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After having shown that the corresponding components of a 
four vector transform via the same transformation factors as 
the space-time coordinates of the same event do, we design a 
relativistic diagram that displays in true values theirs 
components. One diagram works for events generated by 
tardyons whereas a second diagram works for events 
generated by light signals or photons. We consider both 
approaching and receding tardyons respectively photons in 
each case. We also show how the relativistic diagram works 
for radar and photographic detections of moving profiles. 
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1. Generating four vectors. What do they 
share in common? 

1.1 Hunting with tardyons 
Consider the following scenario: an observer (0,0)0O  located at the 
origin of the rest frame ( )K XOY  is equipped with a machine gun 

0 (0,0)G  and with a clock 0 (0,0)C . A target M moves with constant 
velocity V parallel to the OX axis in its positive direction. The 
position of M in the K frame is defined at any time t by the space 
coordinates ( cos , sin )M x r y rθ θ= =  using both Cartesian (x,y) and 
polar ( , )r θ  coordinates. Let K’(X’O’Y’) be the rest frame of the 
target, wherein its position is defined by the space coordinates 

( cos , sin )M x r y rθ θ′ ′ ′ ′ ′ ′ ′= = . The corresponding axes of the two 
frames are parallel to each other, whilst the OX and O’X’ axes are 
common. A second observer '

0 (0,0)O  is at rest in K’ and located at 
its origin O’. He is equipped with an identical machine gun '

0 (0,0)G  
and with a clock '

0 (0,0)C . When both clocks defined above read 
t=t’=0 the axes of the two frames overlap each other. Observer 0O′  
orientates the axis of his machine gun along a direction θ ′  relative to 
the positive direction of the common axes and triggers his machine 

gun at t’=0 in order to hit the stationary target at time rt
u
′

′ =
′
. Doing 

so he generates the events '
0 (0,0,0)E  associated with the triggering 

of the machine gun and ( cos , ' sin , )rE x r y r t
u

θ θ
′

′ ′ ′ ′ ′ ′ ′= = =
′

 

associated with the fact that the bullet moving with speed u’ hits the 
target.  
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Figure 1a. Observer (0,0)′oO  located at the origin O’ of its rest frame K(XOY) is 
equipped with a machine gun that fires bullets moving with velocity u’. In order to 
hit a stationary target ( , )M r θ′ ′ ′  he triggers his machine gun when his clock 

0 (0,0)C′  reads t’=0. 

Figure 1.b. Observer (0,0)0O  located at the origin O of its rest frame K is 
equipped with an identical machine gun that fires bullets moving with velocity u. In 
order to hit the same target ( , )M r θ  as (0,0)′0O  above, he triggers his 

machine gun when his clock (0,0)C  reads t=0. 

 
Both observers 0O  and '

0O  collect information about events 
taking place in space either passively (based on the light they receive 
from point sources i.e. photographic detection) or actively (the 
observers emit light towards these points in order to locate them i.e. 
radar type detection) [1,2]. Observer O targets his machine gun along 
the direction θ  and triggers it at a time t=0 (event 0 (0,0,0)E ) in 
order to hit the moving target at position M and time t (event 

( cos , sin , rE x r y r
c

θ θ= = ). Having studied special relativity theory, 

the two observers know that E and E′  represent the same event [3] if 
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they take place at the same point in space when the clocks of the two 
frames K and K’ located at the point where the event takes place read 
t and t’ respectively. This condition is fulfilled if the space-time 
coordinates of the two events involved in the experiment are related 
by the Lorentz-Einstein transformations i.e.: 

 ,cos x
Vx r D r
u θγ θ ′

⎛ ⎞′ ′ ′= + =⎜ ⎟′⎝ ⎠
  (1) 

 sin siny r y rθ θ′ ′ ′= = =  (2) 

 ,

2
2 2

,
cos sin

r

Vr r D r
u θ

γ θ γ θ−⎛ ⎞′ ′ ′ ′= + + =⎜ ⎟′⎝ ⎠
 (3) 

 

1
2 2

1 2 2
,cos sin r

Vr r D r
u θγ θ γ θ

−

− −
⎡ ⎤⎛ ⎞′ ′= − + =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (4) 

 ,1 cos t
V ut t D t
c c θγ θ ′

′⎛ ⎞′ ′ ′= + =⎜ ⎟
⎝ ⎠

 (5) 

 
1

1
,1 cos t

V ut t D t
c c θγ θ

−
− ⎛ ⎞′ ′= − =⎜ ⎟

⎝ ⎠
 (6) 

 
1 sintan

1 V
u

γ θθ
− ′

=
+

′

. (7) 

Consider a four vector [4,5] whose vector component is 
( , )x yR RR  and its scalar component is Φ  when detected from K  

respectively ' '( , )x yR R′R  and ′Φ  when detected from K’. By 
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definition the corresponding components of the four vector associated 
with the receding tardyon and with the events it generates transform 
as the space-time coordinates do i.e.: 
 x xR D R′=  (8) 

 '
y yR R=  (9) 

 ,rR R D θ ′′=  (10) 

 ,rR R D θ′=  (11) 

 ,tD θ ′ ′Φ = Φ  (12) 

 ,tD θ ′Φ = Φ  (13) 

and of course (7) works in this case as well. 
 At this point we ask our self what significance ( )R R′  and 

( )′Φ Φ could have? The answer is that ( )R R′  are the vector 
components of the four position vector, four velocity, four 
acceleration, tardyon four momentum, four force, four current  
electromagnetic four potential as detected from K and K’ 
respectively. Consequently ( )′Φ Φ  could be the scalar components of 
the four vectors mentioned above including the mass and energy of a 
tardyon and the electric charge density. 
1.2. Constructing the relativistic diagram that displays 

in true values the components of a four vector 
associated with a tardyon as detected from two 
inertial reference frames in relative motion 

The axes of the relativistic diagram we propose are perpendicular to 
each other and on them we measure (in our two-dimensional 
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approach) ', ( )x xR R  and respectively ', ( )y yR R . On it we draw the 
circle of radius R′  having its centre at the origin O of the diagram (as 
shown in Figure 2) where R′  represents the magnitude of the vector 
component of the four vector as measured from K’.  
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Figure 2. The relativistic diagram that displays in true values the magnitudes of the 
space-time coordinates associated with the hunting scenario presented in Figure 1. 
It also displays in true values the magnitude and the projections of the vector 
components of four vectors that transform as the space coordinates of the events 
mentioned above do. 

 



 Apeiron, Vol. 13, No. 1, January 2006 84 

© 2006 C. Roy Keys Inc. — http://redshift.vif.com 

On the same diagram we draw curve (11). The invariance of the 
OY(O’Y’) components enables us to find out the correspondence 
between the locations of the end points for the vectors R and R’ as 
shown in Figure 2. The diagram displays in true values the angles θ  
and θ’  which the two vectors make with the positive direction of the 
common axes. The diagram also depicts at the same scale the 
following: the circle of radius R’, the magnitude of R and the 
components of the two vectors obtained by dropping perpendiculars 
on the corresponding axes. 

The second relativistic diagram we propose (presented in Figure 3) 
displays a circle of radius ′Φ  that equals the magnitude of the scalar 
component of the four vector as measured in K’ and the curve (13), 
Φ  representing its magnitude measured from K. A straight line 
starting at the origin of the diagram O intersects the circle at point 1’ 
and the curve (13) at point 1.  
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Figure 3. The relativistic diagram displaing in true magnitudes the scalar 
components of four vectors that transform like the time coordinates of the events 
generated by the moving bullets do. 

 
Based on the geometry of this diagram we find that: 

 1
1

O
O

Φ
=
′ ′Φ

. (14) 

Of course after some exercise in handling the diagram we can 
overlap the two relativistic diagrams presented so far. 
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In figure 2 as well as in figure 3 we have considered 
1 0.6V Vcβ −= =  as well as three different values for 1

u ucβ −=  
illustrating the way in which the two velocities influence the 
magnitudes of the physical quantities involved in the transformation 
process. 
1.2 Hunting with laser guns [6] 

In this case the observers 0 (0,0)O  and '
0 (0,0)O  are equipped with 

laser guns and they hit (illuminate) with light signals the same 
moving target as in the previous case. The events associated with the 

hunting in this case are ( cos , sin , )rE x r y r t
c

θ θ
′

′ ′ ′ ′ ′ ′ ′ ′= = =  in K’ 

and ( cos , sin , )rE x r y r t
c

θ θ= = =  in K. The equations relating the 

corresponding space-time coordinates are: 

 (cos )Vx r
c

γ θ′ ′= +  (15) 

 sin siny r y rθ θ′ ′ ′= = =  (16) 

 ,(1 cos ) c
Vr r D
c θγ θ ′′ ′= + =  (17) 

 1 1
,(1 cos ) c

Vr r D r
c θγ θ− −′ ′= − =  (18) 

 ,(1 cos ) c
Vt t D t
c θγ θ ′′ ′ ′= + =  (19) 

 1 1
,(1 cos ) c

Vt t D t
c θγ θ− −′ ′= − = . (20) 
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1 sintan

cos V
c

γ θθ
θ

− ′
=

′ +
 (21) 

As we see, in this case we can transform the magnitudes of the 
position vector and of the time coordinate by the same factor. 
Consider the four-vector ( , )c cΦR  in K and '( , )c ′ΦR  in K’ whose 
components transform by definition as: 
 , ,c x c xR D R′=  (22) 

 , ,c y c yR R′=  (23) 

 ,c c cR D Rθ ′ ′=  (24) 

 ,c c cR D Rθ ′=  (25) 

 ,c c cD θ ′ ′Φ = Φ  (26) 

 ,c c cD θ ′Φ = Φ  (27) 

The equation (21) is applicable as well. The vector component of 
the four vector could be the momentum of a photon ( , c′cp p ) and the 
wave vector of a plane electromagnetic wave ( , ′k k ) whereas the 
scalar components could be the energy of a photon ( , )ε ε ′  and the 
frequency of the electromagnetic oscillations taking place in the plane 
wave. In Figure 4 we present the relativistic diagram that displays in 
true values the vector and the scalar components of the four vectors 
defined above.  
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Figure 4. The relativistic diagram that displays in true magnitudes the space-time 
coordinates of events associated with the hunting scenario using laser guns. It also 
displays in true magnitudes the vector and the scalar components of four vectors 
that transform as the space-time coordinates, mentioned above do. 

 
As in the previous case we measure on its axes the components of 

R and R’. On it we draw a circle whose radius equals at a given scale 
the magnitudes of the vector or of the scalar components as measured 
in K’. We draw also the ellipse described by (25) or (27) at well-
known scales. Again, the invariance of the OY(O’Y’) and of the 
vector component enables us to find out in true values the relative 
positions of the corresponding events and the magnitudes of the 
physical quantities involved. 
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2. Simultaneously receiving light signals 
emitted by distant light sources at different 
times (photographic detection) [7] 

The scenario we follow now involves the observer 0 (0,0)O′  defined 
above and a point-like source of light ( , )S r θ′ ′ ′  at rest in K’. If the 

source emits a light signal at rt
c
′

′ = −  then the observer 0 (0,0)O′  will 

receive it at a zero time. The emission of the light signal is associated 

with the event ( cos , sin , )rE x r y r t
c

θ θ
′

′ ′ ′ ′ ′ ′ ′ ′= = = −  and its 

reception at O’ is associated with the event 0 (0,0,0)E′  that has the 
same space-time coordinates in all inertial reference frames. In K the 
event E’ is characterized by the space-time coordinates: 
 ,(cos ) x cx r D rγ θ β −′ ′ ′= − =  (28) 

 siny r θ′ ′=  (29) 

 ,(1 cos ) cr r D rθγ β θ ′−′ ′ ′= − =  (30) 

 1 1
,(1 cos ) cr r D rθγ β θ− −

−′ ′= + =  (31) 

 
1 sintan

1 cos
γ θθ
β θ

− ′
=

′−
 (32) 

 ,(1 cos ) ct t D tθγ β θ ′−′ ′ ′= − =  (33) 

 1 1
,(1 cos ) ct t D tθγ β θ− −

−′ ′= + =  (34) 

The space-time diagram that works in the case is presented in 
Figure 5.  
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Figure 5. The relativistic diagram that displays in true values the magnitudes and 
the space-time coordinates of events generated by light signals (photons) received 
at the origins of the two involved reference frames at t=t’=0. It also displays in true 
magnitudes the vector and the scalar components of four vectors that transform as 
the space-time coordinates of the events mentioned above do. 

 
It displays in true values, the magnitudes and the components of 

the four vectors. We measure on its axes the projections of the vector 
components. It also displays the circle of radius ( )R′ ′Φ  and the curve 
described by (34). The invariance of the OY(O’Y’) components 
( )y yR R′=  enables us to find out the correspondence between the 
components of the four vector as measured from K and K’ 
respectively. It displays (in true values) the magnitudes and the 
components of the four vectors ( , )ΦR  and ( , )′ ′ΦR  associated with 
the approaching photon and with the events it generates that transform 
by definition as the space and the time coordinates do. In this case 
( , ′R R ) could represent the magnitudes of the position vector, photon 
momentum and wave vector, this diagram displaying theirs 
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components as well. It also displays the magnitudes of the time 
coordinates, photon energy and frequency of the electromagnetic 
oscillations taking place in the wave that propagates towards the 
observer. 

3. The space-time diagram at work 

3.1 Photographed and radar detected shape of a 
moving profile [8,9,10] 

The radar detection is similar to the hunting with laser guns. If the 
radar detected profile is a circle at rest in K’ then (as we have seen 
above) when we detect it from K its radar detected shape will be an 
ellipse. This ellipse has its left focal point at the origin O of the 
diagram when the detected profile is “receding”, respectively its right 
focal point at O when the profile is “approaching” the observer O. 

The photographic detection is similar to the simultaneous detection 
of light signals that have left a luminous profile at the different points 
and at different times. The time when the simultaneous detection 
takes place is the time when our observers 0O  and 0O′  trigger the 
photo cameras they handle or open their eyes. If the photographed 
luminous object is a circle at rest in K’ located at its origin O’ then its 
photographed shape will be an ellipse. This ellipse has its right focal 
point at the origin O’ of the diagram when the luminous circle is 
approaching the observer 0O , respectively the ellipse has its left focal 
point at the origin of the diagram when the circle is receding the 
observer 0O . 

The results obtained so far tell us that the radar detected shape of a 
circle at rest in K’ and having its centre at O’ is an ellipse (13) having 
its left focal point at O’ as well. They also tell us that the 
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photographed shape of the same circle is an ellipse (31) having its 
right focal point at O’ as well. 

For illustrating more clearly the way in which our diagram works 
consider a profile at rest in K’ described in polar coordinates by: 
 1 2( , ... , )nr F a a a θ′ ′=  (35) 

where 1 2, ... na a a  represent proper parameters and θ ′  represents the 
polar angle. If we detect the profile from K by sending light signals at 

0t′ =  in all directions then (18) tells us that the observers from K will 
describe its radar-detected shape by: 
 1 2( , ... , ) (1 cos )nr F a a a θ γ β θ′ ′= + . (36) 

If the profile is luminous and the observers from K receive light 
signals at t=0 that have left the profile at different times then its 
photographed shape is: 
 1 2( , ... , ) (1 cos )nr F a a a θ γ β θ ′= −  (37) 

 Consider that the profile at rest in K’ is a straight line parallel 
to the O’Y’ axis located at a distance a apart from it. This line is 
described in K’ by: 

 
cos

ar
θ

=
′
. (38) 

and its radar  shape as detected from K is described by: 
 1 1(cos )r aγ θ β− −= −  (39) 
while its photographic shape also as detected from K being described 
by: 
 1 1(cos )r aγ θ β− −= + . (40) 

In Figures 6 and 7 we present the way in which the relativistic 
diagram enables us to construct point-by-point the radar and 
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respectively the photographed shape of the considered moving 
profile. 
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Figure 6. Illustrating the way in which the relativistic diagram enables us to 
construct the radar detected shape of a straight line at rest in K’ and parallel to the 
O’Y’ axis. 
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Figure 7. Illustrating the way in which our relativistic diagram enables observers 
from K to construct the photographed shape of a straight line at rest in K’ and 
parallel to the O’Y’ axis. 
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3.2 Photographed and radar detected length of a 
moving rod 

In this scenario observers from K measure the length of a rod at rest 
in K’. The rod is parallel to the common axes OX(O’X’) and the 
observers in K’ measure its proper length 0L . In Figures 8 and 9 we 
present the way in which the space-time diagrams enable us to 
measure its length from K using the radar and the photographic 
detection respectively. In both cases we have considered the situations 
when both ends of the rod are “receding” or “approaching” from the 
perspective of the stationary observer (0,0).O  In both cases a length 
contraction or length dilation could take place or even we can detect 
(using and adequate location of the rod in its rest frame) the Lorentz 
contraction. An analytic approach is presented in [11]. 
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Figure 8. Illustrating the way in which observers from K measure the length of a 
rod of proper length L0 at rest in K’ and parallel to the common axes using the radar 
detection. Two cases are considered. In the first one both ends of the rod are 
approaching the observer. In the second case both ends of the rod are receding 
the observer.  
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Figure 9. Illustrating the way in which observers from K measure by photographing 
detection the length of a rod at rest in K’, having proper length L0 and positioned 
parallel to the common axes. Two cases are considered. In the first one both ends 
of the rod are approaching the observer. In the second case both ends of the rod 
are receding the observer. 
 

3.3 Einstein’s mirror [12] 

There are situations in which we should use both space-time diagrams 
(for incoming and outgoing light rays) at the same time. Consider a 
plane mirror at rest in K’ and confined to the X’O’Z’ plane. An 
incident ray makes an angle α  with the normal to the mirror and it is 
reflected along a direction that makes the same angle with the normal 
as shown in Figure 10.  
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Figure 10. Illustrating the way in which observers from K detect the reflection of 
light on a vertical mirror at rest in K. 
 

On the same figure we present a circle of radius ν ′  (the frequency 
of the incident and reflected rays as measured in K’) at a given well-
defined scale and the two space-time diagrams presented above. The 
reflection takes place on the right surface of the mirror.  

Let 1’ and 2’ be two events detected from K’ that take place on the 
circle (the first on the incident ray and the second on the reflected 
one). According to the handling rules of the diagram, when detected 
from K the event 1’ takes place on the ellipse corresponding to the 
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incoming ray at point 1. Event 2’ detected from K takes place at point 
2 located on the ellipse that corresponds to the outgoing rays. The 
incidence point O coincides with the origin of our space-time 
diagrams and is the same in all inertial reference frames. Knowing the 
location of the points 1 and 2 we can draw the incident and the 
reflected rays as detected from K; the first ray makes an angle i and 
the second an angle r with the normal to the mirror as detected from 
K’. All angles are displayed in true values.  

3.4 Privileged directions 
Analyzing figures 2 and 3 we see that the basic curves of our space-
time diagrams have two common points, determined by theirs 
intersection. First consider the case of the four vectors associated with 
tardyons. Figure 2 accounts for the vector component of the four 
vector whereas Figure 3 accounts for its scalar component. For the 
vector component the two points are 1( , )R θ  and 2( , )R θ− when 
detected from K, respectively 1 ( , )R R θ π θ′ ′ ′= = −  and 
2 ( ', ( ))R R θ π θ′ ′ ′= = − −  when detected from K’. The particular 
direction θ  is characterized by the fact that along it observers from K 
do not detect relativistic effects associated with the magnitude of R 
and R’. Imposing the condition R=R’ (4) leads to the following value 
for the angleθ : 

 
2

2 2

1cos (1 1 )V
uVc c

θ −= − −  (41) 

For the scalar components ( , ′Φ Φ ) (Figure 3), the two points are 
1( , )θΦ  and 2( , )θΦ −  when detected from K, respectively 
1 ( , )θ π θ′ ′ ′Φ = Φ = −  and 2 ( , ( ))θ π θ′ ′ ′Φ = Φ = − − when detected 
from K’. We obtain the value of the angle θ  that characterizes the 
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direction along which no relativistic effects are detected imposing in 
(6) the condition ′Φ = Φ  that leads to the same relation as in (41).  

We can do the same analysis for radar detection, the direction 
without relativistic effects being obtained in this case from (41) when 
u=c as: 

 

2

21 1
cos c

V
c

V
c

θ
− −

=  (42) 

The space-time diagram accounting for the relativistic effects in 
the spherical wave illustrates the way in which observers from K 
detect blue-shift and red-shift for the monochromatic radiation 
detected from K’ where the frequency of the radiation ν ′  is the same 
in all directions with the space distribution being uniform. Detected 
from K this distribution is no longer uniform (see Figure 11).  
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Figure 11. Illustrating the directions along which no relativistic effects are detected 
for radar detection. Separating the regions within which a blue shift or a red shift 
takes place in the frequency of the electromagnetic radiation. 
 

For the directions 0 cθ θ< <  we have ν ν ′>  therefore a blue-shift 
takes place whereas for the directions cθ θ π< <  we have ν ν ′<  
therefore a red-shift takes place. The probability to detect a blue 
shifted photon is: 

 c
bw θ

π
=  (43) 
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while the probability to detect a red shifted photon is: 
 1r bw w= −  (44) 

In Figure 12 we present the red and blue shift in the case of the 
photographic detection. 
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Figure 12. Illustrating the directions along which no relativistic effects are detected 
for the photographic detection. Separating the regions within which a blue shift or a 
red shift takes place in the frequency of the electromagnetic radiation. 
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4. Conclusions 
The relativistic diagram we propose displays in true magnitudes the 
vector and the scalar components of four vectors. These components 
transform as the space-time coordinates of events generated by 
moving tardyons or photons do. 
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