. Wiener Berichte 75, 62–100 (1877)

    MATH  Google Scholar 

  89. Boltzmann, L.: Über die beziehung demzweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung Respektive den Sätzen über das Wärmegleichgewicht. Wiener Berichte 76, 373–435 (1877)

    Google Scholar 

  90. Planck, M.: Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verh. Dtsch. Phys. Ges. 2, 237 (1900)

    MATH  Google Scholar 

  91. Pais, A.: Subtle is the Lord, p. 73. Oxford University Press, Oxford (1981)

    Google Scholar 

  92. Zermelo, E.: Ueber einen Satz der Dynamik und die Mechanische Warmetheorie. Ann. Phys. 293(3), 485–494 (1896)

    MATH  Google Scholar 

  93. Poincaré, H.: Rapports du Congrès International de Physique, Vol I, Paris (1900).

  94. Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17(12), 656–660 (1931)

    ADS  MATH  Google Scholar 

  95. Kuhn, T.S.: Black-Body Theory and the Quantum Discontinuity, 1894–1912. Oxford University Press, Oxford (1978)

    Google Scholar 

  96. Plank, M.: Über das Gesetz der Energieverteilung im Normalspektrum. Ann. Phys. 09(3), 553–563 (1901)

    MATH  Google Scholar 

  97. Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17(6), 132–148 (1905)

    MATH  Google Scholar 

  98. Planck, M.: The Genesis and Present State of Development of the Quantum Theory. Nobel Conference. Nobel Foundation and Nobel Media. (1920) https://www.nobelprize.org/nobel_prizes/physics/laureates/1918/planck-lecture.html.

  99. Planck, M.: Scientific Autobiography (Wissenschaftliche Selbstbiographie). Johann Ambrosius Barth Verlag, Leipzig (1948)

    MATH  Google Scholar 

  100. Flamm, D.: Boltzmann’s influence in Schrödinger. In: Kilmister, C.W. (ed.) Schrödinger: Centenary Celebration of a Polymath, pp. 4–15. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  101. Schrödinger, E.: Zur Einstein'schen Gastheorie (On Einstein’s gas theory). Phys. Z. 27, 95–101 (1926)

    Google Scholar 

  102. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 37(12), 863–867 (1926)

    ADS  MATH  Google Scholar 

  103. Cohen, E.G.D.: Boltzmann and Einstein: statistics and dynamics an unsolved problem. Pramana J. Phys. (64) 5, 635–643 (2005)

    ADS  Google Scholar 

  104. Einstein, A.: Letter to M. Besso, 23 July 1918 (1918).

  105. Szilárd, L.: Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen (On the reduction of entropy in a thermodynamic system by the intervention of intelligent beings). Z. für Phys. 53(11–12), 840–856 (1929). https://doi.org/10.1007/bf01341281

    Article  ADS  MATH  Google Scholar 

  106. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (July 1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  MATH  Google Scholar 

  107. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  108. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms, 1st edn, p. 34. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  109. Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learning Res. 3, 583–617 (2003)

    MathSciNet  MATH  Google Scholar 

  110. Arndt, C.: Information Measures, Information and its Description in Science and Engineering (Springer Series: Signals and Communication Technology). Springer, Berlin (2004)

    Google Scholar 

  111. Chandler, D.: Transmission Model of Communication (1994). Web. October 10, 2009 (1994).

  112. Hartley, R.V.L.: Transmission of Information. Bell Syst. Tech. J. 7(3), 535–563 (1928)

    Google Scholar 

  113. Turing, A. (c. 1941). “The Applications of Probability to Cryptography”. The National Archives (United Kingdom): HW 25/37. Archived from the original on 7 April 2015. Retrieved 25 March 2015.

  114. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Charles Scribner's Sons, New York (1902)

    MATH  Google Scholar 

  115. Lindley, D.: Boltzmann’s Atom. The Free Press, New York (2001)

    Google Scholar 

  116. Ostwald, W.L.: L’énergie. Felix Alcan Éditeur, Paris (1910)

    MATH  Google Scholar 

  117. Mandl, F.: Statistical Physics, Manchester Physics, 2nd edn. Wiley, New York (2008)

    Google Scholar 

  118. Lewis, G.N.: The symmetry of time in physics. Science 71, 569 (1930)

    ADS  MATH  Google Scholar 

  119. Brillouin, L.M.D.: Maxwell's Demon cannot operate. Information theory and entropy I. J. Appl. Phys. 22, 334 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  120. Brillouin, L.: Thermodynamics and information theory. Am Sci. 38, 594 (1950)

    Google Scholar 

  121. Gabor, D.: Communication theory and physics. Philos. Magn. 41(7), 1161 (1950)

    MATH  Google Scholar 

  122. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961). https://doi.org/10.1147/rd.53.0183.RetrievedNovember13,2014.reprintedin,44(1),pp.261,January2000

    Article  MathSciNet  MATH  Google Scholar 

  123. Bennett, C.H.: The thermodynamics of computation a review. Int. J. Theor. Phys. 21(12), 905–940 (1982). https://doi.org/10.1007/BF02084158

    Article  Google Scholar 

  124. Bennett, C. H.: Notes on Landauer's principle, reversible computation, and Maxwell's demon. Stud. Hist. Philos. Modern Phys. 34 (3):501–510. doi:10.1016/S1355-2198(03)00039-X (2002–2003)

  125. Toyabe, S., Sagawa, T., Ueda, M., et al.: Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988–992 (2010). https://doi.org/10.1038/nphys1821

    Article  Google Scholar 

  126. Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Alfred A. Knopf, New York (2005)

    MATH  Google Scholar 

  127. Penrose, R.: Cycles of Time: An Extraordinary New View of the Universe. Bodley Head, London (2010)

    MATH  Google Scholar 

  128. Uffink, J.: Boltzmann's Work in Statistical Physics. Stanford Encyclopedia of Philosophy, Stanford (2008)

    Google Scholar 

  129. Cohen, E.G.D. Entropy, Probability and Dynamics, arXiv:0807.1268 [physics.hist-ph] (2008).

  130. Feder, T.: Boltzmann honored on death centenary. Phys. Today 59(9), 29 (2006)

    Google Scholar 

  131. Lebowitz, J.L.: Acerca da origem microscópica dos fenômenos macroscópicos. Rev. Brasil. de Ensino de Física 28(3), 267–268 (2006)

    Google Scholar 

  132. Videira, A.A.P.: Boltzmann, física teórica e representação. Rev Brasil de Ensino de Física 28(3), 269–280 (2006)

    Google Scholar 

  133. Dahmen, S.R.: A obra de Boltzmann em Física (Boltzmann's work in Physics). Rev. Brasil. Ensino de Física 28(3), 281–295 (2006)

    Google Scholar 

  134. Tsallis, C., Anjos, J.C., Borges, E.P.: Fluxes of cosmic rays: a delicately balanced stationary state. Phys. Lett. A 310, 372–376 (2003)

    ADS  Google Scholar 

  135. Beck, C.: Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett. 87, 180601 (2001)

    ADS  MathSciNet  Google Scholar 

  136. Videira, A.A.P., Videira, A.L.: Boltzmann and the Luebeck meeting of 1985: atomism, energetism and physical theory. In: Videira, A.A.P., Salinas, S.R.A. (eds.) A Cultura da Física: Contribuições em Homenagem a Amélia Império Hamburger. Editora Livraria da Física, São Paulo (2001)

    Google Scholar 

  137. Barberousse, A.: La Mécanique Statistique, De Clausius à Gibbs. Belin, Paris (2002)

    Google Scholar 

  138. Guttmann, Y.M.: The Concept of Probability in Statistical Physics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  139. de Regt, H.W.: Ludwig Boltzmann's Bild theory and scientific understanding. Synthese 119, 113–134 (1999)

    Google Scholar 

  140. Blackmore, J.T.: Ludwig Boltzmann His Later Life Philosophy. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  141. von Plato, J.: Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical Perspective. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  142. Carnap, R., Shimony, A.: Two Essays on Entropy. University of California Press, Berkeley (1977)

    Google Scholar 

  143. Jaynes, E.T., Rosenkrantz, R.D.: E.T. Jaynes: papers on probability, statistics, and statistical physics. Kluwer Academic Publishers, Dordrecht (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Faber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, L.P., Andrade, E., Picciani, P. et al. Constructivism and Realism in Boltzmann’s Thermodynamics’ Atomism. Found Phys 50, 1270–1293 (2020). https://doi.org/10.1007/s10701-020-00372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00372-2

Keywords

Navigation