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Abstract

The counterpart theorist has a problem: there is no obvious way to under-
stand talk about actuality in terms of  counterparts; Fara and Williamson have
charged that this obstacle cannot be overcome. Here I defend the counterpart
theorist by offering systematic interpretations of  a quantified modal language
that includes an actuality operator. Centrally, I disentangle the counterpart
relation from the related notion of  a representation relation. The relation of
possible things to the actual things they represent is variable; an adequate ac-
count of  modal language must keep track of  the way it is systematically shifted
by modal operators. I apply my account to resolve several puzzles about coun-
terparts and actuality. In technical appendices, I prove some important logical
results about this “representational” counterpart system and its relationship to
other modal systems.

In this essay I answer what I take to be one of  the more serious challenges to a
counterpart-theoretic account of  possibility: the problems of  actuality raised by Allen
Hazen (1979) and subsequently pressed by Michael Fara and Timothy Williamson
(2005). The essay has two parts. In the main part, I defend my proposal and apply it
to some problem cases. The second part consists of  technical appendices in which I
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1 Two	languages

characterize the counterpart theorist’s logic of  actuality and some of  its connections
to other modal systems.

1 Two	languages
All of  us who speak about what is possible fall (more or less begrudgingly) into using
possibilist language, speaking of  possible worlds inhabited by various possible indi-
viduals. We tell various stories about what we really say with this language: maybe
it’s about isolated concrete universes, or abstract states of  affairs or propositions or
properties, or sets of  sentences, or featureless “bare possibilia”; or maybe it isn’t really
about anything, and possibilist language should be translated away not (so to speak)
one thing at a time, but rather whole sentences at a time; or maybe it involves some
kind of  pretense.1 Whatever story we tell, this way of  talking is too useful to give up
altogether (c.f. Lewis 1986, ch. 1). But this essay is not about what our possibilist talk
really means; it is about counterpart theory, and counterpart theory is not tied to any
one of  these stories.

Besides the possibilist language—Possibilese—we also have another way of  talk-
ing about what is possible: Modalese. In this other language we say what could have
been or must be, the sort of  thing we familiarly formalize with boxes and diamonds.
When in Possibilese we say, “There is a possible talking donkey”, in Modalese we say,
“There could have been a talking donkey”. I have no official view as to whether one
locution is more basic than the other; but unofficially I will slip into talking as if  the
possibilia account for what is possible.

Since both languages concern possibilities, there ought to be some correspon-
dence between the commitments we express in each. The form of  this correspon-
dence is the main question of  this essay. But much of  it is unproblematic. Here’s how
one version goes—a counterpart theorist’s.

For a start, Modalese has a categorical fragment that involves no modal op-
erators. This says how things are, remaining silent on what might have been. In
Possibilese we speak of  a special world—the actual world, w@—which is an image of
the categorical truths. If  in Modalese we say something is F , then in Possibilese we say
something in the actual world isF ∗, whereF ∗ is a Possibilese predicate corresponding
to F . In Modalese we say Donnie is a donkey; in Possibilese we say Donnie∗, who
is a possible individual in the actual world, is a donkey∗. (Officially, we may wish to
distinguish the predicates of  the two languages, and similarly names of  actual things
from corresponding names of  the possible things in the actual world. But usually I’ll
drop the stars to lighten the burden of  notation.)

1Some representatives of  these different views: Lewis 1986; Plantinga 1974; Sider 2002; Williamson
1998; Fine 1985; Rosen 1990.
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More generally, possible worlds correspond to true possibility claims: at a first
pass, what’s possible is what’s true at some possible world. (I’ll ignore accessibil-
ity relations, except in the appendices.) There could have been a talking donkey;
there is a talking∗ donkey∗ in some possible world. This will do for de dicto possibil-
ity—possibility statements without any free variables or other singular terms. But de
re possibility is a bit trickier. Humphrey could have been president; at least, then,
there is a possible world where somebody is president∗. But which possible individu-
als, by being president∗, secure the possibility of  being president for Humphrey? Call
these Humphrey’s representatives. Humphrey could have been president iff  he has a
representative inhabiting some world who is president∗.

Humphrey has more than one representative. He could have been president, so
he has a representative which is president∗. But he also clearly could have been not
president, and so he has a representative which isn’t president∗. These are different.
(Being president∗ isn’t a relative matter.) In general, I’m supposing possible individuals
are world-bound: each possible individual is one specific way, and inhabits exactly
one possible world. But even so, Humphrey could have been many different ways, so
he has many representatives, in many different worlds.

We don’t just attribute de re possibilities to actual things; we also sometimes at-
tribute merely possible de re possibilities. (If  there were a gold mountain, it would
essentially have atomic number 79.) So in Possibilese we should speak not just of  rep-
resentatives for actual things, but more generally counterparts for each individual
in the pluriverse. Humphrey∗’s counterparts present possibilities for Humphrey, their
counterparts present Humphrey’s possible possibilities, and so on.

Some of  what I’ve said so far may sound very controversial. But it isn’t really, taken
in the right spirit. Suppose Kristin thinks that a single possible object Humphrey∗

inhabits many worlds—she believes in “trans-world individuals”. And she thinks that
what could be true of  Humphrey is just what is true at some world of  Humphrey∗.
She can still accept everything I’ve said, by appropriately reinterpreting it. I said that
individuals are world-bound. Kristin can accept this, by regarding my “individuals” as
her individual-world pairs, and reinterpreting the predicates accordingly. (She might
take me to be putting things unnaturally, but naturalness is not at issue.) Likewise,
Kristin can accept that possibility claims correspond to claims about counterparts;
she just has a special story about what the counterpart relation is: the “individual”
⟨b, w⟩ is a counterpart of ⟨a, v⟩ just in case a and b are the very same thing. So
Kristin can happily say everything that the counterpart theorist does.

What sets the serious counterpart theorist (let’s call him Lucius) apart from Kristin
is not what he says, but what he doesn’t say. Kristin has a special account of  the coun-
terpart relation, in terms of  identity. This has consequences for shape it can take.
Kristin’s counterpart relation must be an equivalence relation: reflexive, transitive,
and symmetric. A single thing can have only one counterpart in any particular world.
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Two distinct things in a world must not have the same counterpart. Nothing is a coun-
terpart of  anything else in its own world. But Lucius isn’t committed to the counterpart
relation having these properties. The counterpart relation should probably be reflex-
ive, since, necessarily, things could be the way they are. But these other features are
far from obviously desirable constraints, and there are various reasons for rejecting
them.2 Here’s one kind of  reason: you might want to explain the counterpart relation
in terms of qualitative resemblance (perhaps in service of  some general ambition to reduce
de re modality to the de dicto). If  counterparthood is qualitative, then cases of  qualitative
symmetry will give rise to cases of  multiple counterparts.

Whatever his reasons, Lucius has weaker commitments about the structure of
counterparthood than Kristin. This reticence is a ceteris paribus virtue, since it re-
quires less from a theory of  possibilia. But it also raises a worry: the sparer structure
of  Lucius’s counterparts might not stand up to all the pressures we put on a theory
of  possibilia. In particular, there might turn out to be important modal claims that
Kristin can interpret possibilistically but Lucius cannot.

To address this worry, we can start by regimenting the general story about the
correspondence between modal talk and counterpart talk, turning it into a system for
interpreting a formalized fragment of  Modalese in possibilist terms. Doing this will
show that this fragment, at least, does not outstrip counterpart theory’s resources.

The interpretations go like this. (I’ll just deal with the case of  formulas of  a single
variable for now, since dealing with multiple objects brings up a bit of  extra complica-
tion that isn’t immediately important. I discuss the generalization in Section 3.) We’ll
interpret formulas of  quantified modal logic by inductively defining what it takes for a
modal formula ϕ to be true of a certain possible individual a at an evaluation world
v—abbreviated JϕKv, a. (I henceforth drop Possibilese stars.)

JFxKv, a iff FaJ¬ϕKv, a iff not JϕKv, aJϕ ∧ ψKv, a iff JϕKv, a and JψKv, aJ∃xϕKv, a iff for some b in v, JϕKv, bJ♢ϕKv, a iff a has a counterpart b in a world w such that JϕKw, b

(The other standard connectives can be defined in terms of ¬, ∧, ∃x and ♢. In par-
ticular, □ is dual to ♢.) A modal sentence ϕ with no free variables is true simpliciter iff
it is true of  an arbitrary actual individual at the actual world. (We can also think of

2Lewis discusses of  some of  these reasons (1986, 231–2, 243–6, 258–9). Interesting motivations for
multiple counterparts have also arisen in the philosophy of  physics (see for instance Butterfield 1989,
§6; Maudlin 1990, 550; Belot 1995; Pooley n.d., §2.3). Accessibility relations can help the trans-world
identity theorist relax some of  these constraints, but not all of  them.
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free x as a name; if x refers to an actual individual a, then ϕ is true iff ϕ is true of a at
the actual world.)3

David Lewis (1968) provided essentially this account. I should point out one dif-
ference in my presentation: Lewis gave a translation manual, a way of  systematically
transforming modal formulas into formulas of  a regimented counterpart-theoretic lan-
guage. I think that this extra level of  semantic ascent makes the main discussion harder
to follow, so in my interpretations I’ll continue to use informal Possibilese sentences,
rather than mentioning their formalizations. But once we’ve carefully worked out the
informal interpretations, it isn’t difficult to turn them into formal translations, and I
show explicitly how to do this in Appendix D. (I also do a third thing, in Appendix A,
which is to give model-theoretic interpretations for meta-logical purposes.)

So far, so good: the bit of  Modalese we just interpreted, at any rate, can be sys-
tematically interpreted in terms of  counterparts.

2 The	problems	of	actuality
But our modal commitments go beyond what can be expressed in this formal frag-
ment: quantified modal logic is expressively weak. For instance, it cannot express
modal claims like this one (Hazen 1976, 34; Hodes 1984c, 23):

There could have been things that don’t actually exist. (1)

To capture this meaning, we need to add to our modal repertoire, alongside “possibly”
and “necessarily”, a new sentence operator @ϕ with the sense “It is actually the case
that ϕ”. With it, we can render (1) as

♢∃x¬@Ex

(Ex abbreviates ∃y y = x.)
But there is no obvious way to extend Lewis’s interpretations to this new opera-

tor—and so, in general, there is no obvious way for the counterpart theorist to sys-
tematically interpret the full range of  Modalese. Allen Hazen (1979) pointed out this
gap, and more recently Michael Fara and Timothy Williamson (2005) have argued
that it cannot be filled.

To interpret an actuality clause, it isn’t enough simply to reset the evaluation world
to w@; we also need to choose actual individuals to stand in for the objects designated

3Since I said that the trans-world identity theorist Kristin could accept the counterpart theorist’s
claims, I ought to mention one problem she might have with this ♢-clause: It requires that we restrict
our attention to individuals that exist at the evaluation world, whereas Kristin may wish to make claims
about non-existents. I return to this issue in Section 4.
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by free variables. On the model of  the ♢-clause, we might try

J@ϕKv, a iff a has a counterpart b in w@ such that JϕKw@, b

But this has the wrong consequences. For a possible object may very well have two
counterparts in the actual world, one happy and one unhappy; in that case the sug-
gested interpretation would render this formula true (Hazen 1979, 330):

♢∃x(@Ex ∧@Fx ∧@¬Fx) (2)

There could have been something which actually exists and is
actually happy and is actually not happy.

This sounds contradictory. On the other hand, we might try to model “actually” on
“necessarily”, and instead require that every counterpart of a in w@ satisfy ϕ. This is
no better, since then the following is satisfied:

♢∃x(@Ex ∧ ¬@Fx ∧ ¬@¬Fx) (3)

There could have been something which actually exists and is not
actually happy and not actually not happy.

Again (ignoring the vagueness of  “happy”) this is an intuitive contradiction. This is
the problem of  multiple counterparts.

Since the counterpart relation need not be symmetric, we may also look to the
wrong counterpart: the existential and universal approaches both let us satisfy this
unacceptable sentence (Sider n.d., 24):

∃x(Fx ∧ ♢@¬Fx) (4)

There is something happy which could have been such that actually
it is not happy.

Moreover, a possible object might have no counterparts in the actual world. In that
case the existentially and universally quantified approaches both satisfy this (Fara and
Williamson 2005, 9):

♢∃x(@Fx↔ @¬Fx) (5)

There could have been something which is actually happy just in
case it is actually not happy.

These simple interpretations yield an unacceptable logic of  actuality. Other can-
didates have been offered, but thus far each has foundered (Forbes 1982, 1990; Ra-
machandran 1989, 1990; Sider n.d.). Moreover, Fara and Williamson argue that the
challenge cannot be met: in particular, that there is no coherent way of  systematically
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extending Lewis’s interpretations of  quantified modal logic to include actuality, and
that “the prospects for any coherent translation scheme are dim” (2005, 23).

One might wonder how serious a problem this is.4 Though we want to eventually
provide systematic semantics for natural language, that is by no means the same as the
formal modal language under discussion. The rigid operator @ is no synonym for the
English word “actually” (c.f. Lenk 1998, 158ff). So, first, why should the counterpart
theorist have any interest in interpreting this operator? And second, why be moved
by some philosophers’ judgments that certain sentences involving it are inconsistent?
Since “actually”, as we use it here, isn’t quite English, it isn’t in our capacity as English-
speakers that we make judgments on the problem sentences. To what other authority
can we appeal?5

We care about @ not because it is English, but because it is useful, by playing an im-
portant role in a certain regimentation of  possibility talk. This regimented language is
philosophically useful, for framing theories and discerning logical consequences, and
it is semantically useful, providing a ladder rung on the way to natural language. Our
judgments on the problem sentences, then, are best thought of  not as linguistic data,
but rather as test conditions we (in our philosophical sophistication) take as important
qualifications for an operator playing a certain theoretical role—“the @-role”.

The @-role’s importance comes in part from the fact that it is a special case of  a
more general apparatus. In natural and philosophical speech alike, we freely shift our
attention between many different salient possibilities, and compare how things are in
several of  them in a single clause. For example:

There could have been something that doesn’t actually exist, and in
fact necessarily, whatever existed, there could have been something

that in that case didn’t exist.

(6)

How can we express this claim formally? The actuality operator is not enough here,
but we can capture (6) with a more general “modal anaphor” operator, glossed “in
that case” (Hodes 1984b, 426). It isn’t difficult for a trans-world identity theorist (like
Kristin) to give a possibilist interpretation for such an operator; but the counterpart
theorist runs against all the same problems as with actuality. Our concern with iden-
tifying individuals in different possibilities goes well beyond the simple case that Lewis
(systematically) accounts for.

In the face of  failure to give a counterpart-theoretic account of  the @-role, it isn’t
out of  the question for the counterpart theorist to give it up as a lost cause—or at

4Thanks to Jim Pryor for discussion on this point.
5“What is the correct counterpart-theoretic interpretation of  the modal formulas of  the standard

language of  quantified modal logic? — Who cares? We can make them mean whatever we like. We are
their master. We needn’t be faithful to the meanings we learned at mother’s knee—because we didn’t”
(Lewis 1986, 12).

7



3 Representing	actuality

least reject some of  the constraints on that role imposed by the problem sentences.
He can resign himself  to finding other resources to do its philosophical work, and
he can hope that there is another route to natural language that doesn’t go through
this regimentation. While the “high-road” response may be painful, it isn’t out of  the
question. But my “low-road” response is better: by providing a counterpart-theoretic
account of  an actuality operator, I spare the philosopher and the semanticist the loss
of  a useful theoretical tool.

One might still wonder why we should care about systematic interpretations of  “actu-
ally”. After all, it looks like each of  the problem sentences considered so far can be
given some kind of  ad hoc counterpart-theoretic gloss. For instance, (4) looks to be
paraphrasable thus:

For some a, a is happy and a has a counterpart b in a world w such
that a is not happy.

This paraphrase is contradictory, as it should be. If  off-the-cuff  interpretations are
always available, why fuss over systematizing them? I see four main reasons.

First, systematic interpretations allay any worry that our ad hoc creativity will
eventually run out, putting to rest the charge of  expressive weakness.

Second, ad hoc paraphrases will be of  no help in the project of  giving systematic
semantics for natural language.

Third, systematic interpretations help decide logical questions. One of  the chief
benefits of  possible worlds semantics is that it transforms questions about modal logic
into easier questions about the extensional logic of  Possibilese. Without a systematic
account of  “actually”, the counterpart theorist cannot take advantage of  this strat-
egy, and so he is in a weak position to settle questions about the logic of  actuality.
Indeed, puzzles like the one raised by Delia Graff  Fara (Section 5) show that rea-
soning about actuality without a systematic theory of  its behavior quickly leads into
brambles. Maybe the brambles come with the terrain: perhaps “actually” cannot be
systematized and has no simple logic. But if  this defeatist presumption turns out to be
wrong, we stand to gain.

Finally, systematizing actuality yields philosophical insights: it illuminates what
we say with possibilist language, and how best to use it as we navigate our theory of
possibilities. The evidence for this is in the account itself.

3 Representing	actuality
Humphrey’s counterparts represent him in other worlds. Humphrey could have been
president; some possible president represents Humphrey. When we ask what is actually
the case concerning that president, we are interested in what is true of Humphrey: for
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instance, that he lost. In general, what is actually true of  a possible individual is what is
true of  the actual individual that it represents. In order to evaluate a formula governed
by an actuality operator, then, we need to decide what actual thing (if  any) each of  its
terms represents. We are not looking for a new representative for Humphrey—as we
would do by searching the actual world for counterparts of  his counterparts. Rather,
we want the individual we were already discussing, Humphrey himself. “Actually”
effectively undoes representation de re, sending representatives back to the actual in-
dividuals for which they interceded.

Note that Kristin (who talks like a counterpart theorist but believes in trans-world
individuals) has a ready way to do this: she can define a function A that maps each
ordered pair ⟨a,w⟩ to the corresponding pair ⟨a,w@⟩. On her understanding of  rep-
resentation de re, this is the only actual “individual” that ⟨a,w⟩ could represent. So
her interpretation looks like this:

J@ϕKv, a iff JϕKw@, A(a)

Seeing this, the counterpart theorist might also try to define an “actuality func-
tion” in terms he accepts. This idea immediately runs into trouble. Romulus and
Remus are identical twins. Romulus founded Rome (after killing his twin). Their
common zygote might not have split: there is a possible world in which only one boy
is born—call him Primo, and let “Primo-ish” be a predicate that applies to Primo
uniquely among all possible individuals. (Perhaps this is a complete centered qualita-
tive description of  Primo’s world.) Romulus could have been Primo-ish, and Remus
could have been Primo-ish. So the following holds:

♢∃x(Px ∧@Fx) ∧ ♢∃x(Px ∧@¬Fx) (7)

There could have been someone Primo-ish who actually founded
Rome, and there could have been someone Primo-ish who actually

did not found Rome.
But suppose there were an “actuality function” A from possibilia to the actual-world
individuals they represent. For (7)’s first conjunct to be true, A(Primo) would have
to be Romulus. (No one else founded Rome.) But then the second conjunct would
be false. How then can (7) be true? Clearly the answer is that Primo does not once
and for all represent any one actual thing. To make (7)’s first conjunct true, Primo
represents Romulus, and for the second, the very same Primo represents Remus.

Here’s another example to illustrate the same point. Lewis allows that someone
can have a counterpart in her own world; this lets him say things like “I could have
been Fred (and everything else have been just the same)”, without postulating a du-
plicate world for their role reversal to take place in.6 Say poor, dull Fred is David

6Lewis rules this out in his original 1968 treatment, but he allows it in Lewis 1986 (230ff). Section 5
takes this up further.
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Lewis’s counterpart in the actual world. Thus ♢(DL is dull) is true, and in making it
true, Fred represents DL. But in making true ♢(Fred is dull), Fred represents himself.
In general, the counterpart theorist must recognize that representation is variable: there is
no single actual thing that is represented by a given possible individual (even fixing a
particular counterpart relation). Possible things do represent actual things, but which
things they represent is not fixed once and for all.

A counterpart-theoretic treatment of  “actually” requires an account of  how rep-
resentation relations vary. The first task is to rewrite Lewis’s interpretation of  the
modal language without “actually” in a way that brings the representation relation to
the surface. Once this is done, extending the interpretation to actuality is straightfor-
ward.

Here’s the basic idea: in the interpretations I already presented, we keep track
of  an evaluation world, which we shift whenever we interpret a ♢-clause. In the new
system, we also keep track of  a shiftable representation relation, which pairs rep-
resentatives in the evaluation world with what (if  anything) they represent in the actual
world. Whenever we shift the evaluation world and choose new counterparts at the
new world, we also shift the representation relation accordingly. Here’s a picture: we
start by tying strings to the individuals of  the actual world; as we evaluate possibilities,
we carry the ends of  those strings from world to world, attaching them to the coun-
terparts we find at each stage. When we then wonder what is actually true of  certain
things, we trace back along those strings to their anchors in the actual world.

Before I can make this precise, I need to address a point about counterparts that
I put off  from Section 1. So far I’ve only said how to interpret modal formulas of  a
single variable, and it isn’t obvious how to generalize this. In Lewis’s original 1968
treatment, he told us to find a counterpart for each thing individually: ♢Rxy is true
of a1 and a2 iff  there is a possible world w in which a1 has a counterpart b1 and a2
has a counterpart b2 and Rxy is true of b1 and b2 at w. That is:

J♢ϕKv, a1,...,an iff there are b1, . . . , bn in some world w such that
b1 is a counterpart of a1 and …

and bn is a counterpart of an and JϕKw, b1,...,bn

(Old)

But this proposal overlooks the fact that sometimes the fates of  different individu-
als are linked.7 For example, suppose a certain essentialist claim is correct: Chelsea
couldn’t have had any mother but Hillary. But suppose also there is a symmetric
possible world which contains two duplicate mother-daughter pairs, each very like
Hillary and Chelsea, and so each of  the daughters, daughter1 and daughter2, is a
counterpart of  Chelsea, and each of  the mothers, mother1 and mother2, is a coun-
terpart of  Hillary. Then since in particular daughter1 is Chelsea’s counterpart and

7Hazen (1979) made this point (328–9), and Lewis (1986) accepted it with Hazen’s suggested solution
(233–4). See also Dorr n.d.
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3 Representing	actuality

her worldmate mother2 is Hillary’s counterpart, according to Lewis’s original instruc-
tions (Old), ♢(Chelsea’s mother is not Hillary) comes out true, which contradicts the
essentialist claim.

The solution: in cases of  joint possibility we also have joint counterparts. Don’t look
for a counterpart of  Hillary and a counterpart of  Chelsea independently: look for a pair
of  things which are collectively counterparts of  the pair of  Hillary and Chelsea. In
our example, ⟨mother1, daughter1⟩ and ⟨mother2, daughter2⟩ are two such counter-
part pairs, but the crossed pair ⟨mother2, daughter1⟩ is not. So we can respect the
essentialist claim.

In general, instead of  a two-place counterpart relation, we’ll have a kind of  coun-
terpart relation which tells us which things in a world w collectively present a possibility
for the things in a world v. There is more than one way to implement this idea pre-
cisely; here is one. Our basic notion is of  a counterpart-link between the inhabi-
tants of  a worldw and those of  another world v. Eachw–v link is a two-place relation
S such that if bSa then a inhabits v and b inhabits w. We say that b1, . . . , bn are
jointly counterparts of a1, . . . , an iff  there is a link S such that b1Sa1 and … and
bnSan. The old two-place counterpart relation is a special case: b is a counterpart of
a iff b bears some link to a. And we say:

J♢ϕKv, a1,...,an iff there are b1, . . . , bn in some world w such that
b1, . . . , bn are jointly counterparts of a1, . . . , an,

and JϕKw, b1,...,bn

(Joint)

In this version of  counterpart theory, what does the job of  the counterpart relation is a
family of  relations which tell us which things collectively present possibilities for other
things.8

8Why not take the joint counterpart relation as basic, instead of  these links? This is possible, but
there are some complications. One thought is that the basic machinery should be a family of 2n-place
counterpart relations: b1, . . . , bn are jointly counterparts of a1, . . . , an. To get sensible results we’ll
need to put some conditions on permutations and contractions of  the sequences of  arguments, which
adds some complication. But the deeper problem is that—at least once we consider actuality—I don’t
think this will easily handle possibilities for infinitely many individuals. For example, supposing there are
infinitely many actual things, we may want to say:

Possibly: only actual things exist, everything has a cause, nothing is its own cause,
and causing is transitive.

(This is easy to regiment in the language of  quantified modal logic with actuality.) But any merely finite
choice of  counterparts in such a world will leave out some things, not linking them up to any actual things.
(You might try to deal with this by adjusting the interpretations of  the quantifiers, so each quantifier tries
to extend the operative link. I suspect that something along these lines may work, but I haven’t worked
out the details.)

On the other hand, we could use an infinitary relation: a1, a2, . . . are jointly counterparts of
b1, b2, . . . . This should work, but it isn’t totally straightforward. There are some technical worries
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I should pause to say something about the heavy machinery: this way of  inter-
preting possibility claims goes beyond the resources of  the simple first-order possibilist
theory which Lewis uses in his original 1968 treatment, in that it quantifies over rela-
tions. This could be understood in terms of  primitive higher-order quantification, or
plural quantification (over pairs), or (perhaps setting aside potential size issues) first-
order quantification over something set-like. For what it’s worth, Lewis would happily
take on board some member of  this family. In his 1986 presentation he freely appeals
to classes, sequences, etc. But other counterpart theorists might balk. Maybe the
relation-quantifiers can be dispensed with, by replacing them with finite sequences of
individual quantifiers.9 I suspect that this is possible, but there are some tricky de-
tails. So the counterpart theorist might really be stuck with relation quantifiers in the
possibilist theory used to interpret possibility claims. Buyer beware.

Facts about modal logic put constraints on what links are like. For instance, since
(necessarily) things could be the way they are, links should obey a corresponding con-
dition: for each world w, there is a w–w link which is the identity relation on w’s
inhabitants.

Another logical issue about joint possibility is the contingency of  identity. Is dis-
tinctness possible for an identity pair ⟨a, a⟩? Is being identical possible for a pair of
distinct things a1 and a2 (see Lewis 1986, 259)? Using (Joint) these questions become:
if b1 and b2 are jointly counterparts of a1 and a2, is it ever the case that a1 = a2 but
b1 ̸= b2, or conversely that a1 ̸= a2 but b1 = b2? Or in other words, are there any
links which are not one-to-one relations?10 In short, the necessity of  identity and
distinctness,

□∀x ∀y(♢x = y → □x = y) (NID)

is (using our modal interpretation) equivalent to the claim that every link is one-to-one.
Note that this claim about joint counterparts is compatible with one thing having

multiple counterparts in the same world (as opposed to Lewis 1968, 124). For instance, in
the case of  Chelsea and Hillary there is more than one link between the symmetric

about the cardinality of  this relation’s sequences of  arguments, and of  course again we would have to
impose conditions on permutations and contractions of  the sequence of  counterparts to get sensible re-
sults. (Furthermore, if  you didn’t like the link version because it quantifies over relations, then this version
which involves quantification over infinite sequences probably isn’t much help.)

I think the “link” formulation is the most straightforward way to go. It has the extra benefit of  fitting
neatly into an account of  actuality. Note also that if  we took joint counterparts as basic, we could still
define the links. (If b1, b2, . . . are jointly counterparts of a1, a2, . . . , then the relation which holds just
between each bi and ai is a link, and these are all of  them.) So my account could still proceed just as it
does.

9Kit Fine suggested this to me. See the preceding footnote.
10Just to be clear, a relation R on X × Y is one-to-one iff: whenever bRa and b′Ra′, a = a′ iff

b = b′. On my use, it does not imply that that every member of X bears R to something, nor likewise
for Y .
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world with two mother-daughter pairs and the actual world—more than one way of
choosing things that present a possibility for Chelsea and Hillary. In that case, Chelsea
has multiple counterparts in one world. But even though daughter1 and daughter2 are
each counterparts of  Chelsea, they need not be jointly counterparts of  the identity pair
⟨Chelsea,Chelsea⟩. Each link between the symmetric world and ours may well be
one-to-one, never simultaneously choosing different counterparts for the same thing,
or the same counterpart for different things. So the doctrine of (NID) is compatible
with cases of  multiple counterparts. It also allows cases like Remus and Romulus, or
like David Lewis and poor Fred. In particular, it is perfectly consistent with the idea
that counterparthood is a qualitative matter, and that there are are qualitatively sym-
metric worlds. It is only under Lewis’s old treatment, which reduces joint possibilities
to single-thing possibilities, that the distinct questions of  multiple counterparts and
contingent identity collapse together.

It’s also worth noting that affirming (NID) does not close off  the counterpart the-
orist’s solution to the problems of  contingent coincidence (See Lewis 1971; Gibbard
1975; Lewis 1986, 256; Fara n.d.; Sider n.d., 27; Dorr n.d.). For example: a certain
statue is identical to the lump of  clay it is made of; but if  the statue had been headless,
both the statue and the lump would still have existed, and yet they would not in that
case have been identical. (The statue would have been a different, smaller lump.) It
might seem that (NID) forbids this. I don’t think it does, though, if  properly under-
stood. In particular, we should affirm (NID) only if  there is no equivocation on the
sense of  possibility involved. (The most banal logical truths will turn out false if  we let
you change the sense of  your words mid-sentence.) But a plausible thing to say about
statue-lump cases is that there are two different modalities involved: possibility-for-
statues and possibility-for-lumps. We explain these in terms of  different counterpart
relations, (that is) different kinds of  counterpart-links. What we want to say is that a
single object could have been statuewise a different object than it would in that case
have been lumpwise. But this claim is compatible with (NID) on any unequivocal inter-
pretation. What (NID) rules out is that anything could have been distinct from what
it then would have been, where “could” and “would” are used in exactly the same sense.

In what follows, I’m going to take a stand and assume that (NID) is true, and
thus that links are one-to-one. This is for two reasons. First, I suspect the doctrine is
correct, for Kripke’s reason: since a is necessarily a, if b is a then by Leibniz’s Law
b is necessarily a as well. Second, the assumption makes what follows technically
much simpler, both when it comes to stating the interpretation of  actuality claims,
and when it comes to proving logical facts about them. This assumption is, of  course,
controversial. I am confident that my account of  actuality can be extended to apply
even without this assumption, but for now you just get a promissory note: future work.
If  you believe in contingent identity, you can take what follows as a provisional theory,
relying on an unrealistic but useful simplifying assumption.

13



3 Representing	actuality

Now that I’ve addressed these preliminaries about joint possibilities, let’s return to
the main issue. We want to rewrite the interpretation of  possibility clauses so that we
explicitly keep track of  which actual things are represented by the possible individuals
under consideration. This just takes a little bit of  massaging. We do it by inductively
defining when a modal formula ϕ is true of individuals a1, . . . , an at a world v with
a representation relation R. For short: JϕKv,R, a1,...,an . A representation relation is
any two-place, one-to-one relation between things in a world v and things in the actual
world w@. It gives us strings reaching back to things in the actual world, which we
can use to find our way home to them when we need to.

The non-modal clauses are the same as before, with the new arguments tacked
on. For example: J¬ϕKv,R, a1,...,an iff not JϕKv,R, a1,...,an

The possibility clause needs to be slightly rewritten. A point of  notation: S◦R denotes
the composition of S and R: c(S ◦R)a iff  for some b, cSb and bRa.11 Then:

J♢ϕKv,R, a1,...,an iff there are b1, . . . , bn in some world w
and there is some w–v link S such that
b1Sa1 and … and bnSan, and JϕKv, S◦R, b1,...,bn

This clause says the same thing as (Joint): it yields exactly the same modal truths.
The only difference is that we explicitly keep track of which counterpart-link we used
to get from the v-things to the w-things. This makes is possible to retrace our steps.
We compose the link with the old representation relation because the counterpart we
choose for a represents the same actual thing (if  any) that a does.

As in Section 1, we can use this technical notion of  truth of  … at … with … to
define truth simpliciter: a modal sentence ϕ is true iff  it is true of  the empty sequence
of  things, at the actual world, with the relation Id@, which is the relation that holds
between each actual thing and itself. (We can also treat free variables as names as
before.)

And at last, the interpretation of  actuality clauses:

J@ϕKv,R, a1,...,an iff there are individuals b1, . . . , bn in w@ such that
a1Rb1 and … and anRbn, and JϕKw@, Id@, b1,...,bn

What is actually true of  some things is what is true of  the actual things they represent.
The relationR tethers actual things to their possible representatives. An actuality op-
erator follows back alongR from each possible object to what it represents, the object
at the beginning of  its string. Note that here we write aiRbi, whereas in the ♢-clause
we wrote biSai: the order of  the arguments is reversed, and thus the representing

11Note that some common conventions put R and S in the opposite order from my notation.
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done by ♢-clauses is undone by the @-clause. We also reset the evaluation world to
w@ and tie off  new strings, so each actual object now represents itself.12

4 The	problems	solved
Let’s check how this solves the problems of  actuality. Consider first Hazen’s sentence:

♢∃x(@Ex ∧ ¬@Fx ∧ ¬@¬Fx) (2)

The diamond posits a world w and a link S. (We don’t have to worry about new indi-
viduals, since we are considering whether a closed formula is true of  zero individuals.)
The representation relation is updated to S ◦ Id@ = S. The quantifier introduces an
individual a in w, so the interpretation so far is:

For some world w and some w–w@ link S, there is some a in w such
that J@Ex ∧ ¬@Fx ∧ ¬@¬FxKw, S, a

Take the three conjuncts one at a time. The first conjunct says that there is an indi-
vidual b0 in the actual world such that aSb0. The second conjunct says that there is
no individual b such that aSb and Fb. So it implies in particular that b0 is not F . The
final conjunct says that there is no b such that aSb and not-Fb. So it implies that b0
is F . But this means (2) is contradictory—as it should be.

Of  course, the naïve translation that treats “actually” as an existential quantifier
over counterparts also gets (2) right. The real test is whether the translation also ren-
ders its partner sentence contradictory:

♢∃x(@Ex ∧@Fx ∧@¬Fx) (3)

In Possibilese, (3) says that there is a world w, a w–w@ link S, and a w-inhabitant a,
such that (i) there is some b1 such that aSb1; (ii) there is some b2 such that aSb2 and
Fb2; and (iii) there is some b3 such that aSb3 and not-Fb3. But S is one-to-one, so
b1 = b2 = b3, and this individual must be both F and not-F—a contradiction again.
The problem of  multiple counterparts is solved.

12Hazen originally proposed something very similar in spirit (1979, 333ff.): for simple cases, he uses
a set of  “representative functions”, which are one-to-one partial functions from the actual world’s do-
main to the domains of  other worlds—the same kind of  thing as my representation relations. The main
difference between his version and mine is that he takes these functions as basic machinery replacing
counterparts, whereas in my version representation relations are built up “on the fly” out of  (joint) coun-
terparts. Furthermore, when he generalizes his version to handle iterated modalities, the representative
functions he takes as basic turn out to be complicated objects that link up the objects from the domains
of  arbitrary finite sets of  worlds.
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We also solve the problem of  the wrong counterpart. Recall:

∃x(Fx ∧ ♢@¬Fx) (4)

The first step of  the interpretation says: there is some actual a which is F , and
♢@¬Fx is true of a. The second clause is interpreted to say: there is a world w,
a w–w@ link S, and aw-inhabitant b such that bSa, and J@¬FxKw, S, b. And this last
bit says: there is an individual c such that bSc and not-Fc. Again, since S is one-to-
one, a = c, and again one individual is both F and not-F . So (4) too is contradictory.

The problem of no counterpart isn’t quite so nice. I’ll lead up to it with a general
observation. The “actually” clause existentially quantifies over actual things. If  some-
thing mentioned in the scope of  an actuality operator does not represent any actual
thing—its string dangles loose—then the actuality claim comes out false. This isn’t
clearly wrong: should we positively say such-and-such is actually the case concerning
a non-actual thing? But this position has some awkward consequences.

For instance,
□∀x

(
¬@ϕ(x) ↔ @¬ϕ(x)

)
is not a logical truth: @ does not commute with negation. @ϕ(x) is false of  any
individual that does not represent anything actual, and so ¬@ϕ(x) is true of  such an
individual. But @¬ϕ(x) is also false of  such a thing, and so the biconditional fails.
On the other hand, we do get a logical truth by adding an existence condition:

□∀x
(
@Ex→

(
¬@ϕ(x) ↔ @¬ϕ(x)

))
As a special case, we must be careful when expressing actual non-existence, since the
clause @¬Ex is guaranteed to be false of  any possible thing: instead we should say
¬@Ex.

Though it is awkward, this take on non-existents fits with the general Lewisian
approach.13 The Lewisian interpretation of  the modal operators incorporates a kind
of  “very serious actualism”. The serious actualist holds that an object can have no
properties in a world where it does not exist—but it can still satisfy “conditions” such

13 That is, the approach of 1968, particularly p. 119. Lewis’s endorsement of  this way of  doing things
in 1986 is mixed (see p. 10) but he doesn’t offer a precise alternative. At one point he proposes using
“gappy sequences” to represent the possibility of  non-existence (p. 233), and I think something along
those lines is the counterpart theorist’s best bet for dealing with contingent existence; but there are tricky
details about iterated possibilities which are unaddressed. (For example: it could have been that I didn’t
exist, and yet in that case I still could have existed, though I couldn’t have been, say, a fish. To get this to
work out, it looks like some things but not others count as counterparts of  the “gap” which represents
me in that possibility.) So while it’s a promising thought, and while the old approach leaves much to be
desired, the details await future work.
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as non-existence (Plantinga 1983, 4ff.). The very serious actualist goes further:
nothing whatsoever is true of  an object in worlds where it doesn’t exist:

ϕ(x) ∧ ¬Ex

is false of  every possible thing, for any modal formulaϕwhatsoever. So it is not possibly
true of  anything: ♢(ϕ(x) ∧ ¬Ex) is never satisfied; and so the very serious actualist
affirms

□∀x¬♢(ϕ(x) ∧ ¬Ex)

It is impossible that something might ϕ without existing.
As an immediate consequence, □∀x□Ex is a logical truth. Everything exists

necessarily, according to the Lewisian understanding of  “necessarily”. Effectively, the
Lewisian modal box really means “essentially”—that is, necessity given the existence
of  each thing in question. Understanding it this way commits the Lewisian to a zero-
tolerance stance toward non-entities under modal operators.

If  we take this stance on possibility, even less should we tolerate non-existents under
the actuality operator. The very serious actualist should hold that

@(ϕ(x) ∧ ¬Ex)

is false of  every possible thing, and so should affirm

□∀x¬@(ϕ(x) ∧ ¬Ex)

A consequence of  this principle (with the principle that contradictions aren’t actually
true and substitution of  logical equivalents) is this:

□ ∀x¬@¬Ex
Necessarily, nothing actually fails to exist.

For (just as in the previous case), if  something is not actual, then nothing is actually
true of  it—not even non-existence.

Here’s another consequence. Since in general the very serious actualist takes
@ϕ(x) to be equivalent to @(ϕ(x) ∧ Ex), in particular

¬@Fx is equivalent to ¬@(Fx ∧ Ex)
@¬Fx is equivalent to @(¬Fx ∧ Ex)

But these are not equivalent to each other. (Note the scope of  the negation.) In fact,
they come apart whenever @Ex fails. So this is true of  each possible thing:

¬@Ex→ (@Fx↔ @¬Fx)
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So this is true:
♢∃x¬@Ex→ ♢∃x(@Fx↔ @¬Fx)

Now recall the problem of  no counterparts: Fara and Williamson claim that

♢∃x(@Fx↔ @¬Fx) (5)

is contradictory. But the very serious actualist will affirm (5), as long as there could
be something that doesn’t actually exist—for in that case, @Fx and @¬Fx will both
be false! So (5) is not so clearly bad: it follows naturally from a commitment to very
serious actualism, together with the possibility of  non-actuals. Fara and Williamson
defend their rejection of (5) by appealing to “the fact that [@] commutes with every
truth-functional connective” (Fara and Williamson 2005, 17); but this kind of  very
serious actualist should deny this “fact” in general. There might have been a gold
mountain, though that mountain does not actually exist, whether as an otherwise-
constituted mountain or anything else. Is it actually in Texas? Certainly not. Then
is it actually not in Texas? Again, no, for it is neither elsewhere nor non-spatial. Of
course, it is not the case that it is actually in Texas, but that is another thing altogether.
Thus the possible gold mountain is actually in Texas if  and only if  it is actually not
in Texas—for it is neither. The very serious actualist should conclude that Fara and
Williamson’s sentence is not contradictory after all.

I don’t seriously mean to defend very serious actualism; indeed, I think it is a
commitment that counterpart theory should be freed of. My point is that it is not a
commitment peculiar to an account of actuality, but rather a thoroughgoing doctrine of
the Lewisian approach to contingent existence. Contingent existence is a problem for
the counterpart theorist; it was a problem before the actuality problems were raised,
and it remains a problem after the actuality problems are dispelled. But it is a separate
problem from the problem of  actuality, and thus a project for a different essay. (But
see note 13.)

This sort of  very serious actualism does not entail the claim in the possibilist lan-
guage that everything is actual—i.e., that every possible individual inhabits w@, or
that every possible individual represents something in w@. The Lewisian will gener-
ally accept neither of  these claims. This simultaneous acceptance of  the modal doc-
trine of  very serious actualism and rejection of  the possibilist doctrine that everything
represents something actual is what gives rise to such logical oddities as the discrep-
ancy between ¬@ϕ and @¬ϕ. Similarly, when speaking modally the Lewisian says
that everything exists necessarily, but when speaking possibilistically he says there are
worlds in which some actual things have no counterparts: loosely, some things ex-
ist contingently. There is an intuitive mismatch between the modal and possibilist
commitments; this mismatch dooms Lewisian modal logic to some complications.
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To escape this—at least as it applies to actuality—you might try alternative inter-
pretations that replace the @-clause’s existential quantification with something else.
Universal quantification is no improvement. That amounts to making any actuality
claim about a non-entity true—so something that doesn’t actually exist is both actu-
ally happy and actually not-happy. In particular, Fara and Williamson’s sentence (5) is
still satisfied. A better option is to use definite descriptions. The variant clause is this:

J@ϕKv,R, a1,...,an iff for the individuals b1, . . . , bn in w@ such that
a1Rb1 and … and anRbn, JϕKw@, Id@, b1,...,bn

The consequences of  this approach hinge on how we unpack the definite description.
If  we treat them as Russellian “incomplete symbols” taking scope in situ, then the
new clause is equivalent to the old. If  the descriptions are not Russellian, though, we
have to do something about non-denoting terms. Maybe Possibilese is governed by
some species of  free logic; or maybe the definite description is analyzed some other
way (maybe as quantification over “gappy sequences” as in note 13). The status of
Fara and Williamson’s (5) will vary with the details. For instance, if  we say every atomic
formula that includes a non-denoting term is false, (5) indeed comes out contradictory.
But I won’t build this idea into my official system; I’ll wait for a more uniform solution
to the counterpart theorist’s problems of  contingent existence.

I’ve given an account of  the actuality operator in terms of  counterparts. It does
pretty well, but it’s limited in a few important ways. First, relation quantifiers: I rely on
some heavier possibilist machinery than Lewis’s original system. Second, contingent
identity: I’ve ruled it out, which some will find disappointing. (But, let me say again,
this is not to rule out multiplicity of  counterparts.) Third, contingent existence: I
didn’t exactly rule this out, but we get a deviant logic for such cases. Each of  these
calls for further technical improvements to the system here, and in each case I think
there are some promising lines to pursue. But despite these limitations, at this point
we have something good enough to be useful. So next I’ll put it to work on some
puzzle cases.

5 Some	related	problems	and	their	solutions
Our new understanding of  actuality helps us reply to a general challenge that Fara
and Williamson raise against the counterpart theorist (23). Consider a possible ob-
ject Penny such that two actual things, one Heads and the other Tails, are equally
good qualitative matches for Penny. Fara and Williamson claim that in this case the
counterpart theorist must affirm

@H(Penny) ↔ @T (Penny) (8)

19



5 Some	related	problems

For as far as counterparts go, being Heads and being Tails are completely on a par for
Penny. We can also suppose that being Heads and being Tails are mutually exclusive
and exhaust Penny’s options:

¬
(
@H(Penny) ∧@T (Penny)

)
(9)

@H(Penny) ∨@T (Penny) (10)

All this ought to be compatible with Penny actually existing, so we affirm @E(Penny)
as well, to avoid very serious actualist complications. But in this case, @ commutes
with the connectives, and so (8), (9), and (10) are jointly inconsistent. So it seems the
counterpart theorist has a quite general problem: “therefore, we have in [(8)∧(9)∧(10)]
a de re modal sentence that should not be understood in terms of  counterparts” (Fara
and Williamson 2005, 28).

The misstep is at the beginning: the right counterpart-theoretic account of  actual-
ity renders (8) false. Fara and Williamson reason by symmetry that if  two worldmates
are equally good qualitative matches for Penny, then she must represent both of  them,
if  either. This is a plausible thought, given that the counterpart relation fixes what ac-
tual thing Penny represents—which prima facie seems like what the counterpart theorist
must say. But as we have seen, what Penny represents is not fixed by the counterpart
relation; it is variable (though its range of  variation is determined by the counterpart
relation). So Penny can represent Heads, and also represent Tails, without thereby
being coerced into representing both of  them at once.

There are two ways to make this response precise, corresponding to two ways
of  disentangling the possibilist name “Penny” from the modal actuality operator in
Fara and Williamson’s argument. The first way is semantic: speaking Possibilese,
we might take ϕ(Penny) to mean that the modal formula ϕ(x) is true of  Penny (at
Penny’s world—but since Penny is world-bound we can elide this). But there isn’t
enough information here to settle the question of  whether @Hx or @Tx is true of
Penny. It depends on which actual thing Penny represents, and this is not fixed once and
for all. Penny can represent Heads, and thus satisfy @Hx, and Penny can represent
Tails, and thus satisfy @Tx—but there is no representation relation with which Penny
represents both Heads and Tails, and thus no representation makes the biconditional
(8) true of  Penny.

The second way is to introduce a predicate “Pennyish” that picks out Penny uniquely
among all possible objects. Then we can rewrite (8) (and the rest of  the argument) in
Modalese:

♢∃x
(
Px ∧ (@Hx↔ @Tx)

)
(8′)

But once again, symmetry considerations do not compel the counterpart theorist to
accept this sentence. Rather, those considerations recommend this:

♢∃x(Px ∧@Hx) ↔ ♢∃x(Px ∧@Tx) (11)
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For indeed, if  there is a possibility wherein a Penny (i.e., something Pennyish) repre-
sents Heads, then by symmetry there should just as well be a possibility wherein a
Penny represents Tails. The critical point is that (8′) does not follow from (11). Take
the positive half  of  the biconditional (11):14

♢∃x(Px ∧@Hx) ∧ ♢∃x(Px ∧@Tx) (12)

A Penny could be actually Heads, and a Penny could be actually Tails.

Even though we know that there is just one possible Penny, we must not conclude from
(12)

♢∃x(Px ∧@Hx ∧@Tx)

A Penny could be actually Heads and actually Tails.

For Penny, a single possible individual, nonetheless presents two possibilities: one of
being actually Heads, another of  being actually Tails. These are two different possibil-
ities, not a single possibility in which she is both.

This story is in the same spirit as Lewis’s account of  haecceitistic possibilities:

Here am I, there goes poor Fred; there but for the grace of  God go I;
how lucky I am to be me, not him. Where there is luck there must be
contingency. I am contemplating the possibility of  being poor Fred in a
world just like this one. … I suggest that the possibility I have in mind
is not a world that is like ours qualitatively but differs from ours haeccei-
tistically. Instead it is a possible individual, in fact an actual individual,
namely poor Fred himself  (Lewis 1986, 231).

A single way for a world to be may capture two ways for David Lewis to be: he could
be the way he actually is, or the way poor Fred is. Say “It’s actualish” is a sentence
which describes the actual world and no other—this could be a complete qualitative
description of  the way things actually are. And say “Freddish” is a complete qualitative
description of  Fred. We can affirm the haecceitistic possibility like this:

♢(It’s actualish ∧ DL is Freddish) ∧ ♢(It’s actualish ∧ DL is not Freddish) (13)

(This is analogous to (12).) And yet we cannot conclude

♢(It’s actualish ∧ DL is Freddish ∧ DL is not Freddish) (14)

Explaining this, Lewis says: “Possibilities are not always possible worlds. … I say that any
possible individual is a possibility” (230). The diamond may range twice over the same

14That is, the first disjunct of (p ∧ q) ∨ (¬p ∧ ¬q).
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world, so to speak, picking out different counterparts for DL each time, thereby mak-
ing (13) true but not (14).

In Penny’s case we have on our hands a single possible individual which nonethe-
less captures more than one possibility. Here is the possibility of  a Penny which is
actually Heads; here is the possibility of  a Penny which is actually Tails; and here is
lone Penny, carrying both possibilities on her shoulders. What we must say is that
Lewis did not go far enough: possibilities are not always possible worlds, indeed, and
neither are they possible individuals. Rather, a possibility includes a representation
relation, tying possible individuals to whatever actual individuals they are possibilities
for. Thus the diamond can range twice over the same individual, so to speak, picking
it out now as a possibility for Heads, then as a possibility for Tails.

Delia Graff  Fara (2009) raises another actuality problem, which arises when an
individual has counterparts in its own world as in the case of  David Lewis and poor
Fred. (Fara uses a different example.) She reasons thus: Fred is a counterpart of  DL
“in the sense that’s relevant for determining what’s possible for [DL]” (8); so since Fred
is actually quite dull, actually being dull is a possibility for DL: DL could have been
actually dull. But what is possibly actual is actual: so we can conclude that DL is
actually dull—which is clearly false. What went wrong?

The key premise of  Fara’s argument is this

If  a counterpart of  DL is actually dull, then it is possible for DL to be
actually dull.

(15)

This certainly looks plausible: as Fara points out, DL’s counterparts are supposed to
determine what’s possible for DL. And usually this kind of  principle works fine: Fred is
dull, and Fred is a counterpart of  DL, so it is possible for DL to be dull. What goes
wrong in the case of  actuality?

Principle (15) is delicate: it combines possibilist talk about counterparts with modal
statements using the actuality operator. Let’s disentangle them; again, one way to do
this is semantic. We can unpack (15) into these three principles:

If  Fred is actually dull, then @(x is dull) is true of  Fred. (16a)

If @(x is dull) is true of  a counterpart of  DL, namely Fred, then
♢@(x is dull) is true of  DL.

(16b)

If ♢@(x is dull) is true of  DL, then it is possible for DL to be
actually dull.

(16c)

But (again) something is missing from each of  these claims. Whether Fred is actually
a certain way (whether an actuality claim is true of  Fred) is a matter of which actual
thing Fred represents. This is not settled just by which things are counterparts of  which.
Remember what we observed in Section 3: Fred accounts for the possibility of  DL
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being dull—in so doing he represents DL. And Fred also accounts for the possibility
of Fred being dull—then Fred represents himself. To settle the actuality claims we need
to say which thing Fred represents. The claims (16a–c) are indeterminate, because of
a missing parameter: the representation relation. Each claim is correct for some way
of  filling this parameter in; but the correct ways to fill them in are different from one
claim to the next.

Start with (16a). Fred is actually dull: this is a statement about how things are—that
is, how things actually are—that is, how things are if  everything is just as it actually is.
So it is true iff @(x is dull) is true of  Fred with every actual thing representing itself. This is
the correct way of  filling in (16a):

If  Fred is actually dull, then @(x is dull) is true of  Fred with Fred
representing Fred.

(16a∗)

For the same reason, this is the correct way of  filling in (16c):

If ♢@(x is dull) is true of  DL with DL representing DL then it is
possible for DL to be actually dull.

(16c∗)

But what about the step between them? The correct form is a special case of  our
clause for interpreting possibility statements:

♢ϕ(x) is true of a, with a representing c, iff ϕ(x) is true of  some
counterpart of a, namely b, with b representing c.

When a counterpart presents a possibility for a, it represents whatever actual object
a does (if  any). So in particular, this is the correct way of  filling in (16b):

If @(x is dull) is true of  a counterpart of  DL, namely Fred, with Fred
representing DL, then ♢@(x is dull) is true of  DL with DL representing

DL.

(16b∗)

But what the argument requires to support Fara’s premise (15) is this:

If @(x is dull) is true of  a counterpart of  DL, namely Fred, with Fred
representing Fred, then ♢@(x is dull) is true of  DL with DL

representing DL.

And this conditional just isn’t true. Even though Fred is a counterpart of  DL, when
actuality is involved there is more to being a possibility than just being a counterpart. The coun-
terpart also has to represent the right actual thing. Since Fred is a counterpart of  DL,
it follows that Fred representing DL is a possibility for DL (representing himself). But
Fred representing Fred is not a possibility for DL (representing himself). DL’s counterparts
do determine what’s possible for DL; but this doesn’t mean that whatever is true of  his
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counterparts is possible for him. What is possible for DL is what is true of  his coun-
terparts when they are doing the job of  representing what he represents—in this case,
DL himself.

We can semantically descend to put the point another way: unlike the case of
“dull” (or even “possibly dull”) there is just no unequivocal fact of  the matter whether
a counterpart is actually dull.15 This follows from the central observation of  this essay:
a single possible object can represent many different actual objects, some dull and
others not. Whether it is actually dull depends on which one it represents. This goes
for actual counterparts just as much as any others.

We can also try a different way of  disentangling counterpart-talk from modal-talk,
getting a different way of  unpacking Fara’s argument. If  Fred is the unique Freddish
thing among all possible objects, the following principle is true:

If  something Freddish is dull, then necessarily everything Freddish is
dull.

(17)

There is just one way to be Freddish, and it is a dull way. Furthermore, since DL has
a Freddish counterpart, DL could have been Freddish. So, since Fred is Freddish and
dull, DL could have been dull. This argument is sound. But the principle analogous
to (17) breaks down when it comes to “actually dull”:

If  something Freddish is actually dull, then necessarily everything
Freddish is actually dull.

If  this were correct, then (since DL could have been Freddish and Fred is Freddish and
actually dull) the same reasoning would imply that DL could have been actually dull.
As in Fara’s argument, what could have been actual is actual, so this would imply that
DL is actually dull, which is wrong.

If  anything were qualitatively just as Fred is, it would have to be dull; there is no
other way for a Freddish thing to be. But there is more than one way a Freddish thing
could actually be. Although the Fred we know is actually dull, there could have been
someone Freddish who is actually DL, and not dull at all. A possibility’s qualitative
character does not fix how it represents actuality.

This comes down to the same point as before: even if  qualitative features suffice to
pick out a single possible individual, they do not suffice to pick out a single possibility. Even
though Fred is the only Freddish possible individual, Fred shoulders more than one
possibility. The possibilities are qualitatively alike, but they differ in how they represent
actuality: in one, the Freddish person is actually Fred; in another, the Freddish person

15What about the fact of  being actual (i.e. inhabitingw@) and also dull? This is determinate enough,
but it doesn’t fit our Modalese use of  “actually dull”. For instance, we can’t conclude from “a could have
been clever but actually dull” that a has a counterpart which is clever, actual, and also not dull.
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is actually DL. Only one of  these possibilities is possible for DL: namely, the possibility
in which the Freddish person is actually DL.

Possibilities de re are relational: they are possibilities for this or that—possibilities
that represent particular things as being a certain way. Since, for the counterpart
theorist, possible worlds and possible individuals do not by themselves settle what they
represent, they are unsuitable for playing the relational role of  a possibility. Relations
themselves must help fill that role.
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A Model	theory
In the following appendices I prove several important technical results about my “rep-
resentational” system of  interpretations R. The headline results:

• In Appendix B, I show that these counterpart interpretations are equivalent to
a variant of  the standard Kripkean modal semantics, one that builds in certain
assumptions about existence—the consequences of  “very serious actualism”.

• In Appendix C, I present a sound and complete axiomatic characterization
of  Kripkean actuality systems and, with the result of Appendix B, use this to
characterize R. I go on to discuss some of  its important logical features. In
particular, it turns out that the logic of R is similar in some important ways to
that of  constant-domain models.

• Finally, I show how to turn the informal interpretations of  the main text into
a manual for syntactic translations from a quantified modal language into an
extensional possibilist language, along the same lines as Lewis’s original 1968
treatment.

Before I take on these tasks, though, in this appendix I give a model-theoretic version
of  both Kripke and counterpart interpretations of  modal logic with actuality.

First, let’s define the quantified modal language with actuality. Suppose we have a
set Var of  variables and a family of  sets Predn of n-place predicate symbols. (I assume
that each of  these is countably infinite.) Let L be the smallest set of  formulas such
that

• For x1, . . . , xn ∈ Var and F ∈ Predn, the atomic formulas Fx1 . . . xn and
x1 = x2 are in L .

• For ϕ, ψ ∈ L and x ∈ Var, ¬ϕ, (ϕ ∧ ψ), ∃xϕ, ♢ϕ, and @ϕ are in L .

The additional connectives ∨, →, ↔, ⊥, ⊤, ∀x, and □ are defined in the usual ways.
Parentheses are dropped as usual.

Next I’ll give two different model theories for this language. First, the Kripke
interpretation. A K-model has the following five components:

• A non-empty set W : the worlds.

• For eachw ∈W , a setDw: w’s domain of  individuals. LetD =
∪

w∈W Dw.

• For each n-place predicate F and world w, a subset of Dn, [F ]w: F ’s exten-
sion at w.
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• An element of W , w@: the actual world.

• A reflexive relation on W ×W , ♢−→: the accessibility relation for possibility.

A K-point in a given model is a sequence of  a world and n individuals. We can
recursively define truth at a K-point a = ⟨v, a1, . . . , an⟩ as follows. (The model is
implicit, as is an ordering of  variables, to keep things a bit cleaner.)

a
K
Fxi1 . . . xin iff ⟨ai1 , . . . , ain⟩ ∈ [F ]v

a
K
xi1 = xin iff ai1 = ain

a
K
ϕ ∧ ψ iff a

K
ϕ and a

K
ψ

a
K

∃xn+1 ϕ iff for some b ∈ Dv, ⟨v, a1, . . . , an, b⟩ K
ϕ

a
K

♢ϕ iff for some w such that v ♢−→ w, ⟨w, a1, . . . , an⟩ K
ϕ

a
K @ϕ iff ⟨w@, a1, . . . , an⟩ K

ϕ

A formulaϕ is (strongly)K-valid iff  it is true at everyK-point (which is long enough,
in the sense that it has enough objects for all of ϕ’s free variables, with respect to
the implicitly given ordering) in every K-model. Let K denote the set of K-valid
formulas.

With an extra bit of  notation we can write some of  our clauses in a more uniform
way. Say v @−→ w iff w = w@. We can also define accessibility relations not just for
worlds, but also for evaluation points:

⟨v, a1, . . . , an⟩
♢−→ ⟨w, b1, . . . , bn⟩ iff v ♢−→ w and ai = bi for each i

⟨v, a1, . . . , an⟩ @−→ ⟨w, b1, . . . , bn⟩ iff v @−→ w and ai = bi for each i

Then the following clauses are equivalent to what I wrote above:

a
K

♢ϕ iff there is some K-point b such that a ♢−→ b and b
K
ϕ

a
K @ϕ iff there is some K-point b such that a @−→ b and b

K
ϕ

A point a is diagonal iff a @−→ a—its world is the actual world. We say a formula
is diagonally K-valid iff  it is true at every (long enough) diagonal K-point. Let
∆K be the set of  diagonally K-valid formulas. Intuitively, a strongly valid inference
is acceptable even in hypothetical reasoning about alternative possibilities, whereas a
diagonally valid inference is only acceptable in categorical reasoning about the way
things are. So, for instance, necessitation preserves strong validity, but not diagonal
validity: ϕ→ @ϕ is diagonally valid, but □(ϕ→ @ϕ) is not valid in any sense.

Next, the counterpart system. A counterpart model is like a K-model, with a
few changes.
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• Individuals are world-bound: if Dv ∩Dw is non-empty, then v = w.

• Predicates have extensions which are not world-relative: [F ] is a subset of Dn.
We can let [F ]w = [F ] ∩Dw to keep notation uniform.

• Instead of  an accessibility relation, there are counterpart-links: for each pair
of  worlds w and v, C(w, v) is a set of  relations on Dw × Dv, the w–v links.
I assume each link is one-to-one (as discussed in Section 3). Furthermore, for
each world v, C(v, v) includes the identity relation on Dv.

An R-point (in a given counterpart model) is a sequence ⟨v,R, a1, . . . , an⟩, where v
is a world, a1, . . . , an are elements ofDv (note the “very serious actualist” condition),
and R is any one-to-one relation on Dv ×Dw@. We can define truth at an R-point

similarly to truth at a K-point. Very similarly indeed, if  we define relations ♢−→ and
@−→ on R-points:

⟨v,R, a1, . . . , an⟩
♢−→ ⟨w,R′, b1, . . . , bn⟩

iff  for some link S ∈ C(w, v), R′ = S ◦R and biSai for each i

⟨v,R, a1, . . . , an⟩ @−→ ⟨w,R′, b1, . . . , bn⟩
iff w = w@, R

′ = Id@, and aiRbi for each i

(Id@ is the relation that holds between a and b iff a = b ∈ Dw@.) Using these
definitions, the definition of R-truth takes exactly the same form as the definition of
K-truth (in its second formulation), just replacing each K with an R. This matches
the interpretation I gave in the main text.

A formula is (strongly) R-valid iff  it is true at every (long enough) R-point in
every counterpart model. We can also define diagonal R-points the same way as for
K: a is diagonal iff a @−→ a, and a diagonally R-valid formula is one that is true
at every diagonal R-point. Note that diagonality now requires not just being at the
actual world, but also that actual objects represent themselves. R denotes the set of
R valid formulas and ∆R the set of  diagonally R-valid formulas.

B Representations	and	Kripke
In this section I sketch an equivalence between the representational semantics R and
a version of  the Kripkean semantics which builds in certain “very serious actualist”
provisos about existence. The upshot is that any logical objection to the system I present
must come down to an objection either to the Kripkean logic of  actuality, or else to very
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serious actualism. This equivalence has the extra benefit of  allowing the application
of  standard completeness results (Appendix C).

The first step is to set out the actualist Kripkean semantics, which I’ll call KE.
This system uses the same models as K, but like the counterpart system adds an extra
condition on its evaluation points: a KE-point is a K-point ⟨v, a1, . . . , an⟩ such that
a1, . . . , an are all in Dv. The truth conditions are the same as K, replacing each
K with KE (in particular, in the ♢ and @ clauses). Strong and diagonal validity are
defined in the obvious way.

There is clearly a close relationship between K and KE. In fact, KE-logic is just
what you get by thinking of  modal operators as carrying implicit existence conditions,
and interpreting the fully explicit formulas the ordinary Kripkean way. To spell this
out precisely, the first step is to say how to translate formulas to make the implicit
existence requirements explicit. For any finite set of  variables X = {x1, . . . , xn}, let
EX abbreviate the formula Ex1 ∧ · · · ∧ Exn, and let εX be a translation function
from L to L such that, for each ϕ ∈ L ,

εX(♢ϕ) is ♢(EX ∧ εXϕ);
εX(@ϕ) is @(EX ∧ εXϕ).
εX(∃xϕ) is ∃x(εX∪{x}ϕ).

The translation makes no changes to the other clauses.16 If  you take any validity
of KE and translate it by adding explicit existence conditions, you get a K-validity.
Conversely, any formula that has a K-valid translation is KE-valid.

Theorem 1. Let

E−(Γ) = {ϕ ∈ L : EX → εXϕ ∈ Γ for X including ϕ’s free variables}

Then KE = E−(K) and ∆KE = E−(∆K).

Proof. We can prove by a straightforward induction argument on the complexity of ϕ
that for any KE-point a = ⟨v, a1, . . . , an⟩ and X = {x1, . . . , xn} (which includes
all of ϕ’s free variables)

a
KE

ϕ iff a
K
εXϕ.

Furthermore, ψ is true at every (length n) KE-point iff EX → ψ is true at every
(length n) K-point—and the same is true for diagonal points. The first result imme-
diately follows.

16That is:

εXFx1 . . . xn is Fx1 . . . xn εX(ϕ ∧ ψ) is εXϕ ∧ εXψ εX(¬ϕ) is ¬εXϕ
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Next I’ll spell out the relationship between KE and R, the representational coun-
terpart system. In fact, R is nearly equivalent to KE, except that it makes one extra
demand. In R, representation relations are built up step by step as possibilities are it-
erated. Actual objects don’t latch onto their representatives directly; instead, a chain
of  intervening objects reaches through the various possible worlds that were visited
along the way. This means in particular that once an actual object is lost, because
it isn’t attached to any representative, it is gone forever. If  nothing represents actual
Alice at some possibility a—that is, if  Alice does not exist, according to a—then a
cannot see any further possibilities for Alice. This is another side effect of  very serious
actualism: otherwise, we could allow Alice to be represented by a possibility even if  not
by anything that exists in that possibility.

In the Kripkean framework, where representation is identity, this amounts to re-
quiring the Middle Property:

For v, w ∈W, if v ♢−→ w, then Dv ⊇ Dw ∩Dw@

What might exist and actually exists, exists. A KMid-model is a K-model with the
Middle Property. The KEMid-validities are the formulas which are true at each
(long enough) KE-point in each KMid model. I will now prove in several steps that
R is equivalent to KEMid.

Lemma 1. R ⊆ KEMid and ∆R ⊆ ∆KEMid.

Proof. To prove that KEMid is as strong as R, it suffices to show that for any (long
enough) KEMid-point a there is a corresponding R-point a∗ which is equivalent
to a in the sense that, for each formula ϕ ∈ L ,

a
KEMid

ϕ iff a∗
R
ϕ

Starting with a KMid-model W , D, etc., we’ll construct a counterpart model W ∗,
D∗, etc. The basic idea of  the construction came up in Section 1: we get world-bound
individuals using the pair construction,

⟨a,w⟩ ∈ D∗w iff a ∈ Dw.⟨
⟨a1, w⟩, . . . , ⟨an, w⟩

⟩
∈ [F ]∗ iff ⟨a1, . . . , an⟩ ∈ [F ]w

The worlds are unchanged: W ∗ = W and w@
∗ = w@. The counterpart-links are

determined by identities: if v ♢−→ w then there is one link in C(w, v), the relation S
such that

⟨b, w⟩S⟨a, v⟩ iff a = b ∈ Dv ∩Dw
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Otherwise C(w, v) is empty. Since ♢−→ is reflexive, C(v, v) includes the identity re-
lation on Dv. So this is our counterpart model.

Next, given a Kripkean point a = ⟨v, a1, . . . , an⟩ we construct the R-point

a∗ =
⟨
v,R, ⟨a1, v⟩, . . . , ⟨an, v⟩

⟩
where the relation R is again determined by identities:

⟨a, v⟩R⟨b, w@⟩ iff a = b ∈ Dv ∩Dw

Finally, we need to check by induction on the complexity of ϕ ∈ L that

a
KE

ϕ iff a∗
R
ϕ

The only non-trivial steps concern modal clauses; the ♢-clause, in particular, requires
the Middle Property to ensure that the representation relations “line up”. I won’t go
into the details. For the diagonal validities, we just need to check that if a is diagonal
then so is a∗, which is clear.

Lemma 2. KEMid ⊆ R and ∆KEMid ⊆ ∆R.

Proof. This time our goal is to show that, given a counterpart model and an R-point a,
there is an equivalent point a∗ in a Kripke model. The central idea here17 is that we
can regard the counterpart theorist’s individuals as roles played by a fixed set of  Krip-
kean individuals; these Kripkean individuals keep their identities from world to world,
but in different worlds they may play different counterpart roles. The implementation
of  this idea requires some care.

A few points of  notation. The cardinality of  the set X is written |X|. The range
of  the function f is ran f . I freely interchange functions and one-to-one relations, by
identifying the function f with the relation that holds between b and a iff b = fa. (So
the relation is identified with a function from its right argument to its left. This is the
opposite of  the convention sometimes used.)

Here is how to make a Kripke model from a counterpart model. First, choose
some set D∗ of  infinite cardinality κ ≥ |D|. These are the Kripkean individuals.
Next, pick a one-to-one function f@ from Dw@ into D∗ such that

|D∗ \ ran f@| = κ

This is the actual world’s cast list, which tells each Kripkean individual which role it
plays inw@. The cardinality condition will ensure that we never run out of  individuals
in our construction.

17Thanks to Kit Fine for pointing it out to me.
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A v-admissible function is a one-to-one function f fromDv intoD∗ that obeys
this cardinality condition:

|D∗ \ (ran f ∪ ran f@)| = κ

The Kripkean worldsW ∗ are the pairs ⟨v, f⟩ such that v ∈W and f is a v-admissible
function. Clearly f@ is w@-admissible, so ⟨w@, f@⟩ is in W ∗. This is the Kripkean
actual world. The domain of ⟨v, f⟩ is ran f , and the extension of F at ⟨v, f⟩ is {fa :
a ∈ [F ]v}. Finally, we need an accessibility relation:

⟨v, f⟩ ♢−→ ⟨w, g⟩ iff g−1 ◦ f ∈ C(w, v) and ran f ⊇ ran g ∩ ran f@

Since f−1 ◦f is the identity relation onDv, which is in C(v, v), ♢−→ is reflexive. This
makes a K-model, which is easily checked to have the Middle Property.

Say f fits a given R-point a = ⟨v,R, a1, . . . , an⟩ iff f is a v-admissible function
such that

f−1 ◦ f@ = R

This says that considering f as a “cast list” for v lines it up correctly with the actual
world’s assignment of  roles. If f fits a, let

af =
⟨
⟨v, f⟩, fa1, . . . , fan

⟩
which is a KE-point. The next step is to inductively prove that

a
R
ϕ iff for each f that fits a, af KE

ϕ

I’ll just sketch the possibility step. For this, it’s enough to show:

If f fits a, then a
♢−→ b iff af

♢−→ bg for some g which fits b (*)

(That this suffices turns on the fact that every K-point in the constructed model is
equal to bg for some R-point b and g which fits b. This can be checked from the
definitions.) The proof  of (*) uses these two facts:

Fact 1. If ran f ⊇ ran g ∩ ranh, then h−1 ◦ g = h−1 ◦ f ◦ f−1 ◦ g.

Fact 2. If f is v-admissible and R ⊆ Dw ×Dv is a one-to-one relation, then there
is a w-admissible function g such that g−1 ◦ f = R and ran f ⊇ ran g ∩ ran f@.

To prove Fact 2, first pick some one-to-one function h from Dw \ ranR into
D∗ \ (ran f ∪ ran f@). (The cardinality condition guarantees that there is one.) Then
let

gb =

{
f(R−1b) for b ∈ ranR

hb for b ∈ Dw \ ranR
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Let a = ⟨v,R, a1, . . . , an⟩ and b = ⟨w,R′, b1, . . . , bn⟩, and suppose f fits a. For

the first direction of (*), suppose a ♢−→ b; that is,R′ = S ◦R where S is some member
of C(w, v), and biSai for each i. By Fact 2 there is a w-admissible function g such
that g−1 ◦ f = S and ran f ⊇ ran g ∩ ran f@. Then Fact 1 implies that

g−1 ◦ f@ = g−1 ◦ f ◦ f−1 ◦ f@ = S ◦R = R′

This means that g fits b. Furthermore, since S = g−1 ◦ f and biSai, gbi = fai. So

af
♢−→ bg.

Conversely, suppose g fits b and af
♢−→ bg. This means that g−1 ◦ f ∈ C(w, v),

ran f ⊇ ran g ∩ ran f@, and gbi = fai for each i. So, if  we let S = g−1 ◦ f , then
biSai, and furthermore (by the fact that g fits b and Fact 1)

R′ = g−1 ◦ f@ = g−1 ◦ f ◦ f−1 ◦ f@ = S ◦R

This tells us that a ♢−→ b.
With the other steps filled in, this proves that if f fits a then af is equivalent to

a. There are two last things to check. First, each R-point has some function that fits
it; this follows from Fact 2. Second, if f fits a and a is diagonal then so is af ; this is
because if f−1 ◦ f@ = Id@ then f = f@.

Corollary 1. R = KEMid and ∆R = ∆KEMid.

Theorem 2. If E− is defined as in Theorem 1,

R = E−(KMid)

∆R = E−(∆KMid)

Proof. By Corollary 1 and Theorem 1. (The proof  of Theorem 1 trivially extends to
the Middle Property.)

To sum up: the logic of R is precisely the same as the standard Kripkean actuality
system, once we add in all the very serious actualist’s existence conditions.

C The	logic	of	actuality
Next I present a sound and complete axiomatic characterization of  the Kripkean logic
of  actuality, and use this to characterize the logic of  the counterpart system R.18 I’ll

18 This generalizes a result of Hodes (1984a). Hodes does not consider modal logics weaker than S5,
which my application requires. If  the logic I present for K is strengthened with the addition of  a pair of
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begin by characterizing a “minimal” quantified modal logic which says nothing dis-
tinctive about actuality.

A theory is a set of  formulas closed under the consequence relation of  classical
propositional logic. For sets of  formulas Γ and ∆, let Γ+∆ denote the smallest theory
containing Γ ∪∆. We’ll start with the following basic axioms:

□(ϕ→ ψ) → ♢ϕ→ ♢ψ (K♢)

¬@¬(ϕ→ ψ) → @ϕ→ @ψ (K@)

∀x(ϕ→ ψ) → ∃xϕ→ ∃xψ (K∃)

(The ugly ¬@¬ in (K@) can be replaced by just @ in our final system, since @ is self-
dual under the K interpretation. But I use this form for now since some intermediate
results don’t assume self-duality.) Let the label for an axiom schema denote the set of
its instances: for example,

(K♢) = {□(ϕ→ ψ) → ♢ϕ→ ♢ψ : ϕ, ψ ∈ L }

Let □Γ = {□ γ : γ ∈ Γ}, and similarly for other operators. Then we say a theory T
is normal iff

T ⊇ □T + ¬@¬T + ∀xT + (K♢) + (K@) + (K∃)

In other words, a normal theory includes all of  the K axioms and is closed under
necessitation, “actualization” (again using the dual form for the time being), and uni-
versal generalization. Let Normal(Γ) denote the smallest normal theory containing
Γ.

Next, consider the following principles of  free logic with identity.

∀xϕ→ Ey → ϕ(y/x) (UIE )

ϕ→ ∀xϕ if x is not free in ϕ (VQ )

∀xEx (UE)

x = x (=1)

x = y → ϕ(x/z) → ϕ(y/z) (=2)

S5-style principles,

♢ϕ→ □♢ϕ
♢ϕ→ @♢ϕ

then the resulting logic is equivalent to Hodes’.
The axiomatization here is generally based on Cresswell and Hughes 1996, ch. 16–17, but see note 20.
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(Here ϕ(y/x) is the result of  replacing each instance of x in ϕ with y.) Also, two
principles governing the interaction of  identity with the modal operators:19

♢x = y → x = y (♢=)

@x = y → x = y (@=)

These axioms generate our minimal theory of  quanitified modal logic with actuality,

QML0 = Normal((UIE ) + (VQ) + (UE) + (=1) + (=2) + (♢=) + (@=))

To go with this minimal theory, we need a minimal kind of  model, which places
no special conditions on the accessibility relations for possibility or actuality. Let a

K0-model be just like a K model, except the relation ♢−→ isn’t required to be re-
flexive, and instead of  an actual world we just have a primitive accessibility relation
@−→ on W ×W with no constraints. The truth conditions are just the same as those I

gave for K-models before (in the general form). In other words, according to the K0

interpretation @ and ♢ are each plain old normal modal operators, nothing special.
K0-validity is defined in the obvious way. Our first completeness result applies to this
minimal logic.

Lemma 3 (Henkin’s Lemma). If T is a normal theory which includes QML0, then
there is a canonical T -model M such that for ϕ ∈ L ,

ϕ ∈ T iff a
K0

ϕ for every K-point a in M

For each world v in M, let |v| be the set of  formulas ϕ such that a
K0

ϕ for some
point a = ⟨v, a1, . . . , an⟩ (with respect to a fixed variable order). Then furthermore,

v = w iff |v| = |w|

v
♢−→ w iff ♢|w| ⊆ |v|

v @−→ w iff @|w| ⊆ |v|

Since we are dealing with a normal modal logic (with two modal operators) this
can be proved by standard completeness methods.20 The basic idea is to identify

19(♢=) is only required for logics that don’t validate the B-schema ϕ → □♢ϕ. Similarly (@=) is
only required in the absence of  the principle ϕ→ @♢ϕ (assuming @ is self-dual).

20See for instance, Cresswell and Hughes 1996, Theorems 16.1 and 16.2, pp. 296–302. The proof
given there relies on a complicated extra proof  rule (UGL∀n). This can be dispensed with if  instead we
use a proof  method like that in Fine 1978, §3. (Fine does not carry out the proof  for systems weaker than
S5, though he asserts that it can be done (p. 11). The main things that need to be adjusted are Fine’s
definitions of  “consistent diagram” and “♢-complete” to take accessibility relations into account, and
correspondingly the ♢-step in the construction.)
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worlds with certain maximal T -consistent sets (such that every T -consistent formula
appears somewhere) and individuals with sets of  variables, ensuring along the way
that every existential and modal claim has a witness.

Corollary 2. K0 = QML0.

Proof. To show that QML0 ⊆ K0 (soundness) it is simple to check that each of  the
axioms isK0-valid and the normality conditions are validity-preserving. The converse
(completeness) follows from Henkin’s Lemma: if ϕ is K0-valid, then in particular
ϕ is true at every point in the canonical QML0-model, so ϕ ∈ QML0.

We can extend this result to stronger systems by giving extra axioms to characterize
the extra model constraints, and then showing that if  a theory includes the axioms

then its canonical model obeys the constraints. For example, the condition that ♢−→
is reflexive is characterized by the axiom schema

ϕ→ ♢ϕ (T)

If  a theory T includes QML0+(T), then (T) is true at each point in the canonical

T -model, so for each world v, if ϕ ∈ |v| then ♢ϕ ∈ |v|; so v ♢−→ v.
We want to do something similar to characterize the standard interpretation of

actuality. A nice way to do this is by way of  an intermediate kind of  model. The
“global” condition that there is just one actual world—that is, exactly one world which
is @-accessible from every world—turns out to be equivalent to some simple “local”
conditions on accessibility relations. This is convenient, because local rules are easier
to enforce using modal axioms. (The situation is analogous toS5: the global condition
that accessibility is a total relation can be reduced to the local condition that it is an

equivalence.) Let a weak actuality model be a K0-model with ♢−→ reflexive and
which obeys the following additional conditions:

For each v ∈W , there is exactly one w such that v @−→ w (A1)

If u ♢−→ v and u @−→ w, then v @−→ w (A2)

If u @−→ v and u @−→ w, then v @−→ w (A3)

(Note the further analogy with S5: (A2) and (A3) have the same form as the Euclidean
condition that characterizes S5.) Apply the usual definitions of  validity, etc.

Lemma 4. For ϕ ∈ L , ϕ is (diagonally) K-valid iff ϕ is true at each (diagonal) point
in each weak actuality model.
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Proof. A model is connected iff  no proper subset of  its worlds is closed under the two
accessibility relations. A formula is (diagonally) valid iff  it is true at each (diagonal)
point in each connected model. (If ϕ is true at a in a model M, then it is also true
at the model obtained from the smallest connected set of  worlds which includes a’s
world.) Furthermore, a connected K0 model contains exactly one world which is @-
accessible from any other. (By induction on the number of  worlds. It suffices to show

that if v @−→ w and v′ @−→ w′, and either v ♢−→ v′ or v @−→ v′, then w = w′. The
first case follows from (A1) and (A2), and the second case follows in the same way from
(A1) and (A3).) So a connected weak actuality model becomes a standard K-model
just by letting w@ be the unique @-accessible world.

The “local” actuality conditions are easy to characterize using modal axioms, and
by Lemma 4 this suffices to characterize the standard logic of  actuality as well. These
are our actuality axioms:

¬@ϕ↔ @¬ϕ (@1)

♢@ϕ→ @ϕ (♢@)

@@ϕ→ @ϕ (@@)

Let QML@ = Normal(QML0+(T) + (@1) + (♢@) + (@@)).

Theorem 3. K = QML@.

Proof. Using arguments in the same pattern as the case of (T), it is straightforward to
show that the canonical QML@-model is a weak actuality model.

Note also that the diagonal points of  the canonical model are precisely those at
which each instance of  the following schema is true:

ϕ→ @ϕ (∆)

This gives us a characterization of  diagonal validity.

Theorem 4. ∆K = (∆) +QML@.

Note that ∆K is not a normal theory. The axiom (∆) is a “weak axiom”: even
though it is a kind of  logical truth, it is not a necessary truth, and accordingly the diag-
onal validities aren’t closed under necessitation.

Recall that the version of  the Kripke semantics that is equivalent to the represen-
tational system has one more constraint, the Middle Property. It can be checked that
if  a theory includes this further axiom

♢Ex→ @Ex→ Ex (Mid)
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then its canonical model has the Middle Property. So

KMid = Normal(QML@+(Mid))

Putting this together with the results of Appendix B characterizes the logic of  our
counterpart system R: simply make the existence conditions fully explicit, and then
reason by Kripkean logic.

Theorem 5. Let E− be as in Theorem 1.

R = E−(Normal(QML@+(Mid))
)

∆R = E−((∆) +Normal(QML@+(Mid))
)

I’ll now summarize a few important logical facts about R.
It has been observed that Lewis’s interpretation of  necessity admits exceptions to

the K-schema (Cresswell and Hughes 1996, 356; c.f. Hazen 1979, 326ff.):

□(ϕ→ ψ) → ♢ϕ→ ♢ψ (K♢)

Suppose all of a’s counterparts are beautiful. Whenever a exists, not everything is
ugly, so this is true of a (reading F as “ugly”):

□(∀y Fy → ¬Ex)

Even so, there are dismal worlds where a has no counterparts, so this is true:

♢∀y Fy (Ugly)

But since □Ex is a consequence of  very serious actualism it looks like an instance of
(K♢) fails.

My interpretations are subtly different from Lewis’s. Lewis’s original translation
manual is sensitive to which variables occur free in the formula being translated. All and
only the things which are explicitly mentioned in a formula get assigned counterparts
in the modal translations. This is essential to the failure of (K♢): intuitively, the ne-
cessity of  a conditional depends only on certain worlds, those including counterparts
for the referents of  all its terms; but the antecedent might be possible because of  some
other world, if  it has fewer free variables. (Indeed, (K♢) holds in Lewis’s system as
long as the antecedent ϕ has all of  the free variables that the consequent ψ does.)

My version of  counterpart theory isn’t sensitive to the syntactic accident of  free
variables. For ♢ϕ to be true of  some things, all of  those things must get counterparts,
whether or not ϕ explicitly mentions them.21 This is logically nicer in some ways:

21This seems to be the way Lewis does things in (1986, 10–11), though he doesn’t note the difference
with his earlier version.
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for instance, (K♢) is valid in the sense that the conclusion is true of  anything all the
premises are true of. When we add explicit existence conditions to (K♢), we add them
uniformly:

□(EX → ϕ→ ψ) → ♢(EX ∧ ϕ) → ♢(EX ∧ ψ)

This is K-valid, so (K♢) is R-valid. (The same goes for (K@).)
But we don’t escape logical oddities scot-free. In the counterexample, (Ugly) is true,

even though, considered as a trivial one-place predicate, (Ugly) isn’t true of a. For (Ugly)
to be true of a, there would have to be an ugly world where a has a counterpart—and of
course there is no such thing. This is a strange result: we are used to thinking that
if  a predicate is syntactically trivial in the sense that it has no free variables, it is
also semantically trivial in the sense that it is true of  anything if  it is true at all.
In our counterpart system, this is not so. It isn’t just terms that semantically “depend
on” particular things. Modal operators do too—since they require counterparts (and
having a counterpart at a world is not trivial).

I think the best general way to handle these complications is to introduce some
explicit “substitution” operators for shifting variable dependences in the modal lan-
guage—for instance, relating Fx considered as a formula of  just x to ιyFx, a formula
of x and y. Using these we can effectively bring syntactic and semantic dependence
back together, without giving up principles like (K♢). (This approach is also helpful for
characterizing the logic of  contingent identity, which I explore in other unpublished
work.) But this would require significant changes; the way I’ve done things here, we
should just make sure to distinguish the variables which are free in ϕ from those whose
values make a difference to ϕ. We can inductively define Varϕ, the non-trivial vari-
ables in ϕ:

VarFx1 . . . xn = {x1, . . . , xn}
Var¬ϕ = Varϕ

Varϕ ∧ ψ = Varϕ ∪Varψ

Var∃xϕ = Varϕ \ {x}
Var♢ϕ = Var@ϕ = the set of  all variables in L

Here is a useful equivalent formulation:

x ̸∈ Varϕ iff εY ∪{x}ϕ is the same as εY ϕ (†)

This distinction makes a difference to the quantificational logic of R. Because
of  its very serious actualism, R very nearly satisfies standard quantificational logic,
as opposed to free logic—even though counterpart models have variable domains,
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and even though the corresponding Kripke system uses free logic. For a start, it is
closed under universal generalization, and in fact it validates a general version of  this
principle:

If ϕ→ ψ is valid and x ̸∈ Varϕ, then ϕ→ ∀xψ is valid. (UG)

The difference from standard systems is just that Varϕ must be understood in the
sense I just gave: x must be trivial in ϕ, which is a stronger condition than simply not
occurring free in ϕ. Suppose x ̸∈ Varϕ, X = Y ∪ {x} includes all of ϕ and ψ’s free
variables, and ϕ→ ψ is in R. Then these are in QML@:

EX → εX(ϕ→ ψ) by Theorem 5

EY → ∀x εXϕ→ ∀x εXψ by free logic

EY → ∀x εY ϕ→ ∀x εXψ by (†)

EY → εY ϕ→ ∀x εXψ by (VQ)

EY → εY (ϕ→ ∀xψ) definition of εY

So by Theorem 5, ϕ→ ∀xψ is in R.
Furthermore, the standard principle of  universal instantiation is R-valid—no ex-

istence condition is required as in (UIE ):

∀xϕ→ ϕ(y/x) (UI)

Proof: let Y contain ϕ’s free variables and also y, and let X = Y ∪ {x}. Then these
are in QML@:

Ey → ∀x εXϕ→ (εXϕ)(y/x) by (UIE )

Ey → ∀x εXϕ→ εY ϕ(y/x)) since (εXϕ)(y/x) is εY ϕ(y/x)

So by the definition of εY and Theorem 5, (UI) is in R.
The converse Barcan formula is also R-valid:

□ ∀xϕ→ ∀x□ϕ (CBF)

For in fact
□∀xψ → ∀x□(Ex→ ψ)
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is K-valid—in particular in the case where ψ is EY → εY ∪{x}ϕ. The εY -translation
of (CBF) follows.22 (The analogous fact about the dual of @ holds as well.)

Furthermore, the Middle Property guarantees that a weakened form of  the Barcan
formula itself  is R-valid, namely:

∀x□ϕ→ □∀x(@Ex→ ϕ) (BF@)

This can be confirmed by a straightforward model-theoretic argument. To put it an-
other way, the Barcan formula holds in R for any formula that entails actual existence.
(This version of  the Barcan formula is also diagonally valid in K.)

On each of  these points, the counterpart theorist’s disjoint-domain semantics turn
out to yield a very similar logic to that of constant-domain semantics. The reason is
that each in its own way is committed to very serious actualism.

D Translations
So far, I’ve informally explained how to interpret Modalese in terms of  counterparts,
and I’ve also given a model-theoretic version of  the interpretations. In Lewis’s original
discussion he does something different from either of  these, giving a manual for trans-
forming modal formulas into possibilist formulas. So in this appendix I’ll similarly
formalize my interpretations as a syntactic translation manual. I’ll also show that the
translations in this section agree with the model theory of Appendix A in a natural
sense.

The possibilist language L P is a sorted first-order language with identity. (We
could instead use second-order logic for our relation quantifiers, but nothing really
turns on it—we don’t need very many relations.) There are three sorts of  terms: one
sort for possible individuals (a, b, c), one for worlds (v, w), and one for binary relations
(R, S). The language includes a world name w@, a two-place predicate aIw (“a is in
w”), and a three-place predicateCwvS (“S is aw–v counterpart-link”)—as well as all
of  the predicates in the modal language L . There is also a three place instantiation
predicate ϵ, where abϵS intuitively means that a and b are related byS; I’ll notationally
cheat a little and just write this as aSb. It’s also convenient to include a two-place

22I should note that despiteR’s nearly standard quantificational and modal logic, the usual argument
for (CBF) doesn’t go through in R:

∀xϕ→ ϕ (UI)

□ ∀xϕ→ □ϕ necessitation and K

□ ∀xϕ→ ∀x□ϕ (UG)

The reason is that x isn’t trivial in □ ∀xϕ, because of  the bare modal operator.
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function symbol S ◦ R on relations and a relation name Id@, though these could be
dispensed with.

Now I’ll define a translation function from L into L P . Lewis’s original transla-
tion manual was given by way of  an inductively defined function [·] that takes a modal
formula ϕ together with a world term v to a first-order formula, the translation [ϕ]v.
The final translation of ϕ is [ϕ]w@ , which we denote [ϕ].

Compared to Lewis’s, my translation function has sprouted some extra arguments.
First, whereas Lewis relies on the variables that occur free in ϕ to decide how to trans-
late it (in particular, to decide how many counterparts we’ll need) and does variable
substitutions along the way, I prefer to keep track of  the relevant terms explicitly.
(See the related discussion in Appendix C.) So the translation function takes as ar-
guments, in addition to the L -formula ϕ and an L P -term v for the world, also a
sequence a1, . . . , an of n individual terms from L P . And naturally we’ll also need
an argumentR to represent the representation relation. This will generally be a com-
plex relation term of  the form S1 ◦ · · · ◦ Sn ◦ Id@. So, for an L -formula ϕ and some
L P terms v, R, and a1, . . . , an, we inductively define the translation [ϕ]v,R, a1,...,an .
Writing down the definition is essentially a matter of  regimenting the interpretations
I gave informally in the main text, or for that matter the model-theoretic version in
Appendix A. To keep the clauses more legible, let a abbreviate the sequence of  terms
v,R, a1, . . . , an. (I’m also assuming an implicit variable ordering like before.)

[Fxi1 . . . xin ]
a is Fai1 . . . ain

[¬ϕ]a is ¬[ϕ]a

[ϕ ∧ ψ]a is [ϕ]a ∧ [ψ]a

[∃xn+1 ϕ]
a is ∃b

(
bIv ∧ [ϕ]v,R, a1,...,an,b

)
[♢ϕ]a is ∃w ∃S ∃b1 · · · ∃bn

(
CwvS ∧

∧
biSai ∧ [ϕ]w, S◦R, b1,...,bn

)
[@ϕ]a is ∃b1 · · · ∃bn

(∧
aiRbi ∧ [ϕ]w@, Id@, b1,...,bn

)
(Here

∧
ψi abbreviates the obvious finite conjunction.) The final translation [ϕ] of  a

closed formula ϕ is [ϕ]w@, Id@ . (We can also treat free variables as names for actuals
if  we associate each one with an individual term in L P ; if xi is associated with ai for
each i, then [ϕ] is [ϕ]w@, Id@, a1,...an .)

These translations agree with the model-theory R of Appendix A, in a sense I
will now make precise. Consider these postulates for counterpart theory (which cor-
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respond to the conditions on counterpart models) (c.f. Lewis 1968, 114):

∀v ∀w ∀a(aIv → aIw → v = w) Individuals are world-bound.

∀v ∀w ∀S
(
CwvS → Inw, v S

)
w–v links relate w-things to v-things.

∀v ∀w ∀S(CwvS → 1-1S) Links are one-to-one.

∀v ∃S
(
CvvS ∧ ∀a(aIv → aSa)

)
Each world has a reflexive link.

∀a∀b
(
a Id@ b↔ (a = b ∧ aIw@)

)
Definition of Id@.

∀a∀c ∀R ∀S
(
c(S ◦R)a↔ ∃b(cSb ∧ bRa)

)
Definition of  composition.

These use the abbreviations

Inw, v S is ∀a ∀b
(
bSa→ (aIv ∧ bIw)

)
1-1S is ∀a ∀b∀a′ ∀b′

(
bSa→ b′Sa′ → (a = a′ ↔ b = b′)

)
Call the set of  all these postulates C .

There’s a pretty obvious way in which (sorted first-order) models of C correspond
to the counterpart models described in Appendix A (c.f. Fine 1978, 130). If  we have a
counterpart model ⟨W,w@, D, [·], C⟩, then we can construct a corresponding model
of C . The domain of  worlds is W ; the domain of  individuals is D; the domain of
relations is the set of  one-to-one relations on W × W . The pair ⟨a,w⟩ is in the
extension of I iff a ∈ Dw; the extension of C is the set of  triples ⟨w, v, S⟩ such that
S ∈ C(w, v); the extension of  the instantiation predicate ϵ is the set of  triples ⟨b, a, S⟩
such that bSa. And we can also go the opposite direction: a model of C corresponds
to a counterpart model by a similar sort of  construction.

Furthermore, each R-point ⟨v,R, a1, . . . , an⟩ corresponds to a variable assign-
ment in the corresponding L P model: one which takes the world variable v to the
point’s world, the relation variable R to its relation, and the individual variables
a1, . . . , an to its individuals. This assignment is guaranteed to satisfy the following
formulas (with free variables v, R, a1, . . . , an):

Inv, w@
R 1-1R a1Iv . . . anIv

Conversely, any assignment function that satisfies these formulas corresponds to an
R-point. It’s straightforward to check by induction that if  the R-point a corresponds
this way to the assignment g in the sorted first-order model M, then for each formula
ϕ ∈ L ,

a
R
ϕ iff M, g [ϕ]v,R, a1,...,an

What’s more, a is a diagonal point iff g takes v to the actual world and R to the
extension of Id@.

This establishes a precise sense in which the translations and model theory agree:
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Theorem 6. For ϕ ∈ L , ϕ is R-valid iff

C , Inv, w@
R, 1-1R, a1Iv, . . . , anIv |= [ϕ]v,R, a1,...,an

Furthermore, ϕ is diagonally R-valid iff C |= [ϕ].

Consequently, the logical results in Appendix C can also be applied to the trans-
lations.
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