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Cassirer and Dirac on the Symbolic
Method in QuantumMechanics:

A Confluence of Opposites

Thomas Ryckman

1. Introduction

The names of Ernst Cassirer and Paul Adrien Maurice (P. A. M.)
Dirac are infrequently conjoined. But at least one commonality is
that both remain noticeably underappreciated by contemporary
philosophers of science. A recent observer correctly noted that
since his death in 1945, Cassirer’s reputation “has suffered a pre-
cipitous decline, especially in the Anglophone world”(Gordon
2010, xii). Recognized today as a historian of philosophy or more
nebulously a “philosopher of culture”, philosophers of science
hardly entertain the possibility that Cassirer might have some-
thing of interest to say. Lack of philosophical attention to Dirac
is more difficult to explain.1 “Der heilige P. A. M.” (quoting Wolf-
gang Pauli Jr.) is a giant of 20th century theoretical physics.2 His
role in the creation and relativistic extension of quantum me-
chanics is well documented by historians of physics. But prima

1Three notable recent exceptions are Bokulich (2004, 2008), Pashby (2012),
and Wright (2016).

2See Pauli to Schrödinger, 9 July 1935, in von Meyenn (1985, 421). Almost
from the beginning of his career, Dirac’s unconventional thinking and behav-
ior both astounded colleagues and led to caricature. Heisenberg relates that in
a conversation with Pauli and Dirac one evening after dinner in October 1927
at the Fifth Solvay Conference in Brussels, Pauli responded to Dirac’s charac-
terization of religion as a jumble of false statements with the quip that Dirac
too, had a religion whose guiding principle is “Es gibt keinen Gott und Dirac
ist sein Prophet.” See Heisenberg (1969, 122). Translations from the German
are mine, unless otherwise noted.

facie, and supported by considerable anecdotal evidence, Dirac
acquired the reputation of being perhaps the most unphilosoph-
ical of the great twentieth-century physicists. A case in point
is the characterization of philosophical (“Class 1”) problems in
physics as “really not so important”, a conviction that, as long
as physics has not reached its final state, lack of progress on the
philosophical front is “nothing to be genuinely disturbed about”
(Dirac 1963, 243). Just as Richard Feynman (who in many ways
emulated Dirac in this regard), the taciturn, literal-minded, and
probably autistic creator of “perhaps the most magical equation
of physics”3 professed but negligible interest in philosophy.4

What then might Cassirer, regarded in his lifetime as “‘Olym-
pian’ by appearance . . . by his wide-ranging dimensions of
thought, his comprehensive problem-formulations, his cheer-
ful face and kind openness to others, his vitality, elasticity and
distinguished aristocratic bearing”,5 possibly have in common
with the aloof genius Bohr deemed “the strangest man I ever
met” (Farmelo 2009)? A clue lies in Cassirer’s Determinismus
und Indeterminismus in der modernen Physik, the sole detailed
philosophical examination of quantum mechanics in Cassirer’s
oeuvre. Toward the end of the book’s penultimate chapter a sum-
mary statement of the book’s principal argument is made: the
so-called “causality problem” in quantum mechanics does not
implicate radical indeterminism or a surrender of the causal
principle if the latter is understood “critically” (i.e., not meta-
physically) as a demand for order according to law, i.e., strict
functional dependence. Then a volte-face. The “essential prob-
lems posed by quantum mechanics for epistemology” do not at
all concern the concepts of cause and effect but rather “lie at a

3Dirac’s relativistic equation of the electron implying the existence of anti-
matter (positrons); see Wilczek (2002).

4From his interview with Thomas Kuhn (1963): “I feel that philosophy will
never lead to important discoveries. It’s just a way of talking about discoveries
which have already been made.”

5Hamburg (1964, 210) cites a period reminiscence of Dr. Lugwig Englert.
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different point”, viz., they concern the transformed concept of
“physical state” in quantum mechanics. Repeated citations at-
test to Cassirer’s persuasion of this new focus of epistemological
inquiry by Dirac’s 1930 textbook presentation of quantum me-
chanics. The penultimate chapter concludes with a summary
assessment of the methodological novelty of the new theory;
it is a virtual transcription of the corresponding passages in
Dirac’s book. It will be shown that this surprising confluence
is rooted in a mutual appreciation, arrived at by diverse paths,
of a novel “symbolic method” of calculation that abstracts away
from particular points of view, or particular “representations”
corresponding to measured quantities.

To give a broad idea of the significance of Dirac’s abstract sym-
bolic approach within quantum mechanics, Section 2 traces its
origin in Dirac’s 1925 reformulation of Heisenberg’s first paper
on matrix mechanics. Section 3 shows that Dirac’s adoption of
the “symbolic method” in quantum mechanics is his response
to the new abstract (unanschauliche) notion of “state” of a phys-
ical system that separates quantum mechanics from classical
physics. An overview is given of Dirac’s “symbolic algebra of
states and observables”, first introduced in 1930, but presented
here in the updated notation of the bra–ket formalism that would
become nearly ubiquitous in quantum texts. Section 4 reviews
the main theme of DI—an examination of the so-called “causal
problem” in quantum mechanics, turning to Cassirer’s volte-
face at the book’s end, indicating Dirac’s role in pinpointing
the epistemological novelty of quantum mechanics as lying in a
transformed notion of physical state. Section 5 finally turns to
the place and significance of a pure Bedeutungsfunktion within
the philosophy of symbolic forms, showing how Dirac’s abstract
symbolic calculus could be considered a paradigm instance of
this mode of objectification, inverting the “striving of ontology
. . . to transpose all problems of meaning into problems of pure
being” (Cassirer 1929, 106; 1957, 94).

2. The Rise of QuantumMechanics and of Dirac’s
Symbolic Method

The novelty of Dirac’s “symbolic method” might best be ap-
preciated by considering, as is often done in textbooks, the be-
ginnings of quantum mechanics in terms of the two competing
formalisms of matrix mechanics and wave mechanics. To tell the
narrative in this way is something of a fiction, as Dirac’s 1925
reformulation of Heisenberg’s seminal 1925 paper appeared be-
fore Schrödinger wrote his famous papers. But doing so gives a
clearer appreciation of the significance of Dirac’s novel abstract
approach to the new theory.

The “old quantum theory” (1900–1925) was not so much a
theory but an evolving amorphous collection of computational
rules, insights, analogies and approximations, “a groping with-
out correct foundation” as Einstein put it in 1912. The very next
year Bohr’s model of atomic structure (and its subsequent re-
finements) provided the platform of an open theory on which to
build, some parts of which could be considered well-established
while others remained much more tentative. Yet the Bohr atom
was an inconsistent mix of classical and non-classical compo-
nents, an exemplar of the old quantum theory’s neither this
nor that character. In Bohr’s assumption of the existence of
“stationary states” (in which the atom does not radiate), elec-
tron orbits were described (using Fourier analysis) by classical
electrodynamics; however, so-called quantum conditions fixed
the allowed stationary states and the frequencies of radiation
emitted in transitions between them. By 1920 or so, attempts
to fashion a more consistent quantum theory were guided by
a methodological stricture that the largely unknown laws of
quantum physics should be constructed in some kind of corre-
spondence to those of classical electrodynamics. According to
the so-called “correspondence principle”, quantum transitions
of an atom closely corresponded to harmonic (Fourier) compo-
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nents of the electron’s periodic motion considered in the sense
of classical mechanics. At least for the case when the principal
quantum number n is very large, light emitted in the transition
n → n − m has the same frequency as the mth higher harmonic
of the motion of the electron in the state n, as well as the same
intensity and polarization. But the correspondence is valid only
for very large values of n.

The first complete formulation of quantum mechanics ap-
peared in early July 1925 in a paper of 24 year-old Werner
Heisenberg seeking “to establish a quantum-theoretical me-
chanics based entirely on relations between quantities that are
observable in principle” (Heisenberg 1925). Seeking a mathe-
matical formalism to characterize the phenomenon of sponta-
neous radiation through a classical analogy that would lead to
valid results for small values of n, Heisenberg considered the
hydrogen atom as a highly idealized simple periodic system
(“virtual oscillator”). The guiding idea was to retain Newton’s
second law of motion for the atom’s electron but in a “kine-
matical reinterpretation”, replacing the time-dependent posi-
tion coordinate x, classically represented as a sum of Fourier
components, with a “quantum theoretic quantity”. Pursuing
the correspondence between classical and quantum-theoretical
quantities through the appropriate terms of Fourier series
(where υ is the circular frequency), to each Fourier component
X(n ,m) exp{2πiυ(n ,m)t} for the nth stationary state and mth

harmonic in the classical theory, Heisenberg posited a “transi-
tion component” X(n ,m) exp{2πiυ(n , n − m)t} associated with
the transition n → n − m. Each of the new quantities is associ-
ated with two states since, according to Bohr, this is always true
of radiative transitions. Clearly the quantities are still a function
of time. However, the primary significance of such quantities
lay in calculating the transition components of X0 , X1 , . . . from
those of X just as the Fourier components of X0 , X1 , . . . can be
calculated from X(n ,m) exp{2πiυ(n ,m)t} in the classical the-

ory. What matters is that no other frequencies can appear in the
transition components of X0 , X1 , . . . than those already exist-
ing in the transition components of X; the fact that transition
components are functions of time is of secondary importance.
As a result, the quantum theoretical quantity corresponding to
the classical coordinate x is simply an array of terms of the form
X(n ,m) exp{2πiυ(n , n − m)t}. The kinematical reinterpretation
then replaced the Fourier representation of X by “arrays” of
these transition amplitudes, corresponding to the frequencies
and intensities of emitted radiation. In this way, information
from the observable hydrogen spectrum would replace kine-
matical variables of position and period for the unobservable
electron orbit.

Recognizing that his approach required further mathematical
development, Heisenberg stated a methodological intention to
restrict consideration to observable quantities, letting these dic-
tate the structure, still unknown, of a new quantum theoretical
mechanics.6 Famously Heisenberg did not realize the multi-
plication rule required by his arrays is equivalent to that for
multiplying matrices, a rule in general non-commutative, i.e.,
AB , BA. Max Born, professor of theoretical physics in Göttin-
gen and Heisenberg’s postdoctoral supervisor, quickly pointed
this out and in late September, together with his assistant Pas-
cual Jordan, had cast Heisenberg’s theory into the form of a “ma-
trix mechanics”. Born and Jordan, however, sought to construct
“an entirely self-contained theory, without the need to invoke
assistance from classical theory on the basis of the correspon-
dence principle” (Born and Jordan 1925, 876); thus the matrix
quantities constructed for the canonical quantities p and q of

6Heisenberg apparently believed to be following Einstein’s example (in
special relativity) by ridding physics of unobservable quantities (e.g., absolute
simultaneity). Learning of Heisenberg’s intent later on, Einstein is reported to
have said, “a good joke shouldn’t be repeated too often”, allegedly a remark
in reply to Phillip Frank who was in agreement with Heisenberg’s method
(Schaffner 1970, 362).
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Hamiltonian mechanics do not represent momentum and po-
sition directly yet satisfy equations of motion identical in form
to those of classical mechanics. In October matrix mechanics
passed its first crucial test when Pauli used it to obtain the ob-
served energy states of hydrogen, and in November appeared
the influential “Dreimännerarbeit” of Born, Heisenberg and Jor-
dan, a comprehensive presentation of matrix mechanics and a
first attempt to extend the methods of quantum mechanics to
systems with many degrees of freedom, i.e., to fields. Taken to-
gether, these papers created a new non-commutative theory of
atomic physics that is set in the frame of Hamiltonian mechanics.

However, the idea of non-commutation of dynamical vari-
ables was certainly non-classical, and initially very difficult to
understand physically. Moreover, in matrix form everything ap-
pears discontinuous; just as in Bohr’s atom theory, there are
discrete stationary states with quantum “jumps” between them.
Born, Heisenberg and Jordan conceded the abstract matrix rep-
resentation of relations between observable quantities to be not
at all amenable to a “geometrically visualizable [anschauliche]
interpretation” of an atomic system; indeed, they rejected any
description of electron motions in terms of the concepts of space
and time (1925, 558). In explicit contrast to the lack of An-
schaulichkeit in matrix mechanics, Erwin Schrödinger in Zurich
built on de Broglie’s idea of associating matter particles with
waves. From January to June 1926 Schrödinger completed six
papers developing a theory of atomic systems in terms of a
“wave mechanics”, employing a mathematical tool much more
familiar to physicists, a wave equation based upon a continu-
ous “psi” function Ψ � Ψ(x , t).7 Assuming stationary states
to correspond to the stationary forms of an associated wave,
Schrödinger’s wave mechanics gave exactly the same results as

7The (time dependent) Schrödinger equation for a particle of mass m is

− ℏ
2

2m ∇2ψ + Vψ � iℏ
∂ψ
∂t

where ∇ is the Laplacian, V is the potential energy
(generally a function of both space and time) and ℏ is Planck’s constant h
divided by 2π.

matrix mechanics for values of the quantized energy levels of the
hydrogen atom. By March 1926 Schrödinger claimed to demon-
strate that the new wave mechanics and matrix mechanics are
“completely equivalent from the mathematical point of view”
(more exact derivations were given by Dirac, Pauli, and some-
what later, von Neumann). But even in the paper claiming math-
ematical equivalence, Schrödinger argued that wave mechanics,
unlike matrix mechanics, furnished a “guiding physical point of
view” since . . .

. . . to me it seems extraordinarily difficult to tackle problems . . . as
long as we feel obliged on epistemological grounds to repress in-
tuition [Anschauung] in atomic dynamics, and to operate only with
such abstract ideas as transition probabilities, energy levels, etc.
(Schrödinger 1926, 57, 59)

Schrödinger accordingly claimed wave mechanics could pro-
vide an “intuitive” (anschauliche) understanding of the emitted
frequencies of atomic radiation as “beats”, analogous to the
fundamental frequency and harmonics of periodic waveforms.
More to the point, he was able to derive accurate predictions
for phenomena that had remained beyond the reach of matrix
mechanics, including the behavior of the electron in a uniform
magnetic or electric field (the Zeeman and Stark effects). Ulti-
mately, however, Schrödinger had to retreat from claims of the
visualizable character of wave mechanics. Although it might be
plausibly argued that a single particle wave function might rep-
resent the particle propagating in ordinary 3-space, this view
faced insurmountable difficulties when extended to “the poly-
electron problem”, i.e., to multi-particle systems. In such cases,
Ψ is a function defined in a 3N dimensional configuration space,
where N is the number of particles. Visualizable (intuitive) in-
terpretation seemed possible only for the simplest of atomic
systems.

On the other hand, the wave amplitude given by Ψ is a com-
plex-valued function of space and time and of course observed
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quantities are real- (indeed, rational-) valued. How then was
the wave function to be physically understood? Schrödinger ini-
tially supposed a purely wave interpretation of theΨ-function,
to the exclusion of particles. This attempt came at considerable
cost: it required him to deny the existence of discrete energy
states and of “jumps” between them, and even to speculate that
the concept of “energy” is merely a statistical generalization of
the more fundamental wave concept of frequency. The issue of
physical interpretation of the wave function was resolved to the
satisfaction of most quantum theoreticians in a paper of Born
of late June 1926. Born applied Schrödinger’s new formalism
to collision processes, a study that however persuaded him of
the corpuscular-, not wave-, nature of electrons. Born argued
what is measured is not Ψ but |Ψ|2, i.e., Ψ∗Ψ, where Ψ∗ de-
notes the complex conjugate to Ψ. According to what would
become known as the “Born rule”, |Ψ(x , t)|2 is a “probability
density” for a particle to be located within some small region
surrounding point x at time t, while the function Ψ(x , t) itself
does not represent something physically real but is a mathe-
matical tool representing a “probability current” propagating in
time according to the Schrödinger equation’s dynamical evolu-
tion. With Born’s statistical interpretation ofΨ, wave mechanics
could answer the question of its physical interpretation and it
quickly proved a more pliable instrument than matrix mechan-
ics. It soon supplanted the latter, whose methods many physi-
cists found obscure as well as difficult to apply to actual physical
problems, in particular, to the helium atom, the next simplest
atomic system.

Is the electron really a wave packet or is it a point particle? The
1927 experiments on electron diffraction by crystalline solids by
Clifton Davisson and Lester Germer in the USA and indepen-
dently, George P. Thomson in the UK, confirmed de Broglie’s
hypothesis of the wave character of matter. Heisenberg, for one,
did not concede the superiority of wave mechanics despite the

existence of matter waves. Instead, the program of quantum me-
chanics (by which was meant “matrix mechanics”) was viewed
as requiring liberation from all “intuitive pictures” (anschaulichen
Bildern). This called for substitution of simple relations between
empirically given quantities in place of the kinematic and me-
chanical descriptions familiar from classical physics. As seen
above, that is just what the matrix formulation was developed
to do. An ensuing controversy arose concerning in what re-
spect, if at all, quantum mechanics is or could be a “visualiz-
able” (anschauliche) theory. Heisenberg correspondingly sought
to redefine “visualizability” (Anschaulichkeit), arguing that all
visualization reasonably can require of a theory is that in all
simple cases the theory allow qualitative consideration of its ex-
perimental consequences. To illustrate how matrix mechanics
remained “intuitive” in the revised sense of Anschaulichkeit, he
provided, still in 1927, a simple thought-experiment example
of light (Υ-rays, i.e., light of short wavelength and correspond-
ingly high energy) scattered by an electron (the Compton effect)
then observed with a fictional “Υ-ray microscope”. Underscor-
ing an immediate discontinuous change in the electron’s state
on impact by a light quantum (and, as Bohr pointed out, despite
an erroneous account of the microscope’s optics) Heisenberg
formulated limitations or uncertainties (∆) on the accuracy of
simultaneously measured values of the electron’s position and
momentum (∆p∆q ∼ h), the uncertainty relations that bear his
name. In these relations, Heisenberg (1927/1981, 64) claimed a
“direct physical interpretation of the equation pq − qp � −iℏ”.

Heisenberg’s attempt to free quantum mechanics from classi-
cal imagery found resonance in Bohr’s “complementarity”, pro-
claimed at a conference at Lake Como in northern Italy several
months later in September 1927. The philosophy of comple-
mentarity was expressly tailored to underwrite the Heisenberg
uncertainties and to put to rest the dispute over Anschaulichkeit.
The essence of quantum mechanics lay in what Bohr termed the

Journal for the History of Analytical Philosophy vol. 6 no. 3 [218]



“quantum postulate”, i.e., in Planck’s quantum of action h that,
to Bohr, symbolized “an essential discontinuity . . . completely
foreign to classical theories.” On account of the “indivisibility
of the quantum of action”, Bohr argued for the impossibility of
any sharp distinction between systems exchanging energy in an
interaction, in particular, between an apparatus of measurement
and the quantum system of interest. Both object system and mea-
suring device are “appreciably disturbed” by observation with
the result that an intrinsic ambiguity surrounds attribution of
properties (distinct states) to individual systems. Overcoming
this ambiguity required “renunciation” of a defining charac-
teristic of classical physical theory, the description of physical
phenomena through simultaneous use of both kinematical (spa-
tial position, time) and dynamical (momentum, energy) concepts.
The complete description of quantum phenomena required both
to be used but not at the same time; employing a concept from
the first group precludes simultaneous application of one from
the other group and vice versa.

The very nature of the quantum theory thus forces us to regard
space-time coordination and the claim of causality, the union of
which characterizes the classical theories, as complementary but
exclusive features of the description, symbolizing the idealization
of observation and definition respectively. (Bohr 1928/1981, 89–90)

Whereas Heisenberg argued that experimental conditions limit
simultaneous (and unambiguous) use of both kinematic and
dynamic concepts in the description of an atomic object, com-
plementarity more broadly enjoined an essential limitation in
application of classical concepts to the quantum domain. The
separation of space-time representation from the conservation
laws and causality meant that visualization in any sense famil-
iar from ordinary perception could only be partial in quantum
mechanics. One cannot say, as in classical physics, that simulta-
neously precise values of “complementary” kinematic and dy-
namic concepts are instantiated in the object. Firmly established

after 1927, complementarity brought an orthodox reconciliation
between “particle” and “wave” descriptions: by viewing them as
jointly necessary but mutually exclusive, both concepts, though
requiring distinct experimental setups for legitimate applica-
tion, were required to accommodate the full range of description
of quantum phenomena.

Enter Dirac

To try to understand how the youthful Dirac first fashioned his
abstract approach to quantum mechanics in November 1925,
it may be illuminating to briefly leave physics for geometry.
Henry Frederick Baker (1866–1956) was Lowndean Professor of
Astronomy and Geometry when Dirac “went up to Cambridge”
as research student in 1923. Previously Dirac had studied projec-
tive geometry in Bristol with Peter Fraser, a mathematician who
taught Dirac to appreciate “rigorous mathematics” and “that
it was sometimes necessary to have strict logical ideas” (Dirac
1977, 113–14). Though Dirac did not attend Baker’s lectures,
he regularly went to the Saturday teas at Baker’s house where
someone, Dirac included, would give a talk on a geometrical
subject. Much later, Dirac recalled the intellectual nourishment
he received on these occasions:

These tea parties did very much to stimulate my interest in the
beauty of mathematics. The all-important thing there was to strive
to express the relationships in a beautiful form, and they [sic] were
very successful. (Dirac 1977, 116)

Baker was an algebraic geometer who justified the term “astron-
omy” in his chair’s title by occasionally lecturing on periodic
orbits or other mathematical topics in astronomy (O’Connor
and Robertson 2003). In an obituary, one of his prize pupils,
Cambridge geometer and Adams Prize winner William Hodge,
wrote of Baker’s continual “desire to see the algebraic signifi-
cance of a geometrical theory”, noting that in his early years,
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Baker became fascinated by the axiomatic approach to projec-
tive geometry, paying frequent visits to Felix Klein in Göttingen
which “had a great influence on his subsequent work” (Hodge
1956, 51, 54). That influence is palpable in the “Introductory” to
the first of the six volumes of Baker’s most notable work, Prin-
ciples of Geometry (1922–25), where he stated the philosophical
justification for an abstract approach to the science of figures:

While the view is taken that all geometrical deduction should fi-
nally be synthetic, it is also held that to exclude algebraic sym-
bolism would be analogous to preventing a physicist from testing
his theories by experiment—and to this the present volume is de-
voted. . . .

A Science grows up from the desire to bring the results of obser-
vation, of the relations of a class of facts which appear to be con-
nected, under as few general propositions as possible. Into these
propositions it is generally found necessary, or convenient, when
the science has reached a sufficient development, to introduce ab-
stract entities, transcending actual observation, whose existence is
only asserted by the postulation of their mutual relations. . . . The
usefulness of the science . . . will depend on the agreement of the
relations obtained for these latter entities with those which we can
observe. It would seem that this process of substituting conceived
entities, limited by supposed interrelations, for those which are
regarded as objects of experience, belongs to every science. (Baker
1922–25, vol. 1, 1–2)

These views will be familiar as a condensed expression of down-
stream consequences of adopting the “postulational approach”
to geometry pioneered by Pasch and Hilbert. The most im-
portant influence is surely the axiomatic analysis of elemen-
tary geometry in Hilbert’s Grundlagen der Geometrie, the famous
Festschrift publication of 1899. Here the subject matter of ge-
ometry is stated to lie in “three distinct systems of things”
(“points”, “straight lines”, “planes”) while a complete descrip-
tion of the permissible relationships between these “things”
(e.g., “between”, “parallel”, “congruent”, and so on) are given by

a system of axiom groups. All fundamental geometrical notions
are devoid of whatever informal sense or sensory representa-
tion is usually associated with them; they acquire meaning only
through the occurrence of their respective terms in the deduc-
tive consequences of the chosen groups of axioms. For Hilbert,
a geometry is then “a logical schema of concepts” (ein logisches
Fachwerk von Begriffen) abstracted from “basic facts” (Grundtat-
sachen) presented to intuition; so long as the latter are completely
described by the axioms, any collection at all, no matter how
disparate it may appear, is considered merely a different instan-
tiation of the axioms. Moreover, whereas in analytic geometry
one begins with the introduction of numbers, or coordinates,
and in synthetic geometry one appeals to figures presented in
intuition, Hilbert stated his axiom groups as algebraic relations
between symbols. To Hilbert, the result is “an analysis of intu-
ition” rendering figures, and particular coordinates, in principle
disposable even though the Grundlagen employed diagrams as
an assist to the reader. A further aspect, with which Baker was
certainly familiar, is Hilbert’s demonstration of the existence of
non-Pascalian geometries. Following a section (§29) showing
the existence of non-Archimedean geometries corresponding to
the system of non-Archimedean numbers, §§31–34 demonstrate
the existence of non-Pascalian geometries corresponding to a
system of non-Pascalian numbers for which the associative and
distributive laws of addition and multiplication hold, but not
the commutative law of multiplication.8

8Such numbers arise via the algebraic equations expressing the other ax-
ioms of geometry. These relations are defined over “number systems” (a
division ring), so that a point is a triple of “coordinates” (x , y , z) (numbers
belonging to the division ring), a plane is a set of triplets, satisfying an equa-
tion ax + b y + cz + d � 0, and a line is an intersection of two planes. Hilbert
pointed out that the numbers of the “system” x , a, etc. did not have to be real
numbers, nor did they need to satisfy the commutative law of multiplication.
For this reason, the coefficients a , b , c had to be written to the left of the coor-
dinates. Where commutation failed, a “non-Pascalian” geometry resulted. On
the relevance of Hilbertian axiomatics to Baker, see Darrigol (1992, 292–93).
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In Baker’s abstract symbolic approach, every algebraic manip-
ulation of the symbols had a precise geometric meaning, with
the result that algebraic proofs could be substituted for synthetic
geometric proofs. In particular, Dirac may well have been famil-
iar with Baker’s algebraic proof of Pappus’s theorem (Pascal’s
theorem is a variant) as well as the examples given in the first
volume of the Principles “of the fact that a geometrical result ob-
tainable without Pappus’ theorem should be representable sym-
bolically without use of the commutative law of multiplication”
(Darrigol 1992, 87). In the mid-1920s, non-commutation could
be taken in stride in pure geometry and in matrix algebra, and in
Cambridge Hamilton’s quaternions and their non-commutative
multiplication were certainly known but regarded an intellec-
tual novelty, without clear physical application. Yet according
to a later reminiscence, noncommutative algebra was “so for-
eign to all ideas of physicists at that time” that Heisenberg “at
first thought there must be something wrong with his theory
and tried to correct it” (Dirac 1973, 760).

November 1925

In a paper completed at Cambridge in early November 1925,
P. A. M. Dirac set out to reformulate Heisenberg’s paper of July
in the language of Hamiltonian mechanics. In itself this was not
an unusual step to take; as many other theorists at the time, Dirac
was familiar with Sommerfeld’s introduction of Hamiltonian
methods in the study and development of the Bohr atom. The
classical equations of motion are

dqi

dt
� Ûqi �

∂H

∂pi
;

dpi

dt
� Ûpi � −

∂H

∂qi

where the q’s and p’s are a set of generalized coordinates and
their canonically conjugate momenta, and H is the Hamilton-
ian, a given function of the q’s and p’s equal to the energy if

the time is not explicitly involved. But a straightforward gen-
eralization of these equations is blocked because they involve
partial differential coefficients that in general have no mean-
ing for the dynamical variables in the quantum theory. As he
later related, while puzzling over this fact on a long walk one
Sunday in October 1925, he had a dim recollection of seeing
something termed a Poisson bracket (PB) in an advanced text of
dynamics. He seemed to recall that the equations of motion and
other equations of classical dynamics could be written in a form
where partial differential coefficients occur only in the PBs. Not
remembering the definition of a Poisson bracket (PB) he had to
impatiently wait until Monday morning when he could look up
the definition in the university library. It is:

[

x , y
]

:�

n
∑

i�1

(

∂x

∂pi

∂y

∂qi
−
∂x

∂qi

∂y

∂pi

)

with q (position) and p (momentum) the canonical variables
for the system in question (and summation over the number
of degrees of freedom) while x , y are functions of these giving
other dynamical quantities such as energy. Dirac then showed
that quantum mechanics can be formulated as Hamiltonian dy-
namics though the non-commutation of a PB. In particular, it is
possible to take over into the quantum theory both the classical
equations of motion, as well as any other classical equations ex-
pressible in terms of PBs. One assumes that in both classical and
quantum physics the PBs for the variables p , q have the same
canonically conjugate form:

[

qr , qs

]

� 0,
[

pr , ps

]

� 0,
[

qr , ps

]

� δrs

where δrs is the so-called Kronecker function defined by δrs � 1

if r = s; δrs � 0 if r , s. The PB expression
[

x , y
]

is then
given a meaning in quantum theory when x and y are quantum
variables by conjecturing a relation to their Heisenberg product:
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We make the fundamental assumption that the difference between the
Heisenberg products of two quantum quantities is equal to ih/2π times
their Poisson bracket expression. In symbols,

(

x y − yx
)

≡
ih

2π

[

x , y
]

.

(Dirac 1925, 648)

The commutation relation pq − qp � −iℏ
(

ℏ �
h

2π

)

had been
previously found by Born in July but it would become the hall-
mark of Dirac’s “symbolic algebra” of quantum observables. To
set up this algebra, Dirac had first to give meaning to the dif-
ferentiation of the quantum quantities, i.e., to quantities like
dx/dv where v is some other quantum variable corresponding
to Heisenberg’s matrices. He began by rewriting the Heisenberg
product in a form that shows the explicit dependence of the
quantum quantities on variables for two stationary states, n ,m,

x y(nm) �
∑

k x(nk)y(km)

where

x y(nm) , yx(nm)

He then found

dx

dv
(nm) �

∑

k [x(nk)a(km) − a(nk)x(km)]

the coefficients a representing another quantum variable. The
most general form of quantum differentiation could be written

dx

dv
� xa − ax

where the new variable in components is a(nm). Thus the dif-
ferential of a quantum variable x with respect to another quan-
tum parameter v is expressed as the Heisenberg product of the

quantum variables x and a. Moreover, the equations of motion
of the classical theory can be written in terms of PBs with H the
Hamiltonian of the system as

Ûpk �

[

pk ,H
]

and Ûqk �

[

qk ,H
]

,

Dirac then showed that the equations of motion of quantum
theory have the form

Ûx � [x ,H]

for any quantum variable x. In consequence, the differential equa-
tions of classical mechanics could be replaced by algebraic equa-
tions with addition and multiplication of quantum variables.
Dirac could thus bring the full apparatus of classical Hamilto-
nian dynamics to bear on quantum mechanics. In this way he
was able to show that Heisenberg’s results could be obtained
through a generalization of the Poisson algebra of canonically
commuting variables of classical Hamiltonian mechanics.9 An
abstract correspondence is then established between quantum
and classical physics:

The correspondence between the quantum and classical theories lies not
so much in the limiting agreement when h → 0 as in the fact that the
mathematical operations on the two theories obey in many cases the same
laws. (Dirac 1925/1995, 73–74)

Rather than follow the somewhat imprecise relation between
quantum and classical physics of Bohr’s correspondence princi-
ple (h → 0), already in 1925, Dirac identified a deep structural
correspondence emphasizing the continuity between the two
theories. The connection between classical and quantum was
accordingly far more profound in Dirac than in Heisenberg’s
kinematical transposition of the Newtonian equations of mo-
tion. This will prove highly important to Cassirer.

9See the concise discussion in Longair (2013, 245–54).
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The significance of Dirac’s novel abstract approach to the new
quantum mechanics should now be clear. Whereas Heisenberg
used the correspondence principle to set up an analogy between
classical and quantum mechanical representations, Dirac related
the two theories through a structural correspondence of the al-
gebras of their respective abstract Hamiltonian formulation in
terms of PBs. He could thus show that quantum theory primar-
ily differed from the laws of classical electrodynamics in just
one respect, a slight modification of the algebra of PBs. How-
ever, this meant that the relation between the two theories could
be demonstrated at a purely abstract level, where the funda-
mental equations of the new quantum theory are formulated
in a manner independent of any reference frame. Moreover,
by embedding classical mechanics into a generalized quantum
Hamiltonian dynamics, Dirac introduced his own method of
quantizing a classical theory. The idea is to construct a suitable
quantum analog to the Poisson bracket relations for classical
dynamical variables.

Dirac’s more abstract approach, formulated in 1926 in terms
of distinct algebras of “q-numbers” and “c-numbers”, enabled
him in 1927 to show that matrix mechanics and wave mechanics,
suitably recast as schemes of matrices, could be connected to one
another via “transformation theory”.10 Here Dirac showed how
to make coordinate-free calculations in terms of “q-numbers”
and then to interpret the results via “c-numbers” that could
be matched with experimental measurements. From abstract
heights of transformation theory the two methods differed only
in their choice of dynamical variables; matrix mechanics fa-
vored a matrix scheme in which the Hamiltonian or energy
function is represented by a diagonal matrix, wave mechanics

10See Dirac (1926/1995, 223): “The eigenfunctions of Schrödinger’s equation are
just the transformation functions . . . that enable one to transform from the (q) scheme
of matrix representation [i.e., wave mechanics] to a scheme in which the Hamiltonian
is a diagonal matrix [i.e., matrix mechanics].”

preferred a matrix scheme in which the configuration variables
q1 , q2 , . . . , qn are the chosen quantities.11

3. Symbolic Algebra of States and Observables

Dirac took no apparent interest in, and so did not participate
in, the polemics among the founders of quantum mechanics re-
garding the respective superiority of matrix mechanics or wave
mechanics, a controversy issuing, as seen above, in Heisenberg’s
1927 uncertainty relations paper. The idea of writing a textbook
on quantum mechanics was not his (Kragh 2013). Rather a repre-
sentative of Oxford University Press approached him to publish
such a work, to appear as the first volume of a monograph se-
ries still in existence some 90 years on. The fact that the new
series was to be edited by Cambridge physicists well-known to
Dirac, R. H. Fowler and P. Kapitza, surely played a role in his
agreeing to undertake the task. He began writing in 1928; the
book was published towards the end of summer 1930. It may
only be a coincidence that Dirac’s title echoes that of Baker’s
volumes on geometry, but the “principles” involved naturally
are different. For Dirac, these are above all the “Principle of
Superposition of States” and the “Principle of Indeterminacy”,
discussion of which is taken up already in §3. Many translations
followed and further editions appeared in 1935, 1947, and 1958;
the latter remains in print. But even beyond its longevity, the
book’s influence is far more significant. Particularly after the
widely adopted “bra” and “ket” notation introduced in the third
(1947) edition, Dirac’s Principles effectively established a nearly
universal symbolic language for physicists writing on quantum
mechanics.

After an initial chapter on the quantum principles of superpo-
sition and indeterminacy, the work is divided into two parts, the

11For a mathematically clear reconstruction of the details, see Zalamea (2016,
chap. 1).
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first developing the general theory of quantum mechanics in ab-
stract algebraic form, entirely without regard to applications, the
topic of the second part. This mode of procedure distinguished
the book from all other period presentations; presumably Ein-
stein (1931, 73) was not alone in judging the work “the most
perfect exposition, logically, of [quantum mechanics].” Vindi-
cating Buffon’s maxim, le style est l’homme même, Dirac’s laconic,
sparse but pristinely clear syntax, as well as the use of the ab-
stract symbolic method he pioneered, sets the book apart from
nearly every other scientific text even today. In a 2003 collo-
quium at Cornell celebrating the centenary of Dirac’s birth the
previous August, particle physicist Kurt Gottfried (2003, 1) af-
firmed that Dirac’s Principles “belongs to the great literature of
the 20th century”, even stating “it reminds me of Kafka”.

The “Preface”, dated 29 May 1930, laid out a philosophy
in pursuing and developing an abstract symbolic approach to
quantum mechanics. In classical physics “one could form a men-
tal picture in space and time of the whole scheme” but in quan-
tum physics it has been become clear that “nature works on a
different plan”. Quantum laws are fundamental, whereas clas-
sical laws are not; however:

[Nature’s] fundamental laws do not govern the world as it appears
in our mental picture in any very direct way, but instead . . . control
a substratum of which we cannot form a mental picture without
introducing irrelevancies. (Dirac 1930, v)

Mental pictures, the inconclusive debate over Anschaulichkeit,
unsuccessful attempts to subordinate “particle” concepts to
those of “waves” or vice versa, all brought in their train “irrel-
evancies” that pertain not to nature but to the limits of human
imagination or to the representational conventions of classical
physics. Though superficially similar to Bohr’s Como declara-
tion (1928/1981, 88) of the need for “a renunciation as regards
the causal space-time co-ordination of atomic processes”, Dirac
was not a supporter of complementarity, apparently for several

reasons.12 Indeed, there is considerable evidence that Dirac, at
least later on in his career, held out hope for a deterministic
theory underlying quantum mechanics, much in the manner of
Einstein.13

In place of complementarity, Dirac identified two methods
used to present the mathematical form of the new theory. The
first is the customary one, “the method of coordinates or repre-
sentations, which deals with sets of numbers corresponding to
these quantities.” Dirac noted that with one exception, this first
method was used in extant presentations of quantum mechanics.
Of course, from the standpoint of transformation theory, wave
mechanics and matrix mechanics are simply different points of
view regarding the same physical phenomena, the point of view
depending of a preferred choice of variables. This is in accord
with the great methodological lesson taught by relativity the-
ory, that the “growth of the use of transformation theory . . . is
the essence of the new method in theoretical physics”. From the
perspective of transformation theory,

The important things in the world appear as the invariants (or
more generally, the nearly invariants, or quantities with simple
transformation properties) of these transformations. (Dirac 1930,
v)

As Dirac observed, the new mathematical method was em-
ployed previously only in Hermann Weyl’s 1928 book Grup-
pentheorie und Quantenmechanik. Weyl’s structural characteriza-
tion of quantum kinematics (for kinematic variables p , q) on the

12On the one hand (Bokulich 2004, 386–87), Dirac felt complementarity was
“rather indefinite”, on the other, as he wrote to Bohr on 9 December 1929, “I
am afraid I do not completely agree with your views. . . . I believe that quantum
mechanics has its limitations and will ultimately be replaced by something
better, . . . I cannot see any reason for thinking that quantum mechanics has
already reached the limit of its development.”

13See Bokulich (2008, 103–14). Bokulich also argues against Kragh’s ap-
praisal (1990, 80) that “[b]y and large, Dirac shared the positivist and instru-
mentalist attitude of the Copenhagen-Göttingen camp”.
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basis of group theory14 as well as Dirac’s own transformation
theory are seen as examples of “the symbolic method, which
deals directly in an abstract way with the quantities of fun-
damental importance” (the invariants or near-invariants of the
transformations). While the customary method of coordinates
has the advantage of mathematical familiarity, Dirac stated that
he will use the symbolic method, as it “seems to go more deeply
into the nature of things”. This is because the new theory is “built
up from physical concepts which cannot be explained in terms
of things previously known to the student, which cannot even
be explained in words at all”. In virtue of its use of abstract sym-
bols, it sidesteps the entire debate over Anschaulichkeit to deal
directly with the new notion of physical state, cutting through
the ambiguities and irrelevancies of particular representations
that, in any event, are related by transformation theory. The
symbolic method thus does not attempt to portray or represent
microphysical processes but considers that “the only object of
theoretical physics is to calculate results that can be compared
to experience” (1930, 7).

For the first time in Dirac’s publications on transformation
theory, Principles employs Greek symbols ψ, ϕ, etc. to abstractly
represent the so-called quantum state, the symbol standing in-
differently for the particular wave functions pertaining to quanti-
ties such as position ψ(x) or its Fourier transform in the momen-
tum representation ψ̂(p), etc. As wave functions form a linear
space (adding wave functions produces another wave function,
as does multiplying a wave function by a complex number) the
abstract symbol is known as a “state vector”, a vector whose
orientation in the state space according to quantum orthodoxy
contains all possible information about the state of a quantum
system at a given time.15 The state vector is defined in a linear

14For discussion of Weyl’s early group theoretic approach, see Scholz (2008).
15To be sure, in the first 1930 edition Principles employs a relativistic notion

of “state”: “We must regard the state of a system as referring to its condition

space with an inner product over the field of complex numbers
C but its nature is not further specified. Presumably, according
to remarks on the dust jacket,16 Dirac almost surely followed
the example of Weyl’s 1928 book, which introduced the idea
that every quantum state could be represented as a vector (of
modulus 1) in a “system space”. Also in Göttingen at roughly
the same time, John von Neumann had taken the now-standard
further step of specifying the vector space as an abstract Hilbert
space; however, only after von Neumann’s book (1932) was this
widely adopted. Indeed in his book, von Neumann pointed out
that on account of several mathematical “fictions”, in particular
the so-called δ-function that Dirac admitted was not a classical
function, difficulties arose in finding a mathematical justifica-
tion for some of Dirac’s abstract calculations. Nonetheless, as
was subsequently shown, the formal machinery of Dirac’s ab-
stract symbolic calculus can be rigorously justified in the setting
of abstract Hilbert space by combining Hilbert space with the
theory of distributions of Laurent Schwartz, giving rise to the
notion of a “rigged Hilbert space”, introduced by I. Gelfand and
A. Vilenkin much later. (See de la Madrid 2005.)

Dirac’s symbolic calculus of states and observables became
widely, though not universally, adopted following his introduc-
tion of the “bra”–“ket” notation in 1939, incorporated into the
3rd (1947) and subsequent editions of Principles. Figure 1 shows
the “translation table” provided in Dirac’s 1939 paper.

throughout an indefinite period of time and not to its condition at a particular
time, which would make the state a function of time. Thus a state refers to a
region of 4-dimensional space-time and not a region of 3-dimensional space.”
In the 2nd (1935) and all later editions, Dirac simplifies the presentation using
a non-relativistic notion of state.

16From the dust jacket of the 1930 edition: “one is rightly tempted to . . .
survey the existing situation and attempt to put what is already known into
more symbolic form. This is the sure way to progress in the understanding of
the new theory which is perhaps for many workers the outstanding need of the
present time. One great attempt by Weyl is already well-known. The present
book by Dr. Dirac is another, written as it is from an abstract standpoint, but
much more physical in outlook than that by Weyl.”
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The development of the new notation to include linear operators
and observables can be effected without difficulty. Below is a list of
the various types of quantity involving a linear operator α, written
on the left in the old notation and on the right in the new.

αψ α〉
αψa α |a〉
φα 〈α
φaα 〈a |α
φaαψ 〈a |α〉 or 〈a |α |〉
φαψa 〈α |a〉 or 〈|α |a〉
φaαψb 〈a |α |b〉
φ(q′)αψ(q′′) or (q′ |α |q′′) 〈q′ |α |q′′〉.

(Dirac 1939, 416)
Figure 1

The presentation here will follow this widespread practice,
though it should be emphasized that doing so involves only
a notational improvement over the first appearance of the sym-
bolic calculus in the first edition of the Principles. The quantum
states are now described by symbols ψ, ϕ, α, β etc. enclosed
within a “ket” symbol “| 〉”, i.e., |ψ〉. Kets are vectors in Hilbert
space and in accordance with the principle of superposition may
be added and multiplied by scalars, generally complex numbers,
e.g.,

|ψ〉 � c1 |φ1〉 + c2 |φ2〉

where ψ is a superposition of two distinct quantum states φ1

and φ2; the complex coefficients essentially state the relative
“weights” of the combining terms in composing the sum. In gen-
eral, given an orthonormal set of basis kets {|e1〉, |e2〉, . . . , |en〉},
every ket in the space can be expressed in the form

|ψ〉 � c1 |e1〉 + c2 |e2〉 + · · · + cn |en〉

where the ci are the expansion coefficients of |ψ〉 in the |ei〉 ba-
sis. Vector addition and scalar multiplication obey the usual
algebraic rules (commutativity, associativity):

c1 |φ1〉 + c2 |φ2〉 � c2 |φ2〉 + c1 |φ1〉,

(c1 |φ1〉 + c2 |φ2〉) + c3 |φ3〉 � c1 |φ1〉 + (c2 |φ2〉 + c3 |φ3〉)

To see how the notation works, recall that the customary integral
for normalized wave functions of the form

∫

+∞

−∞

ψ∗ψ dx � 1

states that a wave function extending over space exists with
probability one. The term ψ∗ψ � |ψ |2 is an inner product in
vector notation. Dirac “invented” a vector called a bra designated
〈ψ |; it is dual to the ket vector |ψ〉 and so |ψ〉 + 〈ψ | has no
meaning, since the vectors “live” in different spaces. But bra
notation enables representing the inner product as 〈ψ |ψ〉. Thus
the bra represents the complex conjugate ψ∗ to the real part of
the wave function. Every ket has a corresponding bra formed by
complex conjugation of the coefficients of the ket. E.g., a ket of
the form

c1 |φ1〉 + c2 |φ2〉

has a corresponding dual bra,

c1 |φ1〉 + c2 |φ2〉 ⇔ c∗1〈φ1 | + c∗2〈φ2 |

where c j is of the form x + i y and c∗
j

of the form x − i y. As the
example shows, bras are not really vectors but linear functionals
in 1–1 correspondence with kets that map kets into the field of
complex numbers C. More generally, 〈α |β〉 � 〈β |α〉∗ , 〈β |α〉
represents the complex number that is the inner product of the
ket |α〉 and the ket |β〉.
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Another kind of product can be formed in the bra–ket scheme;
it proves essential to the fact that observables in quantum me-
chanics are represented by Hermitian (or self-adjoint) linear op-
erators. This is the so-called outer product,

|α〉〈β |

the meaning of which becomes transparent by multiplying the
above expression on the right by an arbitrary ket,

(|α〉〈β |)|γ〉

Assuming associativity of multiplication, |α〉〈β | can be inter-
preted as an operator Ô acting from the left that maps the ket |γ〉
into another ket |γ′〉

(|α〉〈β |)|γ〉 � Ô |γ〉 � |γ′〉.

Outer product is also defined for bras,

〈γ |(|α〉〈β |) � 〈γ |Ô � 〈γ′ |

While |γ〉Ô is not defined in the scheme, 〈γ | Ô is but in general,
the dual to the ket Ô |γ〉 is not 〈γ |Ô but the bra formed with the
Hermitian conjugate of the operator Ô, 〈γ |Ô†.17 Linear operators
can be added and multiplied together,

(Ô1 + Ô2)|γ〉 � Ô1 |γ〉 + Ô2 |γ〉,

(Ô1Ô2)|γ〉 � Ô1(Ô2 |γ〉 � Ô1 |γ
′〉 � γ′′〉

But it is possible that (Ô1Ô2)|γ〉 , (Ô2Ô1)|γ〉, and so in general
(there are exceptions), multiplication of operators is noncommu-
tative,

Ô1Ô2 , Ô2Ô1

17If Ô � |α〉〈β |, then Ô†
�

�

�β〉〈α
�

�.

It should be stressed that up to this point nothing has been
said directly of the physical interpretation of the symbolic cal-
culus; the nature of the symbols is specified only through the
algebraic rules that they obey. Only in Chapter IV of Princi-
ples did Dirac turn to consider representations of these abstract
symbols, sets of numbers (matrices) with properties completely
corresponding to those of the symbols they represent. Dirac’s
symbolic calculus gives a purely abstract characterization of the
formal machinery linking the dynamical equations of quantum
mechanics to observation. It is a complete algebraic scheme in-
volving three kinds of quantities, bra vectors, ket vectors, and
(linear) operators. They can be combined in the ways prescribed
above. The associative and distributive laws of multiplication
hold, but in general the commutative law of multiplication is
not valid. Physical interpretation for a given observable (opera-
tor) requires specification of a set of basis vectors, so that if it is
known what an operator does to this set of basis vectors, it can
be known what the operator will do to any other vector in the
space. Furthermore, nothing has been said about probability or
measurement, in accordance with Dirac’s view that probability
considerations enter into quantum mechanics only in the pro-
cess of measurement.18 While Dirac’s abstract symbolic method
perhaps reveals the influence of H. F. Baker’s algebraic treatment
of geometry, his distinction between abstract symbols and their
representations precisely mirrors that in §22 of Weyl’s Grup-
pentheorie und Quantenmechanik (1928) between an abstract group
and its various representations via linear transformations.19

18See Dirac (1930, 4): “One may therefore, as has been pointed out by Bohr,
ascribe the lack of determinacy in the [measurement] result to the uncer-
tainty in the disturbance with the observation necessarily makes, although
one cannot inquire too closely into how it comes about. The apparent fail-
ure of causality is from this point of view due to a theoretically necessarily
clumsiness in the means of observation.”

19Cassirer cites Weyl’s 1928 book in one of his last lectures, for providing
“new confirmation of my general conviction that the concept of group is of
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4. Determinism and Indeterminism in Modern Physics:
Overview

According to Toni Cassirer’s memoir (1981, 189), while still in
Hamburg, Cassirer began work on Determinismus und Indeter-
minismus in der modernen Physik (DI). After the Cassirers left
Germany from Hamburg on 2 May 1933, most of the mono-
graph was written in exile at Oxford in 1934 and 1935. It is quite
possible that during these Oxford years, Cassirer became ac-
quainted with Dirac’s Principles, though it had been translated
into German in 1931. From Cassirer’s letter of 11 September 1936
to the Warburg Institute’s Fritz Saxl (see note 19), it appears that
Schrödinger, also present in Oxford from October 1933 to sum-
mer 1936, read parts of DI in manuscript; Schrödinger certainly
would appreciate the innovative character of Dirac’s book. In
any event, DI appeared obscurely in the original German in
November 1936 in the Göteborgs Högskolas Årsskrift, a journal
understandably little known outside of Sweden; a separatum by
Elanders Boktryckeri Aktiebolag was published in Göteborg early
in 1937. The “Foreword” dated December 1936 states that the
manuscript was completed in April at Göteborg where the pre-
vious August Cassirer had taken up a University position. Prior
to publication Cassirer had solicited reactions of leading atomic
physicists, including Schrödinger and Bohr.20 After the mono-
graph appeared Cassirer sent copies to many leading physicists,
including Einstein, Max von Laue, H. A. Kramers, Heisenberg,

universal applicability and extends over the whole field of human knowledge”
(1945, 290).

20Cassirer’s letter to Fritz Saxl, 11 September 1936, states his wish to show the
manuscript “once again” (noch einmal) to Schrödinger who, however, had left
Oxford and was not yet at his new position in Graz (Cassirer 2009, 152). Krois
(2011, 9) cites a February 1937 letter to Bohr, thanking Bohr for a discussion
in Copenhagen, and a 1936 letter to (Elof) Åkesson in which Cassirer revealed
that following this “thorough” (eingehende) conversation with Bohr, the book
could be published.

Schrödinger, and Max Born.21 In the Preface to the English trans-
lation, Yale physicist-philosopher Henry Margenau reported
that Cassirer approached him with the idea of an English trans-
lation of an updated version just a few months before the latter’s
sudden death by heart attack (13 April 1945) at the age of 70,
the day after the death of President Franklin D. Roosevelt. For
reasons described by Margenau the English translation of the
original text was considerably delayed, appearing only in 1956.

A close reading of DI’s “Foreward” obliquely signals a shift
of epistemological attitude. On the one hand Cassirer affirmed
continuity with his earlier works of Erkenntniskritik and the char-
acteristic Marburg postulate of the fact of physical science (Fak-
tum der Wissenschaft). The viewpoint of DI is largely the one laid
out twenty-five years earlier in Substanzbegriff und Funktionsbe-
griff :

The fundamental viewpoint, in accordance with which I have dealt
with these problems [“certain basic questions of the new physics”
of quantum mechanics], does not differ essentially from that of my
Substance and Function. This viewpoint is, I believe, still justifiable.
Indeed, I think I can now justify it better and formulate it more
precisely on the basis of the development of modern physics than
was the case earlier. (Cassirer 2004, 5; 1956, xxxiii)

These remarks lend support to a reading of DI as a continua-
tion, and update, of Substanzbegriff und Funktionsbegriff (SF) and
Zur Einsteins’chen Relativitätstheorie (ERT), extending to quan-
tum mechanics Cassirer’s neo-Kantian epistemological analysis
identifying a methodological trajectory within physical theory
that is a progressive transformation of substance concepts into
relational concepts, of “thing concepts” into “concepts of func-
tion”.22 Much of the book can and has been read in just this way

21See the various letters acknowledging receipt in Cassirer (2009). A letter
from Schrödinger dated 9 May 1937, presumably acknowledging receipt, is
not in this volume but in the restricted collection of the Max-Planck-Institut
für Physik (Werner-Heisenberg-Institut), Munich.

22E.g., see Mormann (2015, 32):
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for the relational character of the basic concepts of quantum
mechanics is a perceptible theme throughout DI. On the other
hand, Cassirer admonished that epistemology must always be
prepared to revise its presuppositions in step with the advance
of science, and therefore . . .

. . . there is certainly a great deal in the earlier investigations that I
would not maintain today in the same sense or that I at least would
justify differently. (Cassirer 2004, 5–6; 1956, xxiii)

Cassirer had already alluded to continuing controversies over
quantum foundations by citing Eddington’s jocular remark that
a warning to “prying philosophers” might be posted over the en-
trance gate to the new physics reading, “Structural Alterations
in Progress—No Admittance Except on Business”. Unlike the
previous changes and additions to classical physics brought by
the special and general theories of relativity, even the creators
of the new quantum mechanics were not in agreement over the
interpretation of the theory, nor what it implied regarding the
doctrine of causality. Cassirer affirmed that “boundaries” be-
tween philosophy and physics should not become “barriers”.
However, DI should be seen not as the attempt of a philosopher
to resolve the foundational controversies concerning “questions
that are generally agreed to be as yet far from their ultimate
solution”. Rather, and more modestly, the aim is only that of
trying “to prepare the ground for a common inquiry”. Just what
ground is this? A tendency to focus on DI’s continuity with
SF and ERT has led readers to ignore or downplay the extent

To put it bluntly, in DI Cassirer was engaged in interpreting quantum
mechanics in the same neo-Kantian frame that he used more than fifteen
years earlier in ERT to make philosophical sense of Einstein’s relativity
theory. Even more, in DI he put forward the thesis that quantum mechanics
provided a further proof of the relational character of the concepts of
modern physics. This entailed that the relational (or functional) Ansatz of
his philosophy of science—first elaborated in SF—remained unaffected by
the scientific revolutions of the 20th century.

to which Cassirer now viewed his growing distance from the
founders of the Marburg school, Hermann Cohen and Paul Na-
torp:

Thus my connection with the founders of the ‘Marburg School’ is
not loosened and my debt of gratitude to them is not diminished
when it turns out in the following investigations that I have been
led, in the epistemological interpretation of the basic concepts of
modern physical science, to essentially different results than those
in Cohen’s Logik der reinen Erkenntnis (1902) and Natorp’s Die lo-
gischen Grundlagen der exakten Wissenschaften (1910). (Cassirer 2004,
6–7; 1956, xxiv)

Cassirer does not explicitly name these different results but a
reasonable conjecture is that they have to do with the reorien-
tation of Erkenntniskritik by the philosophy of symbolic forms,
expanding its scope into an encompassing theory of culture.
This will be discussed in Section 5.

DI is principally concerned to establish two related theses,
the first more general, the other, quite specific. The broader
thesis forms a backdrop, claiming a methodological and archi-
tectonic continuity between classical and quantum physics once
the causal principle is understood “critically”, that is, as the de-
mand for determination according to law. The second and nar-
rower thesis identified the principal epistemological innovation
of quantum mechanics not as the failure of the causal concept
but as the transformation of the concept of physical state. Both
theses are developed in tandem with a knowledgeable presen-
tation of the historical routes to, and development of, quantum
theory from Planck’s radiation law and discovery of the quan-
tum of action (1900), continuing through the Bohr atom’s ex-
planation of the Balmer series of the spectrum of hydrogen in
1913 (the first real success of what would become known as the
“old quantum theory”), and culminating in the contributions of
Born, Heisenberg, Jordan, Schrödinger and Dirac in 1925–27.

Four of the five parts of DI (up to Chapter 12) have the broader
aim of demonstrating methodological and architectonic conti-
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nuity between classical and quantum physics. Of course the
then, and still prevailing, opinion most familiar today from
the writings of Thomas Kuhn, is of a complete epistemologi-
cal “rupture” or “paradigm shift”. The overall argument of this
broader aim can be summarized in a superficially simple way.
It starts (2004, 148; 1956, 122–23) with a critique of Heisenberg’s
famous statement (in the 1927 uncertainty relations paper) that
the “law of causality” in its “sharp formulation” (“when we
know the present precisely, we can predict the future”) is inap-
plicable in quantum mechanics because the antecedent cannot
be satisfied: it is impossible to know the present with sufficient
accuracy (i.e., by violating the uncertainty relations). Cassirer
points out, first, that if the law of causality is a material con-
ditional, the statement may still be true when the antecedent is
false. More importantly, if the requirement of causality is merely
the general requirement of conformity to law, as Helmholtz in
particular maintained for classical physics (see below), then the
ensuing “crisis of causality” in quantum mechanics is better
termed a “crisis of visualization” (Krise der Anschauung) for it
does not pertain to the concept of cause itself (2004, 196ff.; 1956,
164ff.). Rather the so-called “crisis” stems from the fact that the
causal concept cannot be combined with space-time description.
Here indeed is a difference with classical physics as well as an
apparent incompatibility (at which Cassirer barely hints) with
the Critique of Pure Reason or at least with the chapter on “the
schematism of the concepts of the pure understanding” (A137–
47/B176–87) in the Analytic of Principles. There the schema of
cause-and-effect of a thing in general is the a priori time determi-
nation according to the rule that wherever something is posited,
something else always follows. However, unlike Bohr who pro-
claimed the fissure between causal and space-time descriptions
to be the distinguishing feature of quantum mechanics, Cassirer
traced it back to the foundations of the differential calculus be-
ginning with Leibniz and culminating in Weierstrass’s demon-

stration that continuity (space-time description) and differentia-
bility (the basis of causal description via differential equations)
need not coincide. The further development of physical theory
by quantum mechanics only exacerbated this fissure, showing
that former assumptions of “uniformity” and “equiformity” in
nature must be abandoned. But it is important to Cassirer’s ar-
gument to establish that these trends were already underway
within classical physics.

This selective epistemological reading of Kant is informed by
critical analysis of conceptual transformations within modern
physics, i.e., relativity and quantum theory. In place of focusing
on the a priori Kantian category of causality and an alleged ne-
cessity to structure experience in terms of the relation of cause
and effect, Cassirer proceeded from the standpoint of “a scien-
tific clarification of causality” by pointing to the “general laws”
of physics, e.g., of gravitation, hydrostatics and hydrodynamics,
etc. These are “the proper components of the assumed causal
relations”. But unlike the concept of cause, all too easily and
dogmatically taken to be applicable to “things”, the mathema-
tized laws of physics possess their “own symbolic language,
which is far removed from the language of ‘things’” (2004, 31;
1956, 22). Distancing critical philosophy from the metaphysical
trappings inherent in the very concept of cause, Cassirer drew
from the Transcendental Dialectic and its treatment of the role
of reason in the construction of science, employing a purely
methodological notion of causal principle. And he showed that
within classical physics, Helmholtz in particular, clearly under-
scored that the operative significance of the causal concept is
found within the regulative principle of a “general conformity
to law” (2004, 75–78; 1956, 61–64). To motivate this otherwise
surprising claim, Cassirer has already argued in the book’s first
chapter (2004, 9–18; 1956, 3–10) that the causal concept of clas-
sical physics is in any case not at all adequately captured by a
Laplacian ideal of causal determination that, everyone agreed,
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utterly fails in quantum physics. Rather, and contrary to the
usual assumption, the Laplacian ideal within classical physics
itself is largely an inapplicable metaphysical fiction, not an em-
pirically attestable notion. To the extent that it finds limited
application there, it is seen to pertain to systems that can be
treated as highly idealized point masses or perfectly rigid bod-
ies; however, it is neither required nor implementable in systems
that cannot, i.e., in many classical physical theories. Hence the
causal concept applicable in both classical and quantum physics
is better expressed by the demand for order according to law, in
accordance with the regulative principle of unity of knowledge
of nature.

Architectonic isomorphism of statements of
classical and of quantum physics

The methodological reformulation of the causal principle shifts
its significance from things and events to a requirement of ade-
quacy for cognition in natural science. Thus the “general prin-
ciple of causality” expresses a regulative demand for order ac-
cording to law. As a proposition, it occupies the innermost core
of a structure of physical statements common to both classical
and quantum physics (2004, 37–87; 1956, 29–70). For both the
structure is “not a pyramid” but a Parmenidean “well-rounded
sphere” (2004, 45; 1956, 35) of onion-like concentric layers in
which distinct types of physical statement emanate outward.
The spherical image, while spatial, is to be interpreted as stand-
ing for the functional relations between the different kinds of
statements. The general causal principle at the center contains
the postulate of “comprehensibility of nature”, mandating the
formulation and description of observable events in mathemat-
ical language (2004, 226; 1956, 188). This is also a requirement to
search for more and more general laws governing the phenom-
ena; it does this by regulating dynamical transitions or “jumps”
(“µεταβασις εις αλλo γενoς”) (2004, 71; 1956, 57) between the

other layers, whereby statements in one layer are informed by,
revised by, or derived from, those in another.

Naturally, the particular statements of classical and quantum
physics in their respective layers differ in detail. Outermost in
both are statements of measurement and observation; in quan-
tum mechanics these are statistical statements of possible mea-
surement outcomes informed by the Born rule. Working inward,
the next layer in classical physics is comprised of particular
force laws (Newton, Maxwell-Lorentz), the statistical laws of
gas theory (e.g., the Maxwell-Boltzmann distribution law) and
the second law of thermodynamics, while in quantum mechan-
ics the corresponding layer contains both particular statistical
laws (Planck’s radiation law for blackbodies, the laws of ra-
dioactive decay for different elements) and the dynamical law
(Schrödinger wave equation) for quantum systems. Within each
layer of particular laws lies a further layer of meta-laws or phys-
ical principles; these are “basically nothing other than means
of orientation: means of surveying [Umschau] and gaining per-
spective [Überschau]” (2004, 67; 1956, 53). Initially physical prin-
ciples have only hypothetical validity, either in enabling deriva-
tion of particular force laws (in classical physics: the variational
principle of Hamilton, the principle of conservation of energy,
a prohibition of perpetual motion machines) or by informing
the interpretation of other statements (in quantum mechanics:
the Heisenberg uncertainty relations, the Born rule, unitarity,
the Pauli “Verbot” (exclusion principle), and “the Archimedean
point”, the Einstein-de Broglie relation E � hν of proportion-
ality between energy and frequency). But as these principles
inherit the ever-increasing confirmation of the particular state-
ments they inform or govern, they become more and more en-
trenched, effectively rendering them presuppositions of further
inquiry. One is understandably struck by the close similarity
to the more familiar Quinean “web of belief”: each layer (except
the innermost) is revisable from either direction. However, at the
center of the whole, the “general principle of causality”, under-
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stood methodologically as above, remains an a priori invariant,
not because it is grounded in our mental organization, but as a
“postulate of empirical thought”:

What it demands and what it axiomatically presupposes, is only
this: that the completion can and must be sought, that the phenom-
ena of nature are not such as to elude or to withstand in principle
the possibility of being ordered by the indicated process [dynam-
ical structure of physical statements, TR]. (Cassirer 2004, 74; 1956,
60)

Each layer, as well as the transitions between layers, presupposes
a methodological understanding of the causal principle. And so
at the center of both onion-like structures lies the regulative di-
rective to seek lawfulness (Gesetzlichkeit) in the connection of
experiences. In this way, the structure of law statements of clas-
sical physics can easily accommodate both the dynamical laws
of mechanics and electrodynamics and the statistical laws of gas
theory according to Maxwell and Boltzmann, whereas that of
quantum mechanics permits irreducibly statistical laws such as
the Born probabilities for measurement outcomes. According
to the purely methodological significance of the causal law, pe-
riod claims of a “crisis of the causal concept” could be shown to
be metaphysical statements hardly consistent with the overtly
non-metaphysical philosophy of nearly all quantum physicists.

Yet the principal epistemological departure from classical
physics required by the quantum theory is a far more radical
change than that resulting from the “critical” reformulation of
the causal concept discussed above. As noted above, in Cassirer’s
perspective the so-called “crisis of the causal concept” has far
more to do with a “crisis of visualization”, itself rooted in the
failure of Schrödinger and others to interpret the wave function
Ψ as pertaining to waves or other physical objects propagating
in physical space and time. The root of the difficulty lies in the
fundamental transformation of the very concept of physical state
itself. While the quantum mechanical concept of physical state

can be viewed in terms of an already underway transformation
of substance-concepts into functional concepts within classical
physics (say, from objects in space and time to events in space-
time), it cannot be seen merely as a further stage of that process.
It is something fundamentally new, and not a phase in the con-
tinued development of the classical concept of physical state.
After all, thing-attribute logic, criticized already in Substance
and Function, underlies the notion of physical state in classical
physics. That notion presupposes an “axiom” of classical logic
that “the state of a thing in a given moment is completely deter-
mined in every way and with respect to all possible predicates”
(2004, 226–27; 1956, 188–89).

The reader is reminded that Kant’s “ideal of pure reason”
(A574/B602) rests upon the metaphysical “principle of thor-
oughgoing determination” (A571/B579) essentially identifying
the two concepts of “reality” and “complete determination”.
Elaborating Cassirer’s exposition a bit, recall that the “object”
of classical physics is a bearer of determinate properties, and
that in classical physics it is taken for granted that properties
refer to a definite class of physical quantities, with values lying
in specified ranges. The epistemological question concerning
knowledge of properties of an object is answered by measure-
ment, a particular type of interaction designed to display the
value of a specific physical quantity that, as a property of the
object, is intrinsically attached to the object (at a given time)
independently of the measurement interaction. (“Perfect” mea-
surements in classical physics are an allowable ideal.)23 Some
properties of an object are not inherent but “change in time” in a
deterministic manner, i.e., knowledge of the laws and a sufficiently
complete set of properties of an object at one time t1 suffices to
predict with certainty the values of the properties at any later

23The separation of observer and system has no fundamental significance in
classical physics; both are considered parts of a single, objectively existing
world, potentially describable by the same laws.
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(or earlier) time t2. Given deterministic laws, failure to predict
the behavior of the object with certainty at t2 is accorded as due
to an incomplete knowledge of the object’s properties at t1. In
broader compass, the concepts of physical quantity and property
are encompassed in the notion of the space S of states of a system
of one or more objects, with the understanding that, at a given
time, a unique state s ∈ S can be assigned to the system. A state
assignment must satisfy the condition that the specification of a
state s at any time suffices to determine the values of all physical
quantities belonging to the system, and that the state at any time
t2 is determined uniquely by the state at any earlier time t1.

On account of the principle of superposition as well as due
to the limitations on simultaneous assignment of precise values
of conjugate observables formulated by the Heisenberg uncer-
tainty relations, the notion of physical state in quantum mechan-
ics has been radically transformed. In orthodox views of quan-
tum mechanics, a quantum object does not possess the form of
spatiotemporal connection taken over from macroscopic objects
characterizing the classical notion of physical state, of occupying
a definite point of space at a definite moment of time. According
to the principle of superposition, a quantum object is in gen-
eral not in a determinate (eigen-) state at a given time, unless it
has been put into a definite state by a preparation process (e.g.,
passing through a Stern-Gerlach device) or as an outcome of
measurement. The superposition principle also entails that the
part-whole relations of quantum systems are completely dif-
ferent from those of classical systems; e.g., knowledge of the
separate states of the component quantum systems Ψ1 and Ψ2

at time t1 does not determine the state of the joint system Ψ12

that, in general, is a superposition at t2. The notion of physi-
cal state is further constrained by the Heisenberg uncertainty
relations setting bounds on what can be simultaneously known
about an object’s canonically conjugate quantities with obvi-
ous implications for what can be predicted about the object’s
state at a later time. Within quantum mechanics only statistical

predictions of outcomes of measurements are possible. In fact
the very notion of an “individual” object has been transformed
and the different families of quantum objects (fermions, bosons)
require the distinct non-classical methods of quantum statis-
tics, of determining “what is to be counted as ‘one’” (2004, 225;
1956, 187). All of this naturally demonstrated to Cassirer that
quantum mechanics indeed has taken a decisive further step
in the functionalization of the concept of a physical state. But
this transformation can also be regarded from the standpoint of
symbolic forms where its radical nature is given full recognition.
From this perspective there occurs a decisive qualitative step, a
“µεταβασις εις αλλo γενoς”, the transition to a different mode
of symbolism. It is here that the expanded outlook of the phi-
losophy of symbolic forms signals a departure from Marburg
Erkenntniskritik and it is here that a confluence of Cassirer and
Dirac occurs. To see this, it will be necessary to briefly elaborate
motivating factors of the philosophy of symbolic forms.

5. Philosophy of Symbolic Forms

In the final chapter of the 1921 monograph on Einstein’s theory
of relativity, after considering the “methodological meaning”
of Minkowski’s postulate of an “absolute world” of space-time
events, the discussion takes a sudden turn. Cassirer’s topic shifts
to a distinction between “theoretical scientific knowledge” and
“other form- and meaning-connections of independent type and
independent lawfulness” (1921/2001, 112; 1953, 446). Whereas
Substanzbegriff und Funktionsbegriff and the relativity monograph
assumed the characteristically narrow focus of Erkenntniskritik
on exact science, Cassirer now vastly expands its scope. A “truly
general Erkenntniskritik” will have to investigate, besides theo-
retical knowledge, other forms of understanding of the world,
ethical, aesthetic and so on, each incommensurable with any
other, and each insufficient in itself to completely grasp and
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bring to adequate expression “actuality” (Wirklichkeit) as such.
The study of the transformation in exact science from concepts
of substance to those of function, i.e., to relations, and operations
on relations, becomes the study of various and complex systems
of symbols, the symbolic forms through which a synthetic view
of the world is constructed, in myth, religion, language, art and
science. Yet the notion of a determinate totality of forms of un-
derstanding still exists as a regulative idea, opening the door to
the possibility of a systematic philosophy that will grasp and
elucidate the “totality of symbolic forms” (das Ganze der symbol-
ischen Formen) and their possible interrelations (1921/2001, 113;
1953, 447). The development of such a systematic philosophy of
culture became the project that occupied most of the remainder
of Cassirer’s life.

More closely considered, the mandate of this generalized
Erkenntniskritik is to investigate the symbolic forms constructed
by the processes of mind (Geist) across the entire spectrum of
culture. The philosophy of symbolic forms seeks to identify the
formative patterns by which “the energy of mind” (Energie des
Geistes) attaches specific meaning-content to signs and symbols
in language, the mythical-religious world, the arts, as well as
in the human and natural sciences. In every domain of culture,
mental constructive activity reveals that “consciousness is not
satisfied to receive an impression from outside, but rather that
it permeates and connects each impression with a free activ-
ity of expression [mit einer freien Tätigkeit des Ausdrucks].”24 The

24See Cassirer (1923a, 79):

Unter einer „symbolischen Form” soll jede Energie des Geistes verstanden
werden, durch welche ein geistiger Bedeutungsgehalt an ein konkretes
sinnliches Zeichen geknüpft und diesem Zeichen innerlich zugeeignet
wird. In diesem Sinne tritt uns die Sprache, tritt uns die mythisch-religiöse
Welt und die Kunst als je eine besondere symbolische Form entgegen. Denn
in ihnen allen prägt sich das Grundphänomen aus, daß unser Bewußt-
sein sich nicht damit begnügt, den Eindruck des Äußeren zu empfangen,
sondern daß es jeden Eindruck mit einer freien Tätigkeit des Ausdrucks
verknüpft und durchdringt.

overarching assumption of the philosophy of symbolic forms is
that the objective reality of things (as normally considered) will
be seen to be a world of meanings, of self-created signs and im-
ages. Thus this mode of inquiry takes a recognizable Copernican
turn, reversing the traditional “striving of ontology to transpose
problems of meaning into problems of pure being”.

The first volume of The Philosophy of Symbolic Forms (PSF),
subtitled “Language”, appeared in 1923. The “Introduction”
restates the problem of the new Erkenntniskritik to be that of
surveying the special sciences, including the cultural sciences,
with the aim of discovering whether the “intellectual symbols”
by which specialized disciplines “consider and describe reality”
are merely autonomous, existing side by side, or whether they
are “diverse manifestations of one and the same basic human
function”. If the latter is confirmed, the task becomes that of
“setting out the general conditions of this symbolic function and
illuminating the principle” governing their concrete diversity.25
It is arguable that Cassirer did not find an adequate solution to
these questions until later, and that midway through writing the
second and third volumes of PSF (the latter completed in 1927,
published in 1929), his thought underwent a further “symbolic
turn”. Quite possibly as the result of his affiliation from 1922
to 1925 with art historian Aby Warburg’s Kulturwissenschaftliche
Bibliothek in Hamburg, Cassirer came to realize that “language
could not be taken as the prototype and model for a philosophy
of symbolism” (Krois 2011, 11). By at least 1925 Cassirer had

25See Cassirer (1923b, 6; compare 1955, 77):

[Die philosophische Kritik der Erkenntnis] muß die Frage stellen, ob die
intellektuellen Symbole, under denen die besonderen Disziplinen die Wirk-
lichkeit betrachten und beschreiben, als ein einfaches Nebeneinander zu
denken sind, oder ob sie sich als verschiedene Äußerungen ein und der-
selben geistigen Grundfunktion verstehen lassen. Und wenn diese letztere
Voraussetzung sich bewähren sollte, so entsteht weiter die Aufgabe, die
allgemeinen Bedingungen dieser Funktion aufzustellen und das Prinzip,
von dem sie beherrscht wird, klarzulegen.
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come to regard myth rather than language as the primordial
basis of human thought, realizing that the second volume of
PSF (1925), subtitled “Mythic Thought”, should have initiated
the series.

There is evidence, however, that the sought-for “principle”
relating the diverse forms of understanding, and hence unify-
ing the three published volumes of PSF, was not clearly for-
mulated until Cassirer (1927), a paper on the position of the
symbol problem in philosophy. Here for the first time Cas-
sirer outlined a kind of general parameter space (ein allgemein-
stes gedankliches Bezugssytem) intended to encompass all possible
symbolic forms. The space is constructed along three orthog-
onal axes of meaning function, expression (Ausdrucksfunktion),
representation (Darstellungsfunktion), and signification (Bedeu-
tungsfunktion). Each particular symbolic form is to be referred
to this space with the objective of fully describing and deter-
mining its “orientation” (Orientierung) (1927, 259). Also for the
first time Cassirer described how the third and highest sphere of
meaning function, one of “pure meaning” (reine Bedeutung), is
distinguished from the sphere of representation on the ground
of its complete independence of any intuitive shaping (Gestal-
tung), its symbolic force attained “so to speak (by) swimming in
the free aether of pure thought”. Signs possessing such a mean-
ing function neither express nor stand for anything; rather they
are “signs in the sense of mere abstract coordination [Zuord-
nung]”; not surprisingly, Hilbert’s axiomatization of geometry
is mentioned as the essential paradigm of this mode of meaning
function (1927, 261).

The third volume of Philosophy of Symbolic Forms, the last to
appear in Cassirer’s lifetime, is subtitled “Phenomenology of
Knowledge”; the intended sense of “phenomenology” corre-
sponds roughly to that employed by Hegel in outlining the dif-
ferent “shapes” of Geist. Of course, Cassirer’s target is not con-
sciousness per se but its manifestations partitioned by the three

modes of symbol formation mentioned above. The “shapes” of
symbol formation are the corresponding trends of objectifica-
tion, dynamically ranging from the primary subjective sources
of meaning in perceptive consciousness, through intuitive con-
sciousness and the representation of things in space and time,
up to objective theoretical-scientific knowledge and the realm
of pure meanings in modern axiomatic mathematics. Begin-
ning with expressive meaning, the primitive form of symbolic
meaning, each level serves as the precondition for the next
higher level. Expressive meaning invests experience with affec-
tive or emotional meaning, i.e., desire, fear, wonder, pleasure,
and is the meaning function underlying mythic and primitive
religious belief. Natural language is the principal vehicle for
Darstellungsfunktion, the representative function of thought. It is
the medium for understanding the everyday world of things in
space and time. As well, it gives rise to the logic of propositions
and the propositional copula by which properties are attributed
to objects, enabling reference to objects outside or beyond the
speaker’s location and so transmission of information. The final,
and highest, form of symbolic meaning is that of Bedeutungs-
funktion or significative meaning, the subject of the last third of
the volume.

The Pythagorean concept of number is viewed as the crucial
initial step in the development of the Bedeutungsfunktion since it
yields a number concept no longer based on any resemblance to
physical objects yet allegedly pertaining to true laws governing
the world of experience. For the first time a form of knowledge
arises firmly separated from perception and intuition. In fact,
significative meaning is presupposed in all scientific concept
formation but it is exhibited in its purely structural form only
within the “pure category of relation” (i.e., logic of relations).
Citing Russell’s facetious definition of mathematics as “the sub-
ject in which we never know what we are talking about, nor
whether what we are saying is true” (Russell 1901, 366), Cas-
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sirer recognized the Bedeutungsfunktion as yielding in the limit
a fundamentally distinctive type of symbolic functioning, pos-
sessing a specific meaning yet neither requiring nor allowing an
intuitive substrate or intuitive object. The illustrious precursor
of this ideal limiting form of the Bedeutungsfunktion is Leibniz,
“one of the most consistent exponents of the rigorously formal-
ist point of view” who recognized that “‘intuitive’ and ‘sym-
bolic’ cognition were not separate but indissolubly connected”
(1929, 444; 1957, 386). His ideal Characteristica Universalis as-
pired to be a calculus allowing the contentual composition of
any concepts to be expressed by purely abstract symbols that
are signs for primitive concepts where algebraic “operations
with ‘signs’ replace operations with ‘ideas’” (1929, 445; 1957,
386). A mathematically rigorous proof in this calculus would
convey the power of conviction by replacing a succession of dis-
tinct acts of thought (Denkschritte) with the pure simultaneity
of overview (Überblicks), the ideal limiting pole of understand-
ing and comprehension. Leibniz’s “proof theory” (Beweistheorie)
provides the ideal of such an achievement, one can be attained
only by symbolic thinking, an ideal that . . .

. . . by its very nature . . . does not operate with the thought con-
tents themselves, but associates a definite sign to each thought
content and by virtue of this coordination achieves a compression
[Verdichtung] through which it becomes possible to concentrate all
the terms of a complex chain of proof into a single formula, and
embrace them in one glance as an articulated totality. (Cassirer
1929, 447–48; 1957, 389)

Recent statements of Hilbert resurrect, and moreover provide
acute expression of, Leibniz’s fundamental idea. Recalling
Hilbert’s famous statement “in the beginning . . . is the sign” (am
Anfang . . . ist das Zeichen), Cassirer observed that Hilbert’s “Be-
weistheorie”, properly so-called, the formalization of logical and
mathematical reasoning for the purpose of attaining consistency
proofs of mathematical theories, similarly shifts the process of

“verification” from specific content to “symbolic” thinking (Der
Prozeß der „Bewährung” ist von der Seite des inhaltlichen Denkens
nach der des „symbolischen” Denkens verschoben) (1929, 437; 1957,
379). Signs are given first in sensuous intuition yet by their form
and rules of combination they make possible the clear display of
objects, in all their parts, concerning which inferences are made.
In this way signs of pure symbolic thinking emancipate thought
from “the dangers and ambiguities of mere reproduction” (1929,
448; 1957, 389).

The new type of symbolic meaning comes into play when the
meaning of a term is bestowed solely by its occurrence in a set of
axioms and their deductive consequences. The constructive na-
ture and activity of mind is best exemplified in the formation and
use of abstract symbols, defined within an axiomatic system or
symbolic calculus, precisely because the abstract relations reveal
an objectivity towards which theoretical knowledge progresses
and aims but can never be conclusively determined, establishing
the physical object only in the form of a “limiting idea” (Grenz-
idee) (1929, 552; 1957, 475). While implicit definition in pure
mathematics can be seen as the first instance of the limiting pole
of “pure meaning” of the Bedeutungsfunktion, Cassirer noted
already in 1927 that when the symbols of an abstract-formal
doctrine of relations pertain to knowledge of actual things (and
not to the ideal objects of mathematics), a new methodological
ideal is formed that alters the very meaning of natural scientific
cognition.26 So theoretical knowledge in natural science can also
be characterized as manifesting the same tendency to renounce
representation and all mediation of intuition, and to construct
a realm of meanings no longer bounded by the horizons of sen-

26See Cassirer (1927, 15): “[S]ondern wo [einer abstract-formalen Bezie-
hungslehre] auf die Wirklichkeitserkenntnis übergreift und diese dem neuen
Ideal gemäß bestimmt. Man kann sagen, daß es eben diese methodische
Neubestimmung, diese veränderte Grundansicht vom Sinn des Naturerken-
nens und von den Mitteln, deren es sich zu bedienen hat, gewesen ist, die die
Krisis in der modernen mathematischen Physik herbeigeführt hat.”
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suous experience or intuition. The symbolic spaces of axiomatic
mathematics and mathematical (theoretical) physics then can be
considered functional spaces of “pure meanings”.

Cassirer and Dirac

Within the expanded outlook of the philosophy of symbolic
forms, Cassirer allowed in the “Foreword” of DI that in its “fun-
damental tendency”, his former position is retained, except that
the tendency is now expressed “more in the form of a general
question than in particular answers”. Further explicit reference
to the “general question” as such is absent from the text of DI.
Yet the “general question” does emerge in Cassirer’s admission
in the book’s penultimate chapter that “the essential problems
posed by quantum mechanics for epistemology” concern not
“the category of cause and effect” but that of physical state,
i.e., “thing and attribute, of substance and accident” (2004, 226;
1956, 188). Recalling the discussion above, the Darstellungsfunk-
tion is the mode of symbolic function underlying the notion of
“state” in classical physics, the predication of spatial, temporal
and other definite properties to an object. In classical physics, as
well as in both empiricist and rationalist epistemologies, talk of
causal determination, and even of what a “thing” is, presuppose
that at a given time specified properties or attributes definitely
do, or do not, inhere in an object. In the new sense of “state” of
quantum mechanics, this kind of absolute determination has to be
abandoned. With the transformation of the concept of “state”
of a system by quantum mechanics, the general question then is
“with what justification can we presuppose such a ‘state’ when
knowledge lacks every access to it” (2004, 232; 1956, 193). This
new notion of “state” remains a determination by law, but it is a
relative determination of being; nothing is “in itself” that is not
“for us”, i.e., can be expressed as physical knowledge in some
sense. By satisfying the specified quantum conditions, the new

mode of determination reverses the relation between “thing”
and “attribute”:

This type of determination dictates limits to the “being” [Sein] that
we can attribute to things in nature; it is not the in itself determined
being [Sein] that sets permanent limits to knowledge and remains
impenetrable in its absolute intrinsic nature [absoluten Wesenheit].
(Cassirer 2004, 232–33; 1956, 194)

Both Dirac and Cassirer appreciated that the more abstract ap-
proach to the notion of state had been initiated in the special the-
ory of relativity by the use of Lorentz transformations between
inertial frames, and then greatly extended by the requirement
of general covariance in general relativity.27 Just as the same in-
trinsic relations between space-time events are independent of
particular coordinate designations, so the canonical transforma-
tions of Dirac’s quantum mechanics are transformations from
one representation of observables to another representation of
the same abstract state. In referring to the new notion of “state”
in quantum mechanics, each recognized the further significance
of the “symbolic method”. On account of the Heisenberg uncer-
tainty relations and the principle of superposition, the notion of
“state” must not and cannot be associated with cognate classical
concepts, nor with intuitive content; rather, it is best considered
only in terms of abstract symbols. As noted above, Dirac’s book
exposited quantum mechanics from the standpoint of an abstract
“symbolic method” on the ground that the theory’s concepts
“cannot . . . be explained adequately in words at all” (Dirac 1930,
v). Strong evidence that Cassirer was impressed by Dirac’s use
of the symbolic method is found in DI’s concluding statement

27In general relativity, the mathematician naturally uses coordinate-free ge-
ometrical methods but the physicist learns the theory by solving problems in
a convenient preferred choice of coordinate system (e.g., the spherical coordi-
nates of the Schwarzschild solution), knowing that other coordinate systems,
though often impractical, are in principle equally valid. For a clear discussion
of the issues here, see Zalaletdinov, Tavakol and Ellis (1996).
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of the methodological tendency in quantum mechanics towards
abstract symbolism; Cassirer’s text is a virtual paraphrase of the
corresponding passage in Principles of Quantum Mechanics.28

At this point it will be apparent how Dirac’s textbook presen-
tation of quantum mechanics, in particular, Dirac’s emphasis
on the novel transformation of the notion of physical state and
on the epistemic value of using abstract symbolic methods to
express this new state of affairs, resonates with an overarching
theme of Cassirer’s philosophy of symbolic forms. For this rea-
son, presumably, DI praised Dirac for placing the principle of

28See Cassirer (2004, 234–35; 1956, 195):

Modern quantum mechanics thus tended more and more to begin by not
positing definite realities, which are subsequently brought into relation
with each other, but . . . starts out with the establishment of certain symbols
expressing the state and the dynamic variables . . . From these, on the basis
of definite axiomatic presuppositions, other equations are derived, and
physical consequences drawn from them. At first it is not necessary to
dwell on the exact significance of the symbols in a particular case. Only
at a later stage of consideration are the representations of the abstract
symbols examined—in other words things and attributes are examined
which satisfy the rules valid for the interrelationship of the symbols.

Compare Dirac (1930, 18):

We introduce certain symbols which we say denote physical things such
as states of a system or dynamical variables. These symbols we shall use
in algebraic analysis in accordance with certain axioms which will be laid
down. . . . A typical calculation in quantum mechanics will now be run as
follows: one is given that a system is in a certain state in which certain
dynamical variables have certain values. This information is expressed by
equations involving the symbols that denote the state and the dynamical
variables. From these equations other equations are then deduced in accor-
dance with the axioms governing the symbols and from the new equations
physical conclusions are drawn. One does not anywhere specify the exact
nature of the symbols employed, nor is such specification at all necessary.
They are used all the time in an abstract way, the algebraic axioms that they
satisfy and the connexion between equations involving them and physical
conditions being all that is required. The axioms, together with this con-
nexion, contain a number of physical laws, which cannot conveniently be
analyzed or even stated in any other way.

superposition at the center of his exposition of quantum me-
chanics, thus underscoring the fundamental transformation of
the concept of physical state. The new notion shows that quan-
tum physics has abandoned the old mode of absolute determi-
nation, connected as it is with the symbolic form of classical
physical theory (Darstellungsfunktion), and in its place adopted
the principle of relative determination, one that manifests the
abstract level of symbolic functioning of the Bedeutungsfunktion,
bounded as it is by the Heisenberg uncertainty relations and de-
pendent on the mode of observation employed. To be sure, light
or matter can be “pictured” as a wave or a particle, but neither
can be represented as a “thing” in the classical sense, something
absolutely determined in itself independently of the instruments
of observation. Nonetheless the relative mode of determination
of quantum mechanics remains the “highest degree of relative
determination of which physical knowledge is capable”. With
reference to §§3–4 of Dirac’s book, Cassirer elaborates:

For if for the definition of a physical system we allow only such el-
ements of determination as satisfy the conditions expressed in the
uncertainty relations, if we are satisfied with “maximal observa-
tions”, i.e., with the greatest number of independently compatible
observations, then we can bring these into a sharply defined rela-
tionship with each other. We can then establish the theorem [Satz]
that when a maximum observation of a physical system is made,
its subsequent state is completely determined by the result of this
observation—and this theorem can be employed as the axiom to
express what we regard as the ‘state of a system’ in the sense of
atomic physics. (Cassirer 2004, 230; 1956, 191–92)

As an ensuing quotation from Dirac (1930, 9) makes clear,
the “complete determination” referred to above is in general
probabilistic, where in special cases the probability may be
unity. In any case, the relative determination of the quantum
state by measurement results from the Heisenberg uncertainty
relations’ placement of epistemic “conditions of ‘accessibility’
[Zugänglichkeit]” on any attribution of physical properties to an
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object. Abiding the transcendental formula, “the conditions of
the possibility of experience are the conditions of the possibility
of the object of knowledge”, in Cassirer’s epistemological exam-
ination of quantum mechanics, the “conditions of accessibility”
are “conditions of the objects of experience” (2004, 214; 1956,
178–79). By formulating “conditions of accessibility” restricting
physical knowledge to attestable phenomena rather than meta-
physically latent properties, the Heisenberg uncertainty rela-
tions acquire a “purely critical meaning” (rein kritischen Sinn)
in place of the skeptical message they appear to have from the
standpoint of the classical concept of physical state (2004, 233;
1956, 194).

6. Conclusion

The philosophies of both Cassirer and Dirac have a common
influence; both were strongly influenced by Hilbertian abstract
axiomatic pure mathematics. Yet for each, symbolic methods ac-
quire heightened significance in the context of physical theory,
encompassing “actual things” of physics rather than ideal ob-
jects. From the perspective of the philosophy of symbolic forms,
Dirac’s Principles of Quantum Mechanics exemplifies the Bedeu-
tungsfunktion’s fundamental impetus even as symbols pertain
not to ideal objects, but to objects of experience. In particular,
this impetus is to renounce any concept of meaning tied to sen-
suous presentation, intuition or spatial-temporal representation,
and to create in its stead a new domain of “pure meaning” that
“swims in the free aether of pure thought”. To Dirac, the “sym-
bolic algebra of states and observables” is particularly suited to
quantum mechanics because it treats of matters that “cannot . . .
be explained adequately in words at all.” For Cassirer, Dirac’s
symbolic method provides palpable evidence that the problem
of objectivity in contemporary physical theory can no longer be

viewed in terms of the representation of objects, but itself has
become a “pure problem of meaning”. What is termed the object
of knowledge “is no longer a schematizable, intuitively realiz-
able ‘something’ with definite spatial and temporal predicates
(but) a point of unity . . . a mere ‘X’ in relation to which repre-
sentations have synthetic unity” (Cassirer 1929, 549; 1957, 473).
This development has been made possible through the use of
abstract symbolic methods, a terminus ad quem or limiting case
of “pure meaning” that oversteps the bounds and limitations of
intuition and representation.

Cassirer’s reorientation of Erkenntniskritik through the philos-
ophy of symbolic forms sought to bring epistemological inves-
tigations of the exact sciences into the vastly broader orbit of
an attempt to theoretically grasp how signs, invested with spe-
cific meaning through their cultural function, are created, ex-
pressed and interrelated. Mathematics and theoretical physics
are no longer an exclusive focus; rather they are but aspects
in a phenomenology of knowledge, although they remain “the
highest and most characteristic attainment of human culture”
(Cassirer 1944, 207). The widened perspective does not, and
should not, imply that epistemology take no further interest in
particular problems within the special sciences. But the param-
eters of such investigations have been enormously expanded.
They are no longer to be considered solely in autonomous isola-
tion, insulated from other domains of culture where other, and
culturally earlier, modes of symbolic expression are exclusively
found. While not losing sight of the specific scientific details,
epistemological investigations in physical science are also to be
viewed in relation to these other cultural manifestations of sym-
bolic representation, receiving illumination from, and in turn
illuminating, other symbolic forms. It is from this perspective
that Cassirer could recognize the traditional “striving of ontol-
ogy to transpose problems of meaning into problems of pure
being” and attempt to reverse it.
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