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“A Public Domain, once a velvet carpet of rich buffalo-grass and grama, now an illimitable waste of rattlesnake-bush and tumbleweed, too impoverished to be accepted as a gift by the states within which it lies.  Why?  Because the ecology of the Southwest happened to be set on a hair trigger.”

-Aldo Leopold, “The Conservation Ethic,” Journal of Forestry, 1933, 31, 636-637.

INTRODUCTION AND DEFINITIONS

The question of what constitutes complex dynamics is multi-faceted and complicated, with a variety of definitions being offered.  For purposes of this discussion we shall focus on the dynamic definition of complexity provided by Day (1994) and discussed in connection with alternatives by Rosser (1999, 2009).  This definition posits that systems are dynamically complex if they fail to converge to either a point, a limit cycle, or an exponential expansion or contraction due to endogenous causes.  The system generates irregular dynamic patterns of some sort, either sudden discontinuities, aperiodic chaotic dynamics subject to sensitive dependence on initial conditions, multi-stability of basins of attraction, or other such irregular patterns.  Combined ecologic-economic systems seem to be especially prone to such dynamics, with the resulting problems arising from these becoming serious problems for policymakers (Rosser, 2001).  In this chapter we shall focus on the complex dynamics of fisheries, forests, the global climatic-economic system, and hierarchical systems.  

Without doubt prior to the appearance of human beings ecological systems experienced discontinuities in their dynamic paths, if only due to dramatic exogenous shocks such as meteorite strikes or volcanic eruptions that probably triggered the episodes of mass extinctions known to have occurred in geological time.  We also now know that in contrast to Darwin’s (1859, p. 166) view that “natura non facit saltum,” (“nature does not take a leap”) evolution may well have proceeded in a more discontinuous, “saltationalist,” manner via punctuated equilibria, with long periods of little change alternating with periods of very rapid change (Gould, 2002).  However, it is also likely that these periods of rapid evolutionary change were driven by sudden changes in broader environmental conditions such as climate.


Of somewhat greater interest are the fluctuations and discontinuities that arise in an endogenous manner from within ecosystems.  The Lotka-Volterra predator-prey cycle is perhaps the most famous and widespread such phenomenon, although it does not involve discontinuities per se (Lotka, 1925).  Two (or more) species interact in a coupled oscillation whose swings can be so great that they can appear to be almost discontinuous at certain points, as in the famous hare-lynx example of the Hudson Bay (Odum, 1953).
  An even more dramatic example is the spruce budworm dynamics in Canadian forests (Holling, 1965; May, 1977; Ludwig, Jones, and Holling, 1978; Ludwig, Walker, and Holling, 2002), the roughly 40-year cycle marked by discontinuous outbreaks of the budworm population.
  This latter clearly involves a situation of multiple equilibria with possible hysteresis cycles between them.  Furthermore, predator-prey cycles and more complicated interspecies relationships can lead to chaotic dynamics (Schaffer, 1984; Brauer and Soudack, 1985; Doveri, Scheffer, Rinaldi, Muratori, and Kuznetsove, 1993)
 even if it has been argued that truly such dynamics are only rarely observed among natural populations in the wild (Zimmer, 1999)
 in contrast to laboratory populations (Hassell, Lawton, and May, 1976).
Other strictly ecological systems that exhibit such multiple equilibria with accompanying discontinuities as systems move from one basin of attraction to another include coral reefs (Done, 1992; Hughes, 1994), kelp forests (Estes and Duggins, 1995), and potentially eutrophic shallow lakes (Schindler, 1990; Scheffer, 1998; Carpenter, Ludwig, and Brock, 1999; Carpenter, Brock, and Ludwig, 2002; Wagener, 2003), although these latter can be affected by human input of phoshporus.  A more particular phenomenon involves situations when species invade ecosystems leading to sudden disruption as in some grasslands (D’Antonio and Vitousek, 1992), although increasingly these invasions have been triggered by humans transporting species across Wallace’s Realms (Elton, 1958).  A further complication with multiple basins of attraction arises when these basins may have fractal boundaries, thereby increasing the degree of complexity of possible dynamics, with this shown as a possibility for predator-prey systems under certain conditions (Gu and Huang, 2006).
The problem of lake eutrophication due to phosphorus loadings from human activity noted above is another important example as is the problem of overgrazing of ecologically fragile rangelands that can be taken over by woody vegetation (Noy-Meir, 1973; Walker, Ludwig, Holling, and Peterman, 1981; Ludwig, Walker, and Holling, 2002).  A fundamental concept in all this is the stability-resilience tradeoff first posited by Holling (1973), with true discontinuities being associated with crossing from one basin of attraction to another in a failure of resilience.
  
COMPLEX FISHERY DYNAMICS

Colin W. Clark (1985, p. 6) lists species that have experienced relatively sudden population collapse in fisheries: Antarctic blue whales, Antarctic fin whales, Hokkaido herring, Peruvian anchoveta, Southwest African pilchard, North Sea herring, California sardine, Georges Bank herring, and Japanese sardine.  While some of these have since recovered, yet others have collapsed since, most dramatically the Georges Bank cod (Ruitenback, 1996).  Needless to say these events have drawn much study and effort with many approaches being used, including catastrophe theory for the Antarctic blue and fin whale cases (Jones and Walters, 1976).
  A more general approach has been developed (Clark, 1990; Rosser, 2001; Hommes and Rosser, 2001) based on the study of open access fisheries by Gordon (1954), combined with the yield curve model of Schaefer (1957) and drawing on the insight of Copes (1970) that the supply curve in many fisheries may be backward-bending.  However, this analysis will also apply to closed access fisheries managed in an optimal manner, the open and closed access cases coinciding for the case where the discount rate for the future is infinite, that is, the future is not counted at all.


Let x = fish biomass, r = intrinsic growth rate of the fish, k = ecological carrying capacity, t = time, h = harvest, and F(x) = dx/dt, the growth rate of the fish without harvest.  Then a sustained yield harvest is given by 

                                            h = F(x) = rx(1 – x/k).                                                        (1)


Let E = catch effort in standardized vessel time, q = catchability per vessel per day, a constant marginal cost = c, p = price of fish, and δ = the time discount rate.  The basic harvest yield is

                                                  h(x) = qEx.                                                                  (2)     


Hommes and Rosser (2001) show that the optimal discounted supply curve is then given by

            xδ(p) = k/4{1+(c/pqk)-(δ/r)+[(1+(c/pqk)-(δ/r)2+(8cδ/pqkr)]1/2}.                      (3)                                 

This entire system is depicted in Figure 1, with the backward-bending supply curve in the upper right and the yield curve in the lower right.  It must be noted that if the discount rate is low enough, then there is no backward bend, although it will do so for discount rates exceeding 2 percent, which is not very high.  The maximum backward bend will occur with a discount rate of infinity, in which the future is not counted at all, which coincides with the open access case.


The basic collapse story occurs as a sufficiently inelastic demand curve gradually shifts outward.  This is also shown in Figure 1, and it can be seen that as the demand curve shifts outward, the system will go from a single equilibrium with a low price and large fish stock and harvest through a zone of three equilibria, and then will suddenly jump to another single equilibrium case of high price and low fish stock and harvest as the demand curve continues to move outwards (Anderson, 1973).  Needless to say this scenario is more likely for the case of open access with its known propensity for ovexploitation of a natural resource.
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Figure 1:  Gordon-Schaefer-Clark fishery model

If one posits adaptive behavior by fishers, then the dynamics vary considerably as the discount rate varies.  At low discount rates, the system will stay on the lower section of the supply curve, with high quantities and low prices.  At very high discount rates, the opposite will occur, with prices being high and quantities low.  However, Hommes and Rosser (2001) in studying this system showed that for intermediate ranges of the discount rate, chaotic dynamics can arise, essentially involving fishers jumping back and forth between the lower and upper ranges of the supply curve.  They also show that the fishers can “learn to believe in chaos” and adapt to an underlying chaotic dynamic using simple rules of thumb along lines studied by Hommes and Sorger (1998), following their concept of consistent expectations equilibria.
  While not using this framework, Conklin and Kohlberg (1994) have also demonstrated the possibility of chaotic dynamics for fisheries.  

Now this setup does not generate a complete collapse of the fishery to zero.  This can happen if the yield function exhibits the character of depensation (Allee, 1931; Clark and Mangel, 1979).  The yield function and the harvest yield curve for the critical depensation case is shown in Figure 2.  In this case a complete collapse of the population to zero can happen.  This is the situation when a species has a minimum number below which it will fail to reproduce.
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Figure 2:  Critical depensation yield function

The potential for complete collapse of a fishery can also arise from the phenomenon of capital stock inertia (Clark, Clarke, and Munro, 1979).  This is exacerbated in practice by the unwillingness of many fishers to give up their lifestyle and the tendency for many to belong to isolated minority groups with strong identities who resent policy efforts by outsiders (Charles, 1988).  It is well known that if the fishers themselves can organize themselves to manage their fisheries and control access that this is a superior outcome (Walters, 1986; Durrenberger and Pàlsson, 1987; Ostrom, 1990; Bromley, 1991; Sethi and Somanathan, 1996).  However, game theoretic approaches are relevant in the analysis of conflicts over access, especially in connection with fisheries spilling across national boundaries (Okuguchi and Svidarovsky, 2000; Bischi and Kopel, 2002).  The problem is not “common property,” as was thought in the period of Gordon (1954), but is of control of access (Ciriacy-Wantrup and Bishop, 1975).  


Yet another potential source for the collapse of a fish species involves interactions between competitive species.  Gause (1935) developed the competitive species version of the Lotka-Volterra model.  Let s = intrinsic growth rate of the y species and L its carrying capacity, with all other variables defined as above, this is given by

                                         dx/dt = rx(1-x/k) – αxy                                                         (4)

                                         dy/dt = sy(1-y/L) – βxy.                                                        (5)

An isocline for x to remain constant is given by

                                         Y = (r/α)(1-x/k) – (q/α)E.                                                      (6)

As E increases the system can bifurcate with a collapse of x occurring.  This will coincide with its competitive replacement by y when E = s/β (Clark, 1990).  Murphy (1967) analyzed the collapse of the Pacific sardine fishery in the late 1940s and its replacement by the anchoveta as a likely example of such a competitor driven collapse.  Figure 3 depicts this case, with x collapsing while its yield-effort curve is still increasing.
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Figure 3:  Fishery Collapse with Competitor Species


In contrast to the competitor species case there is the question of dynamics in the predator-prey case.  This case with harvesting of the predator species has been studied by Brauer and Soudack (1979).  They find a stable case and an unstable case, with the latter emerging as the harvest rate increases.  In both cases there are two equilibria.  In the stable case, one equilibrium is stable while the other is an unstable node from which the dynamics move to the stable equilibrium.  In the unstable case, the formerly stable equilibrium destabilizes, and the possibility of the collapse of the predator population.  This situation is depicted in Figure 4, with 4(a) the stable case and 4(b) the unstable case.  Brauer and Soudack (1985) suggest various strategies for stabilizing the unstable case.
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                                        (a) Stable Situation               (b) Unstable Situation

Figure 4:  Complex Predator-Prey Dynamics with Harvesting

The problem of managing fisheries with such predator-prey interactions has also been studied by Walters (1986).  More particularly he has considered the problem of preserving trout in Lake Superior after their devastation by the lamprey, which invaded through the St. Lawrence Seaway.  He has suggested that in an effort to maximize yield while avoiding catastrophic collapse one may have to “surf” near the edge of the system as in (a) in Figure 5.  Fishers face the tradeoff between too little information but a higher and safer yield versus more information but the danger of a catastrophic collapse of the wild trout population as in (b) in Figure 5.
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Figure 5:  Great Lakes Trout Dynamics under Alternative Strategies

COMPLEX FORESTRY DYNAMICS


Above we noted the case of the spruce budworm cycle and the influence that distant human activities can have on it (Holling, 1988).  We shall now consider certain situations where more direct human management of forests can lead to discontinuities of various sorts.  In this analysis we shall assume that the forest managers are optimizing agents.  While in some cases this optimization may take the form of simple wealth maximization based on future expected income streams from timber harvesting or grazing of species with economic payoffs, it can be generalized to managers of publicly owned forests who are valuing benefits that do not have marketed economic value such as various forms of recreation, carbon sequestration, biodiversity preservation, or others. 


Following the pioneering work of Faustmann (1849) that focused strictly on the optimal rotation period of a forest being utilized strictly for timber and replanted after harvesting, Hartman (1976) expanded this to include non-timber amenities.  Let f(t) be the growth function of the trees, p the price of timber (assumed constant),
 r the real market rate of interest, c the marginal cost of timber harvesting, e the base of the natural logarithms, g(t) the time pattern of the value of the non-timber amenities, and T the optimal rotation period (the period the forest is allowed to grow before being cut and replanted), then the infinite horizon optimization gives the following solution:

                              pf’(T) = rpf(T) + r[(pf(T) – c)/(erT – 1)] – g(T).                           (7)

This implies that if the non-timber amenities continue to have positive value over time, then the optimal rotation will be longer than for a forest being managed solely for its timber value.  Indeed, if g(t) continues to grow over time and is sufficiently high, it can become optimal not to cut the trees, even though they have timber value.


However, if the g(t) is high early in the life of the forest and declines, this can lead to quite a different solution.  Thus, many forests possess grazing benefits in early stages.  Swallow, Parks, and Wear (1990) have studied this case for national forests in western Montana, which possess cattle grazing benefits in the early stages of forest growth.  They estimated parameter values for the following grazing function

                                             g(t) = β0exp(-β1t).                                                           (8)

The value of this is maximized at T = 1/β1, which for the case of cattle grazing in the western Montana forests was found to be at 12.5 years.  The function they estimated is shown in Figure 6.
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Figure 6:  Grazing benefit function
Figure 7 depicts for this case the present value of the forest at different ages and also the comparison between the marginal benefit of delaying harvest (MBD) and the marginal opportunity cost (MOC) of doing so.  Clearly there are multiple solutions, although in this case the later local optimum is clearly superior.  Nevertheless for this case it occurs at an earlier time than the pure Faustmann solution would indicate in the absence of this early grazing benefit.  Implicit here is the possibility of a discontinuity arising from a change in the market rate of interest, r, which is influences both the MBD and the MOC.  Thus, there could be drastic changes in harvest policy at a critical interest rate, with the optimal rotation suddenly jumping to a very different value.
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Figure 7:  Optimal Hartman rotation

A more non-market type of benefit is hunting.  Figure 8 depicts the time pattern of g(t) for hunting in the George Washington National Forest in Virginia as estimated by Rosser (2005) based on data gathered during a land-use planning exercise as part of the FORPLAN process in the early 1980s (Johnson, Jones, and Kent, 1980).  This shows three separate peaks of hunting value at different times after a clearcut of these largely deciduous forests.  The first occurs about 6 years after the cut when deer hunting is maximized.  This is somewhat analogous to the cattle grazing example noted above, with the deer liking the clearcut zones with small trees and especially the edges of such zones.  The next peak occurs around 25 years after the cut and is associated with hunting of wild turkeys and grouse.  This is approximately the period of maximum biodiversity of this forest as the succession from oaks to successor species begins and there is much underbrush.  Finally after about 60 years the forest becomes “old growth” and bear hunting is maximized, basically increasing in value with the age of the forest as the bears like large fallen down trees.
  Needless to say, such a pattern simply opens the door to even more possible discontinuities.

                      Hunting Value
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Figure 8:  Virginia Deciduous Forest Hunting Amenity

Although there will be no further detailed analysis of the various time patterns of them in forests, the list of other potential non-timber amenities that can (or should) be accounted for is quite long.  They include a variety of biodiversity amenities (Perrings, Mäler, Folke, Holling, and Jansson, 1995), carbon sequestration (Alig, Adams, and McCarl, 1998), and reduced flooding and soil erosion (Plantinga and Wu, 2003).  By and large most of these tend to favor longer rotation periods for most forests.

  Probably the most dramatic discontinuities in forestry management involve stability-resilience tradeoffs (Holling, 1973).  We have noted above the case of pest management in regard to the spruce budworms, with efforts to control the budworms in the late stages of their cycle by spraying generally only aggravating their eventual population explosion and resulting collapse of the spruce forest, this leading to a pattern of hysteresis cycles (Holling, 1965; 1986; 1988).  He has documented several other cases besides this one where similar patterns arise (1986).

Somewhat similar is the problem facing forestry managers regarding fire management.  Longstanding policy in the US national forests was to vigorously suppress almost all fires, even those naturally occurring due to lightning strikes.  However, it is now understood that this policy achieved short-term stability at the risk of long-term lack of resilience as underbrush buildup can set a forest up for a truly devastating large-scale fire as happened in Yellowstone National Park.  Muradian (2001) argues that the relationship between fire frequency and vegetative density is one of multiple states.  This supports the idea of the possibility of catastrophic dynamics as we have seen. 

Besides the vegetation issue there are also implications for preservation of endangered species, with some doing best in the wake of fires at mid-range successional stages, such as the eastern bristlebird in the US (Pyke, Saillard, and Smith, 1995).  Clark and Mangel (2000, pp. 176-181) offer an analysis of this sort of case.  Figure 9 depicts the time path of an endangered population after a fire.  They argue that from the perspective of maximizing such an endangered species, controlled fires should be set when the population is the largest, which could entail relatively frequent fires.  Of course, controlled fires can get out of control, which has been a problem in recent years also.
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Figure 9:  Average Population Path

Finally with respect to forests there is the issue of the size of harvest cuts, another matter of great controversy.  Generally timber companies prefer to do large-sized clearcuts as they are less expensive in simple economic terms.  However, aside from externalities such as flooding, soil erosion, or plain unsightliness, there are implications for endangered species management as well.  Thus it has been argued that there are nonlinear relations between largest patch size of habitat and the general degree of habitat destruction or fragmentation.  The larger the harvest cut the more likely the resulting patch size may be smaller.  More particularly it is argued that below a certain habitat patch size there is a collapse of the fragile species population (Bascompte and Solé, 1996; Muradian, 2001).
  The implications of this potential for population collapse in conjunction with the declining costs of harvesting larger sized cuts is depicted in Figure 10.  The A curve represents the population able to be maintained as a function of the size of the harvest cut, while the B line represents the average costs of the cut.  The case for somewhat smaller cuts (but not too small) is clear.
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Figure 10:  Harvest Cut and Habitat Damage

COMPLEX DYNAMICS IN THE GLOBAL CLIMATIC-ECONOMIC SYSTEM

An example of how the globally coupled climatic-economic system might behave chaotically has been studied by Chen (1997), even though each of the sub-systems does not behave chaotically by itself uncoupled from the other sub-system within this model.  The basics of it are quite simple, arguably much simpler than reality.


The climate model used by Chen is due to Henderson-Sellars and McGuffie (1987).  It assumes that global average temperature is a linear function of the level of global manufacturing output, given by 
Tt+1 = (1 – c)(Tt – Tn) + Tn + gXmt,                                               (9)

Where c ε (0,1), Tn is normal global average temperature, t and t+1 subscripts indicate time periods, g > 0, and Xmt is global manufacturing output in time t.  


The economic model has two sectors, agriculture, a, and manufacturing, m.  Optimization occurs based on a CES utility function of the levels of consumption of agriculture and manufacturing, given by



U(Cat, Cmt) = (Cρat + Cρmt)1/ρ,                                                       (10)
with Cit = Xit and the elasticity of substitution σ = 1/(1 -ρ) < 1.  Outputs in each sector are linear in sectoral labor, lit, with total labor supply constant and normalized to sum to unity.  Furthermore, agricultural output is a quadratic function of average global temperature.  Thus, given that α, β, and b are all positive constants we have



Xat = (-αT2t + βTt + 1)lat                                                               (11)



Xmt = blmt.                                                                                     (12)

This system generates a market clearing price, p, given by



Pt = (-αT2t + βTt + 1)/b.                                                                 (13)


All this then provides an equilibrium law of motion of global temperature, which is given by


Tt+1 = (1 – c)Tt + g[(bpt1-σ)/(1 + pt1-σ)].                                                      (14)

Chen simulated this model for parameter values σ = 0.5, α = 8, β = 7, b = 1, and g = 0.6.  The crucial control parameter is c, the adjustment factor for global temperature, which has a critical bifurcation value of 0.233.  Above that value, the system converges to a steady state, but goes through period-doubling bifurcations as c declines below that value, with 0.209 being the value below which aperiodic chaotic dynamics appear.  In that range the system exhibits sensitive dependence on initial conditions, aka, the “butterfly effect.”  Matsumoto and Inaba (2000) extend this model to the case of world population varying endogenously to economic conditions and show the possibility of chaotic long wave fluctuations with the possibility of population crashes.

Now we emphasize that these chaotic dynamics occur for a model in which the climate sub-system on its own is not chaotic.  However, it has long been widely believed that the climate system is chaotic on its own.  Indeed, the butterfly effect was first posited for global climate by Lorenz (1963) based upon his study of a three-equation model of global climatic dynamics.  This would be capsulized in the famous remark that a butterfly flapping its wings in Brazil could cause hurricanes in Texas (Lorenz, 1993). 

 Indeed, subsequent studies of the climatic system have made us aware of even a broader range of possible nonlinearities, such as the albedo feedback effect and possible effects regarding oceanic responses to climatic change, which increase substantially not only the possibility of chaotic dynamics but of even more complicated dynamics, including patterns exhibiting fat tails and higher probabilities of extreme events and outcomes.  Weitzman (2007) has warned of this possibility as the most serious problem that must be considered in formulating global climate policy, and Rosser (2001) emphasizes the need to consider the precautionary principle in light of this.  
HIERARCHY AND COMPLEX DYNAMICS

One of the deeper and more unresolved problems is how these discontinuous dynamics operate within the context of ecologic-economic hierarchies.  There has been considerable study of this problem from the strictly ecological perspective (Allen and Starr, 1982; O’Neill, De Angelis, Waide, and Allen, 1986; Holling, 1992) with Simon (1962) providing a more general foundation.  A standard argument has been that higher levels constrain lower levels, but that lower levels do not do so in reverse.  However, this has come into question in more recent years.  Inspired by the analysis of Diener and Poston (1984) of the “revolt of the slaved variables,” Rosser, Folke, Günther, Isomäki, Perrings, and Puu (1994) studied how events at lower levels could trigger changes at higher levels, especially discontinuous ones, a view also advocated by Gunderson, Holling, Pritchard, and Peterson (2002, p. 13).  They also drew on the theory of hierarchical entrainment of Nicolis (1986) to show how the “anagenetic moment” could arise, where a new level of hierarchy could emerge in a self-organizing manner out of lower levels.
  

A related approach is that of Aoki (1996).  He draws on the mean field theory of Brock (1993) to study how externalities in a hierarchical system can bring about higher level coherences and emergent structures.  Fixed points in the coarse graining or aggregation of microunits are associated with sudden structural changes in the dynamical hierarchical system.  Sequences of phase transitions can arise in this model as sequences of clusters of equilibria.  A key to stability and a lack of such general hierarchical restructurings may be the existence of critical levels of a hierarchy whose stability ensures a broader order in the system, much like the role played by a keystone species in an more general ecosystem (Vandermeer and Maruca, 1998).


Another matter that can arise in hierarchical systems is chaotic dynamics.  In combined ecologic-economic systems these couplings can produce particularly complicated patterns that are hard to analyze or predict or manage.  Such structures and systems have been extensively studied by Kaneko and Tsuda (1996).  These structures of coupled predator-prey systems can feed into the higher-order dynamics of evolution itself.  Thus, macroevolution of entire systems can occur with chaotically oscillating patterns of phenotype and genotype that happen over long periods of evolutionary change (Solé and Bascompte, 2006; Sardanyès and Solé, 2007).  This formulation resembles to some degree the chaotic long wave evolutionary dynamics studied by Goodwin (1986). 

Within combined ecologic-economic hierarchies, questions of management involve assignment of property rights and the careful assessment of appropriate policies related to the appropriate level.  Rosser (1995) argues that the property rights must be assigned to the relevant level of the combined hierarchy in order to facilitate appropriate policies.  The importance of this is seen by considering situations where this has not happened.  Thus, Wilson, Low, Costanza, and Ostrom (1999) have shown how in fisheries attempting to manage from too high a level of scale can lead to overfishing of crucial local stocks and their destruction, with broader implications for the ecosystem in question at multiple levels.  This reminds us again that social and economic organization by those most knowledgeable and in touch with a situation or system is often the best way to go.  The breakdown of traditional management systems of common property through higher level interventions has a long and tragic history (Rosser and Rosser, 2006).  Likewise, attempting to manage a higher level from a lower level can be ultimately frustrating as the ongoing failure to seriously grapple with global climatic change reminds us.

CONCLUSION


 In ecologic-economic systems there are many situations in which dynamic discontinuities appear.  Many of these are of an undesired sort, especially when they involve the collapse or even extinction of a species or the more general destruction of an ecosystem.  While we have noted a large variety of situations where such discontinuities occur, we have focused most of our discussion on the problems of fisheries and forests, both under broad and serious pressure from mismanagement by human beings.  It is somewhat ironic that such discontinuities can sometimes arise when humans are trying to account for broader sets of concerns and phenomena than merely simple economics, although certainly sometimes it is the emphasis on the latter that can be the source of problems.

We should note here a point made by Rosser (2001) regarding the policy implications of different kinds of complex dynamics.  Thus, the catastrophic discontinuities suggest a focus on the precautionary principle.  Chaotic dynamics pose different kinds of problems.  In particular, chaotic dynamics are bounded, which means that as long as the bounds are within thresholds of resilience, they may not indicate problems for the system.  However, if the fluctuations are too severe, then some sort of method of controlling chaos may be called for (Ott, Grebogi, and Yorke, 1993), although such techniques tend to involve a very high degree of exact knowledge of the dynamics of the system, which is generally lacking in ecologic-economic systems.  
In any case, the broader concerns must be dealt with.  Hence a more vigorous effort needs to be made to reform institutions and decisionmaking systems to insure that awareness of critical thresholds of a damaging sort are properly understood and accounted for.   There really is no excuse anymore for the heedless destruction of ecologic-economic systems.   
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� For a dissenting view that such cycles are really driven by maternal effect dynamics in the prey population see Ginzburg and Colyvan (2004).


� Holling (1986, 1988, 1994) has noted that human activities at some distance such as tropical deforestation and disrupting the waterholes of migratory birds that prey on the budworms can strongly influence this cycle.  He has favored encouraging control of the budworms through birds rather than spraying, which he sees as simply aggravating an eventual breakdown of resilience in a failed effort to maintain stability.


� For an overview of chaotic dynamics in predator-prey models, see Solé and Bascompte (2006, pp. 38-42).  Chaotic dynamics of predator-prey models also underlie chaotic dynamics in many agricultural systems (Sakai, 2001).  


� Claimed examples of chaotic dynamics in natural populations have included Finnish voles and lemmings (Ellner and Turchin, 1995; Turchin, 2003).


� For further discussion of specifically discontinuous dynamics in ecologic-economic systems, see Rosser (2008).


� For a more thorough discussion of the application of catastrophe theory in economic models see Rosser (1991, 2007).


� Foroni, Gardini, and Rosser (2003) have also shown that the Hommes-Rosser model can generate multiple basins of attraction that possess fractal boundaries.


� Constancy of price is a non-trivial assumption.  When price can change stochastically options pricing theory can be used, which considerably complicates the analysis (Arrow and Fisher, 1974; Zinkhan, 1991; Saphores, 2003). 


� This is reminiscent of how discontinuities can arise when capital theoretic paradoxes such as reswitching occur in cases where time patterns of costs and benefits are irregular over time (Porter, 1982; Rosser, 1983; Prince and Rosser, 1985).   


� The supervisor of the forest at that time made clear to this author that the biggest single conflict he had to deal with between different groups in the public was that between the deer hunters and the bear hunters, both very well organized and articulate groups, whose interests regarding how much timber harvesting should occur were (and are) very much at odds.  In many less developed countries the hunting and fishing in forests may be for subsistence of aboriginal peoples (Norgaard, 1996; Kant, 2000).


� For broader perspectives on species extinction dynamics see Clark (1973), Solé and Manrubia (1996), and Newman and Palmer (2003).


� These ideas can be seen as more recent expressions of the British “emergentist” school that was influential early in the 20th century (Morgan) and whose roots can be traced back to John Stuart Mill (1843).
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