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Abstract	
  
	
  
Word segmentation from continuous speech is a difficult task that is faced by human infants 

when they start to learn their native language. Several studies indicate that infants might use 

several different cues to solve this problem, including intonation, linguistic stress, and 

transitional probabilities between subsequent speech sounds. In this work, a computational 

model for word segmentation and learning of primitive lexical items from continuous speech is 

presented. The model does not utilize any a priori linguistic or phonemic knowledge such as 

phones, phonemes or articulatory gestures, but computes transitional probabilities between 

atomic acoustic events in order to detect recurring patterns in speech. Experiments with the 

model show that word segmentation is possible without any knowledge of linguistically relevant 

structures, and that the learned ungrounded word models show a relatively high selectivity 

towards specific words or frequently co-occurring combinations of short words.  

Keywords: unsupervised learning, language acquisition, word segmentation, distributional 

learning 
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1. Introduction	
  

Segmentation of continuous speech into words is a difficult task without a priori 

knowledge of the auditory word forms of a language. This is due to the fact that spoken words 

are rarely separated by pauses or any other universal cues that would signify word boundaries 

equally in all languages. However, language specific cues to word boundaries exist and human 

infants seem to be adept in learning these cues already at a very young age, since they are able to 

segment word like patterns from speech at 7.5 months (Jusczyk & Aslin, 1995). Prominent and 

widely studied cues for word segmentation include transitional probabilities of subsequent 

speech sounds (Saffran, Aslin, & Newport, 1996; Saffran, Newport & Aslin, 1996), phonotactics 

(Jusczyk, 1993) and aspects of prosody such as intonation and linguistic stress (e.g., Cutler, 

1994; Jusczyk, 1993, 1999; Thiessen & Saffran, 2004).  

In a study by Saffran et al. (1996), it was pointed out that infants as young as 8 months 

are capable of learning transitional probabilities of subsequent syllables in an artificial language 

after a very brief exposure to a continuous speech stream, and that they segment words from the 

stream by using these probabilities. Further experiments have provided support to the idea that 

the learned word-like-unit structures act as lexical candidates if they are presented in a proper 

linguistic context (Saffran, 2001). However, the limitation of ecological validity in these studies 

has been in that the speech stimuli used in the experiments consisted of synthesized speech that 

has far less variability than real continuous speech. More recently, Pelucchi, Hay, and Saffran 

(2009) have shown that infants are able to use transitional probabilities in real speech spoken in a 

foreign language, and also by taking into account backward probabilities of speech sounds, 
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providing evidence that knowledge of the phonetic or syllabic system of a language is not a 

necessity for distributional learning.  

Transitional probabilities are furthermore closely related to the concept of phonotactics, 

i.e., the rule system that describes which sound sequences are permissible in a language. In his 

work, Jusczyk (1993) has shown that 6-month-old infants do not show a preference for 

phonotactically legitimate sequences when compared to non-legitimate sequences, whereas 

infants at the age of 9 months preferred sequences that were permissible according to their native 

language. Although the phonotactic constraints are conceptually tied to the concept of the 

phoneme, the same underlying mechanism performing transition probability analysis of any 

general speech sounds could also explain novelty and familiarity effects in patterns of speech 

without the need for phonemic representation. In other words, recognizing a phonotactically 

legitimate phoneme sequence as familiar does not dictate that the listener has to have a fully 

developed categorical perception of phonemic units. This is important from the perspective of 

language acquisition, since it is still being debated whether the phonemic system is required for 

speech coding at all (see, e.g., Pisoni, 1997; Port 2007), and if it is, does it precede (Kuhl, 2004), 

or follow from (Werker & Curtin, 2005), lexical learning. 

It has also been shown that infants might prefer other cues over transitional probabilities 

if they occur systematically in their native language. For example, words in English start most 

often with a stressed syllable and native English infants prefer to use this cue after the age of 8-9 

months (Johnson & Jusczyk, 2001; Thiessen & Saffran, 2004).  However, Thiessen and Saffran 

(2003) have pointed out that 7-month-old infants prefer to use transitional probabilities of speech 

sounds in segmentation whereas 9-month-olds were relying more on syllabic stress. This is an 

interesting finding, since Johnson and Jusczyk (2001) have claimed that native English infants 
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might bootstrap their stress-based word segmentation skill from stress patterns of isolated word 

productions. The reason why the use of stress then emerges later than the use of transitional 

probabilities might be related to the issue that the bootstrapping of the stress-based segmentation 

with the help of isolated productions may not be as efficient at first in comparison to the analysis 

of recurring patterns from continuous speech. The reason why stress cues still become dominant 

during development is probably since they are easier to detect in English than the transitional 

probabilities of subsequent speech sounds, since infants under the age of one are still gradually 

learning the phonetic system and the CV-pairs in their native language (e.g., Werker & Tees, 

1984). Linguistic stress is also much more easily generalized across speakers and situations than 

statistical distributions of speech sounds. This is because realizations of phonemes and words 

vary to a great degree depending on the speaker’s characteristics, whereas cues such as timing, 

energy, spectral tilt, and directions of pitch changes are much more speaker invariant (see also 

Thiessen & Saffran, 2003).  

By drawing evidence together from the distributional learning hypothesis and 

experimental findings, it can be hypothesized that infants might bootstrap their word 

segmentation process by analyzing regularly recurring stretches of acoustic signals without pre-

existing phonetic knowledge (phones, syllables). These recurring segments of speech could act 

as preliminary lexical items that can be associated with multimodal/motor representations such 

as objects or actions (functional aspect) and analyzed in further detail to facilitate further speech 

perception (developmental aspect). By collecting and analyzing the preliminary lexical items, 

infants are able to detect language specific systematical properties of words such as trochaic 

stress in English, and by coupling speech perception to their own articulatory productions, they 

start to learn sub-word structures such as syllables and phones (see, e.g., PRIMIR-theory of 
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language acquisition by Werker & Curtin, 2005). Although the preliminary lexical 

representations are highly dependent on detailed acoustic features, and are therefore speaker and 

speaking style dependent (Houston & Jusczyk, 2000; Bortfeld & Morgan, in press; Singh, White, 

& Morgan, 2008), the gradually developing heightened sensitivity to native contrasts and 

increase in phonemic awareness (White & Morgan, 2008) may facilitate further word learning 

and help to generalize across speakers (see also discussion in Swingley, 2005). The lack of well-

developed speaker independent models of phonemic categories in early lexical acquisition would 

also explain why even 14-month-old infants have difficulties in distinguishing minimal pair 

words such as “bih” and “dih” from each other when spoken by the same person (e.g., Stager & 

Werker, 1997), but succeed in the task when notable variation is introduced to the spoken words 

(Rost & McMurray, 2009). In general, it seems that variability enables statistical learning of 

exemplar “clusters” that reveal structural differences between the words, whereas sufficiently 

detailed awareness of phonemic distinctions simply does not exist at early stages of development 

or is overrun by lexical competition (see Rost & McMurray, 2009, and references therein).  

The plausibility of the above hypothesis as a mechanism for the bootstrapping of infant 

speech perception would be supported considerably if a computational mechanism demonstrating 

such processing existed. As for computational models of word segmentation from continuous 

speech, in Räsänen, Laine, and Altosaar (2008) and Räsänen, Laine, and Altosaar (2009a), it has 

been shown that automatic word segmentation based on transitional probabilities of atomic 

acoustic events is possible in a weakly supervised learning framework where a learning agent 

receives multimodal support from a visual scene. By associating recurring segments of speech 

signals to objects in the visual scene through cross-situational learning, the learning agent 

learned to recognize keywords from the incoming utterances. However, this learning paradigm 



A	
  COMPUTATIONAL	
  MODEL	
  OF	
  WORD	
  SEGMENTATION	
  
	
  

	
   7	
  

did not lead to the learning of words that were not systematically related to objects in the 

surrounding visual environment. Instead, only the keywords that were present as both audio and 

as visual categories were learned and segmented properly.  

In the current work, a computational model for purely unsupervised acquisition of 

acoustic word form representations is proposed. Instead of multimodal support or assuming any a 

priori phonetic or linguistic knowledge such as phones, phonemes, or words, the processing 

starts with acoustic signals taken from a speech corpus containing child directed speech. The 

proposed algorithm tracks the transitional probabilities of atomic speech sounds in order to 

detect recurring patterns, and builds models for these detected patterns. As more speech is 

perceived, these learned models inherently segment the new utterances into words. The overall 

results show that it is possible to learn ungrounded models for word-like acoustic units from 

continuous speech without learning the phonetic system of a language, and without support from 

contextual information such as different modalities.  

1.1  Related work 

1.1.1 Phonemic and syllabic algorithms. Most of the existing models of word 

segmentation assume some sort of pre-existing linguistic knowledge, often in the form of 

phonemic transcription of speech or pre-defined phonetic features created from a text corpus. In 

the work of de Marcken (1994), the Minimum-description length (MDL) principle (Rissanen, 

1978) was used to construct an MDL-optimal grammar from a corpus with a finite alphabet. The 

algorithm attempts to find such a dictionary of words that maximizes the likelihood of the word 

dictionary given the training data, and simultaneously minimizes the number of bits required to 

describe the dictionary and the corpus coded using the entries in the dictionary. The algorithm 

was mostly designed for the analysis of text and phonetic transcriptions. In contrast to the 
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algorithm proposed in this work, de Marcken assumed a phone-level transcription and 

knowledge about phonetic features provided either by manual annotation or a supervised Hidden 

Markov model–based speech recognizer for learning word patterns from continuous speech. 

Phonetic transcription was also assumed as a starting point in the work of Cairns, 

Shillcock, Chater, and Levy (1994), who trained a connectionist neural network for the word 

segmentation task. As an input to the network, they used phonological features motivated by 

Government Psychology (Shillcock, Lindsey, Levy, & Chater, 1992) that were derived from the 

phonetic transcription of speech. Their algorithm performed only slightly above chance level, 

leading the authors to conclude that phonotactics provide a fairly weak source of information for 

bootstrapping of segmentation (Cairns et al., 1994). Other algorithms tested on phonetic 

transcription data include a connectionist model by Christiansen, Allen, and Seidenberg (1998), a 

further MDL-based algorithm by Brent and Cartwright (1996), the somewhat similar but 

incremental probabilistic approach known as the Model-based dynamic programming (MBDP-1) 

algorithm by Brent (1999a), and the algorithm by Venkataraman (2001). All of these models 

have shown good performance on the segmentation of phonetic transcripts, and in contrast to the 

results of Cairns et al. (1994), give strong support to the hypothesis that the unsupervised word 

segmentation based on transitional probabilities of speech sounds is possible, especially if 

phoneme level knowledge is inherent to the system. However, none of these approaches have 

been primarily designed, nor have been evaluated, using continuous speech without a priori 

linguistic assumptions. 

Instead of using purely linguistic input, multimodal pattern discovery has been also 

studied in the context of language acquisition. A model of early language acquisition by Yu, 

Ballard, and Aslin (2005) combines visual and auditory processing by using images and speech 
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related to the images as input to the system. In their experiments, the incoming speech was 

transcribed into phoneme sequences using pre-trained recurrent neural networks (RNN). 

Attentional modeling was embedded in the visual processing, where visual scenes were 

segmented based on gaze information and represented by a collection of visual features. Their 

algorithm showed good word segmentation accuracy by using dynamic programming to detect 

recurring subsequences from the phoneme sequences while processing was being modulated by 

attentional factors (Yu et al., 2005). However, linguistic assumptions were still embedded to the 

speech-to-phonemes conversion in the system. 

Finally, Swingley (2005) has demonstrated the segmentation of a language corpus using 

co-occurrence probabilities of syllables instead of phonemes. In his approach, Swingley 

constructed a mutual information1 (MI) ranking for bisyllables in the corpus. In addition, 

frequencies of mono-, bi- and trisyllables were computed. Then the syllable sequences high in 

both mutual information and frequency were considered as word hypotheses. This led to a 

distinction between words and non-words in the upper end of the frequency+MI continuum, 

especially in the case of shorter words. However, there also was a notable amount of erroneous 

word hypotheses (Swingley, 2005).  

1.1.2 Learning of speech sound categories. The numerous examples above indicate that 

the word segmentation task using linguistic input is possible with the help of phonemic identities 

of speech sounds. However, the limitation with the above approaches from the perspective of 

infant word segmentation is that the assumption of the existence of phonemic coding of speech is 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Swingley (2005) used mutual information MIAB = log2[P(AB)/(P(A)P(B)] of consequent syllables A and B in his 

approach. However, this can be considered as modeling of transitional probabilities between syllables, simply 

described from a slightly different perspective. Namely, the approach measured the statistical independence of the 

two subsequent syllables.	
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questionable. Although the idea that learning of phonemic categories precedes lexical learning is 

widely cultivated (e.g., NLM-e theory by Kuhl et al., 2008), there are also contrasting views. For 

example, the PRIMIR-theory of language acquisition by Werker & Curtin (2005) hypothesizes 

that phonemic knowledge emerges from the overlap between word forms stored in the learner’s 

memory, i.e., a large number of words has to be learned before any kind of phonemic encoding 

can take place. Moreover, the entire existence or need for phonemic representation in speech 

perception has been questioned (Pisoni, 1997; Warren 2000; Port, 2007). Pisoni (1997) and Port 

(2007) have argued strongly against an abstract symbolic (phonemic) segmental representation 

of speech and give evidence that listeners do not only encode abstract linguistic messages, but 

also very specific acoustic details that are normally considered as indexical (non-linguistic) 

information. For example, listening tests indicate that listeners can exploit speaker specific 

acoustic properties, leading to enhanced word intelligibility for familiar versus novel speakers 

(see Pisoni, 1997, and references therein). This suggests that the perceived speech is not only 

stored as abstract messages such as sequences of phonemes, but also as detailed acoustic 

episodes, and that these episodic representations interact with the perception of speech. Port 

(2007) also notes that the phoneme-like abstractions can always be computed from overlapping 

properties of stored and detailed sensory episodes (cf. PRIMIR theory of language acquisition), 

but the abstractions alone cannot explain the phenomena observed in the perception of speech. 

Even if the existence of a phonemic representation of speech in the human brain is 

assumed, the learning of phonemic categories directly from continuous speech faces enormous 

difficulties: before learning phonemes, the learner needs to segment corresponding phones out of 

continuous speech and find a correct mapping between different allophones across different 

contexts and speakers. Since realizations of different phonemes can be ambiguous and overlap 
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largely in the acoustic space, the distributional learning of phonemic categories may be 

impossible without additional constraints. Such constraints could emerge from the lexical level 

and other modalities, but then the supporting lexical level cannot be based on phonemic 

representations before learning of the phonemes. As the definition of a phoneme states that it is a 

minimal unit that causes contrast between two words, it is difficult to envision the emergence of 

phonemic knowledge in the absence of lexical representations. Although Kuhl (1986, 2004) has 

introduced the idea of basic cuts as a preliminary mechanism for segmenting speech sounds out 

of continuous speech, currently there are no unsupervised computational algorithms that could 

demonstrate successful segmentation in a way that would enable discovery of all phone 

boundaries without a large amount of hypothesized segment boundary insertions (see, e.g., 

Scharenborg, Ernestus, & Wan, 2007; Räsänen, Laine, & Altosaar, in press). This is also 

supported by the finding that not a single computational model has so far been able to 

demonstrate correct unsupervised acquisition of phonemic categories in the absence of top-down 

support, multimodal input, or directly from continuous speech. However, promising results have 

been obtained using greatly simplified experimental settings.  

In the work of McMurray, Aslin and Toscano (2009) and Toscano & MacMurray (2010) 

a Gaussian mixture model utilizing a special mechanism for mixture component competition 

demonstrated successful unsupervised acquisition of voice onset time (VOT) categories on VOT 

data measured from speech. In addition, Vallabha, McClelland, Pons, Werker, and Amano 

(2007) have shown that a small number of distinctive phonetic categories can also be learned 

with a similar algorithm utilizing competition between multivariate Gaussian distributions and 

expectation maximization (EM) training, and also with their own incremental variant called 

Topographic Online Mixture Estimation (TOME). They used data from the first two formant 
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frequencies and durations of phones in the acquisition of English /I, i, ε, e/ and Japanese /i, i:, e, 

e:/ vowels extracted from monosyllabic words. 

 Coen (2006) has demonstrated that the acquisition of the number of vowel categories and 

their boundaries in the F1/F2 space is possible by combining the vowel formant information with 

lip data in a multimodal clustering process. Since acoustically ambiguous sounds are often 

unambiguous in terms of visual features, multimodality helps to differentiate between 

acoustically similar but phonetically distinct classes (“intersensory disambiguation”). Coen 

demonstrated the performance of the algorithm using a fixed acoustical context in the production 

of the vowels (each vowel was spoken between [h] and [d], e.g., /ae/: “had”; Coen, 2006).  

Lexical feedback has also been utilized. Feldman, Griffiths, and Morgan (2009) have 

shown that the correct mapping from vowel formant frequencies to phonemic categories of 

English can be learned using a Bayesian classifier, but only if there are additional constraints 

from the lexical level that is being learned simultaneously with the phonemic categories. The 

data consisted of combinations of vowels represented by their formant frequencies that were 

taken from the data of Hillenbrand, Getty, Clark, and Wheeler (1995).  

Both Coen’s and Feldman et al.’s work demonstrate well that the phonemic learning 

process is greatly facilitated if additional constraints can be introduced by either feedback from 

the lexical level or by utilizing multimodal information sources. However, none of the above 

models were tested on continuous speech, where even the segmentation to phone-like units is 

difficult in a purely bottom-up manner (Räsänen et al., in press; Scharenborg et al., 2007), or on 

a full spectrum of phonemic categories.  These constraints effectively limit the overall variability 

and overlap of phonemic categories, making generalization of the findings difficult to real 

continuous speech and the general speaker population. 
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By looking at the theoretical considerations and experimental evidence discussed so far, 

it seems that if phonemic representations of speech exist, then their contents must be abstracted 

from (and are therefore causally dependent on) lower level lexical representations with a much 

greater amount of sensory (and possibly articulatory) detail (as in PRIMIR; Werker and Curtin, 

2005) or they can be partially a product of literacy training, as suggested by Port (2007). 

Acquisition of internal representations of speech is not therefore necessarily tied to the concept 

of a phoneme, but one can understand and produce spoken language by simply detecting and 

reusing acoustic patterns with sufficient similarity. 

1.1.3 Towards segmentation from real speech. The similarity principle of long acoustic 

patterns has been previously utilized in three computational models of unsupervised word 

learning from continuous speech. 

The PERUSE algorithm by Oates (2002) discovers frequently recurring patterns from 

multivariate time-series (such as automatically extracted speech features) by modeling patterns 

as sequences of observations with mean and variance of possible observation values defined for 

each temporal location in the sequence. The algorithm starts by performing a global exhaustive 

search over all available speech data in order to find a model that has the highest likelihood when 

trained with a sub-segment of length L and its N best-matching occurrences in the data (L and N 

are used set parameters). Then the pattern length L is increased and a statistical test is performed 

for the new model in order to determine whether the pattern likelihood has dropped significantly. 

Finally, the number of tokens used to train the model is increased from N in an incremental 

manner and statistical testing is again used as a stopping criterion. Oates has demonstrated the 

performance of the algorithm in word learning from English, German and Mandarin speech, 

where it successfully detected more than 65% of frequent words used by a single speaker (per 
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language). Oates has also represented a framework that allows grounding of the detected word 

forms to contextual sensory data collected by a robot (Oates, 2001). As a drawback, the PERUSE 

algorithm assumes that all possible speech data are available to the system when the learning 

begins (i.e. batch processing), and this data set has to be analyzed iteratively several times in 

order to converge to a set of word models. From the computational point of view, this also makes 

the algorithm extremely slow for large data sets. In addition, each word has to occur several 

times in the data before a representation can emerge for it. The author has acknowledged that 

iterative batch processing is an unreasonable requirement for a computational agent that should 

support continuous long-term language acquisition (Oates, 2001). Still, the PERUSE shows that 

an unsupervised system can converge to a set of pattern models learned from real speech, and 

that at least some of the models match very well to word-like units (detailed analysis of the 

results in addition to word detection rate is not reported). 

In the work of Park and Glass (2005, 2006), a dynamic time-warping (DTW) algorithm 

was used to find similar stretches of speech from an MIT lecture corpus. Acoustically similar 

segments were then linked to each other through graph clustering. Their results showed 

successful detection and clustering for a number of words occurring several times in the speech 

material.  

Finally, the cognitively inspired system by Aimetti (2009) performs unsupervised 

acquisition of word models using a dynamic programming (DP) based algorithm called DPn-

gram for detection of recurring units between acoustic episodes. Aimetti has demonstrated the 

performance of the algorithm in an ecologically plausible multimodal learning task where the 

learner has to first learn lexical candidates from a child directed speech stream and then ground 

these items to co-occurring visual information. After training, a successful mapping from 
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acoustics to co-occurring visual categories was obtained. Both of the proposed DP-based systems 

(Glass and Park, 2005, 2006; Aimetti, 2009) assume that the learner is capable of storing all 

perceived auditory signals as detailed spectrotemporal trajectories, or acoustic episodes. Then the 

spectral distances between these episodes are computed pair wise in order to detect similar 

stretches of speech that are then clustered together as lexical or sub-word unit candidates. In 

other words, they take an episodic exemplar-based approach to the problem of word learning. 

To our knowledge, the algorithm proposed in this paper is the first computational model 

that demonstrates unsupervised and incremental word segmentation from continuous speech 

utilizing transitional probabilities of speech sounds without a priori linguistic assumptions. We 

simply assume that the learner is able to 1) perceive speech sounds on a Mel-scale with a time-

resolution of 10 ms, 2) group acoustically similar sounds into discrete classes based on an 

Euclidean spectral distance measure, and 3) track transition probabilities of discrete speech 

sound events at different temporal distances up to a few hundred milliseconds. When compared 

to the PERUSE and DTW-based models, the proposed approach does not store all episodic 

representations in full detail for infinite duration, but only incrementally stores statistical 

dependencies between atomic acoustic units in the context of each word model, and uses these 

statistics to recognize new inputs. The approach is a hybrid between the classical division of 

exemplar and prototype models. No single word realization is stored in detail, but several 

different realizations can still have the same probability of belonging to a specific word model 

due to parallel modeling of several spectrotemporal trajectories. 

The organization of the remaining paper is as follows: in the next section, the speech 

material used in the experiments is introduced. In section 3, the learning algorithm is presented 

in detail. Section 4 shows results from the unsupervised word learning experiments using speech 
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from a single caregiver and then from four caregivers. Finally, in the last section, implications of 

the results are discussed and conclusions drawn.  

2. Material 

Speech material was taken from the child-directed speech corpus CAREGIVER (Altosaar 

et al., 2010). In these experiments, an English portion of the corpus was used. Since the original 

use of the corpus was to study the learning of keywords from speech, the speech material has 

been designed so that in addition to a set of carrier sentences, there are 1-4 keywords (nouns, 

adjectives and proper names) embedded in each utterance. In total, there are 50 different 

keywords. The keyword selection was largely based on the on-line available MacArthur-Bates 

Communicative Development Inventory (Fenson et al., 2003). However, unlike in real speech, 

the keywords are statistically balanced over the entire corpus by generating the utterances with a 

finite state grammar without semantic constraints. This was done to avoid strong statistical word-

to-word dependencies, leading to semantically incoherent but grammatically correct productions. 

In this work no differentiation between keywords and other words was made, yielding a 

vocabulary of 80 different words as additional verbs, prepositions, articles, etc. Inflections were 

treated as separate words. Due to the simplicity of the vocabulary, this caused only a small 

number of words to split into a basic form and the third person present tense: “give/gives”, 

“like/likes”, “see/sees”, and “take/takes”. A full list of words in the vocabulary can be found in 

Appendix A.  

As for talkers, this section of the CAREGIVER corpus contains continuous English 

speech spoken by ten different individuals. The four main talkers (the “caregivers”; two males, 

two females) each speak 2397 utterances including two repetitions of each utterance and two 



A	
  COMPUTATIONAL	
  MODEL	
  OF	
  WORD	
  SEGMENTATION	
  
	
  

	
   17	
  

isolated productions of each keyword. There are also six additional talkers each speaking 600 

utterances, including one isolated production of each keyword. Since the idea was to study word 

segmentation from continuous child-directed speech spoken by a caregiver or a small number of 

caregivers, none of the additional talkers or isolated keyword productions were used in these 

experiments. This yielded a total of 2144 utterances per talker. The mean length of an utterance 

was 5.96 words. Speaking style was elicited child-directed speech, i.e., the talkers (who were 

parents) were asked to speak as if they were speaking to their child who’s age was less than one 

year. The recordings were performed in an anechoic chamber at a sample rate of 44.1 kHz using 

a high quality condenser microphone. For the present experiments, the signals were 

downsampled to 16 kHz. 

For single talker experiments, 1800 utterances were used in the training phase by 

concatenating them into one long signal. Each utterance was padded with 1.5 seconds of silence. 

The remaining 344 utterances were used for testing, and were fed to the system for segmentation 

sequentially. For multiple talker experiments, 4*1800 = 7200 utterances from all four main 

talkers were used for training and the remaining 4*344 = 1376 utterances were used for testing. 

In all experiments, the training set and the test set were randomly chosen. In all but the talker 

blocked multiple caregiver case, the order of the signals in the concatenated training signal was 

also randomized. The results for the evaluation of different parameter settings were always 

computed using an identical randomized order to ensure that ordering did not influence learning 

measurement. 
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3. Methods 

This section describes the details of the computational model used for unsupervised word 

learning. At first, it is important to note that the term word will here refer to the longest 

structures in the speech signal that recur systematically across different speech acts, or 

utterances. The algorithm itself is fully unaware of the concept of word, and since the speech is 

not accompanied with any other categorical information that would enable grounding of the 

word forms, the detected structures do not carry any meaning. The purpose is simply to study 

what type of structures can be learned based on transitional probabilities between atomic 

acoustic events, and how these learned structures relate to the concept of words defined by an 

experienced language user. The approach does not assume any innate linguistic structures, and 

all processing is purely bottom-up. What is assumed by the algorithm operator is the amount of 

signal (in milliseconds) analyzed together in order to make an old/novel distinction for the 

corresponding part of the signal, the maximum temporal distance up to which statistical 

dependencies between acoustic events should be taken into account in the transitional probability 

modeling, and the amount of temporal smoothing applied to the activations of internal 

representations.  

There are several steps in the process of modeling discovery of word segments from raw 

speech signals. First, incoming speech is transformed into frames of features that describe the 

spectral content of the signal in a compact manner. In order to learn recurring structures, or 

patterns, from speech, the continuous domain feature representations are further transformed into 

a series of discrete events using vector quantization of the feature vectors. Finally, a method for 

learning recurring patterns from speech by using transitional probabilities is applied. These 

stages will be discussed in the following sub-sections.  
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3.1 Pre-processing 

The aim of preprocessing is to transform the raw speech waveform into a series of 

discrete acoustic events so that recurring structures, or patterns, can be detected. In order to 

represent the spectral content of speech in a compact manner, Mel-frequency cepstral 

coefficients (MFCCs; Davis & Mermelstein, 1980; see Appendix B for details) are utilized. 

MFCCs are widely used as features in speech technology, e.g., in automatic speech and speaker 

recognition. This is since MFCCs are readily computable, and they describe relevant aspects of 

the speech signal using only a small number of coefficients mimicking the spectral resolution of 

the human ear. In this work, 12 MFCC coefficients were extracted with a window of length 32 

ms and window step size of 10 ms, i.e., the signal was described with 12-dimensional feature 

vectors occurring every 10 ms. The given window size and step size provide a reasonable 

compromise in spectrotemporal accuracy and the overall amount of feature data.  

MFCC vectors as such are not suitable for analysis of transitional probabilities since each 

coefficient in a MFCC vector takes its value from the continuous cepstral domain. Therefore, 

vector quantization (VQ) was applied to the MFCCs in order to describe each signal frame with 

one discrete label from a finite alphabet. A randomly chosen subset of MFCC vectors (10000 

frames) from the training material was used as input to a fully unsupervised k-means clustering 

(MacQueen, 1967) that produced a codebook of NA discrete categories, where NA is a user 

defined parameter. Next, all of the MFCCs extracted from the speech material were vector 

quantized by finding the nearest cluster center in the codebook in terms of Euclidean distance. 

Finally, the MFCC vector was replaced by the integer label corresponding to the cluster. Now 

the speech signal is represented by a sequence of discrete VQ labels X = {a1,a2,…,aL} where ai ∈ 

{1,…,NA}, with one VQ label occurring every 10 ms. 
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Although the k-means algorithm in its basic form operates in a batch mode, it can be 

replaced by any incremental clustering method for increased ecological plausibility. For 

example, the OME algorithm (Vallabha et al. 2007; Lake, Vallabha, & McClelland, 2009) or 

self-learning vector quantization (SLVQ; Räsänen, Laine, & Altosaar, 2009b) can both be 

applied for learning of categorical speech sound classification in an incremental manner and 

without defining the number of acoustic categories in advance. However, none of the above 

algorithms learn proper phonemic categories from continuous speech, but simply map incoming 

continuous spectral vectors into a finite number of acoustic classes. 

3.2 Transitional probability analysis 

The task of the transition probability analysis is to 1) discover recurring, temporally 

distributed, patterns from speech, and 2) build models for these patterns that enable recognition 

of similar patterns in future input. This section describes how models of patterns can be learned 

automatically and incrementally from speech using the transitional probability framework. It 

should be emphasized that the term model here refers to a structural description of an unspecified 

but significant pattern that recurs in the data, but in practice the learned models will mostly 

correspond to word-like units. This is partially explained by the temporal parameters of the 

algorithm, but also because the words (or combinations of often co-occurring short words) are 

the largest structures in speech that recur several times in the corpus in a relatively coherent 

form. 

The starting point of the process is the discrete VQ sequence X produced by the 

preprocessing of the speech. In its basic form, the transitional probability (TP) of an element pair 

could be defined as P(a1,a2) = F(a1,a2)/F(a1) where F(a1,a2) is the frequency of an ordered pair 

a1,a2 and F(a1) is the frequency of a1 alone over the entire data set (Saffran et al., 1996). 
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However, since we also want to build models for recurring patterns, a mechanism is needed that 

differentiates between different models that are learned from the data. Instead of computing a 

global probability of a transition in order to detect word boundaries, we are interested in how 

probable a transition is in case of a specific model, and whether there is a previously learned 

model explaining the current transitions occurring in the signal. 

Another challenge in using the above definition of probability stems from the complexity 

of real continuous speech that causes the VQ data to be extremely noisy and variable. Two 

realizations of a same word, even spoken by the same talker, are never the same in terms of 

spectrotemporal trajectories. This means that the words are also represented by more or less 

different VQ sequences. Moreover, the blind pre-processing is not temporally synchronized to 

any of the linguistic structures existing in speech, and therefore linguistic units such as syllables 

and words can have a very different number of VQ labels in different realizations given their 

normal temporal variation. The lack of synchrony also means that the feature-extraction process 

extracts spectral information from transition points between subsequent phones, leading to a 

large number of poorly defined spectral representations since the computation of the Fourier-

spectrum assumes that the spectrum is stationary inside the analysis window. The variability also 

makes the use of standard n-gram based approaches infeasible due to the combinatorial 

explosion for units longer than a few tens of milliseconds. Therefore, a more robust approach to 

transitional probability model is required and is introduced below. The method has similarities 

with Hidden-Markov Models (HMMs) that are widely applied in machine learning, but does not 

require a priori definition of the number of models or states per model, iterative training, nor 

bootstrapping with annotated training data. In addition, the proposed model is able to capture 
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long-range temporal dependencies without making the Markov assumption (independence of 

subsequent states) that does not hold for speech VQ data.   

3.2.1 Learning of models. The system starts out void of any models for patterns. When 

the first speech input X arrives, transitions in the first Lr elements in a sub-sequence XT are used 

to create the first model c1. In the model, transition probabilities between elements ai and aj are 

modeled in parallel for a number of lags k = {k1,k2,…kK}. In other words, transitions are not only 

modeled from X[t] to X[t+1], but for all distances X[t] to X[t+k] for all k. 

Instead of computing the global joint probabilities for element pairs, a transition 

probability matrix is computed according to Eq. (1) from the frequencies of transitions. The 

obtained right stochastic matrices describe the future distributions2 of labels a at X[t+k] given the 

X[t] and the model c. In the equation, Fc(ai,aj|k) denotes the frequency of transitions from ai to aj 

at lag k and for the case of model c. 

€ 

Pc
S(a j | ai,k) =

Fc (ai,a j | k)

Fc (ai,a j
j=1

NA

∑ | k)
     (1) 

The analysis window of length Lr is then shifted Ls frames and the existing models are 

used to recognize the new sub-sequence XT+1 (note that during the second window position T+1 

there is only one model from the first window position). First, activation Ac(t) of each model c at 

each moment of time t is computed by calculating the mean of the transition probabilities over all 

different lags: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  This	
  formulation	
  is	
  similar	
  to	
  the	
  estimation	
  of	
  the	
  Q	
  matrix	
  in	
  the	
  generalized	
  mixture	
  transition	
  distribution	
  (MTDg)	
  
by	
   Raftery	
   (1985).	
   The	
   estimation	
   of	
   probabilities	
   directly	
   from	
   transition	
   frequencies	
   in	
   the	
   training	
   data	
   has	
   been	
  

proposed	
  by	
  Ching,	
  Fung,	
  and	
  Ng	
  (2004).	
  However,	
  estimation	
  of	
  lag	
  specific	
  weights	
  φk	
  characteristic	
  to	
  MTD	
  models	
  is	
  

not	
  performed	
  due	
  to	
  the	
  incremental	
  one-­‐pass	
  nature	
  of	
  the	
  learning	
  algorithm	
  used	
  in	
  this	
  work.	
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€ 

Ac (t) =
1
K

Pc
S(X[t] | X[t − k],k)

k=1

K

∑      (2) 

The cumulative activation of each model is then calculated over the entire window and 

normalized by the window length: 

€ 

Ac
cum (T) =

1
Lr

Ac (t
x=T

T +Lr −1

∑ [x])       (3) 

where T denotes the window position. Now if activation 

€ 

Ac
cum of the most activated model cM 

exceeds a pre-defined familiarity threshold tr, the transition frequencies in the current window of 

analysis XT+1 are used to update the statistics of the model cM according to Eq. (1). In other 

words, if a sufficiently familiar pattern (e.g., a word or syllable) is detected in terms of 

previously learned models, this realization of the pattern is used to update the existing model of 

the pattern. On the other hand, if no model achieves a sufficiently high activation, a new model 

cN is created from XT+1 using Eq. (1). This process is repeated for the entire training data set, 

producing a set of models that incrementally increase their selectivity towards specific structures 

in the speech signal. The number and properties of the learned models depend mostly on window 

length Lr, window shift Ls, and the activation threshold tr.  

The following pseudo-code illustrates the learning process:	
  

1) extract sub-sequence XT of length Lr from the current window position 

2) recognize XT using the existing models  

    if highest_activation > threshold tr 

     update best matching model cM using transitions in XT 

shift analysis window LS steps  

    else 

      create a new model cN using transitions in XT 

shift analysis window Lr-LS steps  

    end  
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3) repeat steps 1-2 until all input is processed 

In practice, if the window shift Ls is smaller than the window length Lr, the model update 

using XT has to be performed only after the window has moved to XT+Lr. Otherwise the 

previously updated model will always see a part of the signal that has already been used to train 

the model. Also, when a new model is created, the window is moved forward Lr-Ls frames in 

order to avoid the creation of several new models for a novel pattern of approximate length Lr. 

3.2.2 Segmentation using the models. The models obtained according to the procedure 

described above can be already used to segment speech signals into stretches of model 

activations. However, by introducing an additional normalization procedure, the classification of 

novel input into existing categories becomes more efficient: 

€ 

Pc (a j | ai,k) =
Pc
S(a j | ai,k)

Pm
S(a j | ai,k)

m=1

NC

∑
−
1
NC

     (4)  

What takes place in Eq. (4) is that all learned models are contrasted against each other by 

diving a probability of a transition in a given model with the sum of the probabilities of the same 

transition across all known models. In addition, 1/NC, where NC is the total number of models, is 

subtracted from the transition probability. This forces the sum of activation across all models to 

be zero at all times, and if a transition is equally frequent for all models, it does not have an 

impact on the overall activation. The normalization in Eq. (4) can be considered as a forced 

choice task: given a transition, what is the relative likelihood of each model if one of them has to 

be selected?  

Now, when faced with a novel utterance X, the algorithm computes activation Ac(t) for 

each model c at each moment of time t using Eq. (2), but now using P instead of PS: 
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€ 

Ac (t) =
1
K

Pc (X[t] | X[t − k],k)
k=1

K

∑      (5) 

This produces a temporally local estimate of model activity. Since the aim is to study 

temporally larger structures than single frames and the activation values have high variance even 

for familiar patterns due to complexity of the acoustic signals, it is useful to smooth activation 

over time. This can be done by low-pass filtering the activity curves. In this study, a non-

weighted simple moving average (SMA) filter of length 480 ms (48 frames) was applied to the 

activity curves, since it was found to lead to reasonable results: 

  

€ 

) 
A c (t) =

Ac (t − 47) + Ac (t − 46) + ...+ Ac (t)
48

    (6) 

In other words, the activity of a model at time t depends also on the activity level of the 

same model during last few hundred milliseconds. If a model sees a familiar pattern, its 

activation will rise notably above zero and stay there for the duration of the familiar event. If a 

model no longer receives activation from the transition probability analysis, its activation decays 

to zero and other competing models will become more active. The winning model for each 

moment of time is the one with the highest activation level (cf. the TRACE model of speech 

perception by McClelland & Elman, 1986). 

In the following experiments, word segmentation was performed by first computing 

model specific activations for each moment of time in novel (untrained) utterances and then by 

placing word segment boundaries at locations where the most activated model changes from one 

to another. In the remainder of this article, the term model activation will refer to a time segment 

that starts from the point where the word model under consideration exceeds all other models in 

activation level, and ends at a point where another model becomes more active.  
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3.3 Evaluation measures 

The temporal accuracy of word segmentation was evaluated by comparing the locations 

of detected word boundaries to the boundaries produced by automatic Hidden Markov model 

(HMM)-based forced alignment segmentation. Although automatic, the quality of HMM–based 

segmentation can be considered comparable to the quality of manual word level annotation (see, 

e.g., Toledano, Hernández Gómez, & Villarubia Grande, 2003). The quality of the HMM 

segmentation was also verified manually for several signals. During evaluation, the 

neighborhood of each reference boundary was searched for boundaries produced by the learning 

algorithm and the distance to the nearest algorithm boundary was measured. The standard 

deviation σ of distances over all reference boundaries was used as the quality measure of the 

segmentation. Additionally, the mean number of insertions per annotated word was computed to 

ensure that an apparent increase in segmentation accuracy was not achieved simply by an 

increase in the number of segment boundaries. Finally, the proportion of correctly detected word 

boundaries was measured by searching the neighborhood of each reference boundary for a 

boundary produced by the algorithm. If the nearest boundary was located inside a window of 

maximum allowed deviation, it was considered as correctly detected. Correct detections were 

computed over a range of maximum allowed deviations. 

The ratio of the number of detected words to the number of annotated words was used to 

measure what proportion of the words in the reference was detected. This measure, called lexical 

coverage C, was computed simply as C = 100*Nd/Nw where Nd is the number of detected 

segments exceeding 150 ms in length (user set minimum word duration) and Nw is the total 

number of words in the annotation. Ideally, lexical coverage should either increase as more 
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speech is perceived, or stay stable while model selectivity increases, both indicating increased 

modeling accuracy of recurrent long patterns in the input.  

  The contents and quality of the learned models were also analyzed. Model selectivity 

was measured as the entropy of the distribution of word classes represented by a model. Entropy 

was chosen as the selectivity measure because it does not only indicate the proportion of the 

most dominant word of the model, but considers the overall distribution of all categories for the 

given model (see Huang, 2008). As the number of different words sharing a single model 

decreases, so does its entropy. In order to compute the entropy of a model c, the temporal 

segments of speech were detected where the model c was most active. Only segments exceeding 

150 ms in length were included in further analysis. These segments were compared to the 

underlying word-level annotation in order to obtain a distribution Pc(α) of underlying words α  = 

{α1,α2,…,αN} for the model c, i.e., the number of frames 

€ 

nc
α  containing annotated word α and 

model c was divided by the total number of frames nc during which the model c was most active 

(Eq. 7). This reveals which words were actually spoken during the activations of the model. Then 

the entropy was computed according to: 

€ 

H(c) = −
nc
α

nc
logR

nc
α

ncα=1

R

∑ = − Pc (α)
α=1

R

∑ logR Pc (α)    (7) 

Entropy H receives a value of 0 for a fully selective model (the model reacts only to one 

specific word) and 1 for a totally unselective model (reacts equally to all words). R in the 

equation denotes the total number of different words in the reference annotation. Selectivity was 

computed separately for each of the models c, and then the overall mean selectivity called model 

entropy HC was computed by weighting the model entropies with the frequency fc of occurrences 

of the corresponding model c in the test set: 
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€ 

HC = fc
c=1

NC

∑ H(c) / fc
c=1

NC

∑        (8) 

In addition, the so-called annotation entropy HA was measured. HA indicates how many 

alternative models have been learned (on average) for each annotated word α. HA is obtained by 

first computing the probability distribution 

€ 

Pα (c)  for each annotated word α, i.e., counting the 

number of frames

€ 

nα
c in which model c was active with annotated word α, and dividing it by the 

total number of frames 

€ 

nα  annotated as α. Then the entropy of these distributions is computed 

(Eq. 9) and the mean entropy is computed across all α  to obtain HA (Eq. 10).  

 

€ 

H(α) = −
nα
c

nα
logR

nα
c

nαc=1

NC

∑ = − Pα (c
c=1

NC

∑ )logNC Pα (c)   (9) 

€ 

HA =
1
R

H(
α=1

R

∑ α)       (10) 

If HA receives a value of zero, each annotated word is represented by a single model. The 

more there are alternative models for words, the closer HA is to the value of one. Ideally, only 

one model would exist for each word, capturing all varying realizations of the word. In practice 

this is rarely the case due to the large variability in word realizations. Finally, in order to have 

one descriptive measure of the modeling quality, the harmonic mean of model selectivity and 

model diversity, called the Q-value, can be computed by: 

 

€ 

Q =1− 2HCHA

HC +HA
       (11) 

The Q-value integrates the information from HC and HA, yielding a value of Q = 1 only 

when all words in the annotation have only one model each, and that model reacts only to that 

specific word (ideal situation). Otherwise Q will obtain values between zero and one, where Q = 
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0 means that there is an unspecified number of word models that are activated totally randomly 

and independently of the acoustic input. Performance measures have been summarized in table 1. 

 

Table 1: A summary of the performance measures used in the experiments. 
Measure	
   Explanation	
  
Ins	
   Number	
  of	
  additional	
  detected	
  segment	
  boundaries	
  in	
  comparison	
  to	
  the	
  reference.	
  
σ	
   Mean	
  deviation	
  of	
  segment	
  boundaries	
  from	
  the	
  reference	
  (ms).	
  
HC	
   Model	
  entropy.	
  Indicates	
  how	
  selective	
  the	
  learned	
  models	
  are	
  toward	
  specific	
  words.	
  HC	
  

∈	
  [0,1],	
  where	
  0	
  =	
  most	
  selective,	
  1	
  =	
  least	
  selective.	
  
HA	
   Annotation	
  entropy.	
  Indicates	
  the	
  average	
  amount	
  of	
  alternative	
  models	
  that	
  exist	
  for	
  

each	
  annotated	
  word.	
  HA	
  ∈	
  [0,1],	
  where	
  0	
  =	
  one	
  model	
  per	
  word	
  and	
  >	
  0	
  several	
  models	
  
per	
  word.	
  

Q	
   Overall	
  model	
  quality.	
  One	
  minus	
  the	
  harmonic	
  mean	
  of	
  HC	
  and	
  HA.	
  Q	
  ∈	
  [0,1],	
  where	
  0	
  =	
  
worst	
  possible	
  performance	
  and	
  1	
  =	
  ideal	
  performance	
  (one	
  fully	
  selective	
  model	
  for	
  each	
  
one	
  word).	
  

C	
   Lexical	
  coverage,	
  i.e.,	
  the	
  number	
  of	
  detected	
  words	
  divided	
  by	
  the	
  total	
  number	
  of	
  
annotated	
  words.	
  C	
  ∈	
  [0,1].	
  

4. Experiments 

The experiments were performed using both single talker and four talkers as training and 

testing material, and the results will be presented in this order. In addition, the effects of different 

parameters will be briefly discussed at the end of this section.  

4.1 Single talker  

Speech from one male talker (talker-03) was used in the first experiment to simulate 

speech input from one caregiver. Transition probabilities were modeled at lags k = {1, 2,…, 12} 

(10-120 ms). Once the training data were preprocessed as described in section 3.1 into a long 

sequence of VQ labels using a codebook of NA = 128 labels, the entire training signal of 

approximately 90 minutes was used as an input to the system. The learning procedure was 

performed for three different recognition thresholds tr according to section 3.2.1. The first 

experiment produced a total of 30 models using tr = 0.033, Lr = 600 ms, and Ls = 200 ms. The 

second experiment with the same windowing parameters and tr = 0.043 produced a total of 113 
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models, and the third experiment resulted in 264 models using tr = 0.052. These experiments will 

be referred to as the low, middle, and high threshold experiments.  

After training, the test set of 344 novel utterances was used as an input to the recognition 

process (Eq. 5) and the obtained activation curves were smoothed according to Eq. (6). Figure 1 

shows an example recognition of an utterance “Do you see the square toy?”. On the top panel of 

the figure, a standard spectrogram of the utterance can be seen. In the middle, activation curves 

of all models are plotted against the same time scale as the spectrogram. In the bottom, only the 

winning models are retained for each moment of time, causing segmentation of the input to well-

defined segments of model activity. The reference segmentation is also shown in the bottom 

panel as dashed lines. In this case, the segmentation has grouped “doyouseethe” into one long 

segment, as it is spoken very quickly and recurs several times in the training data. Words 

“square” and “toy” and silence (#h) are correctly segmented within approximately 10 ms of the 

reference boundaries. 
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Fig. 1. A recognition example for the utterance “Do you see the square toy?”. Spectrogram of the 

utterance is shown at top and activation of all models are shown in the middle. At the bottom, only the 

winning model for each moment in time is chosen, leading to a segmentation of the input. Annotated 

segment boundaries (the references) are indicated by dashed lines. 

 

Figure 2 shows the temporal measures for segmentation accuracy; the left panel shows the 

evolution of segmentation accuracy for the three different threshold conditions as a function of 

time trained while the right panel shows the corresponding insertions. The results show that the 

segmentation accuracy increases as more speech is perceived. However, at first this comes at the 

cost of introducing more segment boundaries, seen as an increase in insertion rate (the number of 

excess word boundaries per annotated word). However, the number of insertions does not 

directly correlate with reduced segment deviation, although there is a clear tendency to 

oversegment parts of speech that significantly overlap between different words or are otherwise 

ambiguous (e.g., endings of words or transitions between words). For all thresholds, the insertion 

rate stabilizes after 50 minutes although the segmentation accuracy keeps increasing (low and 

high) or stays relatively stable (middle).  
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Fig. 2. Mean segment boundary deviation from reference (left) and number of insertions per word (right) 

as a function time trained. Three different threshold conditions are shown. 
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Fig. 3. The number of detected reference word boundaries (%) as a function of maximum distance that is 

allowed between the reference boundary and the boundary discovered by the algorithm. 

 

Figure 3 shows the proportion of the reference boundaries that are correctly detected. 

Approximately 70% and 85% of boundaries are detected when ±50 ms and ±100 ms deviations 

are allowed (respectively) between the reference and the algorithm’s output. Although it is 

difficult to define precisely how much deviation should be allowed for a word to be still correctly 

segmented, the result indicates that the majority of the word boundaries are detected within an 

error margin that has the same temporal scale as plosive bursts and are much shorter than the 

average length of vowels. 

To further verify that the segmentation is still reasonable at higher insertion rates, a 

random segmentation was performed for the data by randomizing the temporal locations of the 

algorithm segment boundaries after full training in the high threshold condition (0.25 insertions 

per word) and computing the mean deviation from the reference. The mean deviation from the 

reference using the original algorithm segmentation was 100 ms (Figure 2, left), whereas the 

randomized case had a deviation of 159 ms. This concludes that despite the increased number of 

segment boundaries towards the end of training (see Figure 2, right), the algorithm performs well 

above chance level accuracy in word segmentation.  
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In	
  order	
  to	
  better	
  understand	
  the	
  segmentation	
  output,	
  the	
  analysis	
  has	
  to	
  focus	
  on	
  

the	
  content	
  of	
  the	
  models.	
  Figures 4 and 5 illustrate the overall entropies HC and HA for 

different recognition thresholds. Figure 6 shows the overall quality measure Q of the learning 

process as a function of training time. As can be seen, the entropies drop very rapidly in the 

beginning, and this is also the time period in which most of the models are created. A majority of 

the models are already in place after 10 minutes of speech and only a small number of new 

models are formed later. Newly created models already exhibit coarse selectivity towards 

acoustically similar events, and their selectivity gradually increases as more patterns are 

recognized and used to update the models. As the amount of training time increases, the overall 

selectivity of the existing models increases monotonically. As can be seen from the results, the 

high threshold condition leads to the most selective models in terms of both HC and HA. After 

training over the entire training signal, the overall quality of the models for the three conditions 

are Qlow = 0.66, Qmiddle = 0.73, and Qhigh = 0.75. When the high-threshold results are compared to 

the segmentation accuracy (Figure 2), one can observe that the number of insertions gradually 

increases up to the 50 minute point although the number of models per word (HA in Figure 3) 

stays relatively stable after 30 minutes, suggesting that there is no significant change in the way 

that words are represented in the discovered models. The model selectivity HC simply increases 

over time (Figure 4). 
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Fig. 4. Model entropy HC as a function of time trained. Results for three different recognition thresholds tr 

are shown. Lower entropy indicates higher model selectivity. 
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Fig. 5 Annotation entropy HA as a function of time trained. Results for three different recognition 

thresholds tr are shown. Lower entropy indicates less models for each annotated word. 
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Fig. 6. Overall model quality Q as a function of time trained. Results for three different recognition 

thresholds tr are shown. 



A	
  COMPUTATIONAL	
  MODEL	
  OF	
  WORD	
  SEGMENTATION	
  
	
  

	
   35	
  

	
  

Figure 7 shows a surface plot for the model selectivity HC (Eq. 7) of individual models as 

a function of training time. Only 35 initially created models are shown in order to maintain the 

readability of the figure. As expected, the selectivity of the majority of the models improves over 

time (entropy decreases), although for all models the improvement is not necessarily monotonic. 

There are also a handful of models that actually become less selective over time. This seems to 

suggest that the models are not modeling only one word, but are actually specializing to a 

number of words (cf. the “doyouseethe” model in Figure 1).  
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Fig. 7. Surface-plot of model entropies HC for the first 35 models as a function of training time for the 

middle threshold case. The lower the entropy, the more selective the corresponding model is towards a 

limited set of words.  

 

Lexical coverage is shown in Figure 8. The high threshold condition again produces the 

best results, finding approximately 85 patterns (potential words) for each 100 words in the 

annotation. The lexical coverage and segmentation accuracy in the low threshold condition, on 

the other hand, seem to indicate that too few models are learned, causing the same models to 
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represent several subsequent words in the speech data.  In general, lexical coverage results 

support the earlier findings that most of the word models are already in place after ten minutes of 

training. However, the average model selectivity keeps increasing as more exemplars of the 

words occur in the data (Figures 4 and 5).  
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Fig. 8. Lexical coverage C as a function of time trained. Three different threshold conditions are shown. 

 

Table 2 shows the contents of the most selective models in the high threshold condition. 

Models that are primarily reacting to silence are not shown; a full list of models and their 

contents are listed in Appendix C. As can be seen from the table, the selectivity of some models 

is relatively high. For example, one model has reacted to the word “telephone” fourteen times 

with high purity (model activation is located 95% inside the annotated “telephone” words). In 

addition, there are words like “banana”, “daddy” and “animal” that include large portions of 

silence due to their frequent occurrence in an utterance-initial or utterance-final position. Since 

silence does not cause confusions between words, this simply shows up as a disagreement 

between the annotation and the models regarding the boundaries of utterances (e.g., refer to the 
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ending of model activation in Figure 1). Therefore, the overall selectivity of the models with 

silence can be considered to be well above 90% (e.g., banana 0.76 + #h 0.22  = 0.98).  

	
  

Table 2. Contents of the most selective models in the high threshold condition. Each row describes the 

contents of a single model. The three most covered words are shown per model. N denotes the number 

of occurrences in the test set and p denotes the proportion of activation corresponding to the given word 

class (0-1). #h denotes silence. Primarily silence models are not shown (see Appendix C for a full list). 

i N Hc α1 p α2 p α3 p 
1 2 0.00 frog 1.00         

2 2 0.00 baby 1.00         

3 3 0.02 red 0.98 the 0.02     

4 2 0.02 airplane 0.98 #h 0.02     

5 2 0.05 bird 0.94 and 0.06     

6 14 0.06 telephone 0.95 and 0.02 happy 0.01 

7 5 0.09 airplane 0.91 and 0.05 a 0.03 

8 4 0.11 sad 0.89 the 0.05 a 0.03 

9 5 0.12 said 0.87 small 0.06 square 0.04 

10 6 0.12 dirty 0.87 the 0.07 is 0.02 

11 6 0.12 bird 0.87 #h 0.04 a 0.04 

12 4 0.13 edible 0.82 the 0.15 sees 0.03 

13 6 0.13 duck 0.87 red 0.04 and 0.04 

14 7 0.14 happy 0.84 the  0.11 gives  0.02 

15 6 0.14 cookie 0.85 square 0.07 and 0.03 

16 9 0.14 airplane 0.78 #h 0.20 happy 0.01 

17 12 0.15 banana 0.76 #h 0.22 and 0.02 

18 9 0.15 bottle 0.85 #h  0.06 and 0.04 

19 8 0.15 round 0.83 gives 0.09 a 0.07 

20 3 0.16 telephone 0.79 big 0.12 red 0.05 

21 2 0.17 telephone 0.72 dirty 0.21 big 0.07 

22 3 0.18 apple 0.76 and 0.13 happy 0.07 

23 3 0.18 daddy 0.72 #h 0.19 gives 0.07 

24 12 0.18 animal 0.71 #h 0.24 an 0.03 

	
  

The least selective models of the high threshold condition are listed in Table 3. It is 

difficult to say anything comprehensive about why these models fail to represent any single 

word, but possible reasons include the fact that two or more short words end up easily inside the 

same analysis window during learning, leading to a common representation for all of the words. 
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Such examples include model 13, “[do] [you] [like]”, model 9 “[where] [is]”, and model 4 

“[have you]” or “[(do) you have]”. In addition, there are some words that share acoustic 

similarities, e.g., “ball” and “small” (model 8), “cow” and “cat” (model 11), and “red” and 

“round” (model 6). It is also simply possible that the analysis window has detected a novel 

segment of speech that spans partially across two longer words that happen to occur 

subsequently (e.g., …cle{an fro}g in model 15, window denoted with {}). As new occurrences 

of these words (cleans and frogs) occur in isolation, this model may still achieve sufficiently 

high activation to become updated, now with the full temporal span of the word. In this manner, 

the model becomes gradually more and more selective for full forms of the both words. Since the 

current implementation does not perform pruning, splitting, or merging of the representations, 

these errors do not become corrected. 

	
  

Table 3. Contents of the least selective models in the high threshold condition. The three most frequent 

words are shown per model. N denotes the number of occurrences in the test set and p denotes the 

proportion of activation corresponding to the given word class (0-1). #h denotes silence. 

i N HC α1 p α2 p α3 p 
1 29 0.50 see 0.26 you 0.21 #h 0.13 

2 3 0.48 see 0.19 happy 0.15 the 0.15 

3 7 0.47 animal 0.27 horse 0.14 apple 0.14 

4 12 0.45 have 0.35 you 0.16 #h 0.14 

5 15 0.45 man 0.34 smiling 0.22 round 0.1 

6 10 0.44 red 0.31 round 0.19 is 0.13 

7 3 0.44 have 0.29 the 0.18 you 0.16 

8 22 0.41 ball 0.45 porsche 0.16 small 0.15 

9 25 0.39 where 0.43 #h 0.15 is 0.13 

10 7 0.38 crying 0.33 round 0.29 happy 0.13 

11 8 0.38 cow 0.35 cat 0.22 #h 0.19 

12 4 0.38 looks 0.4 big 0.18 at 0.15 

13 16 0.37 like 0.35 you 0.21 do 0.18 

14 6 0.37 happy 0.43 gives 0.21 has 0.11 

15 10 0.37 clean 0.4 frog 0.26 truck 0.15 
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Table 4. All annotated words occurring in the test set. Word specific annotation entropies HA, three most 

activated models i, and the corresponding proportions p (0-1) of total word durations are shown for the 

high threshold condition. 

  1st 2nd 3rd 	
   	
    1st 2nd 3rd 
α HA i p i p i p 	
   α 	
   HA i p i p i p 

#h 0.53 2 0.16 15 0.15 92 0.15 	
   here 0.24 91 0.40 117 0.31 54 0.20 

a 0.76 133 0.04 109 0.04 19 0.03 	
   horse 0.33 18 0.37 4 0.22 180 0.12 

airplane 0.26 121 0.44 116 0.29 31 0.12 	
   I 0.12 60 0.69 108 0.31 169 0.01 

an 0.44 36 0.27 7 0.11 40 0.10 	
   is 0.48 22 0.20 91 0.12 17 0.10 

and 0.61 20 0.08 109 0.07 52 0.06 	
   like 0.21 40 0.45 133 0.39 124 0.10 

animal 0.28 7 0.51 83 0.19 30 0.11 	
   likes 0.35 74 0.23 13 0.21 14 0.19 

apple 0.33 83 0.43 167 0.17 69 0.15 	
   lion 0.30 52 0.41 158 0.25 45 0.11 

at 0.31 43 0.45 109 0.18 104 0.13 	
   looks 0.28 43 0.52 50 0.13 104 0.11 

baby 0.41 200 0.32 80 0.16 172 0.10 	
   man 0.32 110 0.38 19 0.29 50 0.10 

ball 0.15 20 0.66 4 0.30 135 0.01 	
   mean 0.03 108 0.97 52 0.03 35 0.00 

banana 0.23 151 0.52 53 0.22 106 0.17 	
   mummy 0.26 6 0.47 61 0.34 222 0.05 

big 0.57 213 0.09 44 0.07 102 0.07 	
   no 0.09 60 0.84 70 0.13 108 0.03 

bird 0.30 107 0.32 67 0.28 55 0.18 	
   porsche 0.26 4 0.43 20 0.27 2 0.14 

blue 0.35 136 0.41 72 0.16 53 0.15 	
   red 0.44 101 0.20 150 0.19 22 0.14 

bottle 0.25 192 0.50 152 0.21 83 0.18 	
   robin 0.29 75 0.28 152 0.26 132 0.24 

car 0.20 130 0.53 23 0.32 67 0.09 	
   round 0.43 137 0.27 134 0.18 22 0.09 

cat 0.23 32 0.41 103 0.35 102 0.17 	
   sad 0.34 49 0.36 96 0.19 89 0.16 

clean 0.29 23 0.52 120 0.20 77 0.11 	
   said 0.21 169 0.58 60 0.29 109 0.04 

cookie 0.19 28 0.50 84 0.41 184 0.04 	
   see 0.19 57 0.65 106 0.24 159 0.05 

cow 0.26 32 0.38 103 0.33 102 0.17 	
   sees 0.44 26 0.33 123 0.13 100 0.10 

crying 0.10 47 0.75 93 0.25 1 0.00 	
   she 0.44 157 0.12 66 0.12 86 0.11 

daddy 0.40 64 0.25 181 0.17 188 0.10 	
   small 0.26 12 0.45 16 0.25 20 0.17 

dirty 0.47 39 0.26 42 0.20 170 0.05 	
   smiling 0.16 35 0.66 19 0.25 164 0.07 

do 0.37 57 0.24 40 0.22 106 0.16 	
   square 0.36 122 0.29 79 0.26 11 0.14 

dog 0.25 170 0.66 88 0.06 118 0.06 	
   takes 0.21 9 0.71 228 0.09 110 0.06 

doll 0.23 170 0.67 34 0.10 8 0.06 	
   telephone 0.23 21 0.66 211 0.12 149 0.07 

duck 0.19 63 0.46 88 0.44 126 0.06 	
   the 0.74 25 0.05 22 0.05 57 0.05 

eagle 0.22 36 0.49 83 0.35 165 0.06 	
   there 0.43 54 0.21 141 0.18 8 0.10 

edible 0.26 59 0.47 205 0.28 195 0.13 	
   toy 0.22 85 0.52 34 0.34 69 0.05 

fish 0.06 48 0.94 16 0.03 123 0.02 	
   tree 0.22 135 0.46 16 0.33 109 0.16 

frog 0.31 100 0.42 201 0.19 38 0.12 	
   truck 0.22 109 0.68 120 0.09 213 0.08 

gives 0.44 129 0.18 147 0.18 95 0.17 	
   where 0.14 22 0.59 17 0.39 8 0.01 

happy 0.44 25 0.33 10 0.15 99 0.12 	
   woman 0.37 94 0.41 119 0.13 147 0.08 

has 0.41 188 0.27 61 0.13 218 0.12 	
   yellow 0.40 162 0.24 180 0.24 140 0.10 

have 0.30 125 0.43 76 0.24 32 0.09 	
   you 0.36 57 0.33 40 0.18 106 0.16 

he 0.46 80 0.14 36 0.13 57 0.11 	
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Table 4 lists all words occurring in the test set, the corresponding annotation entropies 

HA, and three models i that are most active during the word, and the relative temporal coverage p 

of these models during the high threshold condition. The table shows that several models exist 

for the majority of the annotated words, while the words “mean”, “fish”, and “no” are exceptions 

to the rule. Words such as “I”, “ball”, “car”, “duck”, “eagle”, “see” and “toy” are mainly 

represented by two different models since the two models cover nearly 100% of the word 

occurrences in the test set. On the other hand, very short function words and verbs such as “a”,  

“an”, “the”, “is”, “do” and the silence “#h” activate a large variety of models. By combining the 

information from Table 3, it can be concluded that these short and often sloppily pronounced 

words hardly obtain their own representations in the system, but are included in larger proto-

lexical constructs such as “a ball”, “an apple”, “doyousee” (Figure 1) or “doyoulikethe” 

(Appendix D).  

Finally, Figure 9 shows the distributions of the word durations, both for the learned 

words (red) and annotated words (blue) (silence segments are excluded). As can be seen, there is 

an evident tendency for the algorithm to produce somewhat shorter segments than have been 

annotated, although a large number of long (> 150 ms) segments can also be found. Both 

distributions are clearly bimodal, showing that the algorithm is segmenting both mono- and 

multisyllabic words. The insertion rates for monosyllabic words were 8.2% for the middle 

threshold case and 20% for the high threshold case, whereas multisyllabic words had respective 

insertion rates of 11.7% and 25.2%. In general, it seems that despite a fixed analysis window size 

of 600 ms, the learned models vary notably in their duration and the distribution of durations 

approximately follows the distribution derived from the annotation. A relatively low increase in 
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insertion rate from mono- to multisyllabic words also supports the finding that words are mainly 

modeled in their entirety instead of being chunked into syllable-like units. 
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Fig. 9. Distributions of segment lengths for learned segments (red) and annotated segments (blue).  

 

Manual perceptual evaluation supports the findings from automatic evaluation. When the 

detected speech segments are extracted, then categorized according to models, and finally 

listened to, many of the models exhibit fairly accurate word segmentation in terms of subjective 

perceptual judgment (see also some spectrogram examples in Appendix D). As can be expected 

based on Table 2, some of the models are very pure and only rarely contain extraneous signal 

contents in addition to one specific word, whereas some of the models are selective and accurate 

simultaneously for two different words, or combinations of two or more short words that occur 

often consecutively. 

Overall, the results clearly show that in the case of only one talker and with the small 

vocabulary used in the experiments, learning of coarse word-like models is rapidly achieved. 

Model selectivity and segmentation accuracy are already greatly above chance level after a few 
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word tokens, and only a slight gradual improvement can be perceived as more speech is 

introduced.  

It is also evident from Tables 3 and 4 that the number of learned models is notably higher 

than the true number of words in the vocabulary even though the selectivity of the models is not 

ideal. However, this is not surprising considering the complexity of real speech. Context 

dependent and normal intra-speaker variation can cause significant acoustical changes to the 

signal, yielding different representations in the used discrete acoustic space. It is also possible 

that two or more word models develop towards very similar representations as more training data 

are introduced, and they both become activated once their characteristic word is spoken. Since 

the current implementation has no special mechanism for pruning or merging of models, similar 

models will remain as parallel alternatives for the same word. In the future it would be 

worthwhile to study grouping and segmenting of models in terms of isomorphic properties of 

their activation curves.  

4.2 Multiple talkers 

The same experiment as described in section 4.1 was also performed for four talkers (two 

males, two females). There were two separate conditions: a random case, where all utterances 

from all four talkers were mixed in a random order, and in addition, the experiment was repeated 

in a talker-blocked order (male, female, male, female), in which the first 2144 utterances were 

from talker-01, the next 2144 from talker-02 and so on. The test set always contained 1376 

randomly chosen novel utterances from all four talkers, although the results are also reported 

separately for each talker in the test set. In the following figures, the results from the single-

speaker experiment are also plotted for reference purposes using a black dashed line.  
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A VQ codebook of size NA = 128 labels was trained using randomly chosen speech 

material from the training set. By using the high threshold level of the single talker case (tr = 

0.052), the full training signal of approximately 335 minutes (over 5.5 hours) in length was used 

as input to the learning algorithm. This produced a total of 287 and 304 models for the random 

and blocked cases, respectively. These numbers are slightly higher than the 264 models in the 

single talker case, although the alphabet still consists of the same 80 words. 

Figure 10 shows the segmentation accuracies in terms of mean deviation from reference 

and Figure 11 shows the number of insertions per word for each talker. The first observation is 

that a randomized talker order leads to faster convergence of the mean deviation for all talkers, 

whereas a blocked ordering requires full training of the two first talkers to achieve an accuracy 

comparable to the single-speaker condition. Interestingly, there are also small bumps in the mean 

boundary deviation after the introduction of a new speaker. When the insertions are studied, 

there are notable differences between blocked and randomized orders: with blocked order the 

insertion rates for talker 3 and 4 data increase gradually to relatively high levels during the 

training of the previous talkers, but drop down quickly when speech from the corresponding 

talkers are introduced to the system. Both the deviation bumps and the quickly dropping 

insertion rates are caused by a number of new models that are learned at talker change points in 

order to address the mismatch between existing models and the new data. These new models 

have initially poor selectivity, causing inaccuracies in the segmentation. However, as already 

noted in the single-speaker experiments, approximately 10 minutes of data from a new talker are 

sufficient to improve the model quality to a large degree, stabilizing the segmentation procedure. 

The results also suggest that data from the two first talkers generalize poorly to the remaining 

two caregivers, causing words to be split into smaller sub-segments and therefore increasing the 
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number of insertions. In general, the mean segmentation accuracies fall slightly behind the 

accuracy achieved within the single talker experiment, but the differences are not large. This is 

also verified in Figure 12 that reveals the mean number of correctly detected reference 

boundaries over all four talkers.  
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Fig. 10. Mean segment boundary deviation from reference. Results are shown separately for each talker. 

The blue solid line and red dotted line correspond to blocked and randomized conditions (respectively). 

The result from the single speaker experiment is shown as a reference using a black dashed line. Talker 

change locations for blocked ordering are shown using dashed vertical lines. 
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Fig. 11. The mean number of insertions per annotated word. Results are shown separately for each 

talker. The blue solid line and red dotted line correspond to blocked and randomized conditions 

(respectively). The result from the single speaker experiment is shown as a reference using a black 

dashed line. Talker change locations for blocked ordering are shown with vertical dashed lines. 
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Fig. 12. The number of detected reference word boundaries (%) as a function of maximum distance that 

is allowed between the reference boundary and the boundary discovered by the algorithm. 

 

As for the model contents, Figure 13 shows the mean model selectivity in terms of model 

entropy HC. The talker specific differences in speech are readily seen. Since the test set contains 

speech from all four talkers, the models learned in the talker-blocked order are not very good at 

classifying words from new talkers if only one or two talkers are seen. During exposure to the 

first talker, there is hardly any improvement in the model qualities for speech from the other 

talkers. When speech from the second talker is used to train the system at the first block change 

point, the model selectivity starts to improve quickly for the second talker. There is also a much 

better generalization from talker 2 to talker 3 than there is from talker 1, and this is seen as a 

steeper slope in the entropy curve in the lower left panel during the second block. Still, a 

significant speedup in the evolution of model quality can be perceived for talker 3 when speech 

material from talker 3 is also used to train the system during the third block. Interestingly 

enough, the learning speed for talker 1 is not significantly hindered during the randomized 
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condition, although learning is naturally much faster for all the remaining three talkers as they 

are also included in the training data immediately from the start. 

The differences in the verbal characteristics of the four talkers are also reflected in Figure 

14 that describes how many parallel models exist for each annotated word. Since the selectivity 

of the models is poor for novel talkers, a very high number of models are reacting to each 

annotated word (high annotation entropy HA) as long as there is no speech from the 

corresponding talker in the training data. As soon as matching data become available, the number 

of parallel models drops quickly as models can adapt themselves to the talker specific patterns. 

In terms of annotation entropy, the generalization from the first three talkers to the last talker is 

much worse than in terms of model selectivity (cf. Figure 13). This suggests that many of the 

words spoken by talker 4 can be recognized relatively well using the models learned on the basis 

of talkers 1-3, but there are several – possibly speaker-specific – models from which one or 

another word is activated depending on the given realization of the word. Only the matching 

training data from talker 4 are able to limit the number of parallel models to a much smaller set, 

either by creating new models for some of the words, but more often updating a subset of the 

existing ones to account for the spectrotemporal characteristics of the new talker. The 

generalization problems from one speaker to another are also reflected in the overall model 

quality measure Q in Figure 15. 
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Fig. 13. Model entropy HC as a function of time trained. Results for randomized talker order (red dotted 

line) and talker blocked ordering (blue solid line) are shown separately. Talker change locations for 

blocked ordering are shown using dashed vertical lines. In addition, the HC value from the single talker 

experiment is shown as a reference using a black dashed line 
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Fig. 14. Annotation entropy HA as a function of time trained. Results for randomized talker order (red 

dotted line) and talker blocked ordering (blue solid line) are shown separately. Talker change locations for 

blocked ordering are shown using dashed vertical lines. In addition, the HA value from the single talker 

experiment is shown as a reference using a black dashed line 
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Fig. 15. Overall model quality Q as a function of time trained. Results for randomized talker order (red 

dotted line) and talker blocked ordering (blue solid line) are shown separately. Talker change locations for 

blocked ordering are shown using dashed vertical lines. In addition, the Q value from the single talker 

experiment is shown as a reference using a black dashed line. 

 

In order to get an overview of the process instead of talker specific performance, Figure 16 

indicates the model entropy HC, annotation entropy HA, and the Q measure evaluated over the 

entire test set of four talkers. Note that the entropy values are not averages of talker specific 

values because the model activations are not now studied in isolation from the speech by other 

talkers (see Equations 7-10). This leads to higher entropies due to acoustically overlapping but 

linguistically distinct patterns between talkers (e.g., the same model may represent different 

words or parts of words for different talkers). In other words, the internal representations are less 

organized in terms of linguistic identities of the patterns if talker identity is not available to the 

system during the recognition of a pattern. This means that multiple-speaker performance is 

much worse than that of the single-speaker experiment (black dashed lines) when the 

correspondence between mappings from acoustic patterns to annotated words is measured in the 
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context of speaker-independent models. Although the quality of the models keeps increasing to 

the end of training, the overall Q measure obtains only a value of Q = 0.62 in the randomized 

talker order in contrast to the Q = 0.75 obtained in the single-speaker conditions during 90 

minutes of training data.  
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Fig. 16. Model entropy HC (left), annotation entropy HA (middle), and overall quality Q (right) evaluated 

over the entire multi-talker test set. Results for randomized talker order (red dotted line) and talker 

blocked ordering (blue solid line) are shown separately. Talker change locations for blocked ordering are 

shown with vertical lines. Single-speaker result is shown for comparison with the dashed black line. 

 

Table 5 shows the contents of the eight most selective models (top section). Although the 

selectivity of these models is good, one immediately notices that the occurrence count of these 

models is relatively low (note that the total number of words in the material is four times than 

that of the single talker condition). The bottom section of Table 5 shows a number of models that 

have a higher number of occurrences. The selectivity of these models is already notably worse 

than for the most selective models, but still comparable to the single talker condition. Table 6 

shows the distribution of model activities for each annotated word. The increased number of 

parallel models per each keyword in the multi-talker experiment can be seen in the word specific 
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model distributions since nearly all words have a higher annotation entropy HA than in the single-

speaker case. 

Finally, Figure 17 shows the lexical coverage of the multitalker experiments. Lexical 

coverage follows the same trend as the other measures, randomized talker order performing 

better with less data, as speech from all talkers in the test set is taken into account already at the 

beginning of the training. After full training, the performance in the blocked order experiment 

reaches similar levels to those measured when randomized order was applied. 

 

Table 5: Contents of models in the multiple talker experiment. Eight most selective models (in terms of 

entropy) are shown. For each model, p denotes the proportion (0-1) of each word α . Additionally, a 

number of relatively selective models with a high occurrence count N are listed. 

i N HC α1 p α2 p α3 p 
1 4 0.04 truck 0.96 robin 0.04     

2 2 0.06 here 0.93 #h 0.07     

3 3 0.08 telephone 0.9 a 0.07 and 0.02 

4 8 0.09 cookie 0.87 #h 0.13     

5 8 0.10 dirty 0.91 a 0.03 bottle 0.03 

6 2 0.10 banana 0.84 and 0.16     

7 10 0.12 dog 0.88 big 0.05 clean 0.03 

8 2 0.12 sad 0.85 the 0.09 has 0.07 

  ...  ... ... ... ... ... ... 

9 11 0.17 gives 0.76 she 0.12 he 0.11 

10 10 0.18 telephone 0.76 woman 0.12 happy 0.09 

11 23 0.18 happy 0.83 yellow 0.05 mummy 0.04 

12 13 0.21 telephone 0.73 sad 0.15 yellow 0.06 

13 17 0.22 man 0.77 sees 0.05 a 0.05 

14 14 0.23 bottle 0.76 big 0.06 square 0.06 
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Table 6. All annotated words occurring in the multi-talker test set. Word specific annotation entropies HA, 

the three most activated models i, and the corresponding proportions p (0-1) of word durations are 

shown. 

  1st 2nd 3rd 	
     1st 2nd 3rd 

α  HA i p i p i p 	
   α  HA i p i p i p 
#h	
   0.62	
   133	
   0.11	
   64	
   0.08	
   80	
   0.08	
   	
   horse	
   0.49	
   34	
   0.16	
   19	
   0.14	
   91	
   0.10	
  

a	
   0.84	
   21	
   0.04	
   18	
   0.03	
   65	
   0.03	
   	
   I	
   0.33	
   151	
   0.32	
   26	
   0.19	
   93	
   0.18	
  

airplane	
   0.59	
   140	
   0.13	
   142	
   0.09	
   71	
   0.07	
   	
   is	
   0.58	
   21	
   0.10	
   189	
   0.09	
   24	
   0.09	
  

an	
   0.66	
   244	
   0.11	
   12	
   0.05	
   18	
   0.04	
   	
   like	
   0.40	
   126	
   0.29	
   37	
   0.20	
   94	
   0.12	
  

and	
   0.57	
   244	
   0.18	
   4	
   0.13	
   74	
   0.13	
   	
   likes	
   0.40	
   79	
   0.28	
   72	
   0.23	
   199	
   0.13	
  

animal	
   0.56	
   87	
   0.13	
   41	
   0.09	
   125	
   0.08	
   	
   lion	
   0.54	
   11	
   0.16	
   224	
   0.10	
   41	
   0.09	
  

apple	
   0.49	
   65	
   0.15	
   5	
   0.14	
   167	
   0.13	
   	
   looks	
   0.44	
   114	
   0.25	
   78	
   0.17	
   98	
   0.16	
  

at	
   0.39	
   114	
   0.25	
   78	
   0.20	
   98	
   0.15	
   	
   man	
   0.52	
   134	
   0.20	
   18	
   0.19	
   143	
   0.06	
  

baby	
   0.51	
   92	
   0.18	
   149	
   0.16	
   69	
   0.12	
   	
   mean	
   0.50	
   26	
   0.20	
   151	
   0.12	
   33	
   0.11	
  

ball	
   0.53	
   52	
   0.12	
   40	
   0.11	
   149	
   0.09	
   	
   mummy	
   0.57	
   25	
   0.13	
   106	
   0.11	
   199	
   0.10	
  

banana	
   0.56	
   136	
   0.17	
   203	
   0.09	
   112	
   0.09	
   	
   no	
   0.37	
   158	
   0.29	
   151	
   0.21	
   93	
   0.15	
  

big	
   0.63	
   145	
   0.12	
   182	
   0.12	
   156	
   0.07	
   	
   porsche	
   0.43	
   67	
   0.23	
   93	
   0.18	
   27	
   0.16	
  

bird	
   0.56	
   91	
   0.16	
   290	
   0.12	
   201	
   0.12	
   	
   red	
   0.57	
   132	
   0.11	
   240	
   0.10	
   223	
   0.08	
  

blue	
   0.58	
   60	
   0.18	
   177	
   0.12	
   224	
   0.08	
   	
   robin	
   0.56	
   46	
   0.13	
   11	
   0.09	
   197	
   0.08	
  

bottle	
   0.46	
   77	
   0.17	
   65	
   0.16	
   270	
   0.16	
   	
   round	
   0.59	
   113	
   0.12	
   68	
   0.11	
   100	
   0.11	
  

car	
   0.40	
   68	
   0.28	
   255	
   0.25	
   202	
   0.10	
   	
   sad	
   0.44	
   18	
   0.19	
   16	
   0.18	
   47	
   0.14	
  

cat	
   0.52	
   18	
   0.15	
   38	
   0.13	
   41	
   0.13	
   	
   said	
   0.40	
   151	
   0.24	
   93	
   0.15	
   26	
   0.15	
  

clean	
   0.47	
   51	
   0.24	
   70	
   0.13	
   156	
   0.11	
   	
   see	
   0.27	
   2	
   0.47	
   69	
   0.29	
   14	
   0.10	
  

cookie	
   0.34	
   185	
   0.29	
   170	
   0.25	
   59	
   0.21	
   	
   sees	
   0.43	
   31	
   0.17	
   2	
   0.17	
   69	
   0.17	
  

cow	
   0.55	
   211	
   0.15	
   68	
   0.14	
   38	
   0.10	
   	
   sells	
   0.00	
   1	
   0.00	
   2	
   0.00	
   3	
   0.00	
  

crying	
   0.33	
   35	
   0.26	
   45	
   0.23	
   51	
   0.22	
   	
   she	
   0.24	
   17	
   0.71	
   72	
   0.05	
   148	
   0.04	
  

daddy	
   0.59	
   149	
   0.18	
   205	
   0.07	
   31	
   0.07	
   	
   small	
   0.42	
   27	
   0.25	
   95	
   0.18	
   65	
   0.15	
  

dirty	
   0.56	
   10	
   0.18	
   176	
   0.11	
   194	
   0.08	
   	
   smiling	
   0.45	
   45	
   0.20	
   51	
   0.17	
   22	
   0.13	
  

do	
   0.40	
   50	
   0.27	
   2	
   0.20	
   14	
   0.12	
   	
   square	
   0.46	
   7	
   0.22	
   30	
   0.16	
   58	
   0.11	
  

dog	
   0.52	
   150	
   0.18	
   40	
   0.11	
   65	
   0.10	
   	
   takes	
   0.41	
   22	
   0.22	
   108	
   0.19	
   59	
   0.18	
  

doll	
   0.48	
   52	
   0.26	
   40	
   0.15	
   82	
   0.09	
   	
   telephone	
   0.46	
   107	
   0.22	
   162	
   0.21	
   117	
   0.12	
  

duck	
   0.51	
   99	
   0.18	
   213	
   0.16	
   4	
   0.12	
   	
   the	
   0.79	
   2	
   0.07	
   69	
   0.04	
   18	
   0.03	
  

eagle	
   0.50	
   83	
   0.22	
   167	
   0.09	
   70	
   0.09	
   	
   there	
   0.50	
   34	
   0.19	
   189	
   0.14	
   146	
   0.11	
  

edible	
   0.52	
   216	
   0.21	
   180	
   0.13	
   84	
   0.08	
   	
   this	
   0.26	
   208	
   0.31	
   189	
   0.24	
   29	
   0.23	
  

fish	
   0.34	
   133	
   0.34	
   66	
   0.27	
   118	
   0.18	
   	
   toy	
   0.45	
   49	
   0.18	
   183	
   0.17	
   43	
   0.14	
  

frog	
   0.37	
   42	
   0.33	
   161	
   0.20	
   65	
   0.15	
   	
   tree	
   0.36	
   229	
   0.26	
   85	
   0.23	
   119	
   0.18	
  

gives	
   0.52	
   36	
   0.17	
   205	
   0.15	
   154	
   0.10	
   	
   truck	
   0.47	
   85	
   0.25	
   213	
   0.13	
   62	
   0.09	
  

happy	
   0.51	
   15	
   0.19	
   141	
   0.16	
   208	
   0.15	
   	
   where	
   0.37	
   30	
   0.22	
   190	
   0.17	
   109	
   0.14	
  

has	
   0.44	
   28	
   0.21	
   60	
   0.20	
   39	
   0.17	
   	
   woman	
   0.46	
   25	
   0.17	
   97	
   0.17	
   111	
   0.14	
  

have	
   0.40	
   16	
   0.21	
   28	
   0.19	
   50	
   0.16	
   	
   yellow	
   0.55	
   20	
   0.14	
   186	
   0.13	
   26	
   0.08	
  

he	
   0.51	
   59	
   0.26	
   148	
   0.07	
   21	
   0.06	
   	
   you	
   0.41	
   50	
   0.27	
   2	
   0.14	
   14	
   0.13	
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Fig. 17. Lexical coverage C as a function of time trained. Results for randomized talker order (red dotted 

line) and talker blocked ordering (blue solid line) are shown separately. Talker change locations for 

blocked ordering are shown using dashed vertical lines. In addition, the C value from the single talker 

experiment is shown as a reference using a black dashed line. 

 

Overall, the results show that segmentation performance is relatively good also for the 

case of multiple, acoustically distinct talkers (Figures 10-12). The learned models also show 

coarse selectivity towards specific words, although the modeling performance is far below the 

single talker case even after full training. This is somewhat the expected result since the constant 

number of VQ-labels for acoustic events starts to correspond to a broader variety of speech 

sounds as more talkers are introduced. This makes the atomic representation of speech less 

detailed and greatly reduces the transition probability marginal between familiar and novel 

patterns.  

In general, the results from multiple talkers are in line with what is known about acoustic 

differences between talkers and thereby mismatches between talker specific models – a problem 

that is causing large challenges in the task of automatic speech recognition (e.g., Huang, 1992). 
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This is also in line with the literature regarding the first stages of infant speech perception. It is 

known that at 9 months of age, an infant’s representations of speech are overly detailed, and 

differences in pitch (Singh et al., 2008), sex (i.e., pitch, formant frequencies and possibly 

speaking style; Houston & Jusczyk, 2000), and stress (Bortfeld & Morgan, in press) in the 

spoken word tokens have an adverse effect on their word recognition performance. Only later in 

development do infants become proficient in generalizing across talkers. Regarding the gender of 

the talker, infants of age 10.5 months were able to perform this generalization (Houston & 

Jusczyk, 2000).  

4.3 Effects of the parameters 

A general drawback with the proposed model for word segmentation is that all the above 

parameters need to be defined manually and a poor selection of parameters can lead to low 

quality word models. The model activity threshold tr determines the number of models that are 

learned for the given data, whereas the window length Lr affects the learning speed and 

characteristic lengths of the units that are learned. If Lr is set too low, the decision between 

familiar vs. novel pattern has to be made based on less data and the window never sees longer 

words in full. This leads to a modeling of short recurring acoustic segments that have high 

selectivity, and the words become fragmented into short sub-word segments. This increases the 

number of insertions radically if word level annotation is used as a reference point. On the other 

hand, a too large Lr potentially leads to a situation where several novel words that occur 

subsequently in the training data are incorporated into a single model. This is because both words 

might fit into the analysis window at the same time and therefore the newly formed model might 

become the dominating model for both of the words.  
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Other affecting factors include the codebook size and the way that activation values are 

smoothed temporally. For the given corpus, the overall performance was not highly affected 

when the codebook size was varied between 32 and 150 labels. Larger codebooks simply require 

lower novelty thresholds tr since the probabilities of spectrotemporal trajectories become smaller 

as the number of different possible trajectories increases. At the extremes of codebook size, 

things naturally change. For very small codebooks the spectral resolution is not sufficient to 

differentiate between different words and model selectivity becomes poor. For very large 

codebooks (NA >> 256) the resolution becomes too high to detect recurring structures, yielding 

totally different VQ sequences for even slightly different realizations of a word.  

The issue of temporal smoothing of activation values is more complicated. During 

novel/old classification they do not play any role since the winning model is simply the one with 

the highest cumulative activation within the given time window Lr. During final recognition and 

segmentation, however, smoothing has a significant effect. Without smoothing, the winning 

word model can change very rapidly from one model to another and then back again, e.g., in the 

case where there are several competing words sharing the same syllabic structures. This 

“jumping” from one model to another causes a high amount of over-segmentation if every 

winning model change point is defined as a word boundary. The effect disappears when 

sufficient temporal filtering is applied. On the other hand, too much smoothing has an adverse 

effect on the temporal accuracy. In this work we used a simple moving-average (SMA) filtering 

technique of length 480 ms since it was found to lead to reasonable results (see also Räsänen et 

al., 2009a). This choice was not motivated by any existing theory, although similar smoothing 

mechanisms are assumed in, e.g., in TRACE model of speech perception where the phoneme and 

word unit activations decay over time (McClelland & Elman, 1986). 
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5. Discussion 

The present work demonstrates that automatic word segmentation and learning of 

primitive ungrounded lexical items from real continuous speech is possible without pre-existing 

linguistic knowledge (e.g., a phonemic system) or contextual support by simply analyzing 

transitional probabilities between atomic acoustic events. Moreover, the current computational 

model demonstrates how the acquisition of protolexical word models aids, and is parallel to, the 

word segmentation task. This provides support to the distributional learning hypothesis (e.g., 

Saffran et al., 1996; Saffran, 2001) and the idea that preliminary lexical items might precede the 

formation of a phonemic re-organization of perception, as is suggested in the PRIMIR theory of 

language acquisition (Werker & Curtin, 2005).  

 Note that the model does not prove that the phonemic categories follow primitive lexical 

learning (cf. Werker & Curtin, 2005; Pisoni, 1997; Port, 2007), nor that real infants would 

perceive speech as a sequence of discrete elements, but simply shows that the knowledge of 

phonemic categories, or even segments of phones or syllables, is not necessary for rudimentary 

lexical learning. As discussed in the introduction, the assumption of phonemic perception before 

lexical learning is controversial and it is more likely that if phonemic representation exists at all, 

it develops with the help of some kind of proto-lexical layer that provides the necessary 

constraints for the development of categorical perception of sub-word structures (cf. Feldman et 

al., 2009). The current results are also in conflict with the work of Yang (2004), where it is 

explicitly claimed that transitional probability analysis alone cannot segment words from real 

speech, but innate linguistic constraints are necessary to determine what properties of the signal 

should be attended to.  
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The results from infant literature and also from the experiments described in this paper 

seem to indicate that young infants may originally have representations of words that are tied 

closely to acoustic details and describe the words or even combinations of often co-occurring 

words as a whole. The awareness that words are constitutes of smaller invariant building blocks 

such as phonemes is not yet in place nor required for lexical learning. Simply stated, word 

recognition takes place if a sufficiently close acoustic match to an existing representation occurs. 

The absence of a phonemic system also means that two or more similar words (e.g., minimal 

pairs) may become integrated into a single proto-lexical model since their similarity may be 

higher than the similarity of the same word spoken by two different persons (cf., e.g., Rost & 

McMurray, 2009). Similarly, an identical word spoken in different contexts by one speaker, or 

by different speakers, may lead to several parallel items in the lexicon, as long as there are no 

additional cues that would signify categorical similarity of the tokens. Only experience, not only 

with more perceived speech, but also with the functional and social contexts in which the speech 

takes place, can provide the necessary support for the development of lexical and sub-lexical 

representations that can overcome the limitations of the initial models that are based on acoustic 

regularities. 

As for the methodological aspect, the proposed algorithm is technically very 

straightforward and it is very likely that, with further development, the performance of the 

algorithm can be enhanced. For example, the current windowing process uses a fixed window 

length and step size. This forces an overlap between subsequent windows and also leads 

regularly to windows that span across several subsequent words. Utilizing a varying length 

windowing approach that is synchronized, e.g., to the temporal envelope of the speech 

waveform, could facilitate learning and increase model selectivity (cf., e.g., Ahissar & Ahissar, 
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2005). Another limitation of the current approach is that it is strictly limited to a discrete acoustic 

space. This makes the models susceptible to noise in the input, since the hard decisions made at 

the vector quantization stage lead to different representations for slightly different acoustic 

events. However, this is not a fundamental limitation and it is possible to extend the current 

algorithm to approximate a continuous acoustic space with multiple weighted VQ labels per 

frame, or by using a Gaussian mixture frontend instead of vector quantization. Despite the 

current shortcomings, the algorithm clearly demonstrates a capability for the incremental 

learning of internal representations from speech without supervision.  

It is also noteworthy that the proposed model is purely incremental and the details of the 

acoustic input can be forgotten as soon as a few hundred milliseconds after the signal has arrived 

to the system. This also means that the model is fully unaware of the global transition 

probabilities of linguistic or phonetic units like phones, syllables, and words since it cannot 

backtrack to previously heard utterances and attempt to parse them using later learned models. 

Additionally, the learned word models are ready to be grounded to other information sources 

available to the learner, e.g., through cross-situational learning (Smith & Yu, 2008).  

When compared to the PERUSE algorithm (Oates 2002) and the DTW-based approaches 

for unsupervised word learning (Park & Glass, 2005, 2006; Aimetti, 2009), it is evident that the 

previous approaches are also compatible with the idea of tracking transitional probabilities in 

speech. Detailed pair-wise spectral comparisons between previously perceived utterances ensure 

that recurring structural dependencies are detected if they exist, even though the algorithms do 

not explicitly manipulate the probabilities of subsequent acoustic events in a manner that is often 

represented in the infant learning literature (e.g., Saffran al., 1996). The first major difference 

between the current algorithm and the DTW-based approaches is in the manner that the memory 
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of the learner is organized. The DTW-based approaches and the PERUSE use full feature vector 

representations of all episodes, i.e., they assume acoustic episodic memory in which the heard 

utterances are stored. On the other hand, the algorithm proposed in this work only stores 

transitional probabilities between atomic acoustic events, and the actual realizations of earlier 

heard utterances are never revisited. Another major difference is that the current model is 

inherently performing temporal prediction in its processing, as the current signal is used to 

predict the distribution of future acoustic events. This model can also be easily extended to a 

word level predictor by simply replacing the low-level VQ-input with the indices of the winning 

model at each moment in time.  

5.1 Generality of the results 

Although demonstrated with speech material, the methods used in this work are not 

speech specific, and are therefore applicable to any type of audio or even other modalities. For 

example, a similar transition probability framework has been studied in automatic auditory 

environment segmentation and classification with promising results (Räsänen & Laine, in 

preparation). What this suggests is that the bootstrapping of the speech recognition process does 

not necessarily require special attention to phonetically and linguistically motivated features like 

pitch, stress, phones, or syllables. This is also supported by the finding that transition probability 

based segmentation of tone sequences (Saffran, Johnson, Aslin, & Newport, 1999), visual 

images (Kirkham, Slemmer, & Johnson, 2002) and primitive visual actions (Baldwin, 

Andersson, Saffran, & Meyer, 2008) has been demonstrated with human subjects. The above 

does not rule out that the perception of speech is adapted to the properties of the native language 

during the development of an infant (see, e.g., Kuhl, 2004), but simply states that the knowledge 

of these features is not required in advance for learning to be initiated. In later stages of 
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development, the plastic human brain will probably exploit any systematic properties of sensory 

input that exhibit a predictive value for the perceiver.  

Regarding the language generality of the computational model, the experiments reported 

here for English speech were also performed for Finnish (CAREGIVER Y1 FIN corpus; 

Altosaar et al., 2010), which is a very different language from English due to its agglutinative 

morphology. Despite the large differences between the languages, the results were very similar 

and all observations drawn here for English are applicable for Finnish as well. In addition, there 

were some additional effects for Finnish like the learning of individual models for the most 

commonly occurring morphemes in inflections. On the other hand, the lack of articles in Finnish 

increases the average word length, possibly making the fixed window analysis more suitable for 

Finnish. In order to keep this work as compact as possible, the experiments performed with 

Finnish data were not reported in further detail.  

5.2 Future work  

The MFCCs used as features in this work represent the overall spectral structure that 

includes spectral tilt and formants. This means that cues for syllabic or phonemic identity and 

linguistic stress are all embedded in the single MFCC representation. In addition, timing cues are 

implicitly included in the model through the modeling of speech sound transitions at different 

temporal distances. However, in the future it would make sense to study the relative weight of 

different acoustic cues (e.g., energy, spectral tilt, pitch) on the segmentation performance using 

the proposed algorithm.    

It would also be interesting to study the applicability of the proposed model to the 

acquisition of phone- or syllable-like segments. By using smaller analysis windows and shorter 

time constants in activity smoothing, and possibly synchronizing the novelty detection window 
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to the envelope of syllabic structure (see above), the algorithm would attempt to discover 

recurring structures at this smaller time scale. However, this requires the use of a much larger 

speech corpus, since the current vocabulary of 80 words has only a small number of overlapping 

syllables across words, and therefore it cannot account for the context effects of phonemes. An 

ideal corpus for this purpose would contain extensive amounts of speech from a limited number 

of talkers. Signals should be recorded in controlled environments, since additional noise outside 

of normal speech and talker variation make the analysis much more difficult and expensive in 

terms of computational complexity.  

5.3 Concluding remarks 

Although the current work has shown the possibility for totally unsupervised learning of 

proto-lexical candidates, it should not be forgotten that real linguistic development takes place in 

a much richer world where the learner is embedded in tight interaction with its caregivers and the 

surrounding environment (e.g., Meltzoff, Kuhl, Movellan, & Sejnowski, 2009). When compared 

to the unimodal learning situation as was used in this work, the interaction with the complex real 

world and other social agents actually imposes additional constraints and provides feedback that 

can aid in linguistic development (see, e.g., Oudeyer & Kaplan, 2006; Yu et al., 2005). Also, the 

only way to acquire meaning for the auditory word forms is to ground them in other perceptual 

systems and actions of the agent. This is something that was not studied in this work on purpose 

in order to see how much is possible using only a single audio source. It should also be noted that 

a real infant is exposed to a much larger amount of speech during infancy than what was used in 

this study, or any other known studies attempting to perform computational modeling of 

language acquisition. 
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Finally, the level of processing at which multimodality and feedback come into play and 

where grounding of words takes place, is not clear. In the study and modeling of cognitive 

agents, it is of great interest to understand how much can, and should be, processed in one 

sensory stream alone, and when is it appropriate to utilize information across several sensory 

modalities, motor actions, and internal states of the system in order to perform useful and 

efficient computations. So far, a theoretic framework for solving these types of computational 

learning questions is still missing. 
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Appendix	
  A	
  

Table	
  A1:	
  Vocabulary	
  of	
  the	
  CAREGIVER	
  Y2	
  UK	
  corpus	
  

'#h' 'cookie' 'here' 'sells' 

'<sil>' 'cow' 'horse' 'she' 

'a' 'crying' 'i' 'small' 

'airplane' 'daddy' 'is' 'smiling' 

'an' 'dirty' 'like' 'square' 

'and' 'do' 'likes' 'stares' 

'animal' 'dog' 'lion' 'take' 

'apple' 'doll' 'looks' 'takes' 

'at' 'duck' 'man' 'telephone' 

'baby' 'eagle' 'mean' 'that' 

'ball' 'edible' 'mummy' 'the' 

'banana' 'fish' 'no' 'there' 

'big' 'frog' 'porsche' 'this' 

'bird' 'give' 'red' 'toy' 

'blue' 'gives' 'robin' 'tree' 

'bottle' 'had' 'round' 'truck' 

'car' 'happy' 'sad' 'where' 

'cares' 'has' 'said' 'woman' 

'cat' 'have' 'see' 'yellow' 

'clean' 'he' 'sees' 'you' 
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Appendix	
  B	
  	
  
Computation of MFCCs: The incoming speech signal x is windowed into a series of frames 

using a Hamming window function w 

€ 

w[n] = 0.54 − 0.46cos 2πn
N −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       (B1) 

where N is the total length of the window. In other words, N subsequent samples of the 

waveform are chosen and each sample x[n], n = {1, …, N}, is multiplied by the Hamming 

window value w[n].   

€ 

y[n] = x[n]w[n]       (B2) 

In this work, a window length of 32 ms (512 samples at the sampling rate of 16 kHz) was used. 

Next, the fast Fourier Transform (FFT) is applied to the windowed signal y to obtain the power 

spectrum of the signal: 

  

€ 

X[k] = abs y[n]e
− i2πk

n
N

n=0

N −1

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , k = {1,...,N}    (B3) 

Since the human ear has higher frequency resolution at lower frequencies, a Mel-scale 

filterbank is applied to the FFT-spectrum to simulate this effect. The Mel-filterbank in the 

experiments of this study consisted of 26 triangular bandpass filters whose center frequencies 

and bandwidths increase logarithmically as a function of frequency (Figure C1). The filterbank 

was built by first computing the maximum Mel-frequency given the signal sample rate by having 

Melmax = 2595*log10(1+fs/(2*700)), where fs is the sampling rate, and then by dividing the 

resulting Mel-range [0, …, Melmax] into 26 uniformly spaced filter center frequencies in the Mel 

domain. These center frequencies are converted back to the frequency domain by having 

€ 

f = 700(10m / 2595 −1) where m is the center Mel-value of each band. Each triangular band starts at 
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the center frequency of the neighboring lower band and ends at the center frequency of higher 

frequency band. 
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Fig. C1. Mel-filterbank applied to the FFT-spectrum in the computation of Mel-spectrum. 

 

The FFT power spectrum is then filtered (multiplied in the frequency domain) using the Mel-

scale filterbank in order to obtain the Mel-spectrum of the windowed speech signal. The 

logarithm of the power in each band is taken to produce the Mel-log spectrum f’. Finally, the 

discrete cosine transform is applied to the mel-log spectrum to obtain the Mel-frequency cepstral 

coefficients (MFCCs):  

€ 

ck = f '[n]cos π
N −1

(n + 0.5)k
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ n=1

N

∑ k = {0,...,N −1}	
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Appendix	
  C	
  
Table C1: Contents of the word models in the high-threshold condition sorted according to model 

entropy. 
# N α1 p α2 p α3 p   # N α1 p α2 p α3 p 
155 2 frog 1.00       162 5 yellow 0.66 truck 0.19 lion 0.04 
172 2 baby 1.00       200 10 baby 0.61 sees 0.23 takes 0.06 
15 91 #h 1.00       61 9 mummy 0.63 has 0.15 #h 0.12 
92 91 #h 0.99 lion 0.01     122 10 square 0.73 cat 0.05 frog 0.05 

150 3 red 0.98 the 0.02     180 6 yellow 0.54 horse 0.33 round 0.04 
31 2 airplane 0.98 #h 0.02     152 6 bottle 0.53 robin 0.29 #h 0.09 
2 104 #h 0.96 porsche 0.02 bottle 0.01   28 10 cookie 0.63 #h 0.20 looks 0.06 

128 2 bird 0.94 and 0.06     49 11 sad 0.72 the 0.07 woman 0.04 
21 14 telephone 0.95 and 0.02 happy 0.01   77 4 clean 0.54 likes 0.24 a 0.16 

126 32 #h 0.93 dog 0.02 duck 0.02   117 6 here 0.55 is 0.25 #h 0.11 
116 5 airplane 0.91 and 0.05 a 0.03   188 5 has 0.57 daddy 0.26 baby 0.06 

5 19 #h 0.92 eagle 0.02 doll 0.02   69 4 apple 0.50 dog 0.23 toy 0.21 
8 55 #h 0.92 doll 0.02 there 0.02   96 6 sad 0.69 the 0.09 animal 0.04 

89 4 sad 0.89 the 0.05 a 0.03   53 8 banana 0.49 blue 0.34 car 0.09 
62 15 #h 0.89 frog 0.05 dog 0.04   95 5 gives 0.61 man 0.16 a 0.08 

169 5 said 0.87 small 0.06 square 0.04   80 7 baby 0.43 likes 0.34 he 0.11 
42 6 dirty 0.87 the 0.07 is 0.02   6 14 mummy 0.57 #h 0.26 the 0.06 

107 6 bird 0.87 #h 0.04 a  0.04   204 3 red 0.42 the  0.26 dirty 0.18 
195 4 edible 0.82 the 0.15 sees 0.03   108 9 mean 0.64 i 0.16 no 0.18 
63 6 duck 0.87 red 0.04 and 0.04   223 3 daddy 0.33 sees 0.33 baby 0.24 
10 7 happy 0.84 the 0.11 gives 0.02   67 9 bird 0.51 #h 0.23 car 0.16 
84 6 cookie 0.85 square 0.07 and 0.03   90 3 happy 0.54 woman 0.16 a 0.15 
18 39 #h 0.82 horse 0.15 looks 0.03   11 6 square 0.58 small 0.19 a 0.07 

121 9 airplane 0.78 #h 0.20 happy 0.01   129 6 gives 0.52 square 0.29 a 0.06 
151 12 banana 0.76 #h 0.22 and 0.02   60 23 no 0.57 #h 0.14 i 0.14 
192 9 bottle 0.85 #h 0.06 and 0.04   43 12 looks 0.62 at 0.17 daddy 0.05 
137 8 round 0.83 gives 0.09 a 0.07   100 19 frog 0.52 #h 0.19 sees 0.17 
48 56 #h 0.80 fish 0.17 porsche 0.02   65 2 sees 0.50 yellow 0.24 is 0.11 
45 8 #h 0.75 lion 0.23 and 0.02   213 5 #h 0.41 truck 0.26 big 0.24 

132 6 #h 0.71 robin 0.26 the 0.02   160 2 telephone 0.50 and 0.19 apple 0.17 
211 3 telephone 0.79 big 0.12 red 0.05   23 18 clean 0.56 car 0.29 horse 0.02 
149 2 telephone 0.72 dirty 0.21 big 0.07   134 7 round 0.62 the 0.12 red 0.08 
167 3 apple 0.76 and 0.13 happy 0.07   3 2 happy 0.53 the 0.17 there 0.12 
181 3 daddy 0.72 #h 0.19 gives 0.07   58 3 looks 0.43 she 0.32 #h 0.10 

7 12 animal 0.71 #h 0.24 an 0.03   170 27 dog 0.43 doll 0.40 dirty 0.05 
55 4 bird 0.71 dirty 0.22 round 0.04   91 10 here 0.43 #h 0.23 is 0.20 
85 11 toy 0.77 #h 0.15 clean 0.02   32 14 cow 0.45 cat 0.31 #h 0.12 

193 4 happy 0.67 woman 0.25 mummy 0.04   35 16 smiling 0.54 sad 0.17 #h 0.14 
26 14 sees 0.76 baby 0.09 she 0.08   79 10 square 0.65 #h 0.05 a 0.05 

119 3 woman 0.66 sees 0.19 takes 0.15   157 5 likes 0.47 she 0.26 #h 0.09 
64 4 daddy 0.77 takes 0.06 #h 0.06   66 4 she 0.32 has 0.31 #h 0.22 
39 9 dirty 0.78 is 0.07 a 0.06   83 38 #h 0.48 eagle 0.19 apple 0.15 

184 3 edible 0.63 toy 0.21 cookie 0.16   17 13 where 0.54 is 0.13 the 0.10 
218 2 has 0.62 daddy 0.24 the 0.14   165 3 eagle 0.43 sees 0.20 the 0.12 
99 6 happy 0.77 dirty 0.06 sees 0.05   54 7 here 0.31 there 0.26 is 0.21 
13 6 likes 0.69 man 0.20 woman 0.06   47 12 crying 0.58 the 0.13 woman 0.07 

110 9 man 0.74 takes 0.11 gives 0.06   38 6 frog 0.46 airplane 0.16 red 0.15 
74 6 likes 0.75 daddy 0.07 the 0.06   16 14 tree 0.44 small 0.36 #h 0.05 
59 15 edible 0.76 the 0.09 animal 0.07   36 17 eagle 0.61 #h 0.13 an 0.05 

147 5 gives 0.62 woman 0.26 the 0.07   123 8 sees 0.55 daddy 0.15 blue 0.07 
130 12 car 0.72 #h 0.18 a 0.03   4 15 porsche 0.36 ball 0.29 horse 0.23 
118 2 dog 0.50 doll 0.34 sad 0.16   75 4 robin 0.47 square 0.15 is 0.12 
12 11 small 0.79 a 0.04 the 0.03   14 7 likes 0.55 the 0.11 yellow 0.10 
34 19 #h 0.59 toy 0.29 doll 0.08   228 4 takes 0.39 she 0.26 big 0.17 
88 7 duck 0.72 dog 0.14 a 0.04   109 20 truck 0.56 tree 0.15 dirty 0.06 

140 2 yellow 0.71 apple 0.08 the 0.08   222 4 daddy 0.25 has 0.25 mummy 0.22 
205 9 edible 0.75 woman 0.07 bottle 0.06   86 6 gives 0.29 baby 0.28 she 0.20 
158 10 #h 0.51 lion 0.41 yellow 0.03   120 10 clean 0.40 frog 0.26 truck 0.15 
70 4 no 0.50 animal 0.25 #h 0.24   46 6 happy 0.43 gives 0.21 has 0.11 
94 9 woman 0.71 the 0.09 a 0.08   40 16 like 0.35 you 0.21 do 0.18 
27 3 sees 0.55 dirty 0.33 an 0.07   104 4 looks 0.40 big 0.18 at 0.15 
72 4 blue 0.70 big 0.09 toy 0.09   102 8 cow 0.35 cat 0.22 #h 0.19 
25 18 happy 0.73 the 0.11 sees 0.06   93 7 crying 0.33 round 0.29 happy 0.13 
9 16 takes 0.76 a 0.05 big 0.04   22 25 where 0.43 #h 0.15 is 0.13 

240 2 #h 0.47 lion 0.38 square 0.13   20 22 ball 0.45 porsche 0.16 small 0.15 
135 28 #h 0.59 tree 0.30 baby 0.04   76 7 have 0.33 round 0.19 you 0.15 
50 4 looks 0.47 man 0.42 at  0.07   133 13 like 0.36 square 0.18 do 0.10 

136 10 blue 0.74 a  0.07 the 0.05   68 3 have 0.29 the 0.18 you 0.16 
52 10 lion 0.68 #h 0.17 and 0.06   101 10 red 0.31 round 0.19 is 0.13 

103 10 cow 0.53 cat 0.37 a 0.03   106 17 #h 0.22 banana 0.18 you 0.18 
201 7 frog 0.65 blue 0.19 clean 0.06   19 15 man 0.34 smiling 0.22 round 0.10 
164 12 #h 0.70 smiling 0.08 lion 0.07   125 12 have 0.35 you 0.16 #h 0.14 
141 4 #h 0.44 there 0.39 is 0.14   30 7 animal 0.27 horse 0.14 apple 0.14 
124 2 like 0.58 you 0.25 blue 0.10   159 3 see 0.19 happy 0.15 the 0.15 
                  57 29 see 0.26 you 0.21 #h 0.13 
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Appendix	
  D:	
  Examples	
  of	
  automatically	
  segmented	
  words	
  
Realizations	
  from	
  different	
  models	
  are	
  shown	
  below.	
  Realizations	
  are	
  extracted	
  
automatically	
  in	
  the	
  order	
  of	
  appearance	
  in	
  the	
  test	
  set.	
  	
  The	
  models	
  are	
  named	
  by	
  their	
  
most	
  dominant	
  word,	
  although	
  they	
  may	
  contain	
  a	
  number	
  of	
  deviating	
  patterns.	
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“Telephone”	
  (sometimes	
  extracted	
  as	
  “phone”).	
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“Eagle”	
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“Doyoulikethe”	
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“Thecrying”	
  (man/woman)	
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