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Abstract

Creating agents that proficiently interact with people is critical for many applications. Towards

creating these agents, models are needed that effectively predict people’s decisions in a variety of

problems. To date, two approaches have been suggested to generally describe people’s decision

behavior. These models could either be based on theoretical rational behavior, or psychological

models such as those based on bounded rationality. A second approach focuses on creating

models based exclusively on observations of people’s behavior. At the forefront of these type of

methods are various machine learning algorithms.

This paper explores how these two approaches can be compared and combined in different types

of domains. In relatively simple domains, both psychological models and machine learning yield

clear prediction models with nearly identical results. In more complex domains, psychological or

machine learning alone cannot accurately predict people’s decisions. However, improved models

can be created by using machine learning techniques to refine parameters within psychological

models. In the most complex domains, the exact action predicted by psychological models is not

even clear, and machine learning models are even less accurate. Nonetheless, by creating hybrid

methods that incorporate features from psychological models in conjunction with machine

learning we can create significantly improved models for predicting people’s decisions. To

demonstrate these claims, we present a survey of previous and new results, taken from

representative domains ranging from a relatively simple optimization problem, a more complex

path selection domain, and complex domains of negotiation and coordination without

communication.
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Combining Psychological Models with Machine Learning to Better

Predict People’s Decisions

Introduction

The challenge of predicting people’s decisions is of utmost importance for many economics,

psychologists, and artificial intelligence researchers (Chalamish, Sarne, & Kraus, 2008; Gigerenzer

& Goldstein, 1996; Keser & Gardner, 1999; Maes, 1995; Manisterski, Lin, & Kraus, 2008;

Murakami, Minami, Kawasoe, & Ishida, 2002; Murakami, Sugimoto, & Ishida, 2005; Selten, 1998;

Selten, Abbink, Buchta, & Sadrieh, 2003; Selten, Mitzkewitz, & Uhlich, 1997). Within the field of

economics and psychology, validly encapsulating human decision-making is critical for predicting

the short and long term effects of a given policy (Neumann & Morgenstern, 1944; Gigerenzer &

Goldstein, 1996; Selten, 1998; Kahneman & Tversky, 1979). To computer scientists, accurately

predicting people’s actions is critical for mixed human-computer systems such as entertainment

domains (Maes, 1995), Interactive Tutoring Systems (Murakami et al., 2005), and mixed

human-agent trading environments (Manisterski et al., 2008). Within these and similar domains,

creating agents that effectively understand and/or simulate people’s logic is particularly

important.

To date, two approaches have been proposed for predicting people’s decisions by social and

behavioral scientists. One classic approach, often advocated by economists, has modeled people’s

behavior based on classic decision theory. This direction, originally proposed by Von Neumann

and Morgenstern (Neumann & Morgenstern, 1944) assumes that people’s decisions can be

modeled mathematically and rationally based on expected utility. Even when people are faced

with uncertainty, these models assume people will adhere to strict mathematical formulae based

on the probability each event will occur. Game theory follows this approach, and equilibrium

strategies, such as the Nash equilibrium (Nash, 1951), apply expected utility to situations where

two or more people interact to predict their decisions. These solution concepts have proven
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effective in some applications (Kaelbling, Littman, & Cassandra, 1998; Neumann & Morgenstern,

1944; Russell & Norvig, 2003). However, research into people’s decisions have shown that people

do not necessarily always adhere to these rigid models (Gigerenzer & Goldstein, 1996; Selten,

1998; Kahneman & Tversky, 1979).

A second group of approaches, often advocated by psychologists and experimental

economists, build cognitive models based on people’s subjective perception of a problem. These

approaches posit that theoretical outcomes are less important, and models must instead be

constructed based on modeling people’s observed behavior. Examples of this direction include

Kahneman and Tversky Prospect Theory (Kahneman & Tversky, 1979) that models how people

deviate from expected utility when faced with risk, and Gigerenzer and Goldstein’s fast and frugal

heuristics (Gigerenzer & Goldstein, 1996) that assume people use simplistic heuristic to guide

their decisions. Models of bounded rationality lie within this group, as they posit that people

search for non-optimal alternatives to fulfill their goals. Simon coined the term “satisfice” to

capture that bounded decision makers seek “good enough” solutions and not optimal ones

(Simon, 1957). We considered one such theory, Selten’s Aspiration Adaptation Theory (Selten,

1998), whereby people make decisions by attempting to satisfy only goal variable at a time, or a

given “aspiration”.

In contrast to both of these cognitive models, computer scientists often model peoples’

decisions through machine learning techniques (Russell & Norvig, 2003). These models are based

on statistical methods such as Bayes’ Rule, Neural Networks, Support Vector Machines (SVM), or

Decision Tree algorithms (Mitchell, 1997). These approaches are built exclusively based on

observed decisions, instead of generally predicting how people behave. As a result, these models

do not make any claims for their general applicability as they were created exclusively based on

observations in a specific setting.

The key contribution of this paper is an exploration of how one can combine the decision

making approaches proposed by social scientists with classic machine learning approaches. In this

paper we present a survey of problems ranging from relatively simple to progressively more
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complex problems. We refer to the simple problems as those where accurate models are possible

from both cognitive and machine learning models. Note that even in these “simple” problems,

multiple cognitive models may theoretically be possible allowing us to consider a range of

predictions. In a second type of problems, multiple cognitive models are theoretically possible,

but due to the complexity of the problem, it is not clear how to apply them. For example,

Kahneman and Tversky’s Prospect Theory (Kahneman & Tversky, 1979) posits that people are

risk adverse and will prefer definite returns. However, this theory does not make specific

predictions about parameters within a given problem. While it is clear according to Prospect

Theory that most people will prefer 50 Euro over a 50% probability of receiving 100 Euro, would

they prefer 49 or 48 Euro over a 50% probability of receiving 100 Euro? In these types of cases,

we applied machine learning techniques to discover the parameters within learned models. We

found that such combined models were more accurate than those with machine learning alone, yet

again, one psychological model was best after this procedure was applied. As problems become

progressively more complex, the number of parameters needing to be learned increases,

necessitating novel methods for learning these parameters. Due to the complexity of the problem,

machine learning methods alone do not perform well. We found that building hybrid models

which use as their base machine learning, but add features from psychological models, performed

significantly better in these types of problems.

To demonstrate these results, we present a survey of previous and new results. Specifically,

we present and discuss how this methodology was applied to several different problems. We

present three different psychological models and alternatives, including strictly rational models, in

each of the domains that we considered. First, in the next section, we present one bounded

rationality model, Aspiration Adaptation Theory (AAT) (Selten, 1998), that describes how people

make decisions in the absence of an explicit utility function. We found this model was found to be

the best cognitive model in a relatively simple optimization problem, and helped significantly

increase machine learning’s accuracy in a complex negotiation model. In the following section, we

present the Hyperbolic Discount model, and present alternatives in a path selection task. In the
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moderately complex task we studied, we found this model benefited from machine learning

methods to set the discount amount with this model. In the fifth section we present Focal Points

theory (Schelling, 1963) that describes a low-level cognitive ability to pick prominent solutions in

the absence of communication. We found this model significantly increased the accuracy of a

prediction model in a problem where people had to coordinate without communication.

Aspiration Adaptation Theory

Aspiration Adaptation Theory (AAT) was proposed by Selten as a general economic model

for how people make certain economic decisions without any need for expected utility functions

(Selten, 1998). AAT was originally formulated to model how people make decisions where utility

functions cannot be constructed. For example, assume you need to relocate and choose a new

house to live in. There are many factors that you need to consider, such as the price of each

possible house, the distance from your work, the neighborhood and neighbors, and the schools in

the area. How do you decide which house to buy? While in theory utility based models could be

used, many of us do not create rigid formulas involving numerical values to weigh trade-offs

between each of these search parameters.

AAT provides an alternative to utility theory for how decisions can be made in this and

other problems. First, m goal variables are sorted in order of priority, or their urgency.

Accordingly, the order of G1, . . . , Gm refers to goals’ urgency, or the priority by which a solution

for the goal variables is attempted. Each of the goal variables has a desired value, or its aspiration

level, that the agent sets for the current period. This desired value is not necessarily the optimal

one, and the agent may consider the variable “solved” even if it finds a sub-optimal, but yet

sufficiently desired value. The agent’s search starts with an initial aspiration level and is governed

by its local procedural preferences. The local procedural preferences prescribe which aspiration

level is most urgently adapted upward if possible, second most urgently adapted upward if

possible, etc. and which partial aspiration level is retreated from or adapted downward if the

current aspiration level is not feasible. Here, all variables except for the goal variable being

addressed are assigned values based on ceteris paribus, or all other goals being equal a better
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value is preferred to a worse one.

We studied what decision models, AAT or others, were used to solve two types of problems

– a relatively simple optimization problem and a complex negotiation problem. In the first

optimization problem, we consider a problem where a person must minimize the price in buying a

commodity (a television) given the following constraints. Assume a person must personally visit

stores in order to observe the posted price of the commodity. However, some cost exists from

visiting additional stores. We assume this cost is due to factors such as an opportunity cost with

continuing the search instead of working at a job with a known hourly wage. For any given

discrete time period, the person must decide if she wishes to terminate the search. At this point,

we assume she can buy the commodity from any of the visited stores without incurring an

additional cost. The goal of the agent is to minimize the overall cost of the process which is the

sum of the product cost and the aggregated search cost. Full details of our implementation can be

found in our previously published work (Rosenfeld & Kraus., 2009; Rosenfeld & Kraus, 2011).

In addition to AAT, other strategies, bounded and strictly rational, were possible here. A

clear optimal strategy existed within the implementation of the commodity search domain. In the

settings that we experimented with the specific strategy was – buy if the price in the current store

is less than 789. Thus, classical expected utility theory would predict that people would similarly

buy the commodity at this price. We also recognize that AAT is not the only possible bounded

model possible within this domain. Following Gigerenzer and Goldstein’s fast and frugal

heuristics (Gigerenzer & Goldstein, 1996), we would expect people to formulate simple strategies

involving only one variable (e.g. search until price < X, or visit Y stores and buy in the cheapest

store). However, using an AAT based model for prediction would assume some type of

combination strategy exists where one variable is first searched for, but then retreated from

assuming that value could not be satisfied. For example, a person might initially search for a

price less than 650, but will settle on even a higher price (e.g. the lowest found so far) after

unsuccessfully finding this price after 5 stores. In fact, our previous work did find that people

typically used these AAT strategies instead of optimal or fast and frugal heuristics.
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We also analyzed a previously presented negotiation domain (Lin, Kraus, Wilkenfeld, &

Barry, 2008). We consider a negotiation session that takes place after a successful job interview

between an employer and a job candidate. In this session both sides wish to formalize the hiring

terms and conditions of the applicant: her Salary, Job Description, Car Benefits, Pension

benefits and Working hours. In the problem setting considered, each side could pick from a

list of possible values for each of the parameters. For example, the employee might ask for a

salary of 20000 per month, with the job title of Project Manager, with a car, pension benefits,

and working 8 hours, while the employer might counter with the same offer, but a salary of only

12000 per month and without the pension benefits. The goal of this study is to accurately predict

what each side would offer. Here again, equilibrium strategies were possible based on strictly

rational behavior. Following Gigerenzer and Goldstein’s model of fast and frugal heuristics we

would have expected that simple compromise heuristics could be used. Possibilities of such

heuristics include always countering the middle position between the previous offer of both sides

or offering the middle position between all previous offers of both sides. Nonetheless, we overall

found that people create aspiration based strategies where they negotiate for specific issues in a

specific order. For example, we found that negotiations first focused on the salary parameter and

only then move on to other parameters such as pension or car benefits. We found that adding

these aspirations explicitly as a parameter for the machine learning models to consider helped

significantly improve the accuracy in predicting people’s offers.

Hyperbolic Discounting

The theory of discounted utility describes how people show preference to immediate payoffs

versus delayed ones. Many of us know that certain activities are unhealthy– smoking, eating

non-healthy foods, and not exercising enough. However, we prefer these behaviors as they provide

immediate pleasure, despite their long-term consequences. We consider two different models of

discounting utility – hyperbolic and exponential discounting. While both are widely used,

experiments have compared the two and shown that hyperbolic discounting is often more accurate

in explaining human (and even animals’) decisions (Dasgupta & Maskin, 2005; Chabris, Laibson,
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& Schuldt, 2006; Deaton & Paxson, 1993). However, one key question within this theory is the

rate at which people discount their utility. For example, most people are willing to take pills or

vitamins to improve their health, e.g. accept small discounts, while fewer are willing to take

drastic lifestyle changes. As was true with the AAT studies, here too alternative models were

possible, specifically those based on strictly rational models and machine learning.

A framework that is used to study decision making over time under uncertainty is the

multi-armed bandit problem that was first introduced by Robbins in (Robbins, 1952). It is similar

to a traditional slot machine but generalizes the slot machine to have more than one arm. When

pulled, each arm provides a reward drawn from a distribution associated to that specific arm.

Initially, the gambler has no knowledge about the arms, but through repeated trials, he gathers

information on each of the arms. During the game, the player must balance between exploitation,

or choosing the arm which performed best until the current time, and exploration, or trying new

or less pulled arms.

To compare decision making theories for the multi-armed bandit problem we introduce the

following path selection problem: Every morning a driver has several roads to choose from, which

all lead to her office. The travel time on each road varies due to traffic; however each road is

associated with some average travel time. The driver’s goal is to minimize the overall travel time.

We consider a system which knows the exact travel time every day and provides the driver with

advice regarding which road to choose from. The system also has knowledge about traffic along

the various routes, giving it information about estimated fuel consumption of each of the routes.

We assume that this system is self-interested and its goal is to minimize the driver’s fuel

consumption rather than her travel time. For example, the system may be a government body

which is trying to minimize the impact of burning fossil fuels, and thus aims to promote less

pollution even if this comes a cost to a longer commute time for the driver. The driver must

decide whether she will accept the system’s recommendation or not. As the driver is aware that

the system is self-interested, it must evaluate if its advise is worth accepting. However, on the

other hand, the system has more information than the driver, and the driver might gain from
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listening to its advice.

In order for the system to better interact with the drivers, it is necessary to accurate model

what types of advice are likely to be accepted. Towards this goal, we considered five different

methods. The first method the strictly rational method is based on ε-greedy, which in known as a

good method in multi armed bandit problems (Vermorel & Mohri, 2005). The multi-armed

bandit problem was first introduced by Robbins in (Robbins, 1952) and is similar to a traditional

slot machine but generalizes the slot machine to have more than one arm. When pulled, each arm

provides a reward drawn from a distribution associated to that specific arm. Initially, the gambler

has no knowledge about the arms, but through repeated trials, he gathers information on each of

the arms. During the game, the player must balance between exploitation, or choosing the arm

which performed best until the current time, and exploration, or trying new or less pulled arms.

In this method we treat the advice that is generated by the system as another possible arm. If the

driver chooses the advice he simply follows the road given by the advice. The prediction in this

method is the road which has the highest chances to be chosen by ε-greedy.

At the other extreme, we considered two machine learning methods. The second method,

learning, used the support vector machine (SVM) machine learning algorithm to learn which

advise is accepted based on historical data of all other users’ decisions. This data included the

average time observed by the driver on each of the roads, the average time observed by the driver

of when following the advice, and the actual number of times the driver chose each road and

followed the advice. We also added information on that user’s previous choice. We used 10 fold

cross-validation to validate this model. The third method sparse learning, is similar to the

learning method, but uses only 10% of the data and is tested on the remaining 90% of the date.

We also considered 3 types of psychological based models to predict people’s decisions.

Exponential Smoothing, Short-term Memory and Hyperbolic Discount are based on principles

known from behavioral science and assume logit quantal response (Haile, Hortasu, & Kosenok,

2008). Quantal response suggests that instead of choosing the action with the highest expected

utility, humans are known to choose actions proportionate to their expected utility (actions with
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higher expected utility are more likely to be chosen, but also actions with lesser utility have a

positive probability to be chosen). Under the logit quantal response assumption, the probability

for a person to choose action a′ with utility u(a′) from a set of actions A is given by

p(a′) = eλu(a′)∑
a∈A

eλu(a) where λ is some parameter (Haile et al., 2008). However, the value of this

parameter is not clear, and must be learned from people’s data. Exponential smoothing, or ES, is

a method proposed by (Gans, Knox, & Croson, 2007) and is defined as follows. At t = 0 all

actions start with some default value. Given 0 < γ < 1, at each day t for a chosen action a, we let

ESa(t) = γ · τ(a) + (1− γ) · ESa(t− 1). An action that wasn’t chosen maintains its previous

value. This method is the equivalence of exponential discounting for discounting the past.

Hyperbolic Discount, or hyper is a model that uses hyperbolic discounting of past actions.

Formally, At t = 0 all action start with some default value. hypera(t) =
∑

t′<t
τt′ (a)

f ·(t−t′) in case that

τt′(a) is unknown for time t′ (since a different road was chosen), τt′(a) is replaced by the default

value. f is a parameter depicts the discount factor. The Short-term Memory model assumes that

people have short memory and any instances previous to a “magic number” of the past 7 events

do not influence their decisions. For more information about short-term memory see (Miller,

1956). All three psychological based methods attempted to learn all parameters with only 10% of

the original data.

Focal Points

Focal points were introduced by Schelling in (Schelling, 1963) as a prominent subset of

solutions for tacit coordination games, which are coordination games where communication is not

possible. In such games (also known as matching games in game theory terminology) the players

only have to agree on a possible solution, regardless of the solution itself. In other words, they

receive a reward by selecting the same solution, regardless of the solution. When their solutions

differ, both players lose and do not get any reward. A solution is said to be “focal” (also

“salient”, or “prominent”) when, despite similarity among many solutions, the players somehow

converge to this solution.

A classic example of focal point coordination is the solution most people choose when asked
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to divide $100 into two piles, of any size; they should attempt only to match the expected choice

of some other, unseen player. More than 75% of the subjects in Schelling’s experiments created

two piles of $50 each; that solution is what Schelling dubbed a focal point. Here again, other

behavioral models are possible – using decision theory would result in a random selection among

the 101 possible divisions, as the (straightforward) probability distribution is uniform.

Several attempts have been made to formalize focal points from a game theoretic, human

interaction point of view ((Janssen, 1998) provides a good overview). However, that research does

not provide the practical tools necessary for predicting people’s actions. In a meta-analysis of

previous focal points experiments we developed some general properties that “focalize” an answer:

(1) Centrality, (2) Extremeness, (3) Firstness, and (4) Singularity. Briefly, described these

properties are as follows: Centrality is a rule that gives prominence to choices directly in the

center of the set of choices, either in the physical environment, or in the values of the choices.

Extremeness gives prominence to choices that are extreme relative to other choices, either in the

physical environment, or in the values of the choices. Firstness is the rule that gives prominence

to choices that physically appear first in the set of choices. It can be either the option closest to

the agent, or the first option in a list. Singularity is the rule that gives prominence to choices that

are unique or distinguishable relative to other choices in the same set. For further details and

examples, we encourage the reader to refer to our previous work (Zuckerman, Kraus, &

Rosenschein, 2011).

The task of learning which of these properties will be used by people is far from trivial due

to the large number of possibilities. In contrast, the learning task was much simpler in the path

selection domain where the discount value needed to be learned, or the limited number of

parameters which may aspired for in the negotiation domain. To overcome this difficulty, we

present a Focal Point Learning approach which combine this psychological approach and machine

learning. To accomplish this we preprocess raw domain data, and place it into a new

representation space, based on the focal point properties. Given our domain’s raw data Oi, we

apply a transformation T , such that Nj = T (Oi), where i, j are the number of properties before
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and after the transformation.

The new feature space Nj is created as follows: each v ∈ Oi is a vector of size i representing

a game instance in the domain (world description alongside its possible choices). The

transformation T takes each vector v and creates a new vector u ∈ Nj , such that j = 4×[number

of choices]. T iterates over the possible choices encoded in v, and for each such choice computes

four numerical values signifying the four focal point properties presented above. For example,

given a coordination game encoded as a vector v that contains three choices (c1, c2, c3), the

transformation T creates a new vector u = (cc
1, c

e
1, c

f
1 , cs

1, c
c
2, c

e
2, c

f
2 , cs

2, c
c
3, c

e
3, c

f
3 , cs

3) of size 12 (3

possible choices × 4 focal point rules), where c
c/e/f/s
l denotes the

centrality/extremeness/firstness/singularity values for choice l. Note that j might be smaller

than, equal to, or greater than i, depending on the domain and the number of rules used.

We designed a simple and intuitive tacit coordination game that represents a simplified

version of a domain where an agent and a human partner need to agree on a possible meeting

place. The game, coined “Pick the Pile” is played on a 5-by-5 square grid. Each square of the grid

can be empty, or can contain either a pile of money or the game agents Each square in the game

board is colored white, yellow, or red. The players were instructed to pick the one pile of money

from the three identical piles, that most other players, playing exactly the same game, would pick.

The players were told that the agents can make horizontal and vertical moves.

Experimental Results

In this section we present a survey of previously and new results that demonstrate when

and how machine learning techniques can benefit from behavioral theories. In general, we found

that in the relatively simple optimization problem, strictly rational, AAT models and machine

learning converged on nearly identical results. In the more complex path selection domain, the

discount rate was unclear within the hyperbolic model and machine learning methods were able

to learn the best value for this parameter. This combined model was more successful than an

SVM machine learning model or other models based on strictly rational behavior. In the more

complicated negotiation domain, adding information about people’s aspirations increased the
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predictive accuracy of models built based upon machine learning. Strictly rational models

performed far worse. In an even more complex coordination without communication domain,

focal point information again improved the accuracy of a model based upon machine learning

models. Strictly rational models and models built upon focal points without machine learning

performed far worse.

Results from an Optimization Problem

In the first task, a relatively simple optimization problem, we wished to predict if a person

would stop their commodity search in any given store. In this domain an optimal search strategy

exist, namely, in the specific settings that we considered, the person should stop the search in the

first store with a price less than 789. Note that this solution can be mathematically calculated

and does not require any input from observed behavior. At the other extreme, we can create a

prediction model exclusively based on machine learning techniques. Previously, we used decision

trees to create this model. The advantage to specifically using this type of models lies in the

output – we can check if the decision tree’s decision model is consistent with the optimal solution

or with other bounded models. We considered two such bounded models: fast and frugal

heuristics and AAT. According to the more simple fast and frugal heuristic approach we would

expect people to stop their search based on only one parameter, such as the number of stores

visited to date, or the price of the commodity in any given store. According to AAT we would

expect to see more complicated strategies with multiple parameters and some type of ordering

and retreat between them. Our previous work (Rosenfeld & Kraus, 2011) did in fact find that the

decision trees output was consistent with AAT strategies as people typically would immediately

buy the commodity if it was below a certain price, but settle on a higher price after visiting a

certain number of stores.

In this paper, we focus on when and how we can combine various decision theories to better

predict people’s decisions. In this domain, this included comparing the following models: 1. An

optimal model based on expected utility – e.g. people buy only if the price is less than 789. 2. A

machine learning model based on observed decisions. 3. A combination model. In this problem,
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the combination model involved adding information about the average price where people stopped

their search, and the average number of stores after which they were willing to settle on a more

expensive commodity. Note that here, as well as in all of the domains we consider, this hybrid

approach assumes that we have some general information about a given population.

For this domain, we found that adding general information about people’s aspirations was

useful, but only slightly. Figure 1 presents the accuracy of different models in predicting when 41

people stopped their commodity search. Each of these people was presented with a simulation of

the commodity search domain and ran at least 25 simulations where they eventually bought the

commodity, logging a total of nearly 5000 instances where these people either decided to buy the

commodity or to continue their search. The first column of Figure 1 presents a baseline Naive

model that classifies all decisions based on the majority class, here assuming people will always

continue the search. In the second column, we present the predictive ability of the optimal model

– 82.8%. Column 3 presents the results from the machine learning method which performed

similarly at 82.67% accuracy. Adding information from people’s aspirations did help, but only

slightly, with a 83.45% accuracy achieved through knowing the average values of these people’s

aspirations. Note that this value serves as an upper baseline, as we collected this aspiration data

from the same population being evaluated. A more realistic aspiration model is the Sparse AAT

model which used only 50 randomly selected decision to help model people’s decision (or less than

1% of the total logged data). Nonetheless, even this model did slightly outperform both the

optimal and based machine learning methods with an accuracy of 83%. This result is even more

striking when you consider that machine learning models were validated through cross-validation

of 90% of the data used for training the model, while this sparse model used less than 1% of the

data. Thus, we conclude that in this relatively basic domain, differences between the predictive

abilities of the different models was not large. Nonetheless, a slight improvement in prediction

accuracy was obtained through limited information about people’s aspirations.



Combining Psychological Models with Machine Learning 16

Path Selection Results

Recall that the goal of the path selection domain is to predict what a person will do when

receiving advise from a self-interested system generates. We generated three different types of

advise ranging from fully self-interested to self-less. Subjects receiving the first type of advice

were always advised to choose the road which was best for them, or the road that was the least

time consuming. The second advice method always advised the subjects to choose the road which

was best for the system, or the road that used the least fuel. The third advice tried to minimize

some linear combination of both the fuel and time consumption. Each person received only one

type of advise, but was unaware about which type of advice he was receiving. We intentionally

used results combined from three different types of advice in order to build an accurate model of

human behavior which will be true for a broad variety of advices. We performed trials with nearly

75 people – 22 were in the first group, 24 subjects in the second group and 24 in the third group.

Each subject played 25 interactions. Results are shown in Table 2.

From the results we notice that people do not try to maximize their expected monitory

value, and ε-greedy performs badly in predicting human behavior with only 45% of accurate

predictions. Using the Support Vector Machine (SVM) machine learning methods on the data

raises the prediction to 61.14%, and even using a limited training sample of only 10% of the data

yields a prediction accuracy of 57.4% with this learning algorithm. All three psychological based

models, which use only 10% of the data for learning, reach significantly better results (p < 0.01)

when compared with the machine learning model with sparse data. Significant test was performed

using binomial test. Although the short memory model is at par with the machine learning model

with the full data set, both the ES and the hyper methods perform significantly better than the

machine learning with the full data set (SVM). when comparing ES with SVM we reach p < 0.05

and when comparing hyper with SVM we reach p < 0.001.
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AAT in a Negotiation Domain

According to AAT, one would expect people to rank the importance of each of the

negotiation parameters according to his or her aspiration scale. Assuming people often have the

same aspiration scales, we would also see an order where issues are addressed, e.g. certain

parameters are typically negotiated first, second, etc. Our premise is that as the negotiation

domain is more complex than the optimization problem, one should add people’s aspiration

information into traditional models such as C4.5 to more accurately predict what bids people will

offer.

To test this hypothesis, we proceeded to study what gain, if any, did adding AAT

information have in predicting how people will negotiate. In the problem we considered, the

parameters to be negotiated could have between 2 and 4 discrete values. In order to study this

point we considered several models for the negotiation problem (see Table 3). The goal of all of

these models was to predict the next value for each parameter. First, we considered the

Majority Rule model. Given the full log file, this rule assumes that a person would offer the

most popular value for any given parameter. For example, in the employer / employee domain,

the most popular title was “Programmer”. Second, we implemented two models based on the

equilibrium strategy. These strategies are based on previous work in these problems (Lin et

al., 2008). However, as the equilibrium strategy depends on which person is allowed to offer the

last bid, we checked both what equilibrium strategies would predict for all parameters. Next, we

created a baseline strategy that uses the C4.5 algorithm to predict the next offer for each

parameter. This model used historical information about the previous offer and the current

negotiation iteration. Next, we created a C4.5 with AAT statistical information prediction

model. As we previously demonstrated, each parameter had different urgencies. Thus, we

attempted to create a more accurate model by adding information about which parameters were

typically raised or lower for any given iteration. Specifically, we added a field with a binary flag

value to differentiate between the iterations for which people typically changed a given

parameters’ value with a frequency of ≥ 0.5, and those which were typically not changed and
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added information would likely not help. This was done to avoid overfitting the AAT statistics for

any training / testing pair, and to thus keep the generality of the results. Finally, we created a

C4.5 + Complete Behavior Knowledge model. This final baseline had knowledge about

what the previous offer was, and also added perfect knowledge if the person would revise upwards,

downwards, or leave unchanged their previous offer. In cases where only two options exist, one

would expect this baseline to guarantee 100% accuracy. However, when more than 3 values exist

for a given parameter, even this model cannot guarantee 100% accuracy. For example, if a

previous salary offer was $7,000 per month and we know the next offer will be higher, we still do

not know if it will be raised to $12,000 or $20,000. Nonetheless, the goal of this model was to

provide an upper bound for how much AAT based information could theoretically help.

Table 3 demonstrates the effectiveness of adding AAT information to boost prediction

accuracy. The first row of this table show the parameter to be negotiated and the number of

possible values. The second row presents the majority rule baseline. The third and fourth rows

present how effective the equilibrium policies were in predicting what people actually offered.

Note that both of these policies fall well below the naive majority baseline. This again

demonstrates the ineffectiveness of using equilibrium theoretical policies to predict how people

actually behave. The fifth row presents the accuracy of the learned C4.5 model. This model

represents the effectiveness of this traditional learning method in predicting each of the

parameters. We then added AAT information, and reran the same C4.5 algorithm, the results of

which are in the sixth row. Note that the significant improvement gained from the AAT

information is significant and only one parameter did not gain from the added aspiration

information. In this parameter, few instances existed where people had clear general aspiration

changes, preventing any accuracy boost from this approach. Finally, the last line in the table

presents the accuracy of the C4.5 algorithm with complete behavior knowledge, or perfect

information about whether a person will retreat from (decrease) a given parameter value, or

upwardly revise its aspiration (increase). Note that as expected even complete AAT information

could not yield 100% prediction accuracy for parameters with more than 2 values.
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Experimental Results for Focal Points in the Pick the Pile domain

In order to evaluate the effectiveness in adding focal point information in predicting

people’s actions, we conducted the following experiment. We collected data using an Internet

website which allowed players from all over the world to participate in the game, and their

answers were recorded. Each game session was constructed of 10 randomly generated instances of

the domain. The call for players was published in various AI related forums and mailing lists all

over the world, and eventually we gathered approximately 3000 game instances from over 275

different users from around the world.

We then compared the correct classification performance of both C4.5 learning trees and

FFBP neural network classifiers. The comparison was between a domain data agent — an

agent that was trained only on the raw domain encoding, a focal point agent (FP) — an

untrained agent that used only the focal point rules for prediction, weighted uniformly, and a

focal point learning agent (FPL) — as described above. “Correct classification” means that

the agent made the same choice as that of the particular human player who played the same

game. Obviously the learning problem is extremely difficult as there is no simple function that

can capture the notion that for some games, different human players can select different choices.

We optimized our classifiers’ performance by varying the network architecture and learning

parameters, until attaining best results. We used a learning rate of 0.3, momentum rate of 0.2, 1

hidden layer, random initial weights, and no biases of any sort. Before each training procedure,

the data set was randomly divided into a test and a training set (a standard 33.3%–66.6%

division). Each instance of those sets contained the game description (either the binary or focal

point encoding) and the human answer to it. The classification results using the neural network

and the decision tree algorithms were very close (maximum difference of 3%).

Examining the results in Table 4, we see a significant improvement when using the focal

point learning approach to train classifiers, rather than the domain data agent (p < 0.01 in

two-proportion z-tests in all domains). In this domains, the domain data agent is not able to

generalize sufficiently, thus achieving classification rates that are only about 5%–10% higher than
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a random guess (which is 33%). Using FPL, the classification rate improved to more than 65%

correct classification. Since even humans do not have 100% success with one another in these

games, FPL is correspondingly the more impressive. The results also show that even the classical

FP agent, which does not employ any learning algorithm, performs better than the domain data

agent, with 48% correct classification. In an additional analysis that was done on the FP agent,

we saw a tendency in which the FP agent, when facing coordination problems with low focality

difference, has its performance deteriorate to that of random guesses.

An additional advantage of using FPL is the reduction in training time (e.g., in the Pick the

Pile domain we saw a reduction from 4 hours on the original data to 3 minutes), due to the

reduction of input size. Moreover, the learning tree that was created using FPL was smaller, and

can be easily converted to a rule-based system as part of the agent’s design.

Conclusion

Predicting people’s decisions is an important but complex task. To address this task,

researchers often propose general behavior models such as rationality theory, or purely statistical

methods such as machine learning algorithms. However, there often exist specialized cognitive

models or theories that describe various tendencies or biases that are commonly used by the

majority of the people. Such theories include bounded rationality theories, various risk attitudes,

and use of heuristics.

This paper addresses how one can take a potentially relevant cognitive theory and use

machine learning methods to help augment it to provide added value in predicting human

behavior. We showed how three cognitive theories: Aspiration Adaptation theory, Hyperbolic

Discounting theory, and the Focal Points theory could be used in conjunction with machine

learning algorithms to create an improved classifier. Possibly equally significant is the result that

strictly rational models, and even many specialized cognitive models, often do not accurately

predict people’s decisions. Our results also show some positive correlation between the complexity

of the problem domain and the improvement in performance when augmenting the cognitive

model. In all but the most simple task we considered, we found that “traditional” strictly rational
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models were often poor indication of how people will act. As problems’ complexity increases,

machine learning algorithms ability to predict people’s decisions decreases, and the greater the

benefit these algorithms gain from the information provided by the cognitive models. As we

present a generalized approach for how to combine cognitive theories with machine learning

algorithms, we expect this approach to be generally applicability to a variety of new domains as

well.
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Table 1

Comparing the Prediction Accuracy between Optimal, Machine Learning and AAT Based Models

Naive Optimal Learning Learning + Complete AAT Sparse AAT

78.56 82.8 82.67 83.45 83



Combining Psychological Models with Machine Learning 26

Table 2

Prediction Rate for the Path Selection Problem

model prediction rate

Rational 45%

Learning 61.14%

Sparse Learning 57.4%

Short Memory 60.95%

Exponential Smoothing 63.56%

Hyperbolic Discount 65.26%
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Table 3

Comparing the Prediction Accuracy between AAT and non-AAT Based Models in the Employer /

Employer Negotiation Domain

Salary-3 Title-4 Car-2 Pension-3 Promotion-2 Hours-3 Average

Majority Rule 60.1852 67.5926 57.4074 70.3704 62.963 62.963 63.5803

Equilibrium 1 44.4444 67.5926 69.4444 66.6667 41.6667 67.5926 59.568

Equilibrium 2 25.9259 17.5926 69.4444 19.4444 43.5185 61.1111 39.5062

C4.5 Without AAT 61.111 68.5185 68.5185 67.5926 83.3333 69.4444 69.7531

C4.5 with AAT 62.963 68.5185 75.9259 71.2963 91.6667 76.8519 74.53705

C4.5 + Complete 95.3704 89.814 100 96.2963 100 96.2963 96.2962
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Table 4

Results from “Pick the Pile” domain

Random guess Raw Encoding Only Focal Point Rules Focal Point Learning

33% 40% 48% 65%


