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Abstract

Decision theorists widely accept a stochastic dominance principle:
roughly, if a risky prospect 𝐴 is at least as probable as another prospect
𝐵 to result in something at least as good, then 𝐴 is at least as good as
𝐵. Recently, philosophers have applied this principle even in contexts
where the values of possible outcomes do not have the structure of
the real numbers: this includes cases of incommensurable values and
cases of infinite values. But in these contexts the usual formulation of
stochastic dominance is wrong. We show this with several counter-
examples. Still, the motivating idea behind stochastic dominance is
a good one: it is supposed to provide a way of applying dominance
reasoning in the stochastic context of probability distributions. We give
two new formulations of stochastic dominance that are more faithful
to this guiding idea, and prove that they are equivalent.
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1 The Idea of Stochastic Dominance

One of the central ideas in decision theory is dominance. Consider two risky
prospects 𝐴 and 𝐵, each of which may turn out several different ways. If it
is certain that 𝐴 will turn out at least as well as 𝐵, then we say 𝐴 (weakly)
dominates 𝐵. It is widely accepted that if 𝐴 weakly dominates 𝐵, then 𝐴 is
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at least as good a prospect as 𝐵.1 2

(Weak) Dominance. For prospects 𝐴 and 𝐵, if 𝐴 is certain to turn out at
least as well as 𝐵, then 𝐴 is at least as good as 𝐵.

While Dominance is not utterly uncontroversial, it is one of the least con-
troversial principles there is in normative decision theory. Evaluating a
prospect means weighing up the various ways that it might turn out, trading
off its chances of turning out well or badly in various ways against one
another. If a prospect 𝐴 is sure to turn out as well as 𝐵, then all of the
various ways 𝐵 might turn out are ways 𝐴 will turn out as well or better.
Every point in favour of 𝐵 is at least as strong a point in favour of 𝐴; and
every point against 𝐴 is at least as strong a point against 𝐵. So however we
trade off these possible outcomes against each other, 𝐴 provides at least as
good a trade-off as 𝐵 does.3

A second central idea in decision theory is that the value of a risky prospect
is determined by the probabilities of it turning out one way or another.4 For
each risky option 𝐴, there are various ways it might turn out if chosen; and
there is some probability of it turning out each of these ways. So a prospect
𝐴 has a corresponding probability distribution over outcomes.5

Stochasticism. Two prospects that have the same probability distribution
over outcomes are equally good.

The idea is that probabilities are adequate for capturing all of the information
about risk that is relevant to how the value of different outcomes should be
weighed. Stochasticism is not without challenges, but it is widely accepted
even so.6 Call two prospects with the same probability distributions over

1This notion of ‘good’ might be understood in terms of what it is rational to choose or
prefer, or in terms of moral or prudential betterness with respect to incomplete evidence.
This essay concerns structural issues that do not depend on which interpretation we apply.

2For now we focus on weak dominance and betterness. We’ll say something about strict
versions in section 4.

3Compare similar arguments in Broome ([1991], pp. 95–6, in defence of the sure thing
principle); Tarsney ([2020], p. 8, in defence of stochastic dominance).

4Again, what kind of probability is at issue—whether it is evidential, or credal, or chancy,
or something else—is not important for this essay. I will take for granted that probability
distributions satisfy the standard Kolmogorov axioms, including countable additivity. But
I anticipate that many of the lessons of this essay will apply beyond that framework—for
example, to finitely additive or infinitesimal probabilities—with minimal modification.

5Outcomes are understood as ways a risky option might turn out, in whatever respects
matter for goodness. These might be modelled as equivalence classes of possible worlds
under the relation of being equally good overall. Prospects are understood as possible
objects of choice under risk, without commitment to how exactly these should be modelled:
prospects are not identified with probability distributions, nor with functions from states to
outcomes, though these may be used to represent prospects. See section 4.

6Schoenfield ([2014]) and Bales et al. ([2014]) argue against Stochasticism in cases involving
incomparability; Seidenfeld et al. ([2009]) and Lauwers and Vallentyne ([2017]) argue against
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outcomes stochastically equivalent.

It may not be immediately clear how the two ideas of Dominance and
Stochasticism should be combined: for Dominance does not apply directly to
probability distributions. Suppose Lottie has a choice between two gambles
𝐴 and 𝐵 with the following probability distributions.

𝐴 Probability 1/2 of winning a new scooter, and probability 1/2 of
winning nothing.

𝐵 Probability 1/4 of winning a new scooter, and probability 3/4 of
winning nothing.

Does option 𝐴 dominate option 𝐵? The probability distributions on their
own don’t answer this question. Here is one way the game might be played.
Say the outcome is determined by drawing a card from a well-shuffled deck.

𝐴 If a red card is drawn, win the scooter, and otherwise win nothing.
𝐵 If a diamond is drawn, win the scooter, and otherwise win nothing.

If these are the rules, then option 𝐴 dominates option 𝐵. But the game could
be played a different way.

𝐵′ If a club is drawn, win the scooter, and otherwise win nothing.

In this case, 𝐴 does not dominate 𝐵′—𝐴 is not certain to turn out as well as
𝐵′, since 𝐵′ will have a better result than 𝐴 if a club is drawn. (See table 1.)

Table 1: Lottie’s gambles. 𝐴 dominates 𝐵 but not 𝐵′, while 𝐵 and 𝐵′ are
stochastically equivalent.

Gambles ♦️ ♥️ ♣️ ♠️

𝐴 🛴 🛴 ❌ ❌

𝐵 🛴 ❌ ❌ ❌

𝐵′
❌ ❌ 🛴 ❌

Nonetheless, even though 𝐴 does not dominate 𝐵′, we do have enough
information to compare them. For 𝐴 does dominate the option 𝐵, and 𝐵 is
stochastically equivalent to 𝐵′. So even though Dominance on its own does
not tell us about how 𝐴 and 𝐵′ compare, Dominance and Stochasticism
together tell us that 𝐴 is at least as good as 𝐵′.

it in cases involving infinity. For defences, see Nover and Hájek ([2004]); Easwaran ([2014]);
Bader ([2018]).
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Still, this situation is not entirely satisfactory. Applying Dominance requires
a framework for representing risky prospects that includesmore information
than just their probability distributions over outcomes: we have to reason
about distinct stochastically equivalent prospects like 𝐵 and 𝐵′. This seems
out of the spirit of Stochasticism. There is a standard way of improving this
theoretical situation: we can define a single relationship between probability
distributions that simultaneously captures the upshot of both Stochasticism
and Dominance—a relation called ‘stochastic dominance’. Here is how the
usual definition goes.

Definition 1. Let 𝑃 and 𝑄 be probability distributions over an ordered
set of outcomes𝒳.7 We say𝑃 naïvely (first-order, weakly) stochastically
dominates 𝑄 if, for every possible outcome 𝑥 ∈ 𝒳, 𝑃 has at least as
high a probability of turning out at least as well as 𝑥 as 𝑄 does. Using
the shorthand (≥𝑥) for the set of outcomes 𝑦 which are at least as good
as 𝑥:

𝑃(≥𝑥) ≥ 𝑄(≥𝑥) for every outcome 𝑥.

We will similarly say that a prospect 𝐴 naïvely stochastically dominates a
prospect 𝐵 when 𝐴’s probability distribution naïvely stochastically domin-
ates𝐵’s probability distribution. Many decision theorists have been attracted
to the following normative principle.8

Naïve Stochastic Dominance. For any prospects 𝐴 and 𝐵, if 𝐴 naïvely
stochastically dominates 𝐵, then 𝐴 is at least as good as 𝐵.

This sounds intuitively very plausible: if 𝐴 is at least as likely as 𝐵 to give
you something good, for any threshold for what counts as ‘good’, then 𝐴
seems to be doing as well as 𝐵 in every respect that matters for comparing
prospects.

Furthermore, it is widely believed that Naïve Stochastic Dominance is simply
a way of capturing the combination of Stochasticism and Dominance. A
basis for this would be the following technical claim:

Naïve Realization. Suppose there are prospects with distributions 𝑃 and
𝑄, respectively. If 𝑃 naïvely stochastically dominates 𝑄, then there
are some prospects 𝐴 and 𝐵 that have the probability distributions 𝑃
and 𝑄, respectively, such that 𝐴 dominates 𝐵.

Stochasticism, Dominance, and Naïve Realization together imply Naïve
Stochastic Dominance. Suppose 𝐴 naïvely stochastically dominates 𝐵. Then
Naïve Realization tells us that there is a pair of prospects 𝐴′ and 𝐵′ with

7We assume that 𝒳 is also equipped with a 𝜎-algebra; more on this in section 3 and
appendix A.1. But wewill keep these technical details in the background as much as possible.

8Fine ([2008], pp. 627–8, though without endorsement); Buchak ([2013]); Easwaran
([2014]); Bader ([2018]); Tarsney ([2020]); Wilkinson ([2022a]).
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the same distributions, where 𝐴′ dominates 𝐵′. Stochasticism tells us that
𝐴 is just as good as 𝐴′ and 𝐵′ is just as good as 𝐵; and Dominance tells us
that 𝐴′ is at least as good as 𝐵′. Putting this together, by transitivity, 𝐴 is at
least as good as 𝐵.9

But Naïve Realization and Naïve Stochastic Dominance are both wrong.
In what follows I will explain why, and consider how to repair stochastic
dominance.

Naïve Realization is closely related to the following well-known statistical
folklore.10

Theorem 1. For any probability measures 𝑃 and 𝑄 on the real num-
bers,11 the following are equivalent:

(a) For every real number 𝑥, 𝑃(≥𝑥) ≥ 𝑄(≥𝑥).
(b) There exist real-valued randomvariables𝑋, 𝑌 on someprobability

space such that 𝑋 has the distribution 𝑃, 𝑌 has the distribution 𝑄,
and 𝑋 ≥ 𝑌 pointwise. (That is, 𝑋(𝑠) ≥ 𝑌 (𝑠) for every state 𝑠 in
the probability space.)

It is commonplace to represent prospects by real-valued random variables—
that is, measurable real-valued functions defined on some probability space.
The underlying probability space represents states of nature, and the real
numbers represent outcomes; a prospect is then represented by a function
from states to outcomes. If this representation is faithful, then Naïve Realiz-
ation follows.

The trouble is that not all prospects can be represented by real-valued ran-
dom variables—because some possible outcomes cannot be represented by
real numbers.

9Suppose we represent each prospect 𝐴 by a function 𝑓𝐴 from states to outcomes. Define
a permutation of a prospect to be a function 𝑓′ such that, for some probability-preserving
bijection 𝜋 from states to states, 𝑓′(𝜋(𝑠)) = 𝑓𝐴(𝑠) for each state 𝑠. A prospect is stochastic-
ally equivalent to any of its permutations. So in this setting, Naïve Realization follows from
the following claim:

Naïve Permutation. If 𝐴 stochastically dominates 𝐵, then some permutation of 𝐴 domin-
ates 𝐵.

Easwaran ([2014], p. 20)makes this claim (at least for discrete prospects on a ‘homogeneous’
state space), and it is repeated by Bader ([2018], p. 500) and Tarsney ([2020]). Easwaran does
prove a different important thing: for discrete prospects 𝐴 and 𝐴′ on a homogeneous state
space, if 𝐴 is stochastically equivalent to 𝐴′, then 𝐴′ is a permutation of 𝐴. He asserts that
the analogous claim for (strict) stochastic dominance follows. As we will see, this is not true
in general.

10This can be derived as a corollary to theorem 3 in section 4, though it also has a more
elementary proof.

11Equipped with the Borel algebra; see section 3 and appendix A.3.
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The ordering of the real numbers is total and separable. ‘Total’ means that
for any pair of real numbers, one is greater than the other, or else they are
equal. ‘Separable’ means that there is a countable set of real numbers—for
instance, the rational numbers—which is dense in the reals: for any two
distinct real numbers, there is some some rational number between them.12

It is far from clear that all the values we care about have these features. Many
theorists hold that some outcomes are incomparable (or ‘incommensurable’
or ‘on a par’): neither is better than the other, but they are not equally good
(see Chang [2002]; Hare [2010]). And many theorists hold that there are
infinite values, the ordering of which need not be separable. For example,
consider possible outcomes in which there are infinitely many future gen-
erations. If the interests of people in the arbitrarily distant future all have
the same weight, and a Pareto principle holds—namely, that an outcome
where some are better off and none are worse off is better overall—then the
ordering of distributions of goods to future generations is not separable (see
Basu and Mitra [2003]). I will argue that without totality and separability,
the technical claim Naïve Realization can fail—and the normative claim
Naïve Stochastic Dominance fails along with it.

Recently quite a few theorists have taken interest in applying stochastic dom-
inance concepts in settings like these, where real-valued representations of
outcomes are unavailable (for example, Bader [2018]; Russell [2021]; Wilkin-
son [2022b]).13 So it has become pressing to understand how dominance
concepts ought to be deployed in these more exotic settings. Outside the fa-
miliar realm of real numbers, we must tread carefully. Stochastic dominance
must be fixed.

2 Counterexamples

Incomparability and non-separability each give rise to counterexamples to
Naïve Stochastic Dominance. Let’s consider each in turn.

2.1 Incomparability

Coffee and Crowds. Inga is planning to do some writing at a local
coffee shop: either the Percolator or Quixote’s. She is hoping to get
good espresso and chill vibes. These two things are incommensurable:
neither is better than the other, but they are also not equally good. But

12In fact, several subtly different countability-related properties are relevant, as will be
discussed in section 3.

13Fishburn ([1978]) considers generalizations of stochastic dominance in a setting without
transitivity; this is not something I will take up here.
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getting both good espresso and chill vibes is better than either one
alone.

Quixote’s is unreliable on both counts. 1/3 of the time they have good
coffee and chill vibes, but 1/3 of the time they burn the coffee beans,
and 1/3 of the time they are overtaken by a local church group. (These
two calamities never both happen at the same time, because the less
competent barista happens to be part of the church group.)

The Percolator always has good espresso, and it is always a great place
to work—when it is open. But the owner often closes the shop at
unpredictable times—and if Inga goes there when it is closed, she will
get neither of the good things she desires, and lose most of her writing
day. This outcome has chance 1/3, and it is much worse than dealing
with either sub-par coffee or a crowded cafe.

We can represent Inga’s four possible outcomes as a diamond, with edges
pointing upward from worse outcomes to better outcomes, as in figure 1.
We can represent Inga’s two options with two probability distributions over
these four nodes: 𝑃 for the Percolator and 𝑄 for Quixote’s.

Both

Coffee

≤

Vibes

≥

Neither

≥ ≤

Outcomes

2
3

0 0

1
3

𝑃 probabilities

1
3

1
3

1
3

0

𝑄 probabilities

Figure 1: Coffee and Crowds

It seems clear that, as long as the outcome Neither is sufficiently bad, the Per-
colator is a worse option than Quixote’s for Inga. Taking the 1/3-probability
risk of getting the worst outcome (Neither) can outweigh the extra probabil-
ity that the Percolator gives to the best outcome (Both), if the worst outcome
is much worse than either just Coffee or just Vibes, while the best outcome
is only a little better than these.

Yet 𝑃 naïvely stochastically dominates 𝑄. We can check this by considering
each outcome. The probability of the best outcome (Both) is higher for𝑃 than
𝑄: 2/3 versus 1/3. The probability of an outcome at least as good as Coffee
alone is 2/3 for either one of 𝑃 or 𝑄. The same goes for the probability of an
outcome at least as good as Vibes alone. And the probability of an outcome
at least as good as Neither is 1 in each case. So for every possible outcome 𝑥,
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𝑃(≥𝑥) ≥ 𝑄(≥𝑥).
But if prospects 𝐴 and 𝐵 have distributions 𝑃 and 𝑄, respectively, then 𝐴
can’t dominate 𝐵. This is easy to see: 𝐴 has probability 1/3 of obtaining the
worst outcome, Neither, while 𝐵 has probability 0 of Neither. So there is
at least probability 1/3 that 𝐴 turns out strictly worse than 𝐵. This tells us
that Naïve Realization fails.

Likewise, if the Percolator is not as good as Quixote’s, Coffee and Crowds
is also a counterexample to the normative principle of Naïve Stochastic
Dominance.

2.2 Non-separability

The second example is a bit more technical.

The Wrong Circles. Dante was wrong: there are not just nine circles of
Hell, but uncountably many—in fact, one for each of the countable
ordinals,

1, 2, 3, …, 𝜔, 𝜔 + 1, …, 2𝜔, …, 𝜔2, …
Circle 1 is worst, followed by circle 2, and so on, with earlier ordinals
corresponding to worse circles.

There are also uncountably many circles of Heaven—again, one for
each countable ordinal. In this case the earliest ordinals correspond to
the best circles—so heavenly circle 1 is best, followed by circle 2, and
so on.

Sepehr is considering whether to eat of the fruit of the tree of the
knowledge of good and evil. If he does, he is doomed to Hell with
certainty—but it is uncertain which circle it will be. In fact, the probab-
ility distribution over circles of Hell has the interesting property that
for every countable ordinal 𝑖, the probability that he will be in a circle
worse than 𝑖 is zero. (Even though the union of these probability zero
sets has probability one, this does not violate countable additivity,
because there are uncountably many of them.)

If Sepehr does not eat of the fruit, then he will certainly be rewarded
in Heaven—but again, it is uncertain which of the beatific circles will
be his. For each countable ordinal 𝑖, the probability of going to a circle
of Heaven better than 𝑖 is zero.

It seems clear that eating the fruit is worse than refraining: the consequence
is Hell rather than Heaven, with certainty. But, perhaps surprisingly, eating
the fruit (weakly) naïvely stochastically dominates refraining. Consider
each possible outcome. For any circle of Hell, if Sepehr eats the fruit, the
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Hell (𝜔1)

𝑃 assigns probability 1
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𝑄 assigns probability 1
to this set of outcomes
(and to any subset that
omits at most countably
many of these outcomes)

Figure 2: The Wrong Circles

probability of ending up in that circle or better is one. And for any circle of
Heaven, if Sepehr eats the fruit, the probability of ending up in that circle
or better is zero. But we get the exact same probabilities if Sepehr refrains
from eating the fruit: again, Sepehr is sure to do better than any circle of
Hell, but the probability of doing at least as well as any particular circle of
Heaven is again zero. In short, if 𝑃 is the probability distribution Sepehr
obtains from eating the fruit, and 𝑄 the probability distribution that arises
from refraining, then for every possible outcome 𝑥, 𝑃(≥𝑥) = 𝑄(≥𝑥), and
thus 𝑃(≥𝑥) ≥ 𝑄(≥𝑥).14

But it is clear that if a prospect 𝐴 has the ‘downstairs’ distribution 𝑃, while
𝐵 has the ‘upstairs’ distribution 𝑄, then 𝐴 can’t possibly dominate 𝐵. Since
𝐴 sends Sepehr to Hell with probability one, and 𝐵 sends Sepehr to Heaven
with probability one, the probability that 𝐴 turns out worse than 𝐵 is also
one.

Furthermore, since it seems clear that eating the fruit is a worse prospect for
Sepehr than refraining, The Wrong Circles is also a counterexample to the
normative principle of Naïve Stochastic Dominance.15

14The probability measure 𝑃 assigns probability zero to each countable set of circles of
Hell, and probability one to each co-countable set of circles of Hell. This is all we need to
say, if we are only concerned with defining a measure on the weak 𝜎-algebra containing just
the countable and co-countable sets of countable ordinals. There is also a richer 𝜎-algebra
which is natural for the set of countable ordinals: namely, the Borel algebra generated by the
order topology. The existence of such a measure 𝑃 on this algebra is less straightforward:
see Folland ([1999], sec. 7.2, ex. 15).

15The Wrong Circles is a contrived example, but there may be more realistic cases that are
structurally similar. I mentioned in section 1 that a non-separable ordering of outcomes arises
from the Pareto order on welfare distributions for people in the arbitrarily distant future.
If the set of individuals is uncountable, there are sets of such distributions for which the
Pareto order is isomorphic to the ordering in the Wrong Circles (𝜔1 ⊕ 𝜔op

1 ). It is not obvious
whether we could find ourselves with probabilities like Sepehrs’s over such outcomes, but it
seems rash to assume otherwise.
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3 Setwise Stochastic Dominance

There is a pretty straightforward modification of Naïve Stochastic Domin-
ance that correctly handles the examples of Coffee and Crowds and The
Wrong Circles. This fix stays true to the gloss we originally gave for naïve
stochastic dominance: if 𝐴 is at least as likely as 𝐵 to give you something
good, for any threshold for goodness, then 𝐴 is at least as good as 𝐵. Where
we went wrong was in identifying a threshold with an outcome. Intuitively,
some thresholds don’t line up with particular outcomes, but rather fall in
the gaps between outcomes. We can capture this by thinking of a ‘threshold
of goodness’ not as an outcome, but as a set of outcomes.

Definition 2. A set of outcomes 𝑈 is called upward-closed (or an upper
set) iff for each outcome 𝑥 in 𝑈, for any outcome 𝑦 which is at least as
good as 𝑥, 𝑦 is in 𝑈 as well. For probability distributions 𝑃 and 𝑄, we’ll
say 𝑃 setwise stochastically dominates 𝑄 when

𝑃(𝑈) ≥ 𝑄(𝑈) for every (measurable) upward-closed set of outcomes 𝑈.

A set of the form (≥𝑥), the set of all outcomes at least as good as a given
outcome 𝑥, is called a principal upper set. So naïve stochastic dominance
amounts to restricting setwise stochastic dominance to just the principal
upper sets, rather than considering all of them.

For the ordering of the real numbers, countable additivity ensures that the
setwise definition of stochastic dominance and the naïve definition coin-
cide.16 But consider the two counterexamples. In Coffee and Crowds, the
set of outcomes 𝑈 containing Coffee, Vibes, and Both—but not Neither—is
a non-principal upper set. Furthermore, in that example, 𝑃(𝑈) = 2/3 for
the Percolator, while 𝑄(𝑈) = 1 for Quixote’s. In other words, while 𝑃 is at
least as likely as 𝑄 to turn out at least as well as any particular outcome, it is
less likely than 𝑄 to meet the standard of providing something at least as
good as either Coffee or Vibes. So while 𝑃 naïvely stochastically dominates
𝑄, it does not setwise stochastically dominate 𝑄.

In The Wrong Circles, consider the set of outcomes 𝑈 consisting of all of the
heavenly outcomes. This, again, is a non-principal upper set in 𝑋. (There is
no worst circle of Heaven, no best circle of Hell, and no outcome between

16 More generally, if a total order is countably generated, in the sense defined in ap-
pendix A.3, then every upward-closed set is a countable union of a chain of principal upper
sets, which implies that naïve and setwise stochastic dominance coincide. Proof. Let 𝑈 be
upward-closed. We can recursively define a transfinite sequence 𝑥0 ≥ 𝑥1 ≥ … of elements
of 𝑈. For each countable ordinal 𝑖, if 𝑈 is the countable union of principal upper sets (≥𝑥𝑗)
for 𝑗 < 𝑖, we are done. Otherwise, there is some 𝑥𝑖 ∈ 𝑈 such that 𝑥𝑖 < 𝑥𝑗 for any 𝑗 < 𝑖. If
𝒰 generates the order ≤, then for each countable ordinal 𝑖 there is some set 𝑉𝑖 ∈ 𝒰 such
that 𝑥𝑖 ∈ 𝑉𝑖, but 𝑥𝑖+1 ∉ 𝑉𝑖. So these are all distinct, and thus 𝒰 is uncountable.
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Heaven and Hell.) Furthermore, eating the fruit has probability 𝑃(𝑈) = 0,
while refraining has probability𝑄(𝑈) = 1. So once again𝑃 does not setwise
stochastically dominate 𝑄.

It is tempting, then, to replace the normative principle of Naïve Stochastic
Dominance with a principle involving this setwise notion:

Setwise Stochastic Dominance. If prospect 𝐴 has a distribution that
weakly setwise dominates the distribution of prospect 𝐵, then 𝐴 is at
least as good as 𝐵.

This principle does indeed hold in a broad class of situations—much broader
than the naïve principle. Unfortunately, it is still not quite right.

Love and Money. Lexy cares about just two things: love and money.
The amount of love in Lexy’s life can come in continuous degrees
between 0 and 1. It is also better for her to have more money rather
than less. But love is infinitely more important to Lexy than money: a
larger amount of love is always better for her than a smaller amount,
no matter how much money she has in either situation.

Unfortunately, love is utterly unpredictable and uncontrollable:
whatever Lexy does, the amount of love she will get is given by a
uniform probability distribution over the interval [0, 1]. But she can
decide whether to pick up a $100 bill that happens to be lying on the
ground in front of her.

We can represent Lexy’s possible outcomes with two line segments (fig-
ure 3): one representing the different possible amounts of love together with
the $100, and the other representing the different possible amounts of love
without the $100. The horizontal axis—the amount of love—is lexicograph-
ically more important than the vertical axis—the amount of money. (To be
explicit, the outcome space is [0, 1] × {$0, $100}, consisting of two copies
of the line segment.)

If Lexy leaves the $100 lying on the ground, then the probability of getting
any particular outcome is given by a uniform distribution over the bottom
segment—where she doesn’t get the $100. Call this distribution 𝑃. If she
takes the $100, then the probability of getting any particular outcome is
given by a uniform distribution over the top segment, where she gets $100.
Call this 𝑄.

It seems clear that leaving the money is worse than taking it: Lexy loses
$100, with no compensating benefit at all. But it turns out that 𝑃 (weakly)
setwise stochastically dominates 𝑄. For each amount of love 𝑥 ∈ [0, 1], there
are these three upper sets:
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Love

Money
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0 1≤ ≤≤

$0

$100
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𝑃 is uniform on this segment

𝑄 is uniform on this segment

Figure 3: Love and Money

• The set of outcomes at least as good as (𝑥, $0).
• The set of outcomes at least as good as (𝑥, $100).
• The set of outcomes strictly better than (𝑥, $100).

The 𝑃-probability and the 𝑄-probability of any of these sets are both exactly
1 − 𝑥. Moreover, every upper set in this space of outcomes is of one of these
three kinds. So 𝑃(𝑈) = 𝑄(𝑈) for every upper set 𝑈. (Note that while the
outcome (𝑥, $100) is possible if Lexy takes the money, and not otherwise, 𝑃
and 𝑄 both assign this outcome probability zero.) Even so, no prospect with
distribution 𝑃 can (weakly) statewise dominate a prospect with distribution
𝑄. (The proof of this is less straightforward than the earlier examples, and
can be found in appendix A.5.)

What is going wrong this time? For Lexy’s ordering of outcomes, cumulative
probabilities—the probabilities of the upward-closed sets—don’t provide
enough information to pin down a measure. The two measures 𝑃 and 𝑄
agree on every cumulative probability, but they still disagree on other sets of
outcomes, such as the upper $100 segment. When probabilities can float free
of cumulative probabilities, setwise stochastic dominance is too crude an
instrument to distinguish measures that intuitively should be distinguished.

We can give a more precise diagnosis of how this situation arises by introdu-
cing some technical ideas. The lexicographic ordering of outcomes in Love
andMoney is in fact both total and separable; but it lacks a stronger countab-
ility property.17 In general, partial orders have a natural topology, called the
interval topology. (This generalizes the topology that is standardly defined
on total orders. Precise definitions and proofs for the topological ideas in
this section are in appendix A.3.) A topological space that has a countable
base is called ‘second-countable’. For example, the standard topology on the
real numbers is second-countable, because every open set of real numbers
is a union of open intervals with rational endpoints, and there are only

17Thanks to Kenny Easwaran for prompting this line of thought.
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countably many such intervals. In general, every second-countable space is
separable, but the interval topology on the lexicographic space [0, 1]×{0, 1}
is an example of a space that is separable, but not second-countable.18

This is connected to a technical issue that we have kept in the background so
far. A probability measure is defined on some 𝜎-algebra of sets of outcomes.
Partially ordered spaces have a natural 𝜎-algebra inherited from their inter-
val topology, called the Borel algebra; measures defined on this algebra are
called Borel measures. When the interval topology is second-countable, then
this Borel algebra is precisely the same as the 𝜎-algebra that is generated by
the upward-closed Borel sets. Thus any two countably additive probability
measures that agree on the probabilities of upward-closed sets also assign
the same probability to every set in the Borel algebra.19

In short, Borel measures on second-countable spaces are characterized by
their cumulative probabilities. Moreover, it turns out that Setwise Stochastic
Dominance really is correct for such measures, in a sense to be made precise
in section 4. But more generally, probability measures on a too-rich algebra
of sets can float free from their cumulative probabilities, as in Lexy’s case.20

This is a thirdway that counterexamples can arise, not just toNaïve Stochastic
Dominance, but also to Setwise Stochastic Dominance.

4 Stochastic Dominance

Neither naïve stochastic dominance nor setwise stochastic dominance an-
swers to our purpose, in general. What can replace them?

Let us return to the original idea: stochastic dominance is supposed to extend
the idea of dominance to the stochastic setting of probability distributions over
outcomes, which need not include all of the information about how these
outcomes are associated with particular states. When the values of outcomes
can be represented by real numbers, theorem 1 told us that naïve stochastic
dominance was good enough, because in that setting it is equivalent to an-
other relation between probability distributions 𝑃 and 𝑄: namely, that there
exist random variables with those distributions such that one dominates the

18Separable. The countable set of outcomes (𝑞, 0) for each rational 0 ≤ 𝑞 ≤ 1 intersects
every open interval (𝑥, 𝑦) in [0, 1] × {0, 1} with the lexicographic order.

Not second-countable. In the interval topology on the lexicographic order on [0, 1] × {0, 1},
for each real number 𝑟 ∈ [0, 1], the set of outcomes 𝐼𝑟 = {𝑥 ∣ 𝑥 > (𝑟, 0)} = {𝑥 ∣ 𝑥 ≥
(𝑟, 1)} is open. So any base would have to include an open set 𝑈𝑟 such that (𝑟, 1) ∈ 𝑈𝑟 ⊆
𝐼𝑟. These must all be distinct, so the base is uncountable.

19This is a consequence of Carathéodory’s extension theorem (the uniqueness part. See
Folland [1999], sec. 1.4).

20As it happens, Lexy’s 𝑃 and 𝑄 are not even Borel measures (see appendix A.5). But we
can slightly modify Love and Money to construct a counterexample using Borel measures
on the lexicographically ordered square [0, 1] × [0, 1], which is also not second-countable.
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other. In more general contexts this equivalence breaks down. For those
contexts, it makes sense to simply focus on this other relation directly, taking
it as our definition of stochastic dominance.

Definition 3. For probability distributions 𝑃 and 𝑄 on an ordered
space of outcomes 𝒳, 𝑃 (weakly) stochastically dominates 𝑄 if and
only if there exists a probability space (Ω, 𝜇) and random variables
𝑋, 𝑌 ∶ Ω → 𝒳 with corresponding probability distributions 𝜇𝑋 = 𝑃
and 𝜇𝑌 = 𝑄, where 𝑋 ≥ 𝑌 pointwise.21

In a setting where prospects straightforwardly correspond to outcome-
valued random variables (rather than real-valued random variables), this
just amounts to combining dominance and stochastic equivalence—which
was the original idea all along. Suppose that prospects 𝐴 and 𝐵 can be rep-
resented by random variables 𝑋 and 𝑌 on a probability space (Ω, 𝜇). Then
𝐴’s distribution is 𝜇𝑋 and 𝐵’s distribution is 𝜇𝑌. The definition tells us that
𝜇𝑋 stochastically dominates 𝜇𝑌 if and only if there exist random variables
𝑋′ and 𝑌 ′ which are stochastically equivalent to 𝑋 and 𝑌, respectively (that
is, 𝜇𝑋 = 𝜇𝑋′ and 𝜇𝑌 = 𝜇𝑌 ′ ), such that 𝑋′ dominates 𝑌 ′ (that is, 𝑋′ ≥ 𝑌 ′

pointwise).

There is also a corresponding normative principle:

Stochastic Dominance. For prospects 𝐴 and 𝐵, if 𝐴 has a probability dis-
tribution that stochastically dominates the probability distribution of
𝐵 (in the sense of definition 3), then 𝐴 is at least as good as 𝐵.

This principle really is equivalent to the combination of Stochasticism and
Dominance, assuming a correspondence between prospects and random
variables.

Still, some reasons for dissatisfaction with definition 3 remain. The idea
of stochasticism is that probabilities of outcomes carry all the information
we need for comparing prospects. But definition 3 takes us outside that
framework: while stochastic dominance is a relation between probability
distributions, it is ‘extrinsic’, in that it appeals to other probability spaces
and random variables on those spaces. So it is nice to find that there is
another formulation, equivalent to definition 3, which is more at home in
the framework of probability distributions over outcomes.

Here is the idea. In the stochastic framework, what we care about is just the
probability of prospects turning out one way or another. But the relation of
dominance isn’t just a matter of the ways one prospect might turn out, and

21 For a measure 𝜇 on a set 𝒳, a set 𝒴 equipped with a 𝜎-algebra, and a measurable
function 𝑓 ∶ 𝒳 → 𝒴, the induced measure 𝜇𝑓 on 𝒴 is given by 𝜇𝑓(𝐸) = 𝜇(𝑓−1(𝐸)) for
each measurable set 𝐸 ⊆ 𝒴.
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the ways another prospect might turn out. It is about whether one prospect
would turn out as well as another would—which is crucially a matter of
how both prospects would turn out, taken together.

This is something that it makes sense to model directly. Consider again the
example of Lottie’s gambles from section 1.

𝐴 If a red card is drawn, win the scooter, and otherwise win nothing.
𝐵 If a diamond is drawn, win the scooter, and otherwise win nothing.
𝐵′ If a club is drawn, win the scooter, and otherwise win nothing.

Here 𝐴 dominates 𝐵, but 𝐴 does not dominate the stochastically equivalent
prospect 𝐵′. But it isn’t essential to talk about the cards in order to capture
this contrast. We can instead consider the joint probability distributions,
which tell us the probabilities of the various ways each of two prospects
might turn out. For example, the probability is 1/4 that choosing gamble 𝐴
would result in winning the scooter and choosing gamble 𝐵 would result in
winning nothing. In general, the joint distribution for two prospects assigns
probabilities to pairs of outcomes. The two joint distributions are shown in
table 2.

Table 2: Joint distributions for Lottie’s gambles.

Gambles (🛴, 🛴) (🛴, ❌) (❌, 🛴) (❌, ❌)

𝐴 and 𝐵 1
4

1
4 0 1

2
𝐴 and 𝐵′ 0 1

2
1
4

1
4

The only case where the first gamble turns out worse than the second is the
pair of outcomes (nothing, scooter). The crucial difference between the two
joint distributions is that in the case of dominance (𝐴 and 𝐵), this pair gets
probability zero; meanwhile, in the case of non-dominance (𝐴 and 𝐵′) the
probability of this pair is non-zero.

In short, dominance is not a property of a pair of probability distributions
over outcomes, but it is a property of a joint probability distribution over
pairs of outcomes. If 𝐴 and 𝐵 are prospects with joint distribution 𝜇, then
for 𝐴 to dominate 𝐵 is for their joint distribution to put all of its probability
into pairs of outcomes (𝑥, 𝑦) such that 𝑥 is at least as good as 𝑦.22 To give

22In general it may be important to distinguish between it being certain that 𝐴 turns out
as well as 𝐵, and it being merely almost certain that 𝐴 turns out as well as 𝐵—that is,
with probability one. But in the stochastic framework, this distinction between certainty
and almost certainty disappears: the picture is that the probabilities of the outcomes are
all that matters, and certainty, as opposed to almost certainty, is not merely a matter of
probability. This may be an important philosophical challenge to Stochasticism, or to the
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that a name, we say their joint distribution is supported by the set of pairs

{(𝑥, 𝑦) ∈ 𝒳 × 𝒳 ∣ 𝑥 ≥ 𝑦}.

(The precise definition of support is in appendix A.1.)

A joint distribution for two prospects includes all of the information about
each of those prospect’s individual distributions: these are marginal dis-
tributions. A distribution 𝜇 on pairs of outcomes 𝒳 × 𝒳 has a marginal
distribution 𝜇1 on single outcomes in 𝒳, where the 𝜇1-probability of an
outcome 𝑥 is the 𝜇-probability of getting any pair of outcomes with 𝑥 as its
first coordinate. Likewise, 𝜇 has amarginal distribution 𝜇2 for the second co-
ordinate. If𝐴 and𝐵 have the joint distribution𝜇, then𝐴 has the distribution
𝜇1 and 𝐵 has the distribution 𝜇2.

23

This gives us yet another way of defining stochastic dominance.

Definition 4. For probability distributions𝑃 and𝑄 on an ordered space
of outcomes 𝒳, 𝑃 (weakly) stochastically dominates 𝑄 if and only if
there exists a joint probability distribution𝜇 on𝒳×𝒳 such that𝜇1 = 𝑃,
𝜇2 = 𝑄, and 𝜇 is supported by the set {(𝑥, 𝑦) ∈ 𝒳 × 𝒳 ∣ 𝑥 ≥ 𝑦}.

The idea of definition 4 is that there is some way of ‘lining up’ the different
outcomes of 𝑃 and 𝑄 such that one dominates the other. This definition,
unlike definition 3, does not appeal to random variables on some extraneous
state space. In the spirit of Stochasticism, it is all about the probabilities of
prospects turning out one way or another—now including joint probabilities
for ways of pairing up the outcomes two different prospects each would
have.

We have defined stochastic dominance twice over: once in terms of random
variables, and once in terms of joint distributions. But there is no conflict
between the two definitions.

Theorem 2. Definitions 3 and 4 are equivalent.

Furthermore, we can now say precisely how setwise stochastic dominance
(definition 2) comes close to the correct definition, as we alluded in section 3.

Theorem 3. Definition 2 is equivalent to definitions 3 and 4 for Borel
probability measures on a partially ordered space of outcomes whose
interval topology is second-countable.

standard probability axioms. But this is not the place to fuss over it; here we are working
out the implications of these commitments.

23The marginal distributions 𝜇1 and 𝜇2 are simply the induced measures 𝜇𝜋1
and 𝜇𝜋2

(in the sense of footnote 21), where 𝜋1 and 𝜋2 are the projection functions that take pairs in
𝒳 × 𝒳 to their first and second coordinates, respectively.
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The proofs of these theorems are in appendices A.2 and A.4.

Since the topology of the real numbers is second-countable, and naïve
stochastic dominance and setwise stochastic dominance come to the same
thing for measures on the reals (footnote 16), theorem 3 subsumes the ori-
ginal ‘folklore’ theorem 1 discussed in section 1. Another consequence is
that all three definitions are equivalent for discrete probability measures
on any partial order at all. (In that case we can think of the measures as
‘living on’ a countable set of outcomes that they both assign probability one.)
So setwise stochastic dominance is a pretty good approximation for what I
consider to be the correct notion—quite a bit better than the naïve definition,
though imperfect in general.

Representing prospects as random variables naturally goes with a Savage-
style framework, which is commonly understood as follows. A ‘state of
nature’ is supposed to specify a way that everything independent of an
agent’s choice might be. An ‘outcome’ is supposed to capture everything
relevant to how good or bad it is for things to turn out a certain way. A pro-
spect and a state of nature together are supposed to determine an outcome;
thus a prospect determines a function from states to outcomes. Moreover, if
every (measurable) function from states to outcomes is to represent some
evaluable prospect, then states and outcomes must be ‘freely recombinable’:
any state of nature is consistent with any possible outcome. While they may
be a reasonable idealization for modelling certain simple decision problems,
in general these assumptions are dubious.24

The joint distribution approach suggests a different picture. That is not
to say that the state-outcome formalism is wrong—after all, definitions 3
and 4 are equivalent, not rivals. But thinking in terms of joint distributions
suggests a more lightweight interpretation of the formalism. What plays the
role of a ‘state’ is simply a pair of outcomes. One natural interpretation of
the joint distribution is that the pair (𝑥, 𝑦) stands in for the conjunction of
two counterfactuals: if 𝐴 were chosen, then 𝑥 would result, and if 𝐵 were
chosen, then 𝑦 would result. A joint distribution represents a probability
distribution over these conjunctions. Perhaps the counterfactuals are ulti-
mately grounded in some deeper, more sweeping ‘state of nature’, but our
decision-theoretic formalism need not entangle us in any such metaphysics.
Furthermore, there is no temptation to try to make sense of recombining
these lightweight ‘states’ with arbitrary outcomes.

Thus far I have streamlined discussion by focusing on weak dominance
principles, about what is at least as good, rather thanwhat is strictly better. It
is not difficult to extend these ideas to a relation of strict stochastic dominance
as well.

24For critical discussion, see Joyce ([1999], p. 107).
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Definition 5. A probability distribution 𝑃 strongly stochastically dom-
inates 𝑄 if and only if 𝑃 weakly stochastically dominates 𝑄, while 𝑄
does not weakly stochastically dominate 𝑃.

There is a corresponding normative principle:

Strong Stochastic Dominance. If a prospect 𝐴 has a distribution that
strongly stochastically dominates the distribution of a prospect 𝐵,
then 𝐴 is strictly better than 𝐵.

By the same kind of reasoning as before (and given the same assumptions),
the combination of Weak and Strong Stochastic Dominance is equivalent to
the combination of Stochasticism, (Weak) Dominance, and a further prin-
ciple:

Strong Dominance. If 𝐴 is certain to turn out at least as well as 𝐵, and 𝐵
is not certain to turn out at least as well as 𝐴, then 𝐴 is strictly better
than 𝐵.

5 Conclusion

We considered two normative principles, Naïve Stochastic Dominance and
Setwise Stochastic Dominance. Each of these faces counterexamples, in-
volving incomparability, failures of countability properties, or measures
on especially fine-grained 𝜎-algebras. But this isn’t because the idea of
stochastic dominance is on the wrong track. Rather, it is because neither of
the two relations, naïve stochastic dominance or setwise stochastic domin-
ance, is a good way of capturing this idea, in general—though the setwise
version comes much closer. The good news is that we have two better ways
of capturing the idea of stochastic dominance: one appealing to random
variables, and the other appealing to joint probabilities. And we don’t have
to choose between these two explications, because they are equivalent.

A Appendix

A.1 Definitions

Let’s introduce convenient labels for the various stochastic dominance no-
tions we have considered.

Definition 6. For a finite measure space (𝒳, 𝜇) and a set 𝑆 ⊆ 𝒳, we
say𝑆 supports𝜇 if𝜇(𝐸) = 𝜇(𝒳) for everymeasurable set𝐸 containing
𝑆.25

25The reason for this slightly roundabout definition is that, in general, the set of pairs of
outcomes we will be interested in need not be measurable in the product algebra on 𝒳 × 𝒳.
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Definition 7. Let 𝑃 and 𝑄 be probability measures on an ordered set
𝒳 equipped with a 𝜎-algebra.
(a) 𝑃 ≥naïve 𝑄 if 𝑃(≥𝑥) ≥ 𝑄(≥𝑥) for every outcome 𝑥 ∈ 𝒳. (See

definition 1.)

(b) 𝑃 ≥set 𝑄 if 𝑃(𝑈) ≥ 𝑄(𝑈) for every measurable upward-closed
subset 𝑈 ⊆ 𝒳. (See definition 2.)

(c) 𝑃 ≥r.v. 𝑄 if there exists a probability space (Ω, 𝜇) and random
variables 𝑋, 𝑌 ∶ Ω → 𝒳 such that 𝜇𝑋 = 𝑃, 𝜇𝑌 = 𝑄, and 𝑋 ≥ 𝑌
pointwise (See definition 3.)

(d) 𝑃 ≥joint 𝑄 if there exists a probability measure on 𝒳 × 𝒳 (with
its product 𝜎-algebra) such that 𝜇1 = 𝑃 and 𝜇2 = 𝑄, which is
supported by the set

Ω = {(𝑥, 𝑦) ∈ 𝒳 × 𝒳 ∣ 𝑥 ≥ 𝑦}.

(See definition 4.)

A.2 Proof of theorem 2

Recall what theorem 2 says:

For any probability measures 𝑃 and 𝑄 on an ordered space 𝒳
(equipped with a 𝜎-algebra), 𝑃 ≥r.v. 𝑄 if and only if 𝑃 ≥joint 𝑄.

Proof. Right-to-left. Let 𝜇 be a joint distribution on 𝒳 × 𝒳 supported by Ω.
Then we can build a probability space and appropriate random variables
living on Ω. The 𝜎-algebra consists of sets 𝐸 ∩ Ω for 𝐸 in the product
algebra on 𝒳 × 𝒳. Let 𝜇∗(𝐸 ∩ Ω) = 𝜇(𝐸). The condition that Ω supports
𝜇 guarantees that 𝜇∗ is a well-defined probability measure. Let 𝑋 and 𝑌
be the restrictions of 𝜇1 and 𝜇2 to Ω, respectively. By construction, 𝑋 ≥ 𝑌
pointwise, and it is straightforward to check that 𝑋 and 𝑌 are measurable
and 𝜇∗

𝑋 = 𝜇1 and 𝜇∗
𝑌 = 𝜇2.

Left-to-right. Suppose 𝑋 and 𝑌 are 𝒳-valued random variables on a prob-
ability space (Ω, 𝜇) such that 𝑋 ≥ 𝑌 pointwise. Then let (𝑋, 𝑌 ) be the
product function from Ω to 𝒳 × 𝒳 such that (𝑋, 𝑌 )(𝑠) = (𝑋(𝑠), 𝑌 (𝑠)) for
each 𝑠 ∈ Ω. This is measurable, and it is straightforward to check that the
induced joint distribution 𝜇(𝑋,𝑌 ) on 𝒳 × 𝒳 has the desired properties: its

projections are 𝜇𝑋 and 𝜇𝑌, and it is supported by the set of (𝑥, 𝑦) ∈ 𝒳 × 𝒳
such that 𝑥 ≥ 𝑦.
For example, if 𝒳 is the set of countable ordinals equipped with its Borel algebra, then the
set of outcomes (𝑥, 𝑦) such that 𝑥 ≥ 𝑦 is not in the product algebra on 𝒳 × 𝒳 (see Folland
[1999], p. 231, ex. 28 in sec. 7.4).
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A.3 Topologies and algebras

Definition 8. Let 𝒳 be a partially ordered set.

(a) The interval topology on a partially ordered set 𝒳 is the coarsest
topology containing every set 𝒳 ∖ (≥𝑥) or 𝒳 ∖ (≤𝑥) for 𝑥 ∈ 𝒳.

(b) The Borel algebra on 𝒳 is the smallest 𝜎-algebra that contains
every open set of the interval topology.

The interval topology generalizes the standard order topology for totally
ordered sets. It sensibly counts each closed interval

[𝑥, 𝑦] = {𝑧 ∈ 𝒳 ∣ 𝑥 ≤ 𝑧 ≤ 𝑦} = (≥𝑥) ∩ (≤𝑦)

as a closed set.

Definition 9. A family 𝒰 of subsets of 𝒳 is said to generate the order
≤ such that, for all 𝑥, 𝑦 ∈ 𝒳, 𝑥 ≤ 𝑦 if and only if every 𝑈 ∈ 𝒰 that
contains 𝑥 also contains 𝑦. A countably-generated order is one that is
generated by some countable family of sets.

Note that in the order that 𝒰 generates, every 𝑈 ∈ 𝒰 automatically counts
as upward-closed.

Proposition 1. Let 𝒳 be a partially ordered set with a second-countable
interval topology.

(a) The order on 𝒳 is countably generated.
(b) The Borel algebra on 𝒳 is generated by the set of all principal

upper sets and principal lower sets. (Thus the Borel algebra is also
generated by the set of all upward-closed open or closed sets.)

Proof. Part (a). Let ℬ be a countable base for the interval topology. For
any 𝑥, 𝑦 ∈ 𝒳 such that 𝑥 ≱ 𝑦, the set 𝒳 ∖ (≤𝑥) is open, and so there is
some 𝐵 ∈ ℬ such that 𝑦 ∈ 𝐵 and (≤𝑥) ∩ 𝐵 = ∅; in other words, 𝑥 is not
in the upward-closure of 𝐵. So ≤ is generated by the countable set of all
upward-closures of sets 𝐵 ∈ ℬ.

Part (b). Let Σ be the smallest 𝜎-algebra containing every set (≥𝑥) or (≤𝑥)
for 𝑥 ∈ 𝒳. Since these are all closed sets in the interval topology, clearly
the Borel algebra contains Σ. Let a basic open set be a finite intersection
of sets of the form 𝒳 ∖ (≥𝑥) or 𝒳 ∖ (≤𝑥). These sets comprise a base for
the interval topology. Clearly every basic open set is in Σ. Moreover, if the
interval topology is second-countable, then in particular it has a countable
base consisting of basic open sets (see Willard [2004], p. 113, exercise 16B).
So every open set is a countable union of basic open sets, and is thus in Σ.
So Σ contains the Borel algebra as well.

20



A.4 Proof of theorem 3

We will in fact prove a modest strengthening of theorem 3 (in light of pro-
position 1 from appendix A.3).

Theorem 4. Let 𝒳 be a set equipped with a partial order generated by
a countable set 𝒰, as well as a countably generated 𝜎-algebra Σ that
contains 𝒰. For probability measures 𝑃 and 𝑄 on 𝒳, the following are
equivalent:

(a) 𝑃 ≥r.v. 𝑄;
(b) 𝑃 ≥joint 𝑄;

(c) 𝑃(𝑈) ≥ 𝑄(𝑈) for every set 𝑈 ∈ 𝒰.

We have already shown that (a) and (b) are equivalent. It is clear that
(a) implies (c): if 𝑋 ≥ 𝑌 pointwise, then 𝑋−1(𝑈) ⊇ 𝑌 −1(𝑈) for every
measurable upward-closed set 𝑈, and thus

𝜇𝑋(𝑈) = 𝜇(𝑋−1(𝑈)) ≥ 𝜇(𝑌 −1(𝑈)) = 𝜇𝑌(𝑈).

For the remaining step we will show that (c) implies (b)—and consequently,
if 𝑃 ≥set 𝑄 then 𝑃 ≥joint 𝑄. This is surprisingly difficult.

The basic idea of the proof is to successively split 𝑃 and 𝑄 into pieces,
producing subprobability measures 𝑃𝐹 and 𝑄𝐹 for each set 𝐹 in a certain
algebra. Finally, we will assemble all of these little measures into a single
big measure on the product space.

We will use an extended notion of setwise stochastic dominance.

Definition 10. Let ℬ be any Boolean algebra of subsets of a partially
ordered set 𝒳, and let 𝑃 and 𝑄 be finitely additive subprobability
measures on ℬ. For any family 𝒰 of subsets of 𝒳, say 𝑃 ≥𝒰 𝑄 if
𝑃(𝑈) ≥ 𝑄(𝑈) for each 𝑈 ∈ ℬ ∩ 𝒰.

We can also state this another way, generalizing from measures of sets to
integrals of simple functions.

Definition 11. For any family 𝒜 of subsets of 𝒳, let 𝒮(𝒜) be the set of
non-negative simple 𝒜-measurable functions: that is, functions of the
form ∑𝑖 𝑐𝑖1𝐴𝑖

for some finitely many non-negative numbers 𝑐1, …, 𝑐𝑛
and sets 𝐴1, …, 𝐴𝑛 ∈ 𝒜. (We use the notation 1𝐴 for the characteristic
function of 𝐴.)

Note that if 𝒜 ⊆ ℬ then 𝒮(𝒜) ⊆ 𝒮(ℬ). Notice also that the functions in
𝒮(𝒰) are monotonewith respect to the partial order generated by 𝒰.
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Lemma 1. For any Boolean algebra of sets 𝒜, any finitely additive
subprobability measures 𝑃 and 𝑄 on 𝒜, and any family of sets 𝒰, we
have 𝑃 ≥𝒰 𝑄 if and only if ∫ 𝑓 d𝑃 ≥ ∫ 𝑓 d𝑄 for every function
𝑓 ∈ 𝒮(𝒜 ∩ 𝒰).

Proof. Straightforward.

The following lemma is the heart of the proof. In this lemma and its proof,
understand ‘measure’ as ‘finitely additive subprobability measure’, and
‘algebra’ as ‘Boolean algebra’.

Lemma 2 (Decomposition Lemma). Let ℬ be a countable Boolean al-
gebra of subsets of 𝒳, and let 𝒰 be a family of subsets of 𝒳. Let 𝑃 and
𝑄 be measures on ℬ such that 𝑃 ≥𝒰 𝑄. Let 𝑄1 and 𝑄2 be measures
such that 𝑄 = 𝑄1 + 𝑄2. Then there exist measures 𝑃1 and 𝑃2 such
that

𝑃 = 𝑃1 + 𝑃2 𝑃1 ≥𝒰 𝑄1 𝑃2 ≥𝒰 𝑄2

Proof. The strategy is to start with measures on the trivial subalgebra {∅, 𝒳},
and inductively extend these measures to richer and richer subalgebras of
ℬ. The induction is a bit tricky, though.

Call a (signed) additive function 𝑃1 on a subalgebra 𝒜 ⊆ ℬ nice if it has the
following property:

For any 𝑓, 𝑔 ∈ 𝒮(𝒰), any ℎ ∈ 𝒮(ℬ), and any ̂𝑓 , ̂𝑔 ∈ 𝒮(𝒜), if
𝑓 ≤   ̂𝑓 + ℎ and 𝑔 ≤ ̂𝑔 + ℎ, then

∫ 𝑓 d𝑄1 + ∫ 𝑔 d𝑄2 ≤ ∫( ̂𝑓 − ̂𝑔) d𝑃1 + ∫( ̂𝑔 + ℎ) d𝑃 .

To understand this condition, note that if 𝑃1 is nice, this implies:

(a) 𝑃1 ≥ 0. (Let all the functions but ̂𝑓 be zero.)
(b) 𝑃1 ≤ 𝑃. (Similarly for ̂𝑔.)

Thus if we define𝑃2 = 𝑃 −𝑃1 on𝒜, then𝑃1 and𝑃2 are both subprobability
measures. Instead of ‘nice function’ we can say ‘nice measure’. Also:

(c) 𝑃1 ≥𝒰 𝑄1. (Let 𝑓 = ̂𝑓 ∈ 𝒮(𝒜 ∩ 𝒰), and the other functions zero.)
(d) 𝑃2 ≥𝒰 𝑄2. (Similarly for ̂𝑔.)

Furthermore, in the case where 𝒜 = ℬ, niceness is in fact equivalent to the
combination of these four properties. (In that case, the right-hand side of

the inequality can be rewritten ∫( ̂𝑓 + ℎ) d𝑃1 + ∫( ̂𝑔 + ℎ) d𝑃2.)
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Thus our goal is to find a nice measure 𝑃1 on the countable algebra ℬ. To
do this, it suffices to show two things: first, that there is a nice measure on
the trivial subalgebra; second, that each nice measure on a finite subalgebra
can be extended to a nice measure on a larger finite subalgebra.

For the base case, let 𝒜 be the trivial subalgebra {∅, 𝒳}, and let 𝑃1 be the

measure on 𝒜 such that 𝑃1(𝒳) = 𝑄1(𝒳). Suppose 𝑓, 𝑔, ℎ, ̂𝑓, ̂𝑔 are as in

the definition of niceness. Since ̂𝑓 and ̂𝑔 are in 𝒮({∅, 𝒳}), they must each be
constant functions, for constants 𝑎 and 𝑏 such that 𝑓 ≤  𝑎+ℎ and 𝑔 ≤ 𝑏 +ℎ.
Suppose 𝑎 ≤ 𝑏. Let 𝑓+ = 𝑓 + 𝑏 − 𝑎, and let 𝑘 be the pointwise maximum
of 𝑓+ and 𝑔. This function is also in 𝒮(𝒰), and 𝑘 ≤ 𝑏 + ℎ. Thus:

∫ 𝑓+ d𝑄1 + ∫ 𝑔 d𝑄2 ≤ ∫ 𝑘 d𝑄1 + ∫ 𝑘 d𝑄2 (since 𝑓+ ≤ 𝑘 and 𝑔 ≤ 𝑘)

= ∫ 𝑘 d𝑄 ≤ ∫ 𝑘 d𝑃 (since 𝑃 ≥𝒰 𝑄)

≤ ∫(𝑏 + ℎ) d𝑃 (since 𝑘 ≤ 𝑏 + ℎ)

Thus

∫ 𝑓 d𝑄1 + ∫ 𝑔 d𝑄2 = (𝑎 − 𝑏)𝑄1(𝒳) + ∫ 𝑓+ d𝑄1 + ∫ 𝑔 d𝑄2

≤ (𝑎 − 𝑏)𝑄1(𝒳) + ∫(𝑏 + ℎ) d𝑃

= ∫( ̂𝑓 − ̂𝑔) d𝑃1 + ∫( ̂𝑔 + ℎ) d𝑃

(using the fact that 𝑃1(𝒳) = 𝑄1(𝒳)). So 𝑃1 is nice. The case 𝑎 ≥ 𝑏 goes
similarly (using 𝑘 = max(𝑓, 𝑔 + 𝑎 − 𝑏)).
For the inductive step, we will show the following.

Let 𝒜 be a finite subalgebra of ℬ, let 𝐸 be a set in ℬ ∖ 𝒜, and let
𝒜∗ be the algebra generated by 𝒜 ∪ {𝐸}. Any nice measure 𝑃1
on 𝒜 can be extended to a nice measure 𝑃 ∗

1 on 𝒜∗.

Let {𝐴1, 𝐴2, …, 𝐴𝑛} be the set of atoms of 𝒜. For any sequence ̄𝑥 =
(𝑥1, …, 𝑥𝑛) ∈ ℝ𝑛, there is a unique (signed) additive function 𝑃 �̄�

1 defined
on 𝒜∗ such that, for each 𝑖,

𝑃 �̄�
1 (𝐴𝑖 ∩ 𝐸) = 𝑥𝑖 𝑃 �̄�

1 (𝐴𝑖 ∖ 𝐸) = 𝑃1(𝐴𝑖) − 𝑥𝑖

We will show that there is some ̄𝑥 ∈ ℝ𝑛 such that 𝑃 �̄�
1 is nice.

We can split up a simple function in 𝒮(𝒜∗) into two parts: a ‘flattened out’
function which is simple with respect to the smaller algebra 𝒜, together
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with an ‘offset’ function that tell us about the steps the function takes within
the atoms of 𝒜—the difference between the function’s value on 𝐴𝑖 ∩ 𝐸 and
its value on 𝐴𝑖 ∖ 𝐸. That is, any function in 𝒮(𝒜∗) can be written in the
form

𝑓 + ∑ 𝑎𝑖 1𝐴𝑖∩𝐸 + ∑ 𝑎′
𝑖 1𝐴𝑖∖𝐸

where 𝑓 ∈ 𝒮(𝒜) and the two sequences (𝑎1, …, 𝑎𝑛) and (𝑎′
1, …, 𝑎′

𝑛) are
non-negative and orthogonal, in the sense that at least one of 𝑎𝑖 or 𝑎′

𝑖 is equal
to zero for each 𝑖.
So this is what it means to say that 𝑃 �̄�

1 is nice:

Let 𝑓, 𝑔 ∈ 𝒮(𝒰), ℎ ∈ 𝒮(ℬ), and ̂𝑓 , ̂𝑔 ∈ 𝒮(𝒜). Let (𝑎1, …, 𝑎𝑛)
and (𝑎′

1, …, 𝑎′
𝑛) be non-negative and orthogonal, and likewise

let (𝑏1, …, 𝑏𝑛) and (𝑏′
1, …, 𝑏′

𝑛) be non-negative and orthogonal.
Let

𝑎 = ∑
𝑖

𝑎𝑖 1𝐴𝑖∩𝐸 + ∑
𝑖

𝑎′
𝑖 1𝐴𝑖∖𝐸

𝑏 = ∑
𝑖

𝑏𝑖 1𝐴𝑖∩𝐸 + ∑
𝑖

𝑏′
𝑖 1𝐴𝑖∖𝐸

Suppose 𝑓 ≤ ̂𝑓 + 𝑎 + ℎ and 𝑔 ≤ ̂𝑔 + 𝑏 + ℎ. Then:

∫ 𝑓 d𝑄1+∫ 𝑔 d𝑄2 ≤ ∫ (( ̂𝑓+𝑎)−( ̂𝑔+𝑏)) d𝑃 �̄�
1 +∫( ̂𝑔+𝑏+ℎ) d𝑃

The first integral on the right-hand side can be rewritten:

∑(𝑎𝑖 − 𝑏𝑖)𝑥𝑖 + ∑(𝑎′
𝑖 − 𝑏′

𝑖)(𝑃 (𝐴𝑖) − 𝑥𝑖) + ∫( ̂𝑓 − ̂𝑔) d𝑃 �̄�
1

= ∑(𝑎𝑖 − 𝑏𝑖 − (𝑎′
𝑖 − 𝑏′

𝑖))𝑥𝑖 + ∑(𝑎′
𝑖 − 𝑏′

𝑖)𝑃 (𝐴𝑖) + ∫( ̂𝑓 − ̂𝑔) d𝑃1

In short, what it takes for 𝑃 �̄�
1 to be nice is for (𝑥1, …, 𝑥𝑛) to satisfy a family

of inequalities of the form

∑ 𝑐𝑖𝑥𝑖 ≥ 𝑑.

Moreover, this family of inequalities is closed under positive linear combin-
ations. (The sets of functions 𝒮(𝒰), 𝒮(ℬ), and 𝒮(𝒜∗) are each closed under
positive linear combinations.) We can now simplify things using a result
from linear programming: in fact, it is enough to show that the inequalities
hold in the case where each coefficient 𝑐𝑖 is zero. To state the result precisely:

Lemma 3. Let 𝐿 ⊆ ℝ𝑛+1 be a set of sequences real numbers closed
under positive linear combinations. The following are equivalent:
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(a) There exist 𝑥1, …, 𝑥𝑛 ∈ ℝ such that ∑𝑖 𝑐𝑖𝑥𝑖 ≥ 𝑑 for every se-

quence (𝑐1, …, 𝑐𝑛, 𝑑) ∈ 𝐿;
(b) 0 ≥ 𝑑 for every sequence of the form (0, …, 0, 𝑑) ∈ 𝐿.

This is a variant of Farkas’ lemma, and it can be proved in the same way, by
eliminating variables one by one. (See Kuhn [1956], Theorem III.)

So we may assume that 𝑎𝑖 − 𝑏𝑖 = 𝑎′
𝑖 − 𝑏′

𝑖 for each 𝑖. We know that at least
one of 𝑎𝑖 and 𝑎′

𝑖 is zero, at least one of 𝑏𝑖 and 𝑏′
𝑖 is zero, and all four of these

terms are non-negative. It follows that 𝑎𝑖 = 𝑏𝑖 and 𝑎′
𝑖 = 𝑏′

𝑖 for each 𝑖; in
other words, the functions 𝑎 and 𝑏 are equal. In that case, the inequality
simplifies to this form:

∫ 𝑓 d𝑄1 + ∫ 𝑔 d𝑄2 ≤ ∫( ̂𝑓 − ̂𝑔) d𝑃1 + ∫( ̂𝑔 + 𝑏 + ℎ) d𝑃

Since 𝑎 = 𝑏, we know 𝑓 ≤ ̂𝑓 +(𝑏+ℎ) and 𝑔 ≤ ̂𝑔 +(𝑏+ℎ). So the inductive
hypothesis that 𝑃1 is nice ensures that each of these inequalities holds. Thus
there exists ̄𝑥 ∈ ℝ𝑛 such that 𝑃 �̄�

1 is a nice measure that extends 𝑃1 to 𝒜∗.

This completes the induction. It follows that there exists a chain of nice
measures defined on finite subalgebras 𝒜1 ⊆ 𝒜2 ⊆ ⋯, where ⋃𝑖 𝒜𝑖 is the

whole countable algebra ℬ. Taking the union of these measures gives us a
nice measure defined on all of ℬ, completing the proof of the lemma.

To complete the proof of the theorem, we need to use a family of finitely
additivemeasures on𝒳 to construct a countably additivemeasure on𝒳×𝒳.
We will use the following technical lemma.

Lemma 4 (Radon–Nikodym Theorem). Let ℬ be Boolean algebra of
subsets of 𝒳, and let Σ be the 𝜎-algebra generated by ℬ. Suppose 𝜈 is a
finitely additive measure defined on ℬ, 𝜇 is a countably additive finite
measure defined on Σ, and 𝜈 ≤ 𝜇. Then there exists a Σ-measurable
non-negative function 𝑓 ∶ 𝒳 → ℝ such that

𝜈(𝐴) = ∫
𝐴

𝑓 d𝜇 for each 𝐴 ∈ ℬ.

Proof. See Folland ([1999]), secs. 1.4 and 3.2.

Proof of theorem 4. Let 𝒰 be a generating set of upward-closed subsets of
𝒳. (Assume without loss of generality that 𝒳 ∈ 𝒰.) Let Σ be a countably
generated 𝜎-algebra containing 𝒰. Then in particular there is a countable
Boolean algebra ℬ ⊇ 𝒰 that generates Σ. Let 𝑃 and 𝑄 be countably additive
probability measures on Σ such that 𝑃 ≥𝒰 𝑄. For 𝐹 ∈ ℬ, let 𝑄𝐹 =
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𝑄(− ∩ 𝐹). Using the decomposition lemma (lemma 2), we can iteratively
decompose 𝑃 into finitely additive subprobability measures on finer and
finer subalgebras of ℬ. (Given a measure 𝑃𝐹 ≥𝒰 𝑄𝐹 and a set 𝐸 ∈ ℬ,
we can decompose 𝑃𝐹 into 𝑃𝐹∩𝐸 ≥𝒰 𝑄𝐹∩𝐸 and 𝑃𝐹∖𝐸 ≥𝒰 𝑄𝐹∖𝐸.) By a
straightforward induction argument, it follows that there exists a family of
finitely additive measures 𝑃𝐹 on ℬ for each 𝐹 ∈ ℬ such that

𝑃𝒳 = 𝑃
𝑃𝐹 ≥𝒰 𝑄𝐹

𝑃𝐹 + 𝑃𝐹 ′ = 𝑃𝐹∪𝐹 ′ whenever 𝐹 ∩ 𝐹 ′ = ∅

Let 𝑅(𝐸, 𝐹) = 𝑃𝐹(𝐸); so 𝑅(𝐸, −) and 𝑅(−, 𝐹) are finitely additive meas-
ures on ℬ for each 𝐸, 𝐹 ∈ ℬ. Also,

𝑅(−, 𝐹) ≤ 𝑃 and 𝑅(𝐸, −) ≤ 𝑄 for each 𝐸, 𝐹 ∈ ℬ.

Thuswe can apply the Radon–Nikodym theorem (lemma 4) twice, producing
a function 𝑔 ∶ 𝒳 × 𝒳 → ℝ such that, for each 𝐸, 𝐹 ∈ ℬ,

𝑅(𝐸, 𝐹) = ∫
𝐸

( ∫
𝐹

𝑔 d𝑄) d𝑃

By Fubini’s theorem, equivalently,

𝑅(𝐸, 𝐹) = ∫
𝐸×𝐹

𝑔 d(𝑃 ⊗ 𝑄)

where𝑃 ⊗𝑄 is the productmeasure. Nowwe can at last define the countably
additive measure on 𝒳 × 𝒳 that we have sought: for any 𝐴 in the product
𝜎-algebra on 𝒳 × 𝒳, let

𝜇(𝐴) = ∫
𝐴

𝑔 d(𝑃 ⊗ 𝑄)

There are a couple of things left to check.

First:
𝜇1(𝐸) = 𝑅(𝐸, 𝒳) = 𝑃𝒳(𝐸) = 𝑃(𝐸);
𝜇2(𝐹) = 𝑅(𝒳, 𝐹) = 𝑃𝐹(𝒳) = 𝑄𝐹(𝒳) = 𝑄(𝐹).

So 𝜇1 = 𝑃 and 𝜇2 = 𝑄 (using the uniqueness part of Carathéodory’s
extension theorem).

Finally, we show that 𝜇 is supported by Ω. Since 𝒰 generates the order, this
means that for any 𝑥 ≱ 𝑦 there is some 𝑈 ∈ 𝒰 such that 𝑦 ∈ 𝑈 and 𝑥 ∉ 𝑈.
Thus

(𝒳 × 𝒳) ∖ Ω = {(𝑥, 𝑦) ∣ 𝑥 ≱ 𝑦} ⊆ ⋃
𝑈∈𝒰

(𝒳 ∖ 𝑈) × 𝑈.
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Furthermore, for each 𝑈 ∈ 𝒰, by additivity we have

𝑃𝑈(𝒳 ∖ 𝑈) + 𝑃𝑈(𝑈) + 𝑃𝒳∖𝑈(𝒳) = 𝑃𝒳(𝒳) = 1.

Also, since 𝑄𝐹 = 𝑄(− ∩ 𝐹):

𝑄𝑈(𝑈) + 𝑄𝒳∖𝑈(𝒳) = 𝑄(𝑈) + 𝑄(𝒳 ∖ 𝑈) = 1.

Moreover, 𝑃𝑈 ≥𝒰 𝑄𝑈 implies 𝑃𝑈(𝑈) ≥  𝑄𝑈(𝑈), and 𝑃𝒳∖𝑈 ≥𝒰 𝑄𝒳∖𝑈
implies 𝑃𝒳∖𝑈(𝒳) ≥ 𝑄𝒳∖𝑈(𝒳). Thus

𝜇((𝒳 ∖ 𝑈) × 𝑈) = 𝑃𝑈(𝒳 ∖ 𝑈) = 0.

So (𝒳 × 𝒳) ∖ Ω is covered by countably many measure zero sets, and thus
has measure zero. So 𝜇 is supported by Ω.

A.5 The lexicographic order

Here we show what was claimed in section 3 regarding the lexicographic
order counterexample.

Proposition 2. Let 𝒳 = [0, 1] × {0, 1} with its lexicographic order,
equipped with the 𝜎-algebra generated by the Borel algebras on each
copy of the unit interval. Let 𝑃 be the uniform measure on [0, 1] × {0}
and let 𝑄 be the uniform measure on [0, 1] × {1}. It is not the case that
𝑃 ≥r.v. 𝑄 or 𝑃 ≥joint 𝑄.

Proof. Suppose for contradiction that there is a probability measure 𝜇 on
𝒳 × 𝒳 where 𝜇1 = 𝑃, 𝜇2 = 𝑄, and 𝜇 is supported by Ω = {(𝑥, 𝑦) ∈
𝒳 × 𝒳 ∣ 𝑥 ≥ 𝑦}.
The 𝜇1-probability of the set of pairs (𝑥, 1) is zero, and the 𝜇2-probability of
the set of pairs of the form (𝑦, 0) is also zero. It follows that, letting 𝐵 ⊂ Ω
be the set of pairs ((𝑥, 0), (𝑦, 1)) such that 𝑥 > 𝑦, we have 𝜇(Ω ∖ 𝐵) = 0.
So 𝜇 is supported by 𝐵.

For each for rational 𝑝 ∈ [0, 1], let

𝐼𝑝 = {(𝑥, 0) ∣ 𝑥 ≥ 𝑝} 𝐽𝑝 = {(𝑦, 1) ∣ 𝑦 ≤ 𝑝}

The rectangles 𝐼𝑝 ×𝐽𝑝 are a countable cover of 𝐵: if 𝑥 > 𝑦 and 𝑝 is a rational
number between 𝑥 and 𝑦, then (𝑥, 0) ∈ 𝐼𝑝 and (𝑦, 1) ∈ 𝐽𝑝.

But also, 𝜇(𝐼𝑝 × 𝐽𝑝) = 0 for every 𝑝. Whenever 𝑥 > 𝑦, we have 𝑥 ≥ 𝑝 or
𝑦 < 𝑝, so (𝑥, 0) ∈ 𝐼𝑝 or (𝑦, 1) ∈ 𝐽𝑝. Thus 𝐵 ⊆ (𝐼𝑝 × 𝒳) ∪ (𝒳 × 𝐽𝑝). Since
𝜇 is supported by 𝐵,

1 = 𝜇((𝐼𝑝 × 𝒳) ∪ (𝒳 × 𝐽𝑝)) = 𝜇1(𝐼𝑝) + 𝜇2(𝐽𝑝) − 𝜇(𝐼𝑝 × 𝐽𝑝).
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By construction, 𝜇1(𝐼𝑝) = 𝑃(𝐼𝑝) = 1 − 𝑝, and 𝜇2(𝐽𝑝) = 𝑄(𝐽𝑝) = 𝑝. So
𝜇(𝐼𝑝 × 𝐽𝑝) = 0.
Thus𝜇(𝒳) = 𝜇(𝐵) = 0, contradicting the assumption that𝜇 is a probability
measure.
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