
“Formal” vs. “Empirical” Approaches to
Quantum-Classical Reduction

Abstract
I distinguish two types of reduction within the context of quantum-classical

relations, which I designate “formal” and “empirical.” Formal reduction holds
or fails to hold solely by virtue of the mathematical relationship between two
theories; it is therefore a two-place, a priori relation between theories. Empir-
ical reduction requires one theory to encompass the range of physical behaviors
that are well-modeled in another theory; in a certain sense, it is a three-place,
a posteriori relation connecting the theories and the domain of physical real-
ity that both serve to describe. Focusing on the relationship between classical
and quantum mechanics, I argue that while certain formal results concerning
singular ~ → 0 limits have been taken to preclude the possibility of reduc-
tion between these theories, such results at most block reduction in the formal
sense; little if any reason has been given for thinking that they block reduction
in the empirical sense. I then briefly outline a strategy for empirical reduc-
tion that is suggested by work on decoherence theory, arguing that this sort of
account remains a fully viable route to the empirical reduction of classical to
quantum mechanics and is unaffected by such singular limits.

1 Introduction

Work on quantum-classical relations encompasses a vast and disparate range of
results, from analyses of ~ → 0 limits and various quantization procedures to
Ehrenfest’s Theorem, environmental decoherence, decoherent and consistent
histories, the measurement problem, interpretation-specific accounts of classi-
cality and much else. As Landsman has emphasized, our understanding of the
relationships among these different areas is still in its infancy [9]. For the dis-
cussion that follows, it will be useful to distinguish two broad and occasionally
overlapping categories of analysis in the study of quantum-classical relations,
which serve to address two distinct but related sorts of question concerning
the relationship between quantum and classical theories:

1. “Formal” - What is the nature of the relationship between the math-
ematical formalisms of classical and quantum mechanics? Classical me-
chanics is formulated in a mathematical arena of symplectic manifolds,
canonical transformations, Poisson brackets, action principles and the
like, while quantum mechanics is formulated in a realm of Hilbert spaces,
unitary transformations, commutators, path integrals, C∗ algebras, PVM’s,
POVM’s and related structures. What connections, analogies and corre-
spondences can we identify between these two mathematical frameworks?

1



2. “Empirical” - Under what circumstances are the behaviors described by
classical and quantum models manifested in real physical systems? How
does the set of real-world cases that are well-described by some classical
model relate to the set of real-world cases that are well-described by some
quantum model?

More narrowly, and more to my central point here, it is important to distin-
guish “formal” and “empirical” approaches to reduction between classical and
quantum mechanics, where reduction broadly speaking is taken to require that
one theory encompass the other in some sense. In the contexts of both formal
and empirical reduction, I will adopt the convention here of referring to the
less encompassing theory as the “reduced” theory and the more encompass-
ing theory as the “reducing” theory, so that the former is said to “reduce to”
the latter (the opposite convention is often adopted in the physics literature).
Formal and empirical reduction are distinguished as follows:

1. Formal Reduction requires the reduced theory (in this case, classical
mechanics) to be in some sense a special or limiting case of the reducing
theory (in this case, quantum mechanics). The question of whether one
theory reduces to the other is a wholly mathematical, a priori question
to be resolved entirely through mathematical analysis of the two theories.
Once the mathematical frameworks of the theories have been specified,
no further empirical input is required to assess whether one reduces to the
other. Formal reduction in thus a two-place relation between theories.

2. Empirical Reduction requires that every circumstance under which
the behavior of a real physical system can be modeled in the reduced
theory (in this case, classical mechanics) is also one in which that same
behavior can be modeled at least as precisely in the reducing theory
(in this case, quantum mechanics). That is, empirical reduction requires
that the reducing theory wholly subsume the physical domain of applica-
bility of the reduced theory, but does not necessarily require the reduced
theory’s formal mathematical structure to be subsumed wholesale as a
special or limiting case of the reducing theory’s formal structure. Unlike
formal reduction, the question of whether empirical reduction holds be-
tween two theories cannot, in general, be determined solely by analysis
of the theories themselves. Once the theories have been specified, re-
duction is still partially an empirical matter, for demonstrating that one
theory has subsumed the domain of applicability of the other requires
empirical knowledge of the sets of circumstances under which the two
theories succeed at describing the behavior of real systems. Empirical
reduction is threfore in some sense a three-place relation connecting the
two theories and the domain of physical reality that the theories serve
to describe.
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Thus, formal reduction requires subsumption at the level of the mathematical
formalisms of the two theories, while empirical reduction requires subsump-
tion at the level of the real physical behavior that can be accurately (if ap-
proximately) modeled in the two theories. It is conceivable that one could
successfully effect an empirical reduction by means of a formal reduction (if
the reduced theory is a special case of the reducing theory, then any physical
behavior that is well-modeled in the reduced theory can, a fortiori, also be
modeled in the reducing theory). On the other hand, reduction in the em-
pirical sense does not necessarily require reduction in the formal sense. It is
possible that one could show one theory to subsume the domain of another
without showing that the mathematical formalism of the latter constitutes
a special or limiting case of the former. In particular, it is possible for the
mathematical structures of two theories to dovetail approximately over some
restricted domain (namely, the domain of physical reality well-modeled by the
reduced theory) without either theory being a special or limiting case of the
other.

The subject of reduction often arises in the context of discussions about
the “imperialism” of physics - that is, the notion that theories in physics grow
ever more universal and precise in their depictions of physical reality, and that
each successive theory wholly encompasses the domain of physical behavior
that can be successfully modeled by its predecessor. It is clear that reduction
in the empirical sense suffices for this purpose. By contrast, in requiring one
theory to be a special or limiting case of another, formal reduction demands
much more than is necessary to uphold the conventional wisdom that our
theories grow ever more precise and universal in their physical scope. A weaker
condition, which demands approximate agreement between theories only in the
restricted domain where the reduced theory is successful, is sufficient for this
subsumption of physical domains to occur. Unlike formal reduction, reduction
in this weaker (but still highly nontrivial) sense does not require the reducing
theory to recover features of the reduced theory in cases where the reduced
theory does not describe the behavior of any real physical system.

Like formal reduction, empirical reduction may rest on direct mathemat-
ical correspondences between the theories that serve to ensure approximate
agreement between the theories over the appropriate domain. However, the
question of whether any approximate dovetailing between theories suffices for
one theory to encompass the domain of success of the other can only be an-
swered by considering further empirical input that delineates the set of cases
in which the reduced theory succeeds at tracking the behavior of real physical
systems, as well as the margins of error and timescales within which it does so.
Therefore, knowledge only of the theories themselves is not generally sufficient
to determine whether one reduces to the other in the sense that is relevant to
the conventional imperialist wisdom about the progress of physics.

Here, I focus on distinguishing formal and empirical approaches to reduc-
tion in the context of quantum-classical relations. In Section 2, I consider
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one attempt at quantum-classical reduction that is addressed in the work of
Batterman and Berry and based on a formal recipe due to Maslov for con-
structing wave functions out of classical Lagrangian surfaces [2], [4], [5]. In
their analysis, Batterman and Berry draw the general conclusion that reduc-
tion between classical and quantum mechanics fails because of difficulties that
Maslov’s construction encounters with singular ~ → 0 limits. However, their
use of the term “reduction” in this context is ambiguous, and it is unclear
whether their arguments are meant to rule out reduction in a formal sense, an
empirical sense, or both. Here, I argue that while their arguments may cast
some doubt on the possibility of effecting reduction in a formal sense, they of-
fer no reason for thinking that singular ~→ 0 limits should block reduction in
the empirical sense. In Section 3, I outline an account of empirical reduction
between classical and quantum mechanics that is drawn from the literature
on decoherence and that is spelled out in greater detail in [10]. I argue that
this analysis provides a viable account of the empirical reduction of classical
to quantum mechanics and that there is little reason to think that it is en-
cumbered in any way by singular ~ → 0 limits. In Section 4, the Conclusion,
I argue that there are important lessons to be drawn from juxtaposing this
empirical, decoherence-based picture of quantum-classical reduction with the
more formal approach considered by Berry and Batterman: namely, that the
limitations of certain formal correspondences between classical and quantum
mechanics do not necessarily block reduction between these theories in the
empirical sense, and that it is important generally to take care to distinguish
between formal and empirical reduction when asserting the success or failure
of reduction between a given pair of physical theories.

2 “Formal” Approaches to Quantum/Classical

Reduction

In a standard graduate-level textbook on quantum mechanics, one is likely to
encounter some remark to the effect that classical mechanics can be recovered
from quantum mechanics in the limit ~ → 0. Take Sakurai’s popular mono-
graph, Modern Quantum Mechanics, as an example. Sakurai notes that on

inserting the polar decomposition ψ(x, t) = R(x, t)ei
S(x,t)

~ of the wavefunction
into Schrodinger’s equation, one arrives at the result that the phase S(x, t) sat-
isfies the classical Hamilton-Jacobi equation in the limit ~→ 0, and concludes
that “not surprisingly, in the ~ → 0 limit, classical mechanics is contained in
Schrodinger’s wave mechanics” [13]. It is not clear whether such a remark is
intended simply to highlight an interesting formal correspondence between the
mathematical frameworks of quantum and classical mechanics or is intended
to have some deeper physical signifcance. In its claim that classical mechanics
has been shown to be “contained in” Schrodinger’s wave mechanics, such a
remark does seem tentatively to suggest that we can understand by virtue of
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this result why classical mechanics succeeds where it does given that quantum
mechanics is the more fundamental of the two theories.

However, a little thought shows that at most, this formal result is a small
part of a much more complicated story about how quantum mechanics encom-
passes the domain of classical mechanics, if indeed it does. First, the physical
significance of this result is left obscure since it is not made clear in Sakurai’s
presentation what taking the limit ~→ 0 corresponds to physically given that
~ is a constant for all real systems. Furthermore, this result gives no hint
of the manner in which quantum superpositions are supposed to give way to
the determinate states that characterize realistic classical behavior, or of the
manner in which quantum interference effects come to be suppressed in these
systems. Both of these points must be addressed in any realistic quantum
mechanical account of classical behavior.

A more sophisticated examination of formal approaches to the quantum-
classical correspondence, including explorations of the ~→ 0 limit, theN →∞
limit and various formal quantization procedures, as well as a discussion of de-
coherence, is given in Landsman’s [9]. He concludes that none of these ideas in
isolation is capable of explaining the classical world, but suggests that “there
is some hope that by combining all three of them, one might do so in the fu-
ture.” Landsman offers an extensive survey of mathematical correspondences
between quantum and classical theories that have been uncovered in the lit-
erature, but is careful to note that he does not intend to address the issue of
inter-theoretic reduction between classical and quantum mechanics, which will
be my main focus here.

One prominent recent analysis of reduction between classical and quantum
mechanics has been advanced in the work of Batterman and Berry, both of
whom argue that the singular nature of certain ~→ 0 limits precludes reduc-
tion between these two theories. Here, I argue that the sense of reduction that
they adopt is ambiguous as to whether a formal or empirical sense of reduction
is intended, and that once we take care to make this distinction, it becomes
clear that while their arguments may pose difficulties for reduction in the for-
mal sense, they pose little if any obstacle to reduction in the empirical sense.
I begin by reviewing Berry’s general view on the relationship between limits
and inter-theoretic reduction in physics and then go on to discuss Batterman’s
closely related argument that the singular nature of the ~ → 0 limit blocks
reduction of classical to quantum mechanics.

2.1 Berry’s Analysis of Reduction in Physics

Concerning the general methodology of reduction in physics, Berry writes,

To begin, realise that theories in physics are mathematical; they are
formal systems, embodied in equations. Therefore we can expect
questions of reduction to be questions of mathematics: how are the
equations, or solutions of equations of one theory, related to those
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of another? The less general theory must appear as a particular
case of the encompassing one, as some dimensionless parameter -
call it δ - takes a particular limiting value. A general way of writing
this scheme is

encompassing theory → less general theory as δ → 0

Thus reduction must involve the study of limits, that is asymp-
totics. The crucial question will be: what is the nature of the limit
δ → 0? We shall see that very often reduction is obstructed by the
fact that the limit is highly singular. Moreover, the type of singu-
larity is important, and the singularities are not only directly con-
nected to the existence of emergent phenomena but underlie some
of the most difficult and intensively-studied problems in physics
today [4].

It seems more natural here to interpret Berry as adopting a formal sense of
reduction. That is, Berry seems to regard reduction as a purely mathemat-
ical, a priori relation between the mathematical frameworks of the theories.
However, it is possible that Berry also intends to include all forms of reduc-
tion, including empirical reduction, in his assertion that singular limits block
reduction. In the case of classical and quantum mechanics, this would imply
that because certain limits as ~ → 0 are singular, the conventional wisdom
that quantum mechanics is a strictly more universal and more accurate the-
ory than classical mechanics is false. But in order to show that a particular
singular limit blocks empirical reduction between two theories, it is necessary
to explain why empirical reduction between the theories requires this limit to
be non-singular in the first place. Berry’s discussion does not offer any reason
for thinking that the limits he has in mind must be non-singular in order for
it to be possible to give an accurate quantum description of every real system
whose behavior is well-modeled in classical mechanics, as empirical reduction
requires. The common refrain that classical mechanics is “supposed to” be the
limit of quantum mechanics as Planck’s constant vanishes seems to reflect a
formal rather than an empirical understanding of reduction.

But even if we restrict our interpretation of the above quotation to reduc-
tion in a purely formal sense that requires one theory to be a limiting case of
another, we are faced with a further ambiguity: namely, that it is not clear
what it means, in general, for one theory to be a limiting case of another, given
that the mathematical concept of a limit is defined only for functions and sets
and that a theory is not a well-defined mathematical concept. Given two the-
ories, it is far from clear how, in general, we should determine whether one is
a limiting case of another. Is any singular limit relating any two quantities
between two theories sufficient to support the conclusion that reduction fails?
Or is it only certain special limits that are salient to determining whether re-
duction occurs? If the latter, on what basis should we determine what these
limits are?
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In the next section, I review an argument made by Batterman and following
closely on the work of Berry that certain singularities arising in the limit
~→ 0 block the reduction of classical to quantum mechanics. I argue that the
sense of reduction employed by Batterman is also ambiguous in a number of
respects and that we must be careful not to conclude from his analysis that
the particular singular limits he discusses pose an obstacle to reduction in the
empirical sense.

2.2 Batterman’s Anti-Reductionism Regarding Quantum-
Classical Relations

Like Berry, Batterman concludes that singular limits generally block reduction,
and that they do so specifically where the reduction of classical to quantum
mechanics is concerned. Batterman takes singular limits to block reduction
both in the sense adopted by Berry that requires one theory to be a limiting
case of the other, and also in the sense associated with Nagel and Schaffner’s
well-known account of reduction, which requires that it be possible to derive
the laws of one theory from those of another through the use of bridge prin-
ciples [2]. 1 While reduction is understood in Batterman’s discussion to fail
specifically with respect to the limit-based and Nagel/Schaffner approaches,
these approaches themselves are highly vague and therefore open to a wide
range of interpretations.

At the start of his discussion of the relationship between quantum and
classical mechanics, Batterman writes, “The semiclassical limit is singular and
no reductive relation obtains between the two theories,” where the semiclassical
limit is the limit ~→ 0 ; see [2], Ch. 7. Recognizing that ~ is fixed for all real
systems and that its numerical value depends on a choice of units, he notes
that this limit should be understood as shorthand for the limit ~

Sc
→ 0, where

Sc is a measure of the “typical classical action” of the system in question and
~
Sc

is dimensionless (since ~ also has units of action). However, Batterman’s
discussion does not specify the appropriate quantitative measure of a system’s
typical classical action. While this is common practice in discussions of the
limit ~ → 0, it is important to note that a good deal of physical insight is
lost as a result of the failure to give a precise specification of the quantity
Scl, since knowledge of this quantity would provide a clear delineation of the
physical circumstances under which ~ (understood as shorthand for ~

Sc
) can

legitimately be regarded as “small,” and under which formulas derived from
the assumption of small ~ can legitimately be applied. 2 For the moment,
though, let us put this worry aside and assume that some appropriate measure
of Scl can be be found that physically justifies the assumption of small ~.

At the start of his analysis of quantum-classical relations, Batterman writes,

1For further discussion of the Nagel/Schaffner approach to reduction, see for example [7].
2In [9], Landsman offers a number of suggestions as to the particular measure of Scl that

might be adopted in various cases.
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“Given that classical mechanics is supposed to be a limiting case of quantum
mechanics as ~ → 0, we would like to try to understand the nature of the
quantum-mechanical wave functions in this limit.” The sense in which this
limit is singular is reflected in the breakdown of a particular formal correspon-
dence, due to Maslov, between wavefunctions in Hilbert space and a special
class of N -dimensional surfaces in 2N -dimensional classical phase space known
as Lagrangian surfaces. Given a generating function S(q, P ) of a canonical
transformation from coordinates (q, p) to coordinates (Q,P ) on classical phase
space, the set Σ of points in phase space of the form (q,∇qS(q, P )) for con-
stant P forms a Lagrangian surface. To each such surface, Maslov’s method
associates the wave function,

ψ(q) = K

∣∣∣∣ det

(
∂Qi

∂qj

) ∣∣∣∣1/2e i~S(q,P ) (1)

= K

∣∣∣∣ det

(
∂2S(q, P )

∂qj∂Pi

) ∣∣∣∣1/2e i~S(q,P ), (2)

where Qi = ∂S(q,P )
∂Pi

, pi = ∂S(q,P )
∂qi

and K is an appropriate normalization con-
stant. Batterman notes that the limit ~ → 0 of this function is singular in
much the same way that the function cos(2π

λ
x) is singular as λ → 0: in both

cases, the oscillations of the function become infinitely rapid as the relevant
parameter approaches zero, so that the limit does not exist. In particular, this
singularity blocks the expansion of e

i
~S(q,P ) in ~ around the value ~ = 0.

For fixed, non-zero values of ~, a Hamiltonian evolution on the classical
phase space, which generates an evolution of the Lagrangian surface Σ(t), in-
duces a corresponding evolution of the wave function constructed from this
surface through Maslov’s procedure. In cases where Σ develops folds under
the Hamiltonian evolution, so that it is multivalued when expressed as a func-
tion of the configuration variables q, Maslov’s construction stipulates that the
wavefunction associated with Σ is a superposition of different components,
one associated with each single-valued “branch” of Σ. A special technique de-
vised by Maslov is then used to match these branches along the caustic curves

joining them, where

∣∣∣∣ det
(
∂2S(q,P )
∂qj∂Pi

) ∣∣∣∣ is singular. For further details of this

construction, see [5].
By contrast with this “bottom-up” construction, Batterman then considers

a “top-down” derivation of the well-known expression for the WKB wave func-
tion, which proceeds by solving the time-independent Schrodinger equation to
first order in ~. The general solution thus derived is,

ψ(q) =
A

4
√

2m(E − V (q))
e
i
~
∫ q
x0

√
2m(E−V (x))dx

+
B

4
√

2m(E − V (q))
e
− i

~
∫ q
x0

√
2m(E−V (x))dx

,

(3)
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where A and B are arbitrary constants. Batterman observes that at a classical
turning point, where V (x) = E, the amplitude of the wave function diverges

just as the Maslov construction (specifically, the coefficient ∂2S(q,P )
∂qj∂Pi

) diverges

along the caustics connecting different branches of the Lagrangian surface.
Given a classical Lagrangian surface Σ defined by the function S(q, P ) for

fixed P , one can then fix the constants A and B in the WKB solution at
some initial time t = 0 so as to agree with the wave function (1). It is then
natural to ask whether the evolution induced on this initial wave function
by the classical Hamiltonian evolution of the surface Σ approximately agrees
with the semi-classical approximation to the Schrodinger evolution associated
with (3). Citing the work of Berry and others, Batterman notes that this
agreement holds for a limited class of Lagrangian surfaces - namely, those that
are preserved under the classical Hamiltonian evolution. On the other hand,
for irregular or chaotic evolutions, Lagrangian surfaces will tend to develop
an increasing number of folds - i.e., to become increasingly multivalued in q
- over time. Maslov’s construction remains applicable in such cases, but only
when a certain measure of phase space volume characterizing the separation
between adjacent folds in the Lagrangian surface is large in comparison with
~. The construction becomes inapplicable once the caustics associated with
these folds become clustered on scales smaller than ~. As a result, applying the
classical Hamiltonian evolution and then the Maslov construction will not give
even approximately the same result as applying the Maslov construction and
then the semi-classical Schrodinger dynamics. Where the classical dynamics
of the system are chaotic, the semiclassical limit ~ → 0 will therefore fail to
commute with the infinite time limit t → ∞ relevant to chaos: for fixed time
t, one can make ~ small enough so that Maslov’s construction applies and the
semiclassical and Hamiltonian evolutions agree; however, if one takes the limit
t→∞ first, this can’t be done. 3

2.3 Ambiguities in Batterman’s Usage of “Reduction”

In his assertion that singular limits block reduction, Batterman clarifies that he
means reduction both in the Nagel/Schaffner (or simply “Nagelian”) sense and
in the limit-based sense employed by Berry. However, as I argue here, both
of these senses of reduction are subject to a wide range of interpretations,

3Another reason often cited for the inability of quantum theory to recover classical chaos
is that classical chaos entails exponential divergence of closely spaced initial conditions in
phase space, while on the usual association of classical phase space points with narrow
wave packet states in quantum theory, the unitary nature of the Schrodinger evolution -
which preserves the inner product between any two initial states throughout their evolution
- precludes such a divergence between the corresponding wave packets. However, Zurek
has argued that when we incorporate the effects of environmental decoherence, the effective
quantum dynamics of the system in question is no longer unitary (it is only the total closed
system consisting of the system in question and its environment that is assumed to evolve
unitarily) and so this objection no longer applies.
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so that a large degree of ambiguity remains in Batterman’s use of the term
“reduction.”

Like many discussions of Nagelian reduction, Batterman’s presentation
leaves unanswered a range of important questions. In its requirement that it be
possible to derive the laws of one theory from those of another through the use
of bridge principles, does Nagelian reduction reflect a formal or an empirical
sense of reduction? On the one hand, deduction is a formal logical relationship,
so that Nagelian reduction could be construed as a kind of formal reduction.
On the other hand, one could restrict the requirement of derivability to only
those contexts in which the reduced theory successfully describes the behavior
of real systems, in which case Nagelian reduction should be regarded as an
empirical form of reduction. One can also pose the question: Does Nagelian
reduction require a single “global” derivation of the reduced theory’s laws or
does it allow for many context-specific “local” derivations that may employ
different bridge principles in different systems? Some treatments of Nagelian
reduction require bridge principles to be global, biconditional identity claims
while others loosen this requirement to allow for one-way conditional bridge
principles that may vary depending on context. There is also the perennial
ambiguity as to whether bridge principles are empirically established claims or
merely definitions. While these ambiguities reflect the discussion of Nagelian
reduction generally, it is not clear from Batterman’s discussion why singular
limits should generally preclude Nagelian reduction since nothing inherent to
any of these construals relies essentially on taking limits.

In the case of limit-based reduction, Batterman writes that this sort of
reduction rests on the requirement limε→0 Tf = Tc, where Tf is the more fun-
damental and Tc the less fundamental theory. As discussed above (and as Bat-
terman himself has acknowledged) this requirement is open to a wide range
of interpretations. It is simply unclear what it means to take the limit of a
theory or even what is being taken to constitute a theory. We can also pose
many of the same questions about limit-based reduction that we posed about
Nagelian reduction. Is it being understood formally or empirically? While a
formal construal seems more faithful to what is intended in the analyses dis-
cussed here, the claim that one theory is a “limit” or “limiting case” another
is sometimes used loosely to mean that the latter supersedes the former, in
which case an empirical construal would also be reasonable. One can also ask:
is the requirement that one theory be a limit of another local or global? We
can imagine a single limit that relates the theories globally, or many context-
specific limiting relations that connect the individual models of the theories for
different systems. The understanding of limit-based reduction that is hinted
at in Batterman’s analysis and many other discussions of the limit-based ap-
proach seems to be as a global, formal relation, but nothing in Batterman’s
presentation explicitly signals a commitment on this point. 4

4For further discussion of the vagueness of existing formulations of the limit-based ap-
proach, see [11].
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Where both formal and empirical types of reduction are concerned, it is
not made clear in Batterman’s anlaysis why the breakdown of the Maslov
construction should be taken to constitute a failure of reduction per se - ei-
ther in the formal or the empirical sense - rather than merely a failure of one
particular approach to reduction. While the notion that classical mechanics
is the limit of quantum mechanics as ~ → 0 comprises what is perhaps the
most widespread conventional wisdom about the supposed reduction between
quantum and classical mechanics, this does not constitute good reason for
thinking that this reduction (in either the formal or the empirical sense) could
only be effected via the semiclassical limit and Maslov’s construction, espe-
cially given the vast range of other work on quantum-classical relations that
does not invoke this limit or this construction. As I argue in the next section,
there are strong reasons to doubt that the technical difficulties associated with
Maslov’s construction and the singular limits that Batterman highlights pose
any obstacle to the empirical reduction of classical to quantum mechanics, and
more specifically to attempts to effect this kind of reduction based on decoher-
ence. Given the vagueness of limit-based reduction and the existence of other
quantum-classical relations that employ the ~→ 0 limit in a non-singular way,
5 further argument is needed to show that difficulties with Maslov’s construc-
tion block reduction even in a formal sense, and that these difficulties signal
anything more than the failure of just one among many attempts to smoothly
recover the formalism of classical mechanics from that of quantum mechanics.
As it stands, Batterman’s argument gives little reason for attributing the sort
of broad, sweeping significance to Maslov’s construction that it does.

2.4 Singular ~→ 0 Limits and the Empirical Reduction
of Classical to Quantum Mechanics

If Batterman’s (or Berry’s) analysis can be fairly interpreted as denying the
empirical reduction of classical to quantum mechanics, then there are a num-
ber of reasons that should lead us to strongly doubt that his argument based
on singular limits lends much, if any, support to this claim. Assuming that
it does deny the possibility of empirically reducing classical to quantum me-
chanics, Batterman’s analysis may be criticized on the grounds that it ignores
a number of physically salient factors that figure into any realistic quantum
mechanical description of actual systems whose behavior is well-modeled by
classical mechanics. That is, much of Batterman’s analysis focuses primarily
on the abstract mathematical formalisms of quantum and classical mechan-
ics, seemingly without a concrete physical system or set of systems in mind.
While this sort of methodology may be employed in analyses of formal reduc-
tion, greater attention to the features that characterize real systems that we
know to behave classically is necessary to address the possibility of empirical
reduction. The specific points on which Batterman’s discussion departs from

5See Landsman’s [9] for examples of non-singular ~→ 0 limiting relations.
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the description of real classical systems into the realm of abstract formalism
are as follows:

1. One may make the predictable criticism that Batterman’s analysis relies
on the limit ~ → 0 even though ~ is constant for all real systems, and
that the relevance of the analysis for real systems is obscured by this
fact. This sort of criticism may be met, as it is in Batterman’s work,
with the claim that what is “really” meant by ~ → 0 is ~

Scl
→ 0, where

the value of Scl does vary across real physical systems. Yet, it is more
often the case than not - and is the case in Batterman’s analysis - that
relatively little is said about what the measure Scl should specifically
be taken to be. It is also rarely, if ever, the case that expansions in ~
used to recover classical equations are explicitly re-cast in terms of the
dimensionless variable ~

Scl
. While the choice to expand in ~ rather than

~
Scl

may be seen as a matter of convenience, it is a convenience that comes
at a significant cost to our physical insight, since a specification of the
measure Scl is needed to demarcate the circumstances under which ~ can
legitimately be regarded as “small”; without such a specification, we can
only hope that calculations based on the assumption of small ~ turn out
to be physically meaningful in a given context.

2. Analyses such as those of Batterman, Berry and many others in the field
of semiclassical analysis are formulated in the context of isolated quan-
tum systems. But essentially none of the real physical systems whose
behavior we know to be well-described by classical mechanics are iso-
lated. Any realistic quantum mechanical model of a classical system
such as the center of mass of a golf ball, the moon, or even an alpha
particle in a bubble chamber 6 must take account of the fact that these
systems are constantly interacting with external degrees of freedom in
their environments and thus subject to entanglement with those degrees
of freedom. And such entanglement, of course, has significant effects
the behavior of the system in question - most notably, the suppression
of quantum interference effects. However, it should also be pointed out
that incorporatation of environmental effects, though compelled by the
need to give a realistic description of the system in question, substan-
tially complicates matters in certain respects and disrupts the tidy and
appealing mathematical setting that one finds in the case of isolated
systems.

3. Batterman’s analysis makes no mention of wave function collapse. How-
ever, it is clear that some mechanism for collapse, or effective collapse,
must figure into the recovery of real classical behavior from quantum
theory. The task of modeling real classical systems in quantum theory
does not consist solely in the formal mathematical project of recovering

6See[8], Ch. 3, [?] and [1] Ch. 20 for discussion of this last example.
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classical equations from the formalism of quantum theory, but also in
the more conceptual, metaphysical task of understanding how the deter-
minate (or apparently determinate) outcomes characteristic of classical
behavior come about in a quantum setting. As with the inclusion of envi-
ronmental decoherence, the need to recover determinacy from quantum
theory brings further complications to the simple mathematical setting
of isolated systems evolving unitarily under Schrodinger’s equation - in
this case, by obliging us to grapple with difficult interpretational issues.
In Batterman’s analysis, it is not clear when or whether collapses are
supposed to occur: is the wave function collapsing continuously, periodi-
cally, not at all, or in some other manner? The first of these possibilities
would seem to invalidate the WKB approximation that Batterman in-
vokes, which treats the wave function as an approximate plane wave, by
requiring the state always to be a narrowly localized wave packet. The
second possibility would not successfully recover classical behavior since
a position measurement on the sort of plane wave associated with the
WKB approximation will give radically unpredictable results for each
measurement and so fail to recover classical behavior (since the wave is
widely spread out in space). If the wave function never collapses, on the
other hand, the question remains as to whether Batterman’s analysis is
consistent with the appearance of determinate outcomes characteristic of
real classical behavior. Without going so far as to demand a solution to
the measurement problem, one can still reasonably insist that any real-
istic attempt to recover classical behavior offer some rough specification
as to when collapses or effective collapses occur.

Because Batterman’s analysis does not incorporate a range of crucial, physi-
cally salient considerations required for the realistic description of classical sys-
tems, it is unlikely that the formal mathematical difficulties that he highlights
bear strongly on the empirical reduction of classical to quantum mechanics. In
the following section, I describe a template for the recovery of realistic classical
behavior 7 from quantum theory that is drawn from the literature on decoher-
ence and that I claim does incorporate the important factors that Batterman’s
discussion omits. This account is spelled out in greater detail in [10], and only
its central points and underlying assumptions are discussed here. I argue that
this template provides a strategy for the empirical reduction of classical to
quantum mechanics that is unaffected by the particular formal mathematical
issues that Batterman highlights.

7Here, I take classical behavior to designate behavior that is accurately represented by
some purely classical model. That is, I do not take it to include those systems whose
behavior is well-described by semiclassical models that employ hybrids of quantum and
classical concepts.
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3 An “Empirical” Approach to Quantum/Classical

Reduction

Empirical reduction of classical to quantum mechanics requires that every cir-
cumstance in which the behavior of some real system is accurately modeled in
classical mechanics also is one in which that system’s behavior can be mod-
eled at least accurately in quantum mechanics. More precisely, reduction in
this sense requires that for every system in the domain of classical mechan-
ics - that is, for every system S whose behavior is accurately characterized
by some model of classical mechanics - there exists some model of quantum
mechanics, also representing S, such that the classical model of S reduces to
the quantum model of S. Here, reduction between models of a fixed system
is taken to require that the reducing model track the system’s behavior at
least as precisely as the reduced model in all circumstances where the reduced
model applies. Thus, empirical reduction between the theories of classical
and quantum mechanics here is understood to rest on a more basic notion of
reduction between two models of these theories in cases where both models
describe the same, fixed system. Inter-theoretic reduction on this approach
may turn out to be a local, piecemeal affair insofar as this approach leaves
open the possibility of demonstrating the subsumption of one theory’s domain
by that of another through numerous system-specific, inter-model reductions.
(This local, model-based picture of empirical reduction is expounded in greater
generality in [11].)

The account of empirical reduction of classical to quantum mechanics that
I outline here is framed as a template for the reduction between classical and
quantum models of a single fixed system in the domain of classical mechanics
(e.g., the center of mass of a golf ball, or an alpha particle in a bubble chamber,
that traverses an approximately Newtonian trajectory). A complete demon-
stration of reduction between two models requires proof that certain quantities
in the reducing model approximately instantiate the dynamical and other phys-
ically salient transformation properties of the reduced model in cases where
those features of the reduced model accurately describe the system’s behavior.
The account of quantum-classical reduction that I give here is formulated as
a template into which such a proof might be fit, and synthezises a variety of
results drawn from the extensive body of work on decoherence theory. This
template rests on various assumptions that are conventional in discussions of
decoherence and for which proofs have been given in the context of specific
models, but which are believed on the grounds of various heuristic arguments
to apply generically. My analysis here does not presuppose any specific quan-
tum model, but rather only that the quantum model is compatible with a
certain general canonical form of the equation of motion for the reduced den-
sity matrix of the system in question.

We will see that on this picture of quantum-classical relations, the classical
model of the physical system in question is not a special or limiting case of
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the quantum model; however, the quantum and classical descriptions can be
shown to dovetail in certain situations with respect to the behavior of cer-
tain variables, and so to provide distinct but mutually consistent (within some
margin of approximation) characterizations of the same physical behavior (e.g.,
the Newtonian trajectory of a golf ball). As an analysis of empirical reduction,
this template has certain important advantages over Batterman’s: 1) ~ remains
fixed throughout the analysis (as do quantities such as mass and particle num-
ber) so that difficulties regarding singular ~→ 0 limits are also avoided; 2) the
class of quantum models considered here is more realistic as a description of
actual classical systems than the models considered in Batterman’s discussion,
since the models considered here incorporate the effects of the environment on
the system’s behavior; 3) this account explicitly accommodates the need for a
collapse (or effective collapse) mechanism.

This template starts from the recognition that any realistic quantum me-
chanical model of a classical system will account for the effects of the system’s
inevitable interaction with its environment. As is typical in models of deco-
herence, the system of interest (whose classical behavior we wish to recover)
and its environment (which includes all degrees of freedom external to the sys-
tem, including any observer or measuring apparatus that may be present) are
modeled together as a closed quantum system with Hilbert space HS ⊗ HE,
where HS is the Hilbert space of the system of interest and HE the Hilbert
space of its environment. The quantum state |Ψ〉 of the combined system SE
is assumed (as we will see, provisionally) to follow the Schrodinger equation,

i
∂|Ψ〉
∂t

=
(
ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤI

)
|Ψ〉, (4)

where ĤS and ĤE operate respectively on states in HS and HE, ÎE is the

identity on HE , ÎS is the identity on HS, ĤS =
P̂ 2
S

2MS
+ V (X̂S), and ĤI ,

the interaction Hamiltonian, operates on states in HS ⊗ HE. The analysis
further assumes that these quantities are such that the reduced density matrix
ρ̂S ≡ TrE|Ψ〉〈Ψ| of S follows an equation of the form,

i
dρ̂S
dt

= [ĤS, ρ̂S]− iΛ
[
X̂,
[
X̂, ρ̂S

]]
, (5)

where Λ is a constant that depends on the details of ĤE and ĤI , the first term
on the right-hand side generates the unitary evolution of ρ̂S, and the second
term generates non-unitary effects associated with decoherence, including the
suppression of off-diagonal elements of 〈X ′|ρ̂S|X〉.

Zurek et al. have argued that there will generically be a separation of
timescales over which states in HS become entangled with E [16]. Most states
of S very rapidly become entangled with E over the extremely short timescale
associated with decoherence. However, certain special states of S, which are
known as pointer states and which form a basis for HS, suffer entanglement
with E only on timescales much longer than the decoherence timescale. For
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the specific case where the potential V describes a harmonic oscillator, Zurek
et al have argued that the pointer states of S should generically be coherent
states that are narrowly peaked both in position and in momentum (within
the constraints of the uncertainty principle). Further heuristic arguments have
been used to show that pointer states should generically be coherent states for
more general choices of the potential V ; see for example Schlosshauer (2008),
Ch.s 2.8 and 5.2. Assuming this to be the case, environmental decoherence in
our class of models lends the overall quantum state evolution of SE a branching
structure with respect to a basis of coherent states for HS. As we will see, this
branching can be quantified using the formalism of decoherent histories. For
a clear discussion of quantum state branching, see [15], Ch. 3.

Given these specifications, our template for the recovery of classical behav-
ior can be summarized as follows. Provisionally assuming a unitary evolution
for the closed system consisting of the system of interest (whose classicality we
wish to recover) and its environment, decoherence lends the total pure state
of this system a branching structure. Relative to each branch of the quantum
state, the state of the system S is always quasi-classical - that is, always nar-
rowly localized in position and momentum (this is a consequence of the fact
that decoherence occurs relative to a pointer basis of coherent states). Thus,
one can ascribe a unique quasi-classical (spatially localized) trajectory to each
branch, given by the evolution of the branch-relative expectation values of S’s
position and momentum operators. Moreover, a little-discussed form of Ehren-
fest’s Theorem adapted to open quantum systems entails that on timescales
where wave packet spreading (or, precisely, “ensemble” wave packet spread-
ing) in S can be neglected, nearly all of these quasi-classical branch trajectories
will approximate some solution to Newton’s (or Hamilton’s) classical equations
of motion. Branching still occurs in these cases, but in such a manner that
fluctuations associated with branching are confined to small scales of position
and momentum. Thus, the branch-relative quantum phase space trajectories
consist of small, stochastic fluctuations around some deterministic Newtonian
trajectory. Each branch of the quantum state is thus associated with some par-
ticular, approximately classical history of the system S, corresponding to the
sort of localized, approximately Newtonian trajectory that we observe when
we see a golf ball moving through the air or the moon orbiting the earth. The
manner in which one branch comes to be selected as the “actual” state of af-
fairs depends on one’s interpretation of quantum mechanics and its associated
mechanism for effective collapse. However, it should be noted that the signif-
icance of the branching structure that emerges through decoherence, on this
account, is that it serves to “carve out” the set of possible trajectories for the
various interpretation-dependent collapse mechanisms to choose from.

Let us now briefly outline this story in somewhat more technical detail.
Following Wallace (2012), Ch. 3, we can use the pointer states of S, which are
coherent states |z〉 - where z ≡ (q, p) denotes the phase space point around
which the state |z〉 is peaked - to construct a positive operator-valued measure
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(POVM) on S’s Hilbert space HS (see footnote 8 for an informal explanation
of POVM’s). As we will see shortly, this POVM can, in turn, be used to
delineate the individual branches of the total quantum state |Ψ〉. Given an
arbitrary partition {µα} of the classical phase space ΓS of the system S, this
POVM consists of the set of operators {Π̂α} on HS, where the Π̂α are defined
by

Π̂α ≡
∫
µα

dz |z〉〈z| (6)

and
∑

α Π̂α = ÎS, in accordance with the definition of a POVM. Assuming
that the coherent states |z〉 are minimum uncertainty wave packets of S, and
that the cells µα have dimensions in position and momentum that are larger
than the position and momentum widths of the state |z〉 (so that their phase
space volume exceeds ~ ≡ 1), the operators in this POVM will also constitute
an approximate PVM, 8 so that

Π̂αΠ̂β ≈ δαβΠ̂α. (10)

We can then extend the set {Π̂α} to an approximate PVM on the total Hilbert
space HS ⊗HE of the system SE by defining the set of operators {P̂α}, where
P̂α ≡ Π̂α ⊗ ÎE, with ÎE the identity on HE. In what follows, we will make
use of this approximate PVM to analyze the branching structure of the pure
state evolution of the closed system SE. This particular choice of approximate
PVM is motivated by the fact that the coherent states |z〉 are pointer states
of S under its interaction with E; this entails that the different branch states
defined using this PVM will be mutually orthogonal at each time, which in turn
entails the existence of a branching structure for the overall state evolution.

To see this more clearly, let us decompose the unitary evolution of the pure
state of SE using the approximate coherent state PVM just defined. Dividing

8 A projection-valued measure (PVM) on a Hilbert space H is a set of self-adjoint oper-
ators {P̂α} on H such that

∑
α

P̂α = Î , (7)

P̂αP̂β = δαβP̂α, (8)

where there is no summation over repeated indices in (8). The concept of a positive operator-
valued measure (POVM) on H generalizes the notion of a PVM by relaxing the requirement
of orthogonality in (8). Thus, a positive-operator-valued measure (POVM) on a Hilbert
space H is a set {Π̂α} of positive operators such that

∑
α

Π̂α = Î . (9)

Recall that an operator Ô is positive if it is self-adjoint and 〈Ψ|Ô|Ψ〉 ≥ 0 for every |Ψ〉 ∈ H.
Note that every PVM is also a POVM.
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the time interval between t = 0 and t > 0 into N equal steps ∆t = t
N

, we can
rewrite the unitary state evolution as follows:

|Ψ(t)〉 = e−iĤN∆t|Ψ0〉 (11)

=
∑

α0,...,αN

Ĉα0...αN |Ψ0〉, (12)

where Ĉα0...αN |Ψ0〉 ≡ P̂αN e
− i

~ Ĥ∆tP̂αN−1
...e−iĤ∆tP̂α1e

− i
~ Ĥ∆tP̂α0|Ψ0〉. It can be

seen straightforwardly from the definition of the POVM operators in (6) that
environmental decoherence relative to a pointer basis of coherent states for S
entails (by virtue of the definition of the operators Π̂α) that at each time N∆t,
these branch vectors satisfy the condition

〈Ψ0|Ĉ†α′0α′1...α′N Ĉα0α1...αN |Ψ0〉 ≈ 0 (13)

for αk 6= α′k for any 0 ≤ k ≤ N . Thus, the unitary evolution of the total
quantum state follows the progression,

Unitary Branching Evolution

|Ψ0〉
e−iĤ∆t

−−−−→
∑
α1

Ĉα1|Ψ0〉
e−iĤ∆t

−−−−→
∑
α1α2

Ĉα1α2|Ψ0〉
e−iĤ∆t

−−−−→ ...
e−iĤ∆t

−−−−→
∑

α1α2...αN

Ĉα1α2...αN |Ψ0〉,

(14)

where for every 1 ≤ i ≤ N , 〈Ψ0|Ĉ†α′0α′1...α′iĈα0α1...αi |Ψ0〉 ≈ 0 if αk 6= α′k for any

0 ≤ k ≤ i. Each index added to the sum at each new time step ∆t captures a
separate branching of the quantum state.

Thus far, our analysis has assumed that the quantum state of the system
SE evolves unitarily according to Schrodinger’s equation, (4). However, the
world of our experience - which is characterized by determinate values of posi-
tion and momentum for systems like the ones we see behaving classically - can
only be associated with one particular branch. Given the branching structure
that is carved out by the unitary dynamics through decoherence, we can asso-
ciate to each branch at time t = i∆t an effective, normalized “branch state,”

1
Wα1...αi

Ĉα1...αi |Ψ0〉, where Wα1...αi ≡
√
〈Ψ0|Ĉ†α1...αiĈα1...αi |Ψ0〉. It is then possi-

ble to define an effective, stochastic evolution for the branch-relative state of
the system SE as follows:

Stochastic Branch-Relative State Evolution
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1

Wα1

Ĉα1|Ψ0〉
prob.

|Wα1α2 |
2

|Wα1 |
2

−−−−−−−−→ 1

Wα1α2

Ĉα1α2|Ψ0〉
prob.

|Wα1α2α3 |
2

|Wα1α2 |
2

−−−−−−−−−→ 1

Wα1α2α3

Ĉα1α2α3|Ψ0〉
prob.

|Wα1α2α3α4 |
2

|Wα1α2α3 |
2

−−−−−−−−−−−→

(15)

...
prob.

|Wα1α2...αN−1αN
|2

|Wα1α2...αN−1
|2

−−−−−−−−−−−−−−→ 1

Wα1α2...αN

Ĉα1α2...αN |Ψ0〉.

A quick calculation will show that the transition probability

∣∣∣∣Wα1...αiαi+1

Wα1...αi

∣∣∣∣2 at

the ith time step is simply the square magnitude of the αthi+1 component of the

time evolved state e−iĤ∆t 1
Wα1...αi

Ĉα1...αi|Ψ0〉 = 1
Wα1...αi

∑
αi+1

Ĉα′1...α′iαi+1
|Ψ0〉, in

accordance with the usual Born Rule prescription for collapse. The physical
justification for taking a single branch state rather than the overall superpo-
sition as the effective state of SE and for adopting the above succession of
Born Rule collapses as the effective evolution of this state will depend on the
particular collapse mechanism and interpretation of quantum mechanics that
is ultimately taken as the basis of the analysis. In [10], I discuss the manner
in which various realist interpretations purport to underwrite this sequence
of collapses or effective collapses, and in [12] show in more detail how this
interpretation-neutral account can be specially tailored to the specific context
of the de Broglie-Bohm interpretation.

My central concern is with questions of reduction and not with questions
concerning the interpretation of quantum mechanics. Putting questions of
interpretation to the side and assuming that our effective, stochastic, branch-
relative state evolution above is underwritten by some mechanism for collapse
or effective collapse, we can associate a point in classical phase space ΓS to each
effective branch state at each time by taking the branch-relative expectation
values of Ss position and momentum operators,

For this reason, I will “black box” questions about the particular ontology
and collapse mechanism that underwrites our effective, stochastic, branch-
relative state evolution and simply take this evolution for granted. Putting
questions of interpretation to the side, then, to each effective, branch-relative
state, we can associate a point in classical phase space ΓS given by the branch-
relative expectation values of S’s position and momentum operators:

Xq
α1...αN

(N∆t) ≡ 1

|Wα1...αN |2
〈Ψ0|Ĉ†α1...αN

(
X̂S ⊗ ÎE

)
Ĉα1...αN |Ψ0〉

P q
α1...αN

(N∆t) ≡ 1

|Wα1...αN |2
〈Ψ0|Ĉ†α1...αN

(
P̂S ⊗ ÎE

)
Ĉα1...αN |Ψ0〉.

(16)

(17)

(18)

19



Furthermore, to each stochastic, branch-relative state evolution (3) we may
associate the following stochastic, quasi-classical evolution in classical phase
space:

(
Xq
α1

(∆t) , P qα1
(∆t)

) prob.
|Wα1α2

|2

|Wα1
|2

−−−−−−−−−→
(
Xq
α1α2

(2∆t), P qα1α2
(2∆t)

) prob.
|Wα1α2α3

|2

|Wα1α2
|2

−−−−−−−−−−−→
(
Xq
α1α2α3

(3∆t) , P qα1α2α3
(3∆t)

)
prob.

|Wα1α2α3α4
|2

|Wα1α2α3 |
2

−−−−−−−−−−−−→ ...
prob.

|Wα1α2...αN−1αN
|2

|Wα1α2...αN−1
|2

−−−−−−−−−−−−−−−−→
(
Xq
α1α2α3...αN (N∆t), P qα1α2α3...αN (N∆t)

)
.

Note that the discreteness of the timesteps ∆t here is superimposed artificially
on a dynamical process of entanglement and branching that occurs continu-
ously in time. By making the time intervals ∆t successively smaller, our dis-
crete, stochastic, branch-relative phase space trajectories provide successively
better approximations to a continuous, stochastic “quantum” phase space tra-
jectory (Xq (t) , P q (t)) for the system S.

Thus far, my analysis has suggested how stochastic quasi-classical trajecto-
ries can be recovered from our effective, branch-relative state evolution. How-
ever, I have not given any argument as to why these quasi-classical trajectories
should be approximately classical over relevant timescales - that is, I have not
given any argument as to why these trajectories should approximate solutions
to classical equations of motion (e.g., Newton’s or Hamilton’s equations). Tak-
ing (Xq (t) , P q (t)) to represent the phase space trajectory associated with the
stochastic evolution of the branch-relative expectation values of position and
momentum, and (Xc (t) , P c (t)) to represent the deterministic classical tra-
jectory with the same initial condition as this quantum trajectory, so that
Xq(0) = Xc(0) and P q(0) = P c(0), the recovery of classical behavior requires
us to show that, with probability 1− ε, for very small ε, the relation∣∣∣∣Xq(t)−Xc(t)

∣∣∣∣ < 2δX∣∣∣∣P q(t)− P c(t)

∣∣∣∣ < 2δP ,

(19)

holds for t < T , where δX and δP are the margins of error and T the timescale
within which the Newtonian model is known to approximate the behavior of
the system S itself. The factor of 2 on the right hand side of (19) has been
included because, if both the quantum and classical models track the system’s
behavior within margin δZ ≡ (δX , δP ), they can differ at most by 2δZ . A
seldom-discussed form of Ehrenfest’s Theorem, formulated for a certain class
of open systems S (the familiar form of Ehrenfest’s Theorem only concerns
closed systems), ensures that

d Tr[ρ̂SP̂ ]

dt
= −Tr[ρ̂S

ˆ∂V (X)

∂X
], (20)
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or more concisely,

d〈P̂ 〉
dt

= −〈
ˆ∂V (X)

∂X
〉, (21)

where ρ̂S is the reduced density matrix of S, 〈P̂ 〉 = Tr[ρ̂SP̂ ] and 〈X̂〉 =
Tr[ρ̂SX̂] [8]. If we now impose the restriction to density matrices ρ̂S for which
the position-space probability distribution 〈X|ρ̂S|X〉 is narrowly peaked about
some particular X0, with a width that is small by comparison with the char-
acteristic length scales of V , it follows that

d〈P̂ 〉
dt
≈ −∂V (X)

∂X

∣∣∣∣
〈X̂〉
. (22)

Combined with the relation d〈X̂〉
dt

= 〈P̂ 〉
M

, this entails that the expectation val-

ues 〈X̂〉 and 〈P̂ 〉 follow an approximately Newtonian trajectory as long as
〈X|ρ̂S|X〉 remains suitably narrow by comparison with the dimensions of V ,
and to a measure of approximation determined by the width of the distribu-
tion 〈X|ρ̂S|X〉. Thus, the timescales on which the expectation values 〈X̂〉 and
〈P̂ 〉 follow an approximately Newtonian trajectory will depend on the rate at
which the “ensemble” distribution 〈X|ρ̂S|X〉 spreads over time. 9 As I argue
in further detail in [10], it follows that over timescales where ensemble spread-
ing can be ignored, the only branch-relative phase space trajectories that have
non-negligible probability of occurring on our stochastic, branch-relative phase
space evolution are ones that are approximately (i.e., to within margin of error
given by the width of the distribution 〈X|ρ̂S(t)|X〉) Newtonian in form. As
a general rule of thumb, these timescales will be larger when the mass of S
is large, and smaller when the effects of chaos - as quantified, for example,
by the Lyapunov exponent in the classical Hamiltonian HS - are significant.
Environmental decoherence also contributes somewhat to the rate of ensemble
(as opposed to coherent) spreading; see [14], Ch. 3 for discussion of this point.

To complete this analysis, one must show that the timescales on which
ensemble spreading in S can be ignored are at least as long as the timescales
over which Newtonian trajectories are known to approximate of the actual tra-
jectory of the system in question. Otherwise, the branch-relative phase space
evolutions prescribed by the quantum model of the system would not describe
the behavior of the system at least as well as the classical model, and empirical
reduction of the classical to the quantum model would fail. Calculation of the
timescales for ensemble spreading requires more detailed specification of the
particular quantum model of the the system in question. The timescales and
margins of error within which classical Newtonian trajectories can be expected
to track the system’s behavior are a matter for empirical investigation; from
a practical point of view, it may only be possible to specify them imprecisely

9It is important to note that the ensemble distribution 〈X|ρ̂S(t)|X〉 reflects a distribution
across branches, which originate in some initial narrow state ρ̂0S .
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within certain broadly specified bounds. Moreover, as was already discussed,
one must provide some justification for the ad hoc collapse posited by (15).
Competing interpretations of quantum theory all offer different accounts of
collapse. For further discussion of the manner in which the collapse mecha-
nisms associated with different interpretations can be fit into this account of
classical behavior, see [10].

On this account of the empirical reduction between classical and quantum
models of the same physical system S, the quantum mechanical quantities

1
|Wα1...αN

|2 〈Ψ0|Ĉ†α1...αN

(
X̂S ⊗ ÎE

)
Ĉα1...αN |Ψ0〉 and 1

|Wα1...αN
|2 〈Ψ0|Ĉ†α1...αN

(
P̂S ⊗ ÎE

)
Ĉα1...αN |Ψ0〉

represent the very same physical degrees of freedom that are represented by
the phase space point (Xc (t) , P c (t)) in the classical model of S. In this sense,
the two variables - quantum and classical - may said to co-refer, even if their
agreement is only approximate. If the physical assumptions of the above anal-
ysis are correct, we see that whatever can be modeled classically in terms of a
point evolving in classical phase space can be modeled quantum mechanically
in terms of the stochastic evolution of branch-relative expectation values of
the system’s position and momentum operators.

This analysis supports something close to Belot’s critique of Batterman’s
claim that quantum mechanics is explanatorily inadequate because it requires
reference to the resources of classical mechanics for the explanation of certain
phenomena. Belot writes that “the mathematics of the less fundamental theory
is definable in terms of the mathematics of the fundamental theory and ...
only the latter need be given a physical interpretation ... so we can view
the desired explanation as drawing only on the resources internal to the more
fundamental theory” [3]. While it is not quite correct to say that a classical
phase space point is defined in terms of the branch-relative expectation values
of position and momentum, we can say on our account that both quantities
represent the same physical degrees of freedom, so that any physical system
whose behavior is well-described by the classical evolution of a point in phase
space can equally well be described by the quantum-mechanical evolution of
branch-relative expectation values of position and momentum. Thus, quantum
mechanics does not require classical mechanics for the description even of those
phenomena in the domain of classical mechanics and offers its own counterparts
to any physically salient features of classical theory.

The analysis of quantum-classical relations given in this section provides a
general strategy for understanding how any situation that is successfully mod-
eled in classical mechanics can also be modeled at least as precisely in quantum
mechanics, and so provides the outline of an account of the empirical reduction
of classical mechanics to quantum mechanics. It enables us to understand the
behavior of any real classical system - say, the center of mass of a golf ball in
mid-flight - not only in the familiar setting of classical mechanics, but also in
the more intricate framework of quantum mechanics.
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3.1 Open Questions Concerning the Decoherence-Based
Account of Empirical Quantum-Classical Reduction

It is doubtful that the singular limits highlighted in Batterman’s analysis have
much, if any, bearing on the viability of the decoherence-based approach to
empirical reduction that I have outlined here. The basic assumptions, method-
ologies and concerns guiding the two analyses are simply too different. How-
ever, it is still reasonable to have doubts about the sort of decoherence-based
account of empirical reduction described aboveinsofar as it relies heavily on
a number of unproven assumptions. Among the most important of these un-
proven assumptions are the following:

1. It was assumed that the pointer states of the system S are narrowly
peaked wave packets. Zurek and others have argued that this is a fairly
generic feature of systems of the sort that have concerned us here. How-
ever, such arguments have a strongly heuristic character, and it is im-
portant to ask whether it is possible to give a more rigorous justification
of the claim that narrowly peaked coherent states are generically pointer
states in the systems we know to behave classically.

2. It was assumed implicitly in our analysis that the branching of the quan-
tum state associated with decoherence is an effectively irreversible pro-
cess. By close analogy with the problem of the arrow of time in clas-
sical statistical mechanics, this irreversibility must be reconciled with
the time-reversal symmetry of the fundamental Schrodinger evolution.
The question of how to reconcile the irreversibility of decoherence pro-
cesses with the fundamental reversibility of the Schrodinger evolution
from which they emerge remains open. For discussion of the origins of
irreversibility associated with branching of the quantum state, see [15],
Ch. 9.

3. The open-systems version of Ehrenfest’s Theorem, which was used to
show that branch-relative phase space trajectories are approximately
Newtonian on timescales where ensemble spreading is small, assumes
that the evolution of the reduced density matrix ρ̂S of the system S is
governed by a ”master” equation of the specific form given above (see
[8]). A complete reduction of classical to quantum here requires a deriva-
tion of this master equation from the microscopic Schrodinger equation
for the closed combination of system and environment. It is important to
note, however, that the details of the microscopic quantum model may
vary significantly from one classical system to another.

4. It should be shown explicitly for the system in question that the rate of
ensemble wave packet spreading in the quantum model is consistent with
the timescales on which classical trajectories are known to track the sys-
tem’s behavior. As was shown above, faster ensemble spreading causes
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the total quantum state to branch more rapidly, which in turn makes
it more likely that branch-relative trajectories will exhibit significant
stochastic fluctuations away from classicality on shorter timescales. One
must show that ensemble spreading is sufficiently slow so that with prob-
ability extremely close to 1, the branch-relative, quantum phase space
trajectory of the system S will approximate the classical trajectory with
the same classical initial conditions over timescales for which the classi-
cal trajectory tracks the system’s behavior. In answer to concerns about
the capacity of quantum theory to recover classically chaotic behavior,
Zurek has argued that the incorporation of decoherence addresses these
worries. However, this is by no means a consensus view. For discussion
of the connection between decoherence and chaos, see [17], [18], and [6],
Ch.1, including references therein.

Because of these remaining open questions, the decoherence-based framework
for recovering classical behavior outlined above should be viewed as a research
program that consists in providing further support for its various assumptions
and extending it to new cases, including the empirical reduction of classical to
quantum field theory.

4 Conclusion

I have juxtaposed two alternative analyses of the purported reduction of clas-
sical to quantum mechanics. The first of these analyses, due to Batterman, de-
nies the possibility of reducing classical to quantum mechanics on the grounds
that the limit ~ → 0 is singular and that a certain formal construction asso-
ciating wave functions with a special class of surfaces in classical phase space
breaks down in chaotic systems. The second analysis, drawn from the litera-
ture on decoherence theory, suggests that it is possible to effect a reduction of
classical to quantum mechanics by incorporating the system’s interaction with
its environment and paying careful attention to the branching evolution for the
quantum state that results. By distinguishing between “formal” and “empir-
ical” senses of reduction, I have argued the decoherence-based account offers
a viable strategy for empirical reduction while the issues raised by Batterman
potentially pose problems for reduction only in the formal sense.

As Berry has noted, questions about inter-theoretic reduction are highly
mathematical in nature. However, if our concern is with whether successive
theories in physics do in fact offer progressively more universal and accurate
depictions of physical reality, then it is a mistake to think that reduction in
this sense is solely a question of mathematics. In such contexts, it is the
empirical rather than the formal sense of reduction that is relevant. While
questions about empirical reduction are partially mathematical in nature, as-
sessing whether one theory reduces empirically to another requires further em-
pirical input regarding the set of circumstances under which the reduced theory
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furnishes an accurate representation of the behavior of some actual physical
system; without such information, it would not generally be possible to assess
whether one theory encompasses the domain in which the other is successful.
Therefore, reduction in this sense is not a two-place relation between theories
but, in some sense, a three-place relation connecting the theories and the real
physical systems they describe. It is likely that the distinction between for-
mal and empirical reduction, and between formal and empirical approaches to
inter-theory relations more generally, can usefully be applied to the study of
other inter-theory relations as well.

Acknowledgments: Thanks to David Wallace, Simon Saunders, Christopher
Timpson, Jeremy Butterfield and Robert Batterman for many helpful discus-
sions on the classical domain of quantum theory.

References
[1] Julian Barbour. The end of time: The next revolution in physics. Oxford University Press, 2000.

[2] R. Batterman. The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction, and Emer-
gence. Oxford University Press, 2002.

[3] Gordon Belot. Whose devil? which details?*. Philosophy of Science, 72(1):128–153, 2005.

[4] M. Berry. Asymptotics, singularities and the reduction of theories. In Brian Skyrms Dag Prawitz and
Dag Westerst̊ahl, editors, Logic, Methodology and Philosophy of Science, IX: Proceedings of the Ninth
International Congress of Logic, Methodology and Philosophy of Science, Uppsala, Sweden, August 7–
14, 1991 (Studies in Logic and Foundations of Mathematics: Volume 134), volume 134, pages 597–607,
1994.

[5] MV Berry. Semiclassical mechanics of regular and irregular motion. Les Houches lecture series, 36:171–
271, 1983.

[6] Alisa Bokulich. Reexamining the Quantum-Classical Relation. Cambridge University Press Cambridge,
2008.

[7] F. Dizadji-Bahmani, R. Frigg, and S. Hartmann. Who’s afraid of Nagelian reduction? Erkenntnis,
73(3):393–412, 2010.

[8] E. Joos, D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu. Decoherence and the Appear-
ance of a Classical World in Quantum Theory. Springer, second edition edition, 2003.

[9] N.P. Landsman. Between classical and quantum. In J. Butterfield and J. Earman, editors, Philosophy
of Physics (Handbook of the Philosophy of Science), volume 1. Elsevier, 2007.

[10] Joshua Rosaler. Interpretation neutrality in the classical domain of quantum theory. Under Review,
2015.

[11] Joshua Rosaler. Local reduction in physics. Studies in History and Philosophy of Modern Physics,
50:54–69, 2015.

[12] Joshua Rosaler. Is de broglie-bohm theory specially equipped to recover classical behavior? Philosophy
of Science, forthcoming, 2015.

[13] J.J. Sakurai, S.F. Tuan, and E.D. Commins. Modern quantum mechanics. American Journal of
Physics, 63:93, 1995.

[14] M.A. Schlosshauer. Decoherence and the Quantum-To-Classical Transition. Springer, 2008.

25



[15] D. Wallace. The Emergent Multiverse: Quantum Theory According to the Everett Interpretation.
Oxford University Press, Oxford, 2012.

[16] W.H. Zurek, S. Habib, and J.P. Paz. Coherent states via decoherence. Physical Review Letters,
70(9):1187–1190, 1993.

[17] W.H. Zurek and J.P. Paz. Quantum chaos: a decoherent definition. Physica D: Nonlinear Phenomena,
83(1):300–308, 1995.

[18] Wojciech H Zurek. Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow
of time. Physica Scripta, 1998(T76):186, 1998.

26


