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1. Introduction: approximation versus idealization 

In general, the laws and theories of science are not exactly true. That 
much is agreed upon by almost all philosophers of science. There is, 
however, a difference in emphasis. The stress is commonly laid on 
"exactly": scientific laws are not exactly true, but they do not — or 
should not — deviate too much from the phenomena observed. That is, 
scientific laws are approximations to the truth. On the other hand, one 
also can italicize the thesis this way: scientific laws are not exactly true. 
The virtues of scientific laws then lie in the fact that they tell us what 
would be the case if such-and-such simplifying assumptions could be 
made. As a rule, the initial or boundary conditions described by these 
assumptions do not obtain in fact, they are counterfactual and thus are 
responsible for the falsity of the laws. It is in this sense that I will call 
scientific laws and theories idealizations in this paper. 

The two views on scientific laws and theories, which on the face of it 
are not connected in any cogent way, are not kept apart in the literature 
as nicely as the subject would seem to require. With few exceptions1, 
philosophers of science tend to mix up arguments from the approxima­
tion view with those from the idealization view. It is true that many 
idealizations get their heuristic and practical value by being approxi­
mately true, but there is no reason to suppose that all, or only the 
majority of, idealizing assumptions lead to predictions close to the truth 
or that all, or most, approximately true laws can be construed as being 
based on counterfactual conditions. The conceptual relationship be­
tween idealization and approximation seems to be delicate, and cer­
tainly there is much to be done in this field. 

In this paper I do not try to collect abstract arguments for my under­
standing of idealizations, nor will I advance general philosophical rea-



sons and consequences of their detachment from approximations. My 
aim is rather to illustrate the difference by means of a simple and well-
known example: the relation between Kepler's laws of planetary motion 
(KLP) and Newton's theory of universal gravitation (NTG). Since the 
works of Duhem [1906], Popper [1957], and Feyerabend [1965] it is 
commonly acknowledged that K L P and N T G are, strictly speaking, 
incompatible2. The various claims found in popular accounts of the his­
tory of science and in textbook introductions that N T G was "derived 
from" K L P or conversely that K L P "follow from" N T G , therefore can­
not be accurate. If N T G is true, then K L P are false, and vice versa. But 
of course there is a close relationship between K L P and N T G , so it is 
reasonable to suppose that here we are facing a case of intertheoretic 
approximation and/or intertheoretic idealization3. In fact, K L P come 
very close to what follows from N T G for the solar system, and K L P , or 
rather a modified form thereof, will turn out to be an idealization if 
viewed from the standpoint of NTG. The purpose of this paper is to 
disentangle and contradistinguish the approximation view and the 
idealization view on the relation between K L P and NTG. 

In the next section, a number of proposals to establish the Kepler-
Newton case as a paradigm of intertheoretic approximation — all of 
them in the wake of Scheibe's seminal paper [1973a; also see 1973b] — 
will be discussed and criticized. Section 3 offers a qualitative account of 
how idealizing assumptions figure most importantly in the simultaneous 
explanation of both the significance and the failure of a predecessor 
theory by a superior successor theory. Section 4 then proceeds to 
analyze the relation between K L P and NTG as a case of idealization. 
Two attempts are made to show that N T G is in fact a superior theory to 
K L P . The first idealization referring to "one-body systems" is found to 
be wanting since it is hardly interpretable from the point of view of 
N T G . Two-body systems, however, will serve our needs and show that 
Kepler's third law has to be modified. It is argued in conclusion that the 
picture of the Kepler-Newton case provided by the idealization view is 
complementary and perhaps preferable to that provided by the approxi­
mation view. 

2. The Kepler-Newton case as in instance of approximation 

Erhard Scheibe [1973a] is the author of a trail-blazing investigation into 
the Kepler-Newton case. He considers state descriptions of n-body sys-



terns (n > 2), together with constants mi € !R+ (i = 1 , n ) or k € 31+ sat­
isfying the kinematic equations 

N f, = - ^> ; (/n/|r, - rj') x (r. - ry), i = 1,..^, 
; « 1...., w;; f̂e i 

or respectively, 

K (a) f, = -(*/|r, - rj3) x (r, - r,), i = 2,...*, 
(b) i 5

1 = 0, 
(c) l/2|r,. - r j 2 - kl\xt - r j < 0, i = 2,.../i. 

Here the r.'s are the postitions of the bodies with respect to an inertial 
reference frame (bold types denote vectors), the dot notation denotes 
time derivatives, and the m/s are gravitational masses. I shall assume 
some familiarity with N T G and KLP . so it should be obvious that sys­
tems satisfying N are called Newtonian systems. It is less plain that sys­
tems satisfying K(a)-(c) are called Keplerian systems, since Kepler stated 
his laws in a very different manner and K (a), K (b) and K (c) do of 
course not at all correspond to Kepler's first, second and third laws 
respectively. Conditions (a) and (b) are easily interpreted only in the 
light of N , and (c) is a total energy condition that guarantees closed 
orbits (as opposed to open parabolic or hyperbolic orbits). In this sec­
tion, we will accept Scheibe's move to present K (a)-(c) as the modern, 
Galileo invariant formulation of Kepler's laws. Note that the laws put in 
this way are not about "planetary motion" but about the motions in an 
arbitrary n-body system with the particle i = 1 distinguished as "sun". A 
kinematical state description is called Newtonian (Keplerian) if and only 
if there are appropriate constants mi (k) such that the state description 
together with the constant(s) is a Newtonian (Keplerian) system. 

Roughly, Scheibe's main claims, which are proven for n = 2 and con­
jectured for n ^ 2, are the following. Let £ > 0 be given. For any 
Keplerian state description then, there is a Newtonian state description 
deviating from the former "at most by £", i.e., |rf (r) - rf (r)| < £ for all 
/ = 1 , n and all t e H, where (rf) is the position function for the z-
th body in the Newtonian (Keplerian) state description. Conversely, 
there is a "specialization" of NTG (i.e., N T G plus a set of additional 
assumptions) such that for any state description compatible with this 
specialization, there is a Keplerian state description deviating from the 



former at most by £. The additional assumptions necessary to effect a 
suitable specialization consist in a counterpart to condition K(c) and a 
condition requiring the ratios mjm1 (i = 2, n) to be small, small 
enough at least to satisfy a certain inequality. We shall neglect the 
former requirement in what follows. Concerning the latter requirement, 
which implies that the masses m. are (relatively) small as well, it should 
be noted that it is essentially dependent on £. 

Identifying approximative explanation with inclusion of blurred 
model sets, Scheibe concludes that, surprisingly, there is a direct ap­
proximative explanation of N T G by K L P , while the expected approxima­
tive explanation of K L P by NTG is only conditional, that is, must have 
recourse to additional premises. The intuitive superiority of NTG 
appears when the "ranges of application" [Scheibe, 1973b, p. 938] are 
considered: the specializations of NTG are still powerful enough to cap­
ture every Keplerian state description (with the accuracy £ allowed to 
be arbitrarily chosen), whereas K L P only cover a tiny fraction (the exact 
quantity is dependent on £) of the Newtonian state descriptions. 
Scheibe [1973a, p. 117] therefore tentatively defines the approximative 
explanation of a theory T by a theory T (up to degree £) to consist of 
two parts: first the models of a specialization T' of T (or T itself) must 
form a subset of the blurred (to degree £) set of T-models, and second 
it must be possible to blur every T-model (to degree £) in such a way 
that the blurred system is a model of V (and thus T itself). 

I want to touch on four more approaches to the Kepler-Newton case 
within the "approximation view" in this section: the reference is to 
Moulines [1980], Mayr [1981], Pearce and Rantala [1984], and Balzer, 
Moulines and Sneed [1987, section VII.3]. A l l of these papers are 
basically attempts to fit Scheibe's more informal account into a rigorous 
mathematical and metatheoretical framework, and as such they seem to 
be of minor importance for the point of this essay. But there are some 
interesting variations on Scheibe, and in order to get an up-to-date sur­
vey of the approximation approach to the Kepler-Newton case we must 
take cognizance of them anyway. 

C. U . Moulines was the first to transfer Scheibe's analyses into a pre­
cise technical environment. He is an advocate of the Sneed-Steg-
miillerian "structuralist view" of theories, and he chooses uniform 
structures, or simply uniformities, as his central topological concepts. 
While Scheibe set out from the idea of a deductive-nomological expla­
nation a la Hempel, Moulines' central concern is to show that the 



Kepler-Newton case fits in a pattern of intertheoretic approximation 
based on the Adams-Sneedian notion of reduction4. He shows as a the­
orem that three central results of Scheibe follow from the assumptions 
that (a) we have to deal only with two-body systems, (b) Newton's the­
ory is correct, and (c) the Kepler-Newton case is an instance of "strict 
/^-approximation" [see assumptions P1-P3 in Moulines, 1980, pp. 406-
411]. This appears to lend good evidence in support of Moulines' claim 
that K L P and N T G in fact stand in a relation of strict /^-approxima­
tion 5. 

Unfortunately, there are a few inaccuracies that impair the presenta­
tion of Moulines' idea. As he takes over Scheibe's topological base for 
his analysis, it can quite easily be verified that the Kepler-Newton case 
is no case of strict approximation in the sense of Moulines 6. Further­
more, his second restatement of Scheibe's results [1980, p. 407, (S2); cf. 
Scheibe 1973a, pp. 114-115] is not correct. We need not enter into 
details here, but the reason for Moulines' errors is interesting from the 
perspective of this paper: There is no single specialization of Newton's 
theory that works for any degree of accuracy £. For an arbitrarily cho­
sen £, we can find additional conditions such that all systems satisfying 
N T G and these conditions are £-close to a Kepler system. One of these 
conditions [cf. Scheibe 1973a, p. 115, (24)] which tampers with the ratio 
of the planetary and solar masses is essentially dependent on the exter­
nally given £. For that reason the "specialization" of N T G effected by 
these conditions must be considered as an ad hoc theory. 

D. Mayr's dense paper [1981] comes next in succession to the lines 
taken by Scheibe. Mayr's metatheoretical foundation is G. Ludwig's 
general philosophy of science with the intertheoretic relation of 
"blurred embedding", and the mathematical concepts he employs are 
(separating) uniform spaces and completions thereof. Again we need 
not inquire into the niceties of Mayr's approach. We shall only take 
notice of a correction of Scheibe's conjectures. Mayr gives an example 
illustrating that if we consider /i-body systems with n > 2, then there are 
Keplerian models which cannot be approximated by Newtonian models 
to all eternity. It is reasonable therefore, and in accordance with the 
physicist's practice, to restrict oneself to compact intervals of time, i.e., 
to use the inequality |rf (t) - rf (f)| < £ for all / = 1,..., n and all t in a 
compact interval T C S, as a base for the topology in the space of 
kinematical state descriptions. For any £ and any compact interval Ty 

Mayr's central theorem states, every Keplerian state description of n 



bodies can be approximated up to £ by a Newtonian state description 
during T. As /t-body systems are extremely hard to calculate (where they 
are calculable at all), Mayr's proof is naturally non-constructive, by con­
trast to Scheibe's treatment of the 2-body case. The approximation is 
once again accomplished "by letting the masses become small" [Mayr 
1981, p. 68]. 

Like Moulines and Mayr, D. Pearce and V. Rantala start with 
Scheibe's formulations of N T G and K L P . They have developed a gen­
eral metatheory of their own, making use of abstract logic and category 
theory. The most general intertheory relation they introduce is the rela­
tion of "correspondence" composed of a structural correlation and a 
translation fitting together. A most important subspecies is limiting case 
correspondence, which is the pattern to be matched by N T G and KLP . 
The role of Moulines' and Mayr's topological instruments is taken over 
by non-standard analysis in the approach of Pearce and Rantala. Very 
roughly, their main results concerning N T G and K L P are the following: 
For any non-standard closed-orbit model x of N G T such that the "sun" 
has a finite but non-infinitesimal mass and the planets have infinitesimal 
masses, the standard part of x is a (standard) model of K L P . Con­
versely, they show it to be a consequence of Mayr's [1981] theorem that 
there is such a non-standard model x of N T G for every standard model 
of K L P 7 . These results, together with the existence of an appropriate 
translation describing the process of forming standard approximations, 
essentially guarantee that there is in fact a limiting case correspondence 
of K L P to N T G (relative to some infinitary logic) in the sense of Pearce 
and Rantala. 

Up to now we have always had to face the difficulty that there is no 
single set of additional assumptions for N T G that can achieve the 
desired intertheory relation for any degree of accuracy. Pearce's and 
Rantala's account is no genuine exception. The use of non-standard 
analysis always replaces and eliminates the £-6-method from mathemat­
ics and has no substantial bearing on the particular problem of the 
Kepler-Newton case. The situation changes drastically when we have a 
look at the most recent proposal of W. Balzer, C. U . Moulines and J. D. 
Sneed. They, too, begin with Scheibe's formulations N and K 8 . But their 
presentation purports to have one exact specialization of NTG, a theory 
called "special gravitational classical particle mechanics" (GCPM*) 
[1987, pp. 378-379], that is appropriate to do the job for all £'s. More­
over, their reduction relation is extremely simple. It is restricted to two-



body situations and relates Keplerian and Newtonian systems whose 
kinematical state descriptions are identical while the Kepler constant is 
equal to the mass of the "sun". There is no requirement on the mass of 
the "planet" in the Newtonian systems. Finally, on checking the proof 
of their central theorem [1987, pp. 379-381] we discover that they even 
seem to dispose of an exact reduction relation p> in the sense that the 
(unique) p-correlate of every NTG-model is already a model of K L P — 
without any blurs being necessary. 

Alas, this is too good to be true. The authors' GCPM* is no special­
ization of NTG, and in fact their third requirement for G C P M * that the 
sun move in an inertial orbit is inconsistent with N — unless the planet 
has a zero mass (which is justly forbidden by the authors' definitions). It 
is an immediate consequence of the conservation of momentum (which 
in turn follows from Newton's third law) that the center of mass (m1rl + 
+ m2r2)/(m1 + m 2), and not the sun, moves uniformly in a straight line in 
closed Newtonian two-body systems9. Hence no two-body system can be 
a model of both N T G and GCPM*. We conclude our review by saying 
that the contribution of Balzer, Moulines and Sneed is no advancement 
of the approximation view of the Kepler-Newton case. 

Having seen the ways the Kepler-Newton relationship is treated by 
approximation theorists, we now are in a position to judge the merits 
and deficiencies of this point of view. I have three points to the effect 
that the approximation view is not wholly satisfactory and not wholly 
complete. 

First, one of the most striking features was that we could not relate 
the exact formulations of N T G to K L P directly, nor effect an exact rela­
tionship by supplementing N T G with some unique set of reasonable 
additional conditions. Any set of supplementary assumptions for N T G 
was suitable only for a given degree of accuracy £ and a given time 
interval T9 and in general we must accomodate the choice of this set to 
any new £' < £ or any new T DT. Since neither £ nor T is an intrinsic 
feature of one of the theories K L P and NTG, the assumptions cannot 
be regarded as characterizing "natural" domains of application for K L P 
from the perspective of NTG. 

Second, the approximationist's assumptions clearly take us away 
from truth. They all require the masses of the planets to be smaller and 
smaller (according to the values of £ and T). But it should always be 
kept in mind that K L P are about our solar system, and that N T G is, 
among other things, designed to explain, to reduce, or at least to 



replace, these laws about this solar system. Prior to both of these the­
ories there are observations of the orbits of stars, planets, satellites etc. 
Tycho de Brahe's excellent records for instance were most relevant. 
Given these observations and NTG, however, it is evident that the 
masses of the planets cannot be arbitrarily small. Using the Newtonian 
interpretation of Kepler's third law (see section 4.1), it is easy to calcu­
late the mass of the earth from the motion of the moon around i t 1 0 . 
Even if such computations are not entirely exact, they certainly suffice 
to set definite lower bounds to the masses of the planets. The real 
world's boundary conditions render the assumptions which are requisite 
for the approximation processes counterfactual. 

Third, and most significant, it is true that a kind of "correspon­
dence principle" has been operative in the transition from Kepler to 
Newton: NTG in a sense really explains Kepler's laws, they can some­
how be reduced to or embedded in NTG, they are, in some way, a 
limiting case of NTG. But it is of equal importance that N T G modifies 
K L P , corrects them, and thus contradicts them. To mention an exam­
ple, one of the greatest triumphs of modern science would not have 
been possible without Newton's rectification of K L P : Adams' and 
Leverrier's prediction of the existence and position of Neptune from 
the perturbations of Uranus' path in 1846. It is desirable to put stress 
on the fact that Newton's theory of gravitation not only explains why 
Kepler's laws are nearly correct, but also why they do fail in the end. 
The approximation theorists would not seem to give due care to the 
latter question. 

These are the three reasons for my attempt to supply an alter­
native account of the Kepler-Newton case by viewing it as an instance 
of idealization. Instead of making various additional assumptions, 
which are both dependent on externally given £ and T and 
counterfactual at the same time, I shall face up to, and indeed wel­
come, counterfactuality alone. My aim is to show that one natural 
idealizing assumption will suffice to accomplish a strict relationship 
between K L P and NTG. This assumption, however, will turn out to be 
different from the one suggested by the approximation view, viz., the 
assumption that the masses of the planets were zero. By contrasting 
the counterfactual conditions necessary to get K L P as a Newtonian 
idealization with the factual circumstances in the solar system, we 
shall be able to explain the evident significance as well as the final 
failure of Kepler's laws. 



3. Idealization and double explanation 

Before laying abstract foundations, let us briefly restate the problems 
posed by the Kepler-Newton case. NTG somehow explains K L P . But, as 
we all know, N T G also gives an explanation why K L P are false. To put it 
differently, N T G is not only a conservative or good successor theory to 
K L P but, what is more, also a progressive or superior successor theory of 
K L P . Still another way to express this state of affairs is to say that the 
transition from Kepler to Newton exemplifies the crucial roles of con­
tinuity as well as contradiction in science11. 

Returning to the first formulation, the question of course is: What 
concept of explanation can fulfill the double-edged task set by the 
Kepler-Newton case? I get my answer from two happily conspiring 
sources. On the one hand, Clark Glymour [1970] argues convincingly in 
favour of his following thesis: 

Inter-theoretical explanation is an exercise in the presentation of counter-
factuals. One does not explain one theory from another by showing why the 
first is true; a theory is explained by showing under what conditions it would 
be true, and by contrasting those conditions with the conditions which actually 
obtain [Glymour 1970, p. 341]. 

On the other hand, it can be argued that 'because'-sentences are 
paradigm formulations of explanations. It has often been noticed that 
the counterfactual ' i f and the factual 'because' have closely related 
meanings. Rott [1986] offers an exact analysis of both connectives which 
is based on Peter Gardenfors' fertile model of the dynamics of belief or 
"theory change"12. 

The phrase 'something is explained by a given theory T is mostly 
understood in the sense that it is possible to specify additional or appli­
cability conditions^ (in the language of T) such that T and these condi­
tions taken together entail the explanandum. To that I agree. The 
pivotal point of my explication is that I do not consider it advisable to 
put any restrictions concerning truth values on the applicability condi­
tions. The term 'theory' is understood in a comprehensive sense so as to 
include also knowledge about the initial or boundary conditions that 
describe the circumstances obtaining in the real world. Three cases can 
then be distinguished. First, the applicability conditions A may be 
known to be true (realistic), or second, they may be known to be false 
(idealizing) from the standpoint of T. In the former case I shall say that 



T provides a real explanation, in the latter case the explanation will be 
called idealizational. The third possibility arises when it is not known in 
T whether A is true, or when A is known to be true on some occasions 
but false on others. Here we can speak of a conditional explanation13. 

Putting together the pieces introduced up to now and formulating 
real, idealizational and conditional explanations with the help of 'be­
cause', subjunctive ' i f and indicative ' i f respectively, we find that there 
are three conceivable ways to express the fact that T2 is a superior suc­
cessor theory for Tx\ 
Either 

(R) 'Because A is true, Tx is correct; 
but if A were not true, 7\ would not be correct.' 

or 

(I) 'If A were true, 7\ would be correct; 
but because A is not true, 7\ is not correct.' 

or 

(C) 'If A is true, 7\ will be correct; 
but if A is not true, 7\ will not be correct.' 

is acceptable from the standpoint of T2, where A stands for the appli­
cability conditions of Tv (The halves before the semicolons are the 
requirements for good successor theories). Note that 'correct' here is 
intended to mean strictly correct, not only approximately correct. As a 
consequence of the analyses in Rott [1986], we get the following 

Theorem: T2 is a superior successor theory for Tx if and only if there 
are applicability conditions A for Tx (as viewed from T2) such that the 
following four conditions are simultaneously satisfied: 

the minimal revision of T2 needed to incorporate 

A 

non-A 
non-Tx^ 

into T2 



includes 
A 
non-Tx 

non-A 
ll4 

I do not want to engage in a discussion of requirements on minimal 
revisions; for this see [Gardenfors, 1988]. Only one restriction will be 
imposed in the sequel: certainly we cannot speak of a "minimal 
revision" of T2 at all if the assumptions or theories we are to incor­
porate are at variance with the most fundamental axioms of T2. Thus T2 

can only be a superior successor theory for Tx if neither A nor Tx nor 
non-A nor non-Tx overthrow the fundamental axioms of T2. 

It should be beyond dispute that intuitively N T G is a superior suc­
cessor theory for Kepler's laws. And it is equally obvious from the previ­
ous discussion that N T G can strictly explain K L P at most by way of an 
idealization, while what it explains in fact is the failure of K L P . So 
assuming the alternatives (R), (I), and (C) above, (I) is the relevant 
option. It is convenient, however, to refer to the conditions stated in 
the theorem in what follows. Our first duty will be to find the right ap­
plicability condition A for the Kepler-Newton case. The "real parts" 
(the parts concerning non-A and non-KLP) then are trivial: already 
Newton knew that Kepler's laws must be wrong and that the appli­
cability conditions for them are not met by the solar system. So we need 
not revise N T G at all to have non-A and non-KLP incorporated. The 
"idealizational parts" (the parts concerning A and KLP) are interesting 
and are in fact dealt with in Newton's Principia as well as in modern 
textbooks. Let us now return to the case study and try to show that the 
Kepler-Newton relationship really is an instance of idealization and 
double explanation. 

4. The Kepler-Newton case as an instance of idealization 

There are some principal respects in which my approach to the Kepler-
Newton case differs from the approximation theorists' analysis. First of 
all, starting with Scheibe's formulation K of Kepler's law runs the dan­
ger of passing over the most instructive aspects of the relation between 
K L P and NTG. It does not require too much goodwill to give credence 
to the claim that the solutions of K(a)-(b) will for some time come close 
to those of N if m1 is very close to k and the m/s are very close to zero 



for i = 2 , n . (Note that |r( - r.| is bounded for closed orbits). However, 
it takes a good deal of mathematical work and is a considerable cogni­
tive achievement to recognize that K(a)-(c) are in fact equivalent to the 
original formulation of Kepler's laws. The most interesting part of the 
explanation of K L P (and their failure) afforded by NTG may as well be 
supposed to lie in this step. So let us repeat K L P in their usual form for 
a beginning: 

K l The planets move in elliptical orbits, with the sun in one focus 
of the ellipse. 

K2 The radius vector from the sun to a planet sweeps out equal 
areas in equal times. 

K3 The ratio of the square of the period to the cube of the 
semimajor axis of the ellipse (i.e., to the cube of "the mean dis­
tance" from the sun 1 5) is the same for all planets. 

It is not advisable to weld these laws together into a single block, for K3 
will turn out to be "more idealized" than K l and K 2 1 6 . 

The approximation view seems to indicate a plain strategy for the 
idealization analysis. Approximate validity of K L P can be obtained by 
"letting the masses of the planets go to zero". This, we noted, means 
straying from truth. So prima facie it does not seem worse to simply put 
the planetary masses to zero. One could argue that the idealizing condi­
tion 

AQ mi = 0 for i = 2,.,.,/J 

is just an extrapolation and full acknowledgement of the counterfactual-
ity involved in the approximation process. This move would have the 
advantage of replacing the various £-dependent assumptions of the 
approximation view by a single idealizational assumption that strictly 
reduces N to K(a)-(b) (provided that mx is chosen identical with k). 
But of course this is illegitimate! There is no sense to be made of plan­
ets, or of any other particles whatsoever, with a zero mass in the context 
of Newton's central axioms. Gravitation cannot explain the paths of 
massless particles, since according to the distinctive law of N T G such 
particles are not attracted by anything. Still worse, Newton's second law 
of motion, which is presupposed by NTG, cannot be adapted for 
application to massless "bodies": no force of any kind could be thought 



of as acting on such "bodies" (at least if we exclude infinite acceler­
ations). It is evident then that the idealizing condition A0 is irreconcil­
able with the very fundamentals of N T G 1 7 . Hence no minimal revision 
of N T G with a view to assimilating A0 is possible, hence A0 is no serious 
candidate for establishing N T G as a superior successor theory of K L P . 

We have to look for new strategies from other sources than the 
approximation view. The material from which we can get the right hints 
is not hard to come by: it can be found in Newton's Principia and in 
modern elementary textbooks like the Berkeley Physics Course [Kittel et 
al., 1973]. We shall discriminate two "grades of idealization". The first 
idealization involves Kepler's laws proper, the second, "more realistic" 
idealization involves K l , K2 and a corrected version of Kepler's third 
law. In both cases we shall briefly discuss the two directions the 
idealization must take: from K L P to their applicability conditions in 
NTG, and conversely from these applicability conditions to K L P . Recall 
that the theorem of section 3 prescribes that we must go both ways if 
Newton's theory is to be considered a superior successor theory of 
Kepler's laws according to our definitions. 

4.1. First idealization: one-body systems. The first attempt to jus­
tify K L P from the standpoint of N T G by means of an idealization 
leaves K L P totally unaffected. Indeed, it starts from the very laws of 
Kepler. 

4.1.1. From Kepler's laws to their Newtonian applicability condition: 
one-body systems. Kepler's laws — interpreted as laws of the motion of 
"bodies" — figure most importantly right in the first sections of 
Newton's Principia. Roughly, propositions I-III in book 1 prove that a 
planet's motion in a plane according to the area law K2 (with the sun 
being the point of reference) is equivalent to the existence of a 
centripetal force (with the sun being the unaccelerated point of refer­
ence). On this basis, proposition XI shows that the law of elliptic orbits 
K l implies that the central force varies inversely as the square of the 
distance from the sun, but this only for (the orbit of) each planet sepa­
rately. Corollary VI of proposition IV, dealing with K3 in the special 
case of uniform circular motion, demonstrates a universal inverse-
square force to be at work 1 8. A modern account of the implication of a 
centripetal inverse-square force by K1-K3 is given in Born [1949, pp. 
129-133], where in particular it is shown how K3 as applied to ellipses 



removes the dependence of the inverse-square law on special features 
(e.g. in Born, area constant and semi-latus rectum) of a planet's ellipti­
cal path. 

In the first idealization therefore, the applicability condition for 
K L P in NTG views planets as special kinds of one-body systems: 

Ax Planets are single bodies moving under the action of a cen­
tripetal inverse-square gravitatational force, the center of 
which is in an unaccelera'ed motion. 

Note that Ax puts no restrictions on the mass of the planet under con­
sideration — save that it be non-zero. 

We have seen that it is of course not, as often claimed, Newton's 
theory which can be derived from K L P . But within NTG, with its con­
cept of force available, K L P imply Ax in the sense that if the planets 
really moved in conformity with Kepler's laws, then they would be 
objects in one-body systems as described by^4 r We have just revealed 
how NTG, to use Popper's words [1957, p. 33], "would have to be 
adjusted — what false premisses would have to be adopted, or what 
conditions stipulated" in order to make K L P true. 

4.1.2. From one-body systems to Kepler's laws. Assume now that plan­
ets are moving under the undisturbed action of a centripetal inverse-
square force 

[1] F = mi = -(GMm/\r\2) x f. 

Here r denotes the position of the planet with respect to the center of 
force, f = r/|r| is the unit vector in the direction of r, and G is the con­
stant of gravitation; m designates the planetary mass, and M represents 
the "solar mass". But as assumption [1] is to formalize the one-body 
system condi t ion^, it should be borne in mind that M is not intended 
to be the real mass of a real body here, but a mere constant (let us call 
it "quasi-mass") of the solar system. 

It is a subject of most introductory textbooks on mechanics that the 
paths of particles1 9 moving under the sole action of such a centripetal 
inverse-square force are conic sections. The radius vector drawn from 
the center of force to the particle sweeps out, as is readily shown, equal 
areas in equal time intervals for centripetal forces of arbitrary magni-



tude. Finally, Kepler's third law is found to hold, with the ratio men­
tioned in K3 coming out as 47T2/GM [for all this, see Kittel et al., 1973, 
pp. 279-288]. 

Hence, / / planets were as described in Av then they would be per­
fectly Keplerian bodies. It has now been ascertained that the last of the 
four conditions of the theorem is satisfied, and hence the second clause 
of double explanation according to (I) may be added: because planets 
are not as described in Av Kepler's laws are not true. 

4.2. Second idealization: two-body systems. Like every idealization, 
A\ is counterfactual. This was clearly seen by Newton who opens sec­
tion XI of book 1 of the Principia with the following sentences: 

I have hitherto been treating of the attractions of bodies towards an immov­
able centre; though very probably there is no such thing existent in nature. 
For attractions are made towards bodies, and the actions of the bodies 
attracted and attracting are always reciprocal and equal, by Law III; so that 
if there are two bodies, neither the attracted nor the attracting body is truly 
at rest, but both (by Cor. IV of the Laws of Motion), being as it were mutu­
ally attracted, revolve about a common centre of gravity [1934, p. 164]. 

Newton indicates that the whole enterprise of his first ten sections must 
perhaps be regarded as conflicting with the third of his fundamental 
axioms (action = reaction). Indeed, the price we had to pay for saving 
Kepler's laws in the last section has been very high. Cond i t i on^ causes 
us some embarrassment. We have to deny not only the existence of the 
other planets (interplanetary interactions would perturb the centripetal 
force) but also the existence of the sun, because the sun as a massive 
body would have to be attracted by the planet under consideration. 
(Notice we are not allowed to strengthen Ax by adding that the sun is 
located at the center of the force, which is another consequence of 
K1-K3). Thus Ax calls for an answer to the question what the central 
gravitational field originates from. Then again, how are we to interpret 
the quasi-mass M in the Newtonian formula [1] for the gravitational 
force? I do not know of any reasonable answers to these queries, and 
I wonder whether there really are "minimal revisions" of N T G suit­
able to assimilate Ay Hence, it is very doubtful whether Kepler's laws 
K1-K3 can be accounted for in NTG even as an idealization. 



Does this mean a defeat to the idealization analysis? No. In my sub­
mission, the idealization shows quite precisely that a defeat is suffered 
by Kepler's original set of laws. Their approximate validity and their 
being approximately explained by N T G notwithstanding, K L P are sug­
gested by N T G to be in need of modification, even though we already 
allowed a revision of N T G by idealizing, contrary-to-fact assumptions. 
The argument runs as follows: 

Intuitively, Newton's theory is beyond doubt a superior successor 
theory for Kepler's laws, so we should be able to mirror this on a more 
formal level. In section 4.1 we attempted to verify that N T G is a 
superior successor theory for K L P in the sence of section 3. We found 
out t ha t ^ is the applicability condition suitable for use in the criterion 
provided by the theorem, i.e. t h a t ^ is the right applicability condition 
of K L P within the Newtonian framework. But Ax exhibits a distinctive 
air of incompatibility with Newton's "Law III", and it is forbidden to 
add assumptions to N T G which are at variance with its most funda­
mental axioms. It thus appears that we have disqualified K1-K3 from 
operating as an idealized predecessor of NTG, or — to put it the other 
way round — disqualified N T G from operating as a superior successor 
theory for K1-K3. So it is not K L P proper that fits the scheme of double 
explanation by N T G . Fortunately a slight modification of K L P will do. 
And this modification will ensue as a matter of course if we follow 
Newton's own line of reasoning. Let us now consider two-body systems. 

4.2.1. From two-body systems to Kepler's laws modified. In a second, 
alternative idealization, the applicability condition for K L P in N T G 
views planets as parts of two-body systems: 

A2 Planets are single bodies revolving about the sun. 

Let m and M be the Newtonian masses of the planet and the sun 
respectively. It is well-known that the problem of two-body motion can 
mathematically be reduced to the following equation [see Kittel et al., 
1973, pp. 289-292]: 

[2] /if = -(GMm/\r\2) x f. 

Here r denotes the position of the planet with respect to the sun, and 
/ i = Mm!(M + m) is known as the reduced mass in celestial mechanics. 



A simple transformation makes equation [2] exactly look like the one-
body equation [1]: 

[2'] lit = -(G[M + m]/X/|r|2) x f. 

Thus a planet's motion can be treated as though it had the reduced mass 
[i and moved in a centripetal inverse-square field, the center of force 
being located in the actual center of the sun and the quasi-mass of the 
system being M + m. But note that this is a genuine as though con­
struction because, as was already mentioned in section 2, by force of 
N T G the sun cannot be the origin of an inertial reference frame in two-
body systems (but revolves around the common center of gravity) and 
because its mass is not M + m (but M). There is no true force defined by 
the left hand of [2']. 

Equation [2'] nevertheless is most helpful in investigating the valid­
ity of Kepler's laws. Thanks to its structural identity with [1] and thanks 
to the fact that r indicates the position relative to the sun, it is clear 
that K l and K2 strictly hold: in two-body systems, planets do move in 
ellipses around the sun with the sun in one focus, and the radius vectors 
do cover equal areas in equal times. In contradistinction to these laws, 
in which shape is relevant and size is not, the harmonic law K3 is no 
longer accurate. On substituting M + m for Af, and fi for m, in the argu­
ment in [Kittel et al., 1973, pp. 287-288], we have that the ratio men­
tioned in K3 is equal to 47T2/G(Af + m). We must thus modify K3 into 

K3* The ratio of the square of the period to the cube of the 
semimajor axis of the ellipse (to the cube of "the mean dis­
tance" from the sun) varies inversely as the sum of the masses 
of the sun and the planet. 

This law is often presented as "Kepler's third law" 2 0 . Let us call the 
conjunction of K l , K2 and K3* KPL*. It is this variation on Kepler's 
laws that is the right "predecessor theory" for the superior theory of 
Newton. Notice that on the idealizing assumption A2 there is no need 
for making any approximations to get KLP*. But the idealizational laws 
KLP* show exactly why Scheibe's [1973a, pp. 114-115] approximations 
(which only work for two-body systems) are necessary: in order to cor­
rect K3. And here is a precise and proper place where approximation 
enters in the Kepler-Newton case: K3 is approximately valid, because 



the sums M + m mentioned in K3* have approximately the same value 
for all planets. 

4.2.2. From Kepler's laws modified to their Newtonian applicability 
condition: two-body systems imitated. There is still one point to deal with 
if N T G is to be a superior successor theory for KLP*. Suppose that our 
solar system obeyed Kepler's modified laws K L P * 2 1 . Note that this sup­
position rests on the background of N T G . K3* cannot be formulated 
without the Newtonian concept of mass2 2. Can we get from KLP* to 
their Newtonian applicability condition A2, and if so, how? In order to 
find an answer to this question, we can take over the chief part of 
Born's way from K L P to Av Only the last portion of his proof [Born, 
1949, p. 132] is affected by the substitution of K3* for K3. And even this 
is easily accomodated if we replace M by M + m. The result is that KLP* 
imply 

[2"] f = (G[M + m]/|r| 2) x f, 

which is just equation [2'] with /X cancelled on both sides. 
What does this result show? It shows that according to KLP*, each 

planet moves as though it revolved in a central inverse-square field, the 
center of which coincides with the center of the sun and the quasi-mass 
of which equals M + m. But this must not be taken literally, since the 
sun is in the center but its mass is unique and equals M. So a literal 
interpretation of [2"] in terms of (disembodied) central forces would 
risk running counter Newton's fundamental axioms even more than the 
construction in section 4.1. did. 

We learned in the last subsection that planets in all two-body sys­
tems in which the masses of sun and planet add up to M + m obey [2"]. 
But even if we take the pertinent masses as given, we may not 
counterfactually jump from [2"] to Av since apparently there is no way 
to derive the number of bodies involved from a bare differential equa­
tion. It therefore seems that we must weaken A2 by admitting 
kinematically equivalent systems23: 

A^ Planets move like single bodies revolving about the sun. 

This is, I grant, not a pleasant result. It is ugly to have a 'like' phrase 
inserted in the already idealizing, i.e., counterfactual applicability condi-



tion Ar As long as we are not able to demonstrate that [2"] can only 
apply to two-body systems, however, I see no way to get round this 
move. After all, it is not pernicious, since the derivation of KLP* within 
N T G is not disturbed if A\ stands in the place of Ar And plainly the 
purely kinematical assumption A\ does no harm to the fundamental 
axioms of Newton's theory of gravitation. 

Thus we have found an efficient condition which shows the signifi­
cance of Kepler's laws from the standpoint of NTG. In other words and 
more precisely, it shows that NTG is a superior successor theory for the 
emended version KLP* in the sense that the minimal (counterfactual!) 
revision of N T G needed to incorporate A\ includes KLP* (section 
4.2.1.) und conversely the minimal (counterfactual!) revision of N T G 
needed to incorporate KLP* includes A\ (section 4.2.2). Equivalently, I 
claim that the proponents of N T G subscribe to the idealizing explana­
tion of KLP* in the sense of (I): / / planets moved like single bodies 
revolving about the sun, KLP* would be entirely accurate; but because 
they don't, KLP* in fact fail. 

5. Conclusion 

The present paper has shown, I believe, that idealizations are different 
from, complementary to, and perhaps preferable to approximations for 
the purpose of analyzing the Kepler-Newton case. They are different, 
because giant planets would disable K L P as approximations but not as 
idealizations, while Cartesian physics would probably obstruct K L P as 
idealizations but not as approximations. They are complementary in the 
sense that the approximation view considers quantitative relations 
between models satisfying kinematic differential equations like N and K, 
whereas the idealization analysis is qualitative and concentrates on how 
such equations are reached from Kepler's laws and how they can be 
interpreted in NTG. Let me now summarize why I consider the idealiza­
tion view to be more instructive than the approximation view. 

What are the virtues of Kepler's laws? It cannot be the point that 
they are approximations to the truth. They were not empirically estab­
lished beyond doubt, nor were they unrivalled in the mid-seventeenth 
century. Cassini's ovals were serious competitors of Kepler's ellipses. 
Assuming ellipses, on the other hand, one gets quite as good results 
from the "simple elliptic hypothesis" (taking the planets to move at 
constant angular velocity with respect to the empty focus) as from 



Kepler's area law. Finally, Newton urged Flamsteed in 1684 to look at 
the aberration of Saturn's path from Kepler's sesquialterate proportion. 
Historians of science are quite ready to concede the insignificance of 
K L P as "empirical premises" for Newton [see Wilson 1969/70 and 
Baigrie 1987]. 

The point is taken better if one dwells on the fact that K L P are 
approximations to NTG. But as I argued at the end of section 2, the 
approximation process gratuitously requires auxiliary assumptions which 
both depend on degrees of accuracy (and on time intervals, if n > 2) and 
depart from the truth at the same time, and it leaves open the question 
why Kepler's laws were found wanting at last. 

Idealization, in the sense employed here, seems to improve upon 
this. Approximations cannot be obtained without counterfactual 
assumptions, but one can specify counterfactuals which dispense with 
the necessity of approximations. In section 4 I took idealizing, or 
counterfactual, assumptions seriously. It has strongly been suggested 
that Kepler's original laws of planetary motion cannot be justified from 
the perspective of NTG, for the existence of one-body systems is hardly 
conceivable in the latter theory. On this account we had to modify 
slightly K L P , arriving at their "theoretical concretization" [the term is 
due to Kuipers 1985, p. 186]2 4 KLP*. We have shown that KLP* would 
be exactly right, if our planets were — or rather moved like — bodies 
forming two-body systems with the sun. The idealization analysis 
pointed out a culprit — K3 must be replaced by K3* - and at the same 
time made clear that the "wrong" third law approximates the "right" 
one in a very natural and straightforward way. 

I have tried to show by means of counterfactuals how N T G can be 
perceived to be a superior successor theory for KLP*, that is, how it can 
explain both KLP* and its final failure. This agrees well with the 
analyses of the distinguished historian of science and Newton scholar I. 
Bernard Cohen: "Newton's 'theory' first displays the hypothetical cir­
cumstances under which ... Kepler's laws are valid, and then shows the 
modified form in which all three of these laws occur in Newtonian 
dynamics" [1974, p. 319]. Double explanation as introduced in section 3 
contrasts idealizing with actual boundary conditions. As Cohen puts it: 
"In this 'real world', as opposed to the hypothesized world presented in 
the earlier sections of the Principia, Kepler's laws will no longer hold 
exactly" [1974, p. 315] 2 5. The essential point of the Kepler-Newton case 
is the opposition of hypothetical truth and actual falsity, not the op-



position of approximate and strict truth. I do not wish to deny the 
heuristic or practical value of the fact that K L P come near to both the 
empirical truth and NTG, but in so far as we are concerned with the­
oretical explanation and abstract intertheory relations, this becomes a 
secondary phenomenon. 

Kellerstrafie 11 
D-8000 Munchen 80 
West Germany 

N O T E S 
*I wish to thank Theo A . F. Kuipers and Wolfgang Balzer for encouragement and crit­

ical comments, Felix Muhlholzer for a thorough discussion, and Petra KrauB for kindly 
checking my English. 

iNotably M . Scriven, D. Shapere, F. Suppe, and R. Laymon. Nancy Cartwright is 
famous for her doctrine that the fundamental laws of physics, for instance Newton's law 
of universal gravitation and Coulomb's law, "are not true; worse, they are not even 
approximately true" [1983, p. 57]. 

incompatible, that is, when conjoined with one element of the overwhelming majority 
of all conceivable initial conditions, and certainly when conjoined with the initial condi­
tions pertaining to our solar system. Without this precaution, Scheibe [1973a; 1973b] is 
right to reject the Duhemian incompatibility thesis with respect to KLP and N T G . 

3Since scientists do not possess "the truth" but at most better and better theories, it is 
perhaps more rewarding to study this intertheoretic versions than the notions of approxi­
mation and idealization simpliciter. 

4 This notion has not gone unchallenged even within the structuralist school of 
philosophy of science. For an overview of the criticisms of Adams-Sneedian reduction, as 
well as for its relation to deductive-nomological explanation see [Rott, 1987a]. Cf. also 
footnote 9 of that paper, where it is pointed out that Moulines' [1980, pp. 400-403] 
approximation is, in a sense, just the reverse of this reduction relation. 

5Moulines' claim does of course not follow - as he contends [1980, p. 411] - from the 
theorem mentioned. 

6This claim presupposes the concept of strict approximation as used by Moulines in 
the proof of his Theorem 2 [1980, p. 410, lines 1-3]. His definition of strict approximation 
(p. 403), which is highly condensed and extremely difficult to unravel, is perhaps not quite 
equivalent. 

7Pearce and Rantala forgot to write down Mayr's compactness condition for the time 
intervals. 

8 The authors claim [1987, pp. 375-376] that K is only a representation of Kepler's first 
two laws. This is not correct. Kepler's third law is essential in the derivation of K, and 
conversely it is entailed by K. See section 4. 

9See [Kittel et. al., 1973, pp. 82-84, 175-176]. 



1 0 This claim naturally needs some qualifications. First, it is necessary to know the value of 
the constant of gravitation, which can also be drawn from the motions of heavenly bodies, 
for example the sun, the earth and the moon [see Stumpff 1973, §18]. Second, it is an effect 
of Newton's correction of Kepler's third law (see section 4.2) that actually only the sum of 
the masses of the earth and the moon can directly be obtained, but the earth's mass can be 
determined by considering the orbits of the earth-moon system around the sun. Third, all 
these calculations of course abstract from any ''perturbation" by other celestial bodies. 

1 1 This section is an adaptation of Rott [1987b], where a slightly more detailed and slightly 
more formal attempt to reconcile continuity with incompatibility in scientific change can be 
found. 

1 2 A n authoritative and topical treatise on this subject is Gardenfors [1988]. 
1 3 In Rott [1987b], this trichotomy is called factual, counterfactual, and potential explana­

tion. 
1 4 The meanings of the abbreviations non-A and non-Ti should be evident. For limitations 

of space it is not possible to give the proof of the theorem here. More details about it can be 
found in [Rott, 1987b, section 4]. 

1 5It is customary but somewhat artificial to identify a planet's mean distance from the sun 
with the semimajor axis of its elliptical path. For a more discriminating treatment of that 
matter, see [Stumpff, 1973, §25]. 

1 6 A s Felix Muhlholzer has pointed out to me, the principal difference between Kepler and 
Newton may perhaps be viewed to consist in the fact that Kepler thought the sun to be at 
rest, while Newton regarded it as moving. Kepler's laws, however, make no claim about the 
absolute motion of the sun. We now see, by the way, that K(b) is an addition to KLP which is 
Newtonian rather than Keplerian in spirit. 

1 7 This has already been stressed in Popper [1957] and is without doubt clearly seen by the 
approximation theorists. 

1 8 I could not find a derivation of the universal inverse-square force from K-3 as applied to 
ellipses in Newton's Principia. (The converse implication is stated in proposition XV) . This 
may be due to the fact that Newton considered the inverse-square law to be better 
established by the quiescence of the planetary aphelion points. Cf. his comment on the 
proof of proposition II of book 3. 

1 9Newton took considerable pains to show that it makes no difference - and thus is a 
harmless idealization - if planets are treated as particles instead of solid sphers [cf. 
Newton, 1934, section XII of book 1; Kittel et al., 1973, pp. 271-275]. 

2 0 In the first edition of the Berkeley physics course, it is K3* which is proven from the 
premises of the two-body model, and this adjustment of KLP is not even commented on. 
Kepler's laws are discussed in the context of one-body systems only in the second edition 
[Kittel et al., 1973, pp. 287-288]. 

2 1Newton knew that this is contrary-to-fact. See for instance his comment on proposition 
XIII of book 3 of the Principia. 

2 2 I n [Rott, 1987b] it is supposed that, intuitively, predecessor theories are always 
'theoretical' and applicability conditions are always 'non-theoretical'. It is interesting that 
this assumption seems to be confirmed by the second idealization, while reversed by the 
first idealization. 



2 3'Kinematically equivalent' is intended to mean identical spatiotemporal state 
descriptions of corresponding particles (relative to suitable reference frames), while any 
constants, masses and forces in the systems may differ. For example, every two-body 
system with masses AT and m' is kinematically equivalent to the two-body system with 
masses M and m if h€ + m' = M + M (as [2'] bears witness). 

2 4 It means that the transition from KLP to KLP* proceeds on the basis of theoretical 
background considerations in N T G , not on the basis of empirical evidence. We can put 
this in a scheme which is parallel to Kuipers's suggestive scheme for the much more 
complex case of the ideal gas law and the law of van der Waals: 

level 1 KLP 

level 2 KLP* 

N T G + A , 

N T G + A 2 

kinematical level dynamical level. 
2 5 A l s o see the last paragraph of Cohen's footnote 30. Incidentally, Cohen even 

maintains that "the presentation in the Principia more or less follows the line of 
discovery" [1974, p. 332]. 
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