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Soliton Model of Atom

Yu. P. Rybakov' and B. Saha?
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The Einstein de Broglie soliton conrcept is applied to simulate Stationary states of
an electron in a hydrogen atom. According 1o this concept, the electron is
described by the localized regular solutions to some nonlinear equations. ft is
shown that the electron-soliton center travels along some stationary orbit around
the Coulomb center. The electromagnetic radiation is absent as the Poynring
vector has nen-wave aspmptote O(r =3} after averaging vver angles.

1. INTRODUCTION

From the history of quantum mechanics it is known that as early as 1927,
in the framework of his “theory of double solution,” Louis de Broglie made
an attempt to represent the electron as a source of waves obeying the
Schrédinger equation.'"” Later he modified his model showing that the elec-
tron should be described by regular solutions to some nonlinear equation
coinciding with the Schrodinger one in the linear approximation. This
scheme became famous as a causal nonlinear interpretation of quantum
mechanics.'” Developing this concept, de Broglie remarked that it has
much in common with Einstein’s ideas about unified field theory according
to which particles were to be considered as clots of some material fields
obeying the nonlinear field equations.™ In recent years, these types of field
configurations, known as soliton or particle-like solutions, came into active
use to model extended elementary particles.!*

In this paper the Einstein—de Broglie soliton concept is employed to
model stationary states of the electron in a hydrogen atom.,
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2. BOHM PROBLEM ABOUT NONLINEAR RESONANCE AND ITS
POSSIBLE SOLUTION

As a starting point, we will consider an interesting problem posed by
D. Bohm. Long ago, in his book'®! Bohm discussed the possible connection
between the wave—particle dualism in quantum mechanics and the
hypothetical nonlinear origin of fundamental equations in a future theory
of elementary particles. To illustrate the line of Bohn’s argument we will
consider a simple scalar model in the Minkowski space-time given by the
Lagrangian density

£ =8,4* 80" — (me/h)? §*o + F(¢*9) (1)

Here i, j=0, 1, 2, 3; n¥ = diag(l, — 1, —1, —1), the nonlinear function Fis)
behaves at s — 0 as 8", n> 1, and it is assumed as such that the correspond-
ing field equations allow the existence of particle-like (soliton) solutions,
i.e, regular configurations localized in space and endowed with finite
energy. In particular, it can be shown that if one chooses F(s)=ks*?, k>0,
the mode! (1), known as the Synge model,'® admits the following station-
ary solutions:

$o=u(r) exp(—iwgt),  r=1rl (2)

Here, the real radial function u(r) 1s regular everywhere and exponentially
decreases as ¥ — oo, which provides finiteness of energy of the configuration

Ezjd-‘x T%(d,) (3)

where T is the corresponding energy-momentum tensor.

Moreover, the model mentioned is intriguing due to the fact that
nodeless solitons turn out to be stable by Liapunov provided that their
charge is fixed.!” So there exist perturbed solitons slightly differing from
the stationary solitons (2):

¢ =do+ L) (4)

Note that the perturbation ¢ in (4) is small as compared with ¢, only in
the area of localization of the soliton, where ¢, significantly differs from
zero. Nonetheless, far from the soliton center, where , is negligibly small,
one can put ¢ ~ &, ie., the fail of the soliton is completely defined by per-
turbation ¢.
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Bohm posed the following question: Does there exist any nonlinear
model for which the spatiai asymptote (as r —» o0) of a perturbed soliton-
like solution represents oscillations with characteristic frequency w = E/?
In other words, for the model in question the principal Fourier amplitude
in the expansion of the field ¢~¢& as r— oo should correspond to the fre-
quency w connected with the soliton energy (3) by the Planck—de Broglie
formula

E=to (5)

Note that for the model (1) at spatial infinity, where #— 0, the field
equation reduces to the linear Klein-Gordon equation

[L3 = (me/h)*16=0 (6)

and therefore the relation (5) holds only for solitons with unique energy
E=mc* defined by the mass m fixed in (1). Thus, the universality of the
relation (5) breaks down in the model (1), thus forcing its modification. In
the light of the above universality, since the frequency  in (5) is defined
by the mass of the system, it seems natural that in the new, modified model
one should use the gravitationai field, the spatial asymptote of which is
also defined by the mass of the considered localized system. Thus, to solve
the Bohm problem the possibility to invoke the gravitational field comes
into reality.®

So we will describe the new model with the Lagangian density
L =4, + %, where

&, =*R/16nG
corresponds to Finstein’s theory of gravity, and £, 15 chosen as
L =0,0% 0,087 — I(g,) $*¢ + K g*¢) {7)
The crucial point of this scheme 15 to build up the invariant J{ £i)
depending on the metric tensor gy of the Riemannian space-time and its

derivatives. This invariant should possess such properties that in the
vicinity of the soliton with mass m, the relation

Jim I(g,) = (mc/h)? (8)

should hold. It is easy to see that on the basis of (8) one can asymptotically
deduce Eq. {(6) from the Lagrangian (7).



1726 Rybakov and Saha

We argue that the invariant / can be built from the curvature tensor
R, and its covariant derivatives Rz,

[=(I%/13) ¢*h 3G 9)

where G is Newton’s gravitational constant and the invariants [, and [,
take the form

I = Ry R748, L= R jr.n RYE71432

Estimating RY' at large distance r with the help of the Schwarzschild
metric, one finds”

I, =G /(c*S),  L=Gm /(")

So from {9) follows immediately (8). Thus, within the modified model (7)
for all massive particles the Planck—de Broglie relation (5) is automatically
fulfilled. This means that in the framework of the scheme mentioned the
principle of wave—particle dualism 1s valid, according to wich the relation
(5) is realized as a condition of the nonlinear resonance.

To verify the fact that solitons can really possess wave properties,
the thought diffraction experiment with individual electron-solitons was
realized®' Solitons with some velocity were dropped into a rectilinear slit,
cut in the impermeable screen, and the tramsverse momentum that they
gained while passing the slit whose width significantly exceeded the size of
the soliton, was calculated. As a result, the picture of distribution of the
centers of scattered solitons was restored on the registration screen by con-
sidering their initial distribution to be uniform over the tramsverse coor-
dinate. It was explained that although the center of gach soliton fell into a
definite place of the registration screen (depending on the point of crossing
of the slit and the initial soliton profile), the statistical picture in many
ways was similar to the well-known diffraction distribution in optics, ie.,
Fresnel's picture at short distances from the slit and Fraunhofer’s picture
at large distances.''®'"

Fulfillment of the guantum mechanics correspondence principle for the
Einsteinde Broglic’s soliton model was discussed in Refs. 12-15. In these
papers it was shown that in the framework of the soliton model all quan-
tum postulates were regained at the limit of point particles so that from the
physical fields one can build the amplitude of probability and the average
can be calculated as a scalar product in the Hilbert space by introducing
the corresponding quantum operators. In this paper, we will show that in
the framework of the Finstein-de Broglie soliton model a hydrogen atom
can be simulated.
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3. FUNDAMENTAL EQUATIONS AND STRUCTURE OF
SOLUTIONS

As physical fields we choose the complex scalar field ¢ interacting with
the electromagnetic one Fy=0,4, —8, 4, The nucleus field is assumed to
be the Coulomb field: A =062Ze/r. The Lagrangian density is taken in the
form

1
= Ton Ea) + [0k —ie( A, + A2 1417 — (meih)® §*¢ + Fg*¢) (10)

where ¢=e/(#ic) is the coupling constant and Hé*¢) is some nonlinear
function, decreasing faster than (#1* as ¢ - 0 and chosen so that the field
equation at 4°* =0 allows the existence of stable stationary soliton-like
solutions of the type (2), describing configurations with mass and
charge e,

Note that for simplicity we do not write down the terms correspond-
Ing to the gravitational field, which will be taken into account mmplicitly
with the help of the nonlinear resonance condition (5).

Let us consider the nonrelativistic approximation assuming that

& =1 exp(— imc?t/h) (11)

neglecting in the equations of motion higher derivatives of ¥ with respect
to time and retaining only linear terms in A i As 4 result, taking (11) into
account we get the following system of equations:

ho 3+ (1°)2m) A +( Ze/r)ys
= — U 2m)[ 2ie( AV + 2eme/h) Aoy + iey div A + F g ]

= —(0712m) LA, 44, Y1y (12)
DAy = (8zme/h?) [y]2 = —4np (13)
DA =dn[2:A |y ]2 — ie(yr vy —¥ Vy*) ] = —(4n/c) (14)

Moreover, in Eqgs. (12}-(14} it is supposed that the 4-potential A; of the
proper electromagnetic field of the soliton obeys the Lorentz condition

3, Ag+cdiva=0

which is consistent with Eqgs. (12)-(14) owing to the conservation of
electric charge.
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We will seck the solutions to Eqs.(12)-(14) describing the stationary
state of an atom when the electron-soliton center is assumed to be moving
along a circular orbit of radius a, with some angular velocity £. In this
problem there arise two characteristic lengths: the size of the soliton /=
Ai/(mc) and the Bohr’s radius a =h2j(mZe?). 1t is obvious that ay~a®» L

Let us first consider the area near the soliton center where r —ay~ 1.
Suppose the soliton center trajectory is r=_(f). Putting into {12) the
configuration

W =ulr —§(1) exp(iF/h)

neglecting the contribution of the proper electromagnetic field, and
separating the real and imaginary parts, we get

22 2 . oA

o, — % +i(v,¢)2—f‘—(f+—“)=o (15)
F 2m 2m u

A4S+ 2AVS —mb) - Vuju=0 (16)

Assuming S to be a slowly varying function of a point in the vicinity of the
soliton center, from (16) we deduce

Faml (r—=0)+ Cot +x(1),  Cy=const (17)

Taking into account the classical equations of motion of a charged
particle in the Coulomb field

mb = — Ze2G

and using the expansion

11 =9
T
from (15) and (17) we derive
m,, Ze2_
51x=5§ +T=~99(f)

where #(} is the Lagrangian of a particle in the Coulomb field. Thus, the
function  is the classical action on the trajectory:

xm:j; L(1) dt (18)
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and the function u is the soliton-like solution to the quasi-stationary
problem

W] + dufu) = 2mC, (19)
In this case according to (3.4) and (3.3)
p=—2mefh®)u?, = —2ecu(eA + mi/h)

which makes it possible, using the common solutions to Egs. (13), (14,
and (15), to calculate the potentials A; of the electromagnetic field in the
vicinity of the soliton center;

Ay =Ag(r—{(1}), cA={(1) Ao(r - (1))

where the terms £2/¢? are neglected.
To find the field { far from the soliton center, we rewrite equation (12)
n the integral form

. 1 e
Wt )= Cop (1) eXp(-zw,,:)Jré;fdwfdr fd ¥
xexp[—iw(tﬁz')] G(r, r'; o +i0) fp (¢, r') (20)

where ¥ (r) is the eigenfunction of the Hamiltonian of a hydrogen atom for
a stationary state of number » with energy L, =hw,, C= const, and
G(r,r'; w) is the Hamiltonian’s resolvent having the form®

{1 —w) Wil —ikr ) M, sl —dkr _)
Glr,rw)=—=—""1|"w . L 21
(r, ¢ @) 4nR Wr’v, 12( *Ikr+) Miv, 1,/2( ‘ik"—) (21)
Here, the following notation js used:
k=(2mah)"2, Imk >0, v=_(ka) !

Fe=r+rtir—r|

and the Whittaker functions Witzs My, and their derivatives W, ..
M, 1, are introduced, To find the field ¥ at large distances from the
electron—soliten center, ie., at [r—aqo| >4 it is sufficient to put jn (20)

St 1) = g exp( — i, 1) dr~L(r)),  g=const (22)
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where the relation (5) is taken into account. As a result, we get

. 1 ,
W1, 1) = Cotp 1) exp{ —it0,1) +ﬂjdmjd;
xexp[ —iw! +it' (0 —w,)] Gir,. v, 0 +i0) (23)

It is easy to verify that the field (23) decreases exponentially at large
distances.

With the help of (23} and Egs. (13) and (14), one can evaluate the
electromagnetic field outside the soliton. In doing this, we notice that for
large times [, | t> 1 the 4-potential A, will contain only stationary part
A= (A7 + A7%)/2. In this case, in the wave zone, the field strengths are

E=LE.+E_ ), B=X[n_E ]1-[n.E.]) (24)

where E_ —E* E, =E“ n, =R,/R., R,=r—{(r.) and 7, are the
roots of the equations , =t+ R, /c.

From (24} it follows that the projection of the Poynting vector 8 in
the direction of the vector N=(n_+n_)/2, coinciding with n=r/r, as
r— oo takes the form

Sy E2)(1+n, -n_)'" (25)

¢

= —(E?—
l16n \/5

Since n, =0+ O(r~"), after averaging expression (3.16) over the sphere,

we find

<SN>=%<<EZ,>—<Ei>)=O(r-*) {26)

Thus according to {26) the electromagnetic radiation from the system
is absent. In particular, for the circular motion in the spherical coordinates
r, 8, and ¢ we have the following components of the Poynting vector S:

S, = £2 sin? @ sin 2(¢ — ¢} sin(282r/c)
’ (27)
S,=sin(Q2r/c) Or ), Ss=sin(Qr/c) o(r=)

where x = e2a2Q2%/(167c”). From (27) it is obvious that there exist spherical
surfaces where either S, =0 or §=0, thus once again confirming the fact
that in the stationary states described, radiation is absent.
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4. CONCLUSION

In the considered soliton model of a hydrogen atom the stability con-
dition of spatial stationary motions of electrons in the field of the Coulomb
center is fulfilled. The existence of this kind of motion was mentioned by
Boguslavsky'!” and Chetaev."'® In particular, due to the fulfillment of the
nonlinear resonance condition (5) the energy spectrum of these stationary
states coincides with that of a hydrogen atom. This fact indicates the role
of nonlinearity in the formation of extended micro-objects, whose laws of
evolution agree with quantum mechanics.
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