
Redundant Multiple Testing Corrections           1 

 
 

 

Redundant Multiple Testing Corrections: 

The Fallacy of Using Family-Based Error Rates 

to Make Inferences About Individual Hypotheses 
 

Mark Rubin  

Durham University, UK 

 
24th January 2024 

 
Citation: Rubin, M. (2024, January 24). Redundant multiple testing corrections: The fallacy of using family-based 

error rates to make inferences about individual hypotheses. ArXiv. https://doi.org/10.48550/arXiv.2401.11507  

 

 

Abstract 
During multiple testing, researchers often adjust their alpha level to control the familywise 

error rate for a statistical inference about a joint union alternative hypothesis (e.g., “H1 or 

H2”). However, in some cases, they do not make this inference. Instead, they make separate 

inferences about each of the individual hypotheses that comprise the joint hypothesis (e.g., 

H1 and H2). For example, a researcher might use a Bonferroni correction to adjust their alpha 

level from the conventional level of 0.050 to 0.025 when testing H1 and H2, find a significant 

result for H1 (p < 0.025) and not for H2 (p > .0.025), and so claim support for H1 and not for 

H2. However, these separate individual inferences do not require an alpha adjustment. Only 

a statistical inference about the union alternative hypothesis “H1 or H2” requires an alpha 

adjustment because it is based on “at least one” significant result among the two tests, and 

so it depends on the familywise error rate. When a researcher corrects their alpha level during 

multiple testing but does not make an inference about the union alternative hypothesis, their 

correction is redundant. In the present article, I discuss this redundant correction problem, 

including its reduction in statistical power for tests of individual hypotheses and its potential 

causes vis-à-vis error rate confusions and the alpha adjustment ritual. I also provide three 

illustrations of redundant corrections from recent psychology studies. I conclude that 

redundant corrections represent a symptom of statisticism, and I call for a more nuanced 

inference-based approach to multiple testing corrections. 
Keywords: familywise error rate; multiplicity; multiple testing; multiple comparisons; per family error rate; Type I 

error rate 
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The subject of multiple testing has received additional attention in the wake of the 

replication crisis. The concern is that uncorrected multiple testing is a major cause of false positive 

results (i.e., Type I errors) and unexpectedly low replication rates. Consequently, there is a 

renewed emphasis on researchers “doing the right thing” and correcting their significance 

thresholds (alpha levels) in order to account for inflated Type I error rates during multiple testing. 

In this article, I caution that an unqualified push for multiple testing corrections may have 

negative consequences. In particular, I argue that it may lead to what I call redundant multiple 

testing corrections: adjustments to alpha levels that are unnecessary given the specific statistical 

inferences that are being made. To illustrate this problem, I draw attention to cases in which 

researchers adjust their alpha level to control family-based Type I error rates (e.g., familywise 

error rates) but then do not make any inferences about associated family-based hypotheses. Instead, 

they only make inferences about individual hypotheses, which do not require an alpha adjustment. 

I argue that redundant corrections are problematic because they are logically inconsistent, and they 

result in an unnecessary loss of statistical power. 

To be clear, I am not opposed to an alpha adjustment for multiple testing under the 

appropriate circumstances. Hence, this is not an “anti-adjustment article” (Frane, 2019, p. 3). It is 

a pro-consistency article! My key point is that researchers should be logically consistent in their 

use of multiple testing corrections. If researchers use multiple testing corrections, then they should 

make corresponding statistical inferences about family-based joint hypotheses. They should not 

correct their alpha level and then only proceed to make statistical inferences about individual 

hypotheses because, as I explain further below, such inferences do not require an alpha adjustment. 

I begin by introducing the multiple testing problem and the alpha adjustment solution. I 

consider two common family-based error rates (the familywise error rate and the per family error 

rate), and I explain how associated alpha adjustments control these error rates. I then describe and 

illustrate redundant multiple testing corrections, in which a researcher adjusts their alpha level to 

control the error rate for a statistical inference about a family-based joint hypothesis but then only 

makes statistical inferences about individual hypotheses. I consider two reasons for redundant 

corrections: (a) error rate confusions and (b) conformity to an alpha adjustment ritual. I highlight 

recent evidence from García-Pérez (2023) showing that redundant corrections are likely to be 

common. I also explain how redundant corrections lead to a problematic loss of statistical power. 

Finally, I illustrate my argument with three examples from recent psychology studies. I conclude 

that redundant corrections represent a symptom of the broader problem of statisticism, and I call 

for a more nuanced, context-specific approach to multiple testing corrections. 

 

The Multiple Testing Problem 
The multiple testing problem occurs when a researcher uses more than one significance 

test to make a statistical inference. In this case, their Type I error rate for that inference may exceed 

the conventional nominal alpha level of 0.050. For example, consider a researcher who uses three 

significance tests to make a statistical inference about a single joint hypothesis. Here, each of the 

three tests refers to a separate constituent hypothesis: H1, H2, and H3. These three constituent 

hypotheses comprise the joint hypothesis. The alpha level for determining significance with 

respect to each constituent hypothesis can be described as the constituent alpha level or αConstituent, 

and the alpha level for the final decision about rejecting or not rejecting the joint null hypothesis 

can be described as the joint alpha level or αJoint (Rubin, 2021b). 

If the researcher is prepared to accept a significant result on at least one of their three tests 

as sufficient grounds to reject the joint null hypothesis, then the joint null hypothesis is represented 
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as the intersection of each of the three constituent null hypotheses: “H1 and H2 and H3.” The 

hypotheses are related to one another by the logical operator “and” because a significant result in 

relation to any one of them (i.e., p < αConstituent) would be sufficient to provisionally reject the entire 

intersection null hypothesis and provisionally accept the corresponding union alternative 

hypothesis: “H1 or H2 or H3.” Hence, formally, this test is called a union-intersection test (e.g., 

Hochberg & Tamrane, 1987, p. 28; Kim et al., 2004; Parker & Weir, 2020, p. 563; Roy, 1953). 

To provide a more concrete example, imagine that the three constituent hypotheses refer 

to gender differences in attitudes towards biology (H1), chemistry (H2), and physics (H3) and that 

the researcher is interested in making a statistical inference about a gender difference in attitudes 

towards these science subjects. In this case, a significant result in relation to any one of the three 

constituent hypotheses, in either direction (i.e., men > women or women > men), would be 

sufficient to reject the entire intersection null hypothesis that there is no gender difference in 

attitudes towards biology, chemistry, and physics and accept the union alternative hypothesis that 

there is a gender difference in either biology, chemistry, or physics. 

Note that, logically, the results of a union-intersection test only warrant a statistical 

inference about the associated joint hypothesis. They do not warrant statistical inferences about 

each of the individual constituent hypotheses (García-Pérez, 2023, p. 2; Perneger, 1998, p. 1236). 

For example, if the researcher obtained union-intersection test results for biology t(326) = 2.54, p 

= 0.011; chemistry t(326) = 0.030, p = .979; and physics t(326) = 1.44, p = 0.150, then they could 

only make the statistical inference that there is a significant gender difference in either the biology, 

chemistry, or physics subjects (i.e., the union alternative hypothesis). The fact that a significant 

gender difference is observed for biology and not for either chemistry or physics is irrelevant in 

the context of a union-intersection test because the test treats the three hypotheses as theoretically 

interchangeable constituents of the same joint hypothesis rather than as separate individual 

hypotheses. The principle is the same as that for a one-way ANOVA (García-Pérez, 2023): A 

significant result entitles us to claim that there is a significant difference between at least one pair 

of means, but it does not allow us to specify which pair. Of course, researchers can go on to make 

statistical inferences about each of the three hypotheses separately. However, these individual 

inferences are not based on the union-intersection test. They are based on individual tests of 

individual null hypotheses and, as such, they do not require an alpha adjustment (García-Pérez, 

2023; Rubin, 2021b). 

This last point may be a little confronting to some readers. Surely, if you conduct three 

individual tests, then you have a greater probability of making at least one Type I error among 

your set of results? Yes, you do! However, (a) this inflated familywise error rate applies to the 

family of tests, not to any individual test within the family; (b) you continue to have the same 

probability of making a Type I error in relation to each one of your tests; and (c) it is this latter 

individual error rate – αIndividual – that underwrites statistical inferences about each individual 

hypothesis. 

To illustrate, imagine that a researcher conducts three individual tests of gender differences 

in attitudes towards biology, chemistry, and physics using an αIndividual of 0.050 and then concludes 

that there is a gender difference in relation to biology, t(326) = 2.54, p = 0.011, but not in relation 

to either chemistry, t(326) = 0.030, p = .979, or physics, t(326) = 1.44, p = .150. In this case, experts 

agree that the Type I error rate for each of these three tests is not inflated above the αIndividual of 

0.050 because only one test is used to make a statistical inference (decision) about each hypothesis 

(Armstrong, 2014, p. 505; Cook & Farewell, 1996, pp. 96–97; Fisher, 1971, p. 206; García-Pérez, 

2023, p. 15; Greenland, 2021, p. 5; Hewes, 2003, p. 450; Hurlbert & Lombardi, 2012, p. 30; 
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Matsunaga, 2007, p. 255; Molloy et al., 2022, p. 2; Parker & Weir, 2020, p. 564; Parker & Weir, 

2022, p. 2; Rothman, 1990, p. 45; Rubin, 2017, pp. 271–272; Rubin, 2020a, p. 380; Rubin, 2021a, 

2021b, pp. 10978-10983; Rubin, 2024; Savitz & Olshan, 1995, p. 906; Senn, 2007, pp. 150-151; 

Sinclair et al., 2013, p. 19; Tukey, 1953, p. 82; Turkheimer et al., 2004, p. 727; Veazie, 2006, p. 

809; Wilson, 1962, p. 299). In short, if a researcher uses a single test to make a statistical inference 

about a single null hypothesis, then their alpha level for that inference does not become inflated 

and no multiple testing correction is necessary. Importantly, this principle applies even if the 

researcher makes millions of such individual inferences side-by-side within the same study and/or 

using the same dataset. 

In contrast, in the case of union-intersection testing, the probability of making a Type I 

error about the intersection null hypothesis will always be greater than the nominal alpha level for 

each test (αConstituent) because the researcher has multiple opportunities to incorrectly reject the 

intersection null hypothesis. For example, if the intersection null hypothesis consists of three 

constituent null hypotheses, then the researcher will have three opportunities to make a Type I 

error about the intersection null hypothesis based on the three tests that they conduct using 

αConstituent. Hence, a multiple testing correction is necessary in this case in order to control the 

familywise error rate at the nominal level of αJoint. 

In summary, multiple testing increases the probability that at least one of your significant 

results is a false positive, but it doesn’t increase the probability that each one of your significant 

results is a false positive, and so if you make an inference about a joint null hypothesis that can be 

rejected following at least one significant result, then an alpha adjustment is necessary, and if you 

don’t, it isn’t! Hence, a multiple testing correction is necessary when undertaking multiple tests of 

an intersection null hypothesis, but not when undertaking single tests of multiple individual null 

hypotheses. 

 

The Alpha Adjustment Solution  
During union-intersection testing, the alpha adjustment solution involves lowering 

αConstituent until the associated family-based error rate is less than or equal to αJoint. There are several 

different ways of computing the degree to which αConstituent should be lowered, and they depend on 

the type of family-based error rate that is being controlled. For illustrative purposes, I consider two 

simple approaches that refer to the familywise error rate and the per family error rate. 

 

The Familywise Error Rate 
The familywise error rate is the probability that at least one of the constituent test results 

is a Type I error (i.e., a false positive). The probability that a single constituent test yields a true 

negative (i.e., a nonsignificant result when the constituent null hypothesis is true) is 1 - αConstituent. 

The probability that k constituent tests in a family (collection) all yield true negatives is equal to 

the product of the probabilities that each yields a true negative, assuming that test results are 

independent of one another: (1 ₋ αConstituent)k. Hence, the familywise error rate that at least one of k 

tests yields a false positive result is 1 ₋ (1 ₋ αConstituent)k. 

Hence, if three constituent hypotheses are tested, each with an αConstituent of 0.050, then the 

familywise Type I error rate will be 1 ₋ (1 ₋ 0.050)3, which equals 0.143. In this case, the familywise 

error rate will be greater than a nominal conventional αJoint level of 0.050. Consequently, to control 

the familywise error rate at the level of αJoint, the Dunn–Šidák correction may be used to reduce 

αConstituent from 0.050 to 1 ₋ (1 ₋ αConstituent)1/3, which equals 0.0167. Now, the familywise error rate 

will be equal to 1 ₋ (1 ₋ 0.0167)3, which equals the αJoint level of 0.050. 
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The Per Family Error Rate 
The per family error rate represents another family-based error rate. It is the number of 

constituent Type I errors that are expected to occur within a family of k tests, and it is calculated 

as the sum of the αConstituent values for each of the constituent hypotheses that are tested (Frane, 

2015). Hence, if the αConstituent values are the same for all constituent hypotheses, then the per family 

error rate is equal to αConstituent × k. 

For small values of k, the per family error rate is almost the same as the familywise error 

rate. However, as k increases, the per family error rate becomes larger than the familywise error 

rate. For example, if 100 constituent tests are conducted, and each has an αConstituent of 0.050, then 

the familywise error rate will be 0.99 but the per family error rate will be 5.00. In other words, 

there will almost certainly be one or more false positive results within the family, and we should 

expect there to be five false positive results in total. 

The Bonferroni correction may be used to control the per family error rate using the 

formula αConstituent/k. Hence, if k = 3, then the Bonferroni correction would reduce αConstituent to 

0.0169 in order to control the per family error rate at the αJoint level of 0.050 (i.e., 0.0169 × 3). Note 

that, because the familywise error rate is the same as or smaller than the per family error rate, the 

Bonferroni correction may also be used to provide conservative control over the familywise error 

rate. 

 

Redundant Corrections 
A redundant multiple testing correction occurs when a researcher corrects their alpha level 

for a union-intersection test of a joint hypothesis but then only makes statistical inferences about 

individual hypotheses. For example, they might correct αConstituent in order to control a family-based 

error rate at the nominal conventional αJoint of 0.050 but then only make statistical inferences about 

individual hypotheses, which can be made using an unadjusted conventional αIndividual of 0.050. 

Hence, their alpha adjustment is redundant because it is not necessary to make statistical inferences 

about individual hypotheses, which are the only inferences that are made. 

Why do researchers correct their alpha level to control family-based error rates for family-

based joint hypotheses and then fail to make statistical inferences about those hypotheses? I 

suggest that there are two reasons for redundant corrections: error rate confusions and the alpha 

adjustment ritual. 

 

(1) Error Rate Confusions 
Three error rate confusions may lead to redundant multiple testing corrections. Confusion 

I occurs when researchers incorrectly assume that multiple instances of individual testing 

somehow inflate individual Type I error rates for each individual inference. As previously 

explained, they don’t! During individual testing, αIndividual refers to the probability that a single test 

will incorrectly reject a single hypothesis. There is no union-intersection testing in this situation, 

no multiple opportunities to make each Type I error, and so no error rate inflation for each 

statistical inference. As discussed in Confusion III below, it is true that multiple testing increases 

the probability of making at least one Type I error in a collection of individual tests, but it is also 

true that multiple testing does not increase the probability of making a Type I error with respect to 

each test and, during individual testing, it is only this individual Type I error rate that is relevant 

to researchers’ statistical inferences. 

Confusion II occurs when researchers incorrectly assume that multiple instances of 

individual testing inflate family-based Type I error rates for each individual inference. Again, they 
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don’t! During individual testing, k = 1 for each inference and so the familywise and per family 

error rates have the same value as the individual error rate (i.e., αIndividual = 1 ₋ [1 ₋ αConstituent]1 = 

αConstituent × 1). 

Finally, Confusion III occurs when researchers assume that multiple instances of individual 

testing inflate family-based error rates for families of separate statistical inferences. They do! 

However, these family-based error rates are irrelevant to each statistical inference! To illustrate, 

consider a researcher who computes the familywise error rate for 20 separate individual statistical 

inferences that each use an αIndividual of 0.050. In this case, the researcher assumes that k = 20 instead 

of k = 1 because they count the number of statistical inferences that are made (20) rather than the 

number of tests that are used to make a particular inference (1). The resulting familywise error rate 

(0.642) does not refer to the incorrect rejection of any specific null hypothesis (individual or joint) 

and so, by definition, it does not represent a Type I error rate. Nonetheless, the researcher may 

proceed to use this hypothesis-free familywise error rate to judge the stringency of each of their 

statistical inferences. This approach is flawed because the probability that at least one of 20 

statistical inferences represents a Type I error (0.642) is irrelevant to the probability of incorrectly 

rejecting each individual null hypothesis (0.050). Indeed, the probability that at least one inference 

represents a Type I error can be astronomically high in large groups of inferences (e.g., in genome-

wide association studies) without it affecting the probability of incorrectly rejecting each null 

hypothesis, which remains steadfast at a conventional unadjusted αIndividual of 0.050. 

These three error rate confusions may be exacerbated by the ambiguous phrasing that is 

sometimes used in explanations of the multiple testing problem (see also García-Pérez, 2023, pp. 

2-4). For example, it is true that “multiple testing inflates the Type I error rate,” but it is important 

to clarify what kind of “multiple testing” and what kind of “Type I error rate.” Hence, it is more 

accurate to say that union-intersection testing inflates the familywise error rate for inferences 

about intersection null hypotheses. Multiple individual tests do not inflate individual Type I error 

rates for inferences about individual null hypotheses. Nonetheless, the vague dictum that “multiple 

testing inflates the Type I error rate” may lead some researchers to incorrectly assume that (a) 

multiple testing inflates individual Type I error rates and (b) family-based error rates indicate the 

extent of this inflation. 

Given their subtle and seductive nature, it is worth considering error rate confusions in 

relation to both the familywise error rate and the per family error rate. Taking the familywise error 

rate first, Confusion III may lead researchers to calculate a hypothesis-free familywise error rate 

for a collection of individual statistical inferences about individual hypotheses with a view to 

controlling the (uninflated) individual Type I error rate. Hence, a researcher who makes 20 

statistical inferences about 20 individual hypotheses using an αIndividual of 0.050 may erroneously 

conclude that their Type I error rate for each inference is inflated because their familywise error 

rate for this collection of inferences is 0.642. In fact, their Type I error rate for each inference 

remains at the αIndividual level of 0.050. The researcher’s erroneous conclusion is due to an 

inappropriate application of the familywise error rate to a collection of single tests of individual 

hypotheses.  

Similarly, multiple testing inflates the per family error rate and not the individual Type I 

error rate. Again, failure to appreciate this point may lead to a misapplication of the per family 

error rate to statistical inferences about individual hypotheses. For example, a researcher might 

conduct 20 significance tests using an alpha level of 0.050 and obtain only one significant result. 

Given that this number of significant results matches the per family error rate, the researcher might 

then be tempted to assume that their significant result is more likely to be a Type I error. Again, 
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however, this reasoning is flawed because it confuses Type I errors about individual null 

hypotheses with Type I errors about joint null hypotheses. The per family error rate is a family-

based error rate and, as such, it is only appropriate when making inferences about family-based 

joint hypotheses. It is inappropriate to apply it to inferences about individual hypotheses. 

In summary, family-based error rates tell us nothing about the probability of making a Type 

I error with respect to an individual null hypothesis. To believe that they do is to succumb to a type 

of ecological fallacy in which the Type I error rate for a decision about a family of hypotheses is 

misapplied to decisions about the individual hypotheses within that family. Family-based error 

rates only tell us the probability of making a Type I error with respect to family-based intersection 

null hypotheses. 

 

(2) The Alpha Adjustment Ritual 
Error rate confusions may be resolved through logical reasoning. However, researchers do 

not select statistical approaches on the basis of logical reasoning per se. Sociocultural fashions and 

conventions are also influential, and it is here that an alpha adjustment ritual may come into play. 

In his article Mindless Statistics, Gigerenzer (2004) noted that the “null ritual” of null 

hypothesis significance testing “has sophisticated aspects…such as alpha adjustment” (p. 588). He 

did not go into this issue further. However, in my view, the alpha adjustment ritual involves the 

automatic adjustment of alpha levels whenever multiple testing occurs, regardless of whether 

statistical inferences are made about individual null hypotheses or intersection null hypotheses. 

This social ritual is supported by colleagues, peer reviewers, editors, journals, and so on, some of 

whom consider failure to conform to the ritual as one of the “seven deadly sins” of statistical 

practice (Kuzon et al., 1996; Millis, 2003; Popp et al., 2012). 

Again, to be clear, an alpha adjustment is appropriate when making a statistical inference 

about an intersection null hypothesis on the basis of a union-intersection test. However, an alpha 

adjustment is not appropriate when making statistical inferences about multiple individual 

hypotheses on the basis of multiple individual tests. Hence, the problem with the alpha adjustment 

ritual is that it lacks nuance and sensitivity to the type of inferences that are made. In particular, it 

does not allow for the possibility that researchers make multiple individual statistical inferences 

about multiple individual hypotheses based on multiple individual tests. Researchers who follow 

the alpha adjustment ritual in this situation will end up making redundant multiple testing 

corrections because an alpha adjustment is not necessary for the specific statistical inferences that 

they make. 

In summary, statistical inferences about intersection null hypotheses require an alpha 

adjustment, but statistical inferences about individual null hypotheses do not, even if multiple such 

inferences are made within the same study and/or on the same data set. Contrary to the alpha 

adjustment ritual then, there are some cases of multiple testing that do not require an alpha 

adjustment, and unthinking adherence to the ritual may result in redundant multiple testing 

corrections. 

 

Redundant Corrections are Common 
How common are redundant multiple testing corrections? In his review, García-Pérez 

(2023) checked 109 research articles that had used multiple testing corrections and that were 

published in the journals Behavior Research Methods and Psychological Science between 2021 

and June 2022. He found that 
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an invariable feature of all papers was that each and all of the individual tests for which a 

p value was reported (whether with or without corrections) was interpreted individually, 

that is, there was an inference per test and the tests were never regarded as collectively 

addressing a joint intersection null hypothesis (p. 4). 

Hence, researchers used multiple testing corrections when they made statistical inferences about 

individual null hypotheses and not about the intersection null hypotheses to which their corrections 

would apply. We can conclude that, at least in García-Pérez’s (2023) sample of articles, redundant 

multiple testing corrections are very common. 

 

Redundant Corrections Reduce Statistical Power 
Aside from representing a logically inconsistent statistical approach, redundant corrections 

lead to an unjustifiable loss of statistical power. If a researcher adjusts their alpha level below its 

nominal level to account for multiple testing but only makes statistical inferences about individual 

hypotheses and not about a joint hypothesis, then they will have lowered the power of their 

individual tests for no good reason. Consequently, their Type I error rate will be unnecessarily 

low, and their Type II error rate will be unnecessarily high (García-Pérez, 2023, p. 11). 

For example, imagine that a researcher wanted to make two statistical inferences about two 

individual hypotheses. Logically, they could use an unadjusted conventional αIndividual of 0.050 in 

each case. However, further imagine that the researcher followed the alpha adjustment ritual and 

used a Bonferroni correction to reduce their αIndividual level from 0.050 to 0.025 (i.e., αIndividual/k). If 

they obtained p values of 0.010 and 0.040, then they could only reject their first null hypothesis. 

They would not be able to reject their second null hypothesis because their p value of 0.040 would 

be higher than their adjusted alpha level of 0.025. Of course, if they had not made this alpha 

adjustment, then they could have rejected their second hypothesis at the conventional alpha level 

of 0.050. Hence, their redundant alpha adjustment caused a loss of statistical power. 

It is important to clarify here that researchers can set αIndividual to be lower than the 

conventional level of 0.050 if they wish to provide more stringent tests of their individual 

hypotheses (Parker & Weir, 2020, p. 564; Rubin, 2021b, p. 10984). However, this approach 

represents stringent alpha specification rather than an adjustment to a previously specified alpha 

level. Once αIndividual has been set at a specified level (e.g., 0.050, 0.010, etc.), it should not be 

adjusted to account for multiple testing. 

 

Three Examples of Redundant Corrections 
To better appreciate the implications of redundant corrections, it is helpful to consider three 

examples from recent research studies. To obtain these examples, I searched Google Scholar at the 

end of December 2023 for recent articles (2021 to 2023) in journals that had the word 

“psychology” in the title and that included the terms “0.025” and “0.05/2” or “0.050/2.” I used the 

period 2021 to 2023 to demonstrate the contemporary nature of the redundant correction problem 

over the past three years. I used the term “psychology” in the journal title to try to restrict articles 

to psychology journals, although there is no reason to believe that the same issue does not occur 

in other disciplines. Finally, I used the terms “0.025” and “0.05(0)/2” because they are likely to be 

used when discussing a relatively simple Bonferroni correction to a conventional alpha level of 

0.050 when k = 2. In this case, statistical inferences about the two individual hypotheses can be 

made using an αIndividual of 0.050, and a statistical inference about the joint hypothesis can be made 

using an αConstituent of 0.025, which maintains the associated αJoint at 0.050. Hence, if researchers 

use this Bonferroni correction in a logically consistent manner, then they should make a statistical 
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inference about a joint hypothesis that encompasses the two constituent hypotheses that they test 

(e.g., “H1 or H2”). However, if they use it in a logically inconsistent manner, then they will not 

make a statistical inference about the joint hypothesis, and they will instead make two separate 

statistical inferences about two separate individual hypotheses (e.g., H1 and H2). 

My search returned 62 results. In screening these results, I selected cases in which (a) the 

statistical analysis was relatively simple, (b) one of the two test results was significant at the 0.025 

level (i.e., p < 0.025), and (c) the other test result was significant at the 0.050 level but 

nonsignificant at the 0.025 level (i.e., 0.025 < p < 0.050). This third criterion allowed me to 

illustrate the loss of statistical power caused by redundant corrections. 

Using these criteria, I chose three examples: Prem et al. (2021, Study 1), Clemens and 

Grolig (2023), and Janssen et al. (2023, Experiment 2). I selected these studies because they 

provided relatively clear illustrations of redundant multiple testing corrections. Nonetheless, their 

selection does not imply that these studies are any less rigorous or credible than other studies. 

Indeed, given that the researchers restricted their statistical inferences to individual hypotheses, 

the selected work can be viewed as providing more stringent tests than other studies because its 

alpha levels are lower than the conventional level of 0.050. My point here is only to highlight (a) 

the logical inconsistency in lowering the alpha level to control the familywise error rate and then 

only making claims about individual hypotheses and not about joint, family-based, hypotheses and 

(b) the associated loss in statistical power. 

 

Example 1: Prem et al. (2021, Study 1) 
Prem et al. (2021, Study 1) conducted a study to develop and validate a scale to measure 

the cognitive demands of planning, structuring, and coordinating flexible working arrangements. 

The researchers explained that, “when testing Hypotheses 2 through 5, the Bonferroni-corrected α 

was 0.05/2 = 0.025 because Hypotheses 2 through 5 each included 2 correlations” (p. 7). For 

example, Hypothesis 4 was that “the subscale for the planning of working places would be 

positively related to the availability of telework possibilities to work from home and the 

availability of telework possibilities to [work] from other locations outside the employer’s 

premises” (p. 4). 

The researchers found that, 

in line with Hypotheses 2 through 5, structuring of work tasks showed significant positive 

associations with decision-making autonomy and work methods autonomy; planning of 

working times showed significant positive associations with work scheduling autonomy 

and the availability of flextime; planning of working places showed significant positive 

associations with the availability of working from home and the availability of telework 

from other locations; and coordinating with others showed significant positive associations 

with initiated interdependence and received interdependence (compare Table 1). All of 

these correlations remained significant after Bonferroni correction, with the exception of 

the correlation between planning of working places and the availability of working from 

home. Thus, Hypotheses 2, 3, and 5 were fully supported, and Hypothesis 4 was partly 

supported (Prem et al., 2021, p. 7). 

Hence, the researchers tested four hypotheses, each referring to two correlations, and they adjusted 

αConstituent to 0.025 (i.e., 0.050/2) in each case. Following this Bonferroni correction, they found 

support for three of the four hypotheses and partial support for Hypothesis 4, because only one of 

the two correlations was significant at the 0.025 level in this case. 
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The conclusion that Hypothesis 4 was only “partially supported” is the result of a redundant 

correction. The use of the Bonferroni correction implies that Hypothesis 4 is a union alternative 

hypothesis that can be fully supported following at least one significant result using an adjusted 

αConstituent of 0.025. The researchers met this criterion, finding that planning of working places was 

significantly positively correlated with the availability of telework possibilities from other 

locations. Hence, logically, the researchers could have concluded that there was full support for 

Hypothesis 4. Instead, they concluded that Hypothesis 4 was only “partially supported.” This 

conclusion suggests that they construed Hypothesis 4 as being composed of two individual 

hypotheses, and they would conclude that there was “full support” for Hypothesis 4 if both 

individual hypotheses were supported, “partial support” if only one hypothesis was supported, and 

“no support” if neither hypothesis was supported. However, in this case, no alpha adjustment is 

required because separate statistical inferences are made about each individual hypothesis, and a 

nonstatistical summary of these inferences is then provided in relation to “Hypothesis 4” (i.e., “full 

support,” “partial support,” or “no support”). Hence, the researchers should have reported two 

significant results at the 0.050 level and then claimed full support for Hypothesis 4. Instead, due 

to the loss of statistical power caused by their redundant correction, they only reported one 

significant result at the 0.025 level and claimed partial support for Hypothesis 4. 

I should note that correspondence with the first author of this study revealed that the 

decision to use a Bonferroni correction was made in response to a request from a peer reviewer 

(R. Prem, personal communication, 03/01/2024). Hence, at least in this case, a peer reviewer 

encouraged the researchers to follow the alpha adjustment ritual. 

 

Example 2: Clemens and Grolig (2023) 
Clemens and Grolig (2023) investigated how people would respond when they imagined 

that they were being interviewed by the police under either suspicion or no suspicion that they had 

committed an illegal act at a crime scene, but an act that was unrelated to the crime being 

investigated. Participants were asked to imagine that they had performed either a lawful act or an 

unlawful act at a bookstore in which a theft had taken place. In the lawful condition, participants 

looked at a book, and in an unlawful condition, they made an illegal purchase of a mobile phone. 

The researchers hypothesised “that unlawful act participants (vs. lawful act participants) would 

report…evasive strategies more frequently (hypothesis 1b).” The researchers considered two 

evasive strategies: (a) deception and (b) reluctant information sharing. They reported that, 

as two evasive categories of strategies were identified, we applied a Bonferroni corrected 

significance level (0.05/2) of 0.025 for hypothesis 1b. The results show that unlawful (vs. 

lawful) act participants reported the evasive strategy to be deceptive (χ2(1, N = 128) = 

28.038, p < 0.001, ϕ = 0.47) significantly more often, whereas no significant result was 

found for the evasive strategy of reluctant information sharing (χ2(1, N = 128) = 4.137, p 

= 0.042, ϕ = 0.18. These results are only partially in line with hypothesis 1b. 

Again, the researchers’ conclusion that their results are “only partially in line” with their 

hypothesis is inconsistent with their analytical approach. The use of a Bonferroni correction 

implies that only one of the two tests needs to yield a significant result in order to reject the 

intersection null hypothesis that unlawful act participants would report neither of the evasive 

strategies more frequently than lawful act participants. Consistent with this criterion, the 

researchers found one significant result using an adjusted αConstituent level of 0.025 (p < 0.001). 

However, instead of claiming full support for the union alternative hypothesis, they only claimed 

partial support. Again, this conclusion implies that the two tests were construed as single tests of 
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two individual null hypotheses. In this case, however, both null hypotheses could be provisionally 

rejected using a conventional αIndividual at the unadjusted level of 0.050 (p < 0.001 & p = 0.042), 

and a substantive conclusion of “full support” could be reached. 

 

Example 3: Janssen et al. (2023, Experiment 2) 
Finally, Janssen et al. (2023, Experiment 2) investigated the effectiveness of different study 

strategies, focusing on the differences between blocked study (studying one topic at a time; e.g., 

AAA BBB CCC) and interleaved study (mixing up different topics across time; e.g., ACB BAC 

CBA). These researchers used a Bonferroni correction to adjust their alpha level to 0.025 during 

an independent samples t-test in which study strategy (blocked vs. interleaved) was the 

independent variable and (a) prospective judgments of learning and (b) actual learning outcomes 

were the two dependent variables. As they explained, 

to test for significant differences, we used independent t-tests with a Bonferroni corrected 

significance level of p < 0.025 (i.e., 0.05/2). As expected and again consistent with 

Experiment 1, students who had used blocked studying made higher prospective judgments 

of learning (M = 5.83, SD = 1.60) than students who had used interleaved studying 

(M = 5.24, SD = 1.82), t(297) = 2.95, p = 0.003, Cohen’s d = 0.34. Numerically, the actual 

learning outcomes were higher for the interleaved study condition (M = 6.92, SD = 2.06) 

than for the blocked study condition (M = 5.83, SD = 1.60). However, in contrast to our 

expectations, this difference was not statistically significant, t(297) = -1.99, p = 0.048, 

Cohen’s d = -0.23 (p. 24). 

Hence, using an αConstituent of 0.025, the researchers found a significant effect of study 

strategy (blocked vs. interleaved) on prospective judgments of learning (p = 0.003) but not on 

actual learning outcomes (p = 0.048). Following the logic of the Bonferroni correction, they could 

have then rejected the associated intersection null hypothesis and claimed full support for the union 

alternative hypothesis that study strategy affected either prospective judgments of learning or 

actual learning outcomes. Instead, they proceeded to make statistical and substantive inferences 

about each outcome variable separately. For example, they concluded that 

both experiments replicated findings from prior research that, overall, at the group level, 

students reported higher effort investment and made lower judgments of learning during 

interleaved studying than during blocked studying (Kirk-Johnson et al., 2019; Onan et al., 

2022). Yet, we only replicated the finding that students actually learned significantly more 

from interleaved studying than from blocked studying (as evidenced by their test 

performance) in Experiment 1. In Experiment 2, the difference in learning outcome, 

although numerically in the hypothesized direction, was not statistically significant… (p. 

28). 

If the authors wanted to control their Type I error rate for each decision about each 

individual hypothesis at 0.050, then they could have used an unadjusted αIndividual of 0.050, rather 

than an adjusted αConstituent of 0.025. In this case, they would have decided that both of their test 

results were significant (ps = 0.003 & 0.048) rather than only their first result (p = 0.003). An 

αConstituent of 0.025 would only be required if the authors wanted to make a decision about the 

intersection null hypothesis using an αJoint of 0.050. However, they did not consider this 

intersection null hypothesis. Hence, once again, this example illustrates a redundant multiple 

testing correction and a loss of statistical power with regard to the individual inferences that were 

reported. 
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Summary 
In summary, in all three examples, the researchers applied a Bonferroni correction to adjust 

αConstituent from 0.050 to 0.025 in order to control αJoint at 0.050. In all three studies, the researchers 

found a significant result in which p < 0.025 and a nonsignificant result in which 0.025 < p < 0.050. 

This pattern of results would allow the researchers to either (a) reject the intersection null 

hypothesis on the grounds that at least one test was significant using an adjusted αConstituent of 0.025 

or (b) reject both individual null hypotheses on the grounds that both tests were significant using 

an unadjusted αIndividual of 0.050. Instead, in all three cases, the researchers followed a fallacious 

hybrid approach in which they used an αConstituent of 0.025 to (a) reject one of the two individual 

null hypotheses and (b) fail to reject the other one. This approach is logically inconsistent with the 

use of a multiple testing correction, and it results in an unjustified loss of statistical power that is 

illustrated by the fact that if the researchers had used an unadjusted αIndividual of 0.050, then they 

would have decided that both of their tests yielded significant results. This loss of power flowed 

through to the researchers’ substantive conclusions. In two of the three cases, the researchers 

described their results as providing only partial support for their hypotheses (Clemens & Grolig, 

2023; Prem et al., 2021, Study 1). In fact, whichever way the results are interpreted, they provided 

full support for the hypotheses: The single significant result at the 0.025 αConstituent level was 

sufficient to reject the entire intersection null hypothesis, and the two significant results at the 

0.050 αIndividual level were sufficient to reject each of the two individual null hypotheses. 

I restricted my three examples to studies published in psychology journals that used a 

Bonferroni correction involving two simple tests in which one test yielded a significant result at 

the corrected alpha level and the other yielded a nonsignificant result. Nonetheless, redundant 

corrections may also be observed among nonpsychology studies that use other family-based alpha 

correction approaches and larger families of tests. 

 

Moving Away from Statisticism 
In my view, statisticism refers to an overgeneralization of abstract statistical principles at 

the expense of context-specific nuance and caveats (e.g., Boring, 1919; Brower, 1949). Statisticism 

may help to explain the unthinking statistical ritualism that has been noted by some commentators 

(Gigerenzer, 2004, 2018; Proulx & Morey, 2021). In the area of significance testing, this ritualism 

may lead researchers to (a) preregister analyses and demote exploratory analyses as “tentative,” 

even when significance tests retain their validity in non-preregistered, exploratory situations 

(Devezer et al., 2021; Rubin, 2017, 2020a); (b) use a conventional alpha level when an alternative 

unconventional alpha level is more appropriate (Lakens et al., 2018); (c) use a two-sided test when 

a one-sided test is more consistent with one’s statistical inference (Georgiev, 2018; Rubin, 2022); 

(d) conduct an a priori power analysis when there is no clear basis for an effect size estimate and 

a sensitivity power analysis is more appropriate (Lakens, 2022; Perugini et al., 2018); and (e) 

follow a Neyman-Pearson interpretation in settings in which a Fisherian interpretation is more 

appropriate (Hurlbert & Lombardi, 2009; Rubin, 2020b). 

Perhaps fuelled by concerns about statistical rigour following the replication crisis, 

statisticism may also help to explain a renewed promulgation of the alpha adjustment ritual. 

Redundant multiple testing corrections then follow as an overgeneralized response to a fairly 

limited problem. 

To move away from statisticism, we need to adopt a more nuanced, context-sensitive 

approach that pays closer attention to the specific statistical inferences that researchers actually 

make. In the case of multiple testing corrections, this more nuanced approach includes the 
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abandonment of the alpha adjustment ritual and the adoption of an inference-based perspective 

that advocates an alpha adjustment in the case of inferences about intersection null hypotheses but 

not in the case of inferences about individual null hypotheses. 
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