Skip to main content
Log in

John Maynard Smith and the natural philosophy of␣adaptation

  • Published:
Biology and Philosophy Aims and scope Submit manuscript

Abstract

One of the most remarkable aspects of John Maynard Smith’s work was the fact that he devoted time both to doing science and to reflecting philosophically upon its methods and concepts. In this paper I offer a philosophical analysis of Maynard Smith’s approach to modelling phenotypic evolution in relation to three main themes. The first concerns the type of scientific understanding that ESS and optimality models give us. The second concerns the causal–historical aspect of stability analyses of adaptation. The third concerns the concept of evolutionary stability itself. Taken together, these three themes comprise what I call the natural philosophy of adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams P.A., Matsuda H., Harada Y. (1993). Unstable fitness maxima and stable fitness minima in the evolution of continuous traits. Evol. Ecol. 7:465–487

    Article  Google Scholar 

  • Abrams P. (2001a). Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: an assessment of three methods. Ecol. Letts 4:166–175

    Article  Google Scholar 

  • Abrams P. 2001b. Adaptation, optimality models and tests of adaptive scenarios. In: Orzack S.H. and Sober E. (eds), Adaptationism and Optimality, Cambridge University Press, pp. 273–302

  • Amundson R. 1996, Historical development of the concept of adaptation. In: Rose M. R. and Lauder G. (eds), Adaptation, Academic Press, pp. 11–53

  • Brandon R. (1990). Adaptation and Environment. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Cartwright N. (1983). How the Laws of Physics Lie. Oxford University Press, New York

    Google Scholar 

  • Christiansen F.B. (1991). On conditions for evolutionary stability for a continuously varying character. Am. Na. 138:37–50

    Article  Google Scholar 

  • Darwin C. 1859. On the Origin of Species by Means of Natural Selection, Edited by J.W. Burrow, Penguin Classics, 1968

  • Day T., Taylor P. (2003). Evolutionary dynamics and stability in discrete and continuous games. Evol. Ecol. Res. 5:605–613

    Google Scholar 

  • Day, T. 2005. Modelling the ecological context of evolutionary change: déjà vu or something new? In: Cuddington K. and Beisner E. (eds), Ecological Paradigms Lost: Routes to Theory Change, Academic Press

  • Eshel I. (1983). Evolutionary and continuous stability. J. Theor. Biol. 103:99–111

    Article  Google Scholar 

  • Eshel I. (1996). On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution. J. Math. Biol. 34:485–510

    Article  PubMed  Google Scholar 

  • Eshel I., Motro U. (1981). Kin selection and strong evolutionary stability of mutual help. Theor. Popul. Biol. 19:420–433

    Article  PubMed  Google Scholar 

  • Eshel I., Feldman M. (2001). Optimality and evolutionary stability. In: Orzack S.H., Sober E. (eds), Adaptationism and Optimality. Cambridge University Press, New York, pp. 161–190

    Google Scholar 

  • Fisher R.A. (1930). The Genetical Theory of Natural Selection. Clarendon Press, Oxford

    Google Scholar 

  • French S., Da Costa N.C.A. (2003). Science and Partial Truth: A Unitary Account to Models and Scientific Reasoning. Oxford University Press, New York

    Google Scholar 

  • Godfrey Smith P. (1993). Functions: consensus without unity. Pacif. Philos. Quart. 74: 196–208. Reprinted in Hull D.L. and Ruse M. (eds), 1998, The Philosophy of Biology, Oxford University Press, New York, pp. 280–292

  • Godfrey-Smith P. (1994). A modern history theory of functions. Nous 28:344–362

    Google Scholar 

  • Hammerstein P. (1996). Darwinian adaptation, population genetics, and the streetcar theory of evolution. J. Math. Biol. 34:511–532

    Article  PubMed  Google Scholar 

  • Grafen A. (1991). Modelling in behavioural ecology. In: Krebs J.R., Davies N.B. (eds), Behavioural Ecology, 3rd ed. Blackwell, Oxford, pp. 5–31

    Google Scholar 

  • Gomulkiewicz R. (1998). Game theory, optimization, and quantitative genetics. In: Dugatkin L.A., Reeve H.K. (eds), Game Theory and Animal Behavior. Oxford University Press, NewYork, pp. 283–303

    Google Scholar 

  • Hernández M.J., León J.A. (1995). Evolutionary Perturbations of Optimal Life Histories. Evol. Ecol. 9: 478–494

    Article  Google Scholar 

  • Hines W.G.S. (1987). Evolutionary stable strategies: a review of basic theory. Theor. Popul. Biol. 31:195–272

    Article  PubMed  Google Scholar 

  • Hofbauer J. and Sigmund K. 1998. Evolutionary Games and Population Dynamics, Cambridge University Press

  • Hughes R.I.G. 1993. Theoretical explanation. In: French P.A. and Uehling Jr. T. E. (eds), Midwest Studies in Philosophy: Philosophy of Science, Vol. 18, University of Notre Dame Press, pp. 132–153

  • Kaplan J.M., Pigliucci M. (2001). Genes ‘for’ phenotypes: a modern history view. Biol. Philos. 16:189–213

    Article  Google Scholar 

  • Kirkpatrick, M. 1996. Genes and adaptation: a pocket guide to the theory. In: Rose M.R. and Lauder G.V. (eds), Adaptation, Academic Press, pp. 125–146

  • Levins R. (1970). Fitness and optimization. In: Kojima (eds), Mathematical Topics in Population Genetics. Springer-Verlag, Berlin, pp. 389–400

    Google Scholar 

  • Maynard Smith J. 1978a. Optimization Theory in Evolution, Annu. Rev. Ecol. Syst. 9: 31–56. Reprinted in Sober E. 1984. (ed.), Conceptual Issues in Evolutionary Biology, MIT Press, Cambridge, MA, pp. 298–315

  • Maynard Smith J. (1978b). The Evolution of Sex. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J. (1979). Game theory and the evolution of behaviour. Proc. Roy. Soc. Lon. B 205: 475–488

    Article  Google Scholar 

  • Maynard Smith J. (1982). Evolution and the Theory of Games. Cambridge University Press, Cambridge

    Google Scholar 

  • Maynard Smith J. 1987. How to model evolution. In: J. Dupré (ed.), The Latest on the Best: Essays On Evolution and Optimality, MIT Press, pp. 119–131

  • Maynard Smith J. (1989). Did Darwin get it Right? Essays on Games, Sex and Evolution. Chapman and Hall, New York

    Google Scholar 

  • Maynard Smith J., Price G.R. (1973). The logic of animal conflicts. Nature 246:15–18

    Article  Google Scholar 

  • Morgan M., Morrison M. (eds) (1999). Models as Mediators. Cambridge University Press, New York

    Google Scholar 

  • Morrison M. (2000). Unifying Scientific Theories: Physical Concepts and Mathematical Structures. Cambridge University Press, New York

    Google Scholar 

  • Morrison M. (2002). Modelling populations: Pearson and Fisher on Mendelism and biometry. Brit. J. Philos. Sci. 53:39–60

    Article  Google Scholar 

  • Orr H.A. (1998). The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52:935–949

    Article  Google Scholar 

  • Orr H.A. (2000). Adaptation and the cost of complexity. Evolution 54:13–20

    Article  PubMed  Google Scholar 

  • Orr H.A. (2005a). Theories of adaptation: what they do and don’t say. Genetica 123:3–13

    Article  Google Scholar 

  • Orr H.A. (2005b). The Genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6:119–127

    Article  Google Scholar 

  • Parker G.A. and Hammerstein P. 1985. Game theory and animal behaviour. In: Greenwood P. J., Harvey, Paul H. and Slatkin M. (eds), Evolution: Essays in Honour of John Maynard Smith, Cambridge University Press, pp. 73–94

  • Plutynski, A. 2004. Explanation in classical population genetics. Philos. Sci. Proceedings Part II: 1201–1215

    Google Scholar 

  • Reeve H.K., Sherman P.W. (1993). Adaptation and the goals of evolutionary research. Quart. Rev. Biol. 68:1–32

    Article  Google Scholar 

  • Shanks N. (ed.), 1998. Idealization IX: Idealization in Contemporary Physics, Poznan Studies in the Philosophy of the Sciences and the Humanities, vol. 63. Rodopi

  • Sober E. (1983). Equilibrium explanation. Philos. Stud. 43:201–210

    Article  Google Scholar 

  • Suppes P. 1966. A comparison of the meaning and uses of models in mathematics and the empirical sciences. In: H. Freudenthal (ed.), The Concept and the Role of Models in Mathematics and Natural and Social Sciences, D. Reidel, pp. 163–177

  • Taylor P.D. (1989). Evolutionary stability in one-parameter models under weak selection. Theor. Popul. Biol. 36:125–143

    Article  Google Scholar 

  • Taylor P.D., Jonker L.B. (1978). Evolutionary stable strategies and game dynamics. Math. Biosci. 40:145–156

    Article  Google Scholar 

  • Weibull J. (1985). Evolutionary Game Theory. MIT Press, Cambridge, MA

    Google Scholar 

Download references

Acknowledgements

I wish to thank Jesús Alberto León, Elliott Sober and Samir Okasha for their comments on an early draft of this paper, and an anonymous referee for valuable suggestions. The ideas developed here have benefited from discussions with David Hull, Peter Abrams, Steven Orzack, Paul Griffiths, Greg Cooper, Robert Brandon, Jim Lennox, Diego Rodriguez, Jesús Alberto León, H. Allen Orr, Steven French and Otávio Bueno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alirio Rosales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosales, A. John Maynard Smith and the natural philosophy of␣adaptation. Biol Philos 20, 1027–1040 (2005). https://doi.org/10.1007/s10539-005-9021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-005-9021-7

Keywords

Navigation