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Abstract : As is well know from Einstein (1905) the choice of a criterion
for distant simultaneity is equivalent to stipulating one-way speeds for the
transit of light. It is shown that any choice of non-standard synchrony
is equivalent to a Lorentz local time boost. From this and considerations
from the hole argument, it follows that there is a non-trivial sense in which
distant simultaneity is conventional, at least to the extent that the “gauge
freedom” arising in the hole argument is non-trivial.

1. Introduction

At the beginning of the ‘Kinematischer Teil’ of Zur Elektrodynamik bewegter Körper ,
Einstein intimates that the method he suggests for synchronizing distant, stationary clocks
is arbitrary, and thus that there is no fact of the matter as to the one-way speed of light
on which it is based (Einstein 1905). The universal constant c is given by experience
only as the average round trip speed of light. His early philosophical admirers, Schlick
(1917) and Reichenbach (1924, 1928), highlighted the conventional character of distant
simultaneity as the keystone to the theory. Later, Grünbaum (1963, 1973) argued for the
need of a conventional definition based on the causal theory of time. These defenders
of Einstein took as their principal opponents those who, pace relativity, maintained that
distant simultaneity is absolute.

More recently it has been claimed that, although simultaneity is relative to the choice of
inertial frame, nonetheless, given an inertial frame, it is not a matter of convention as to
whether two events are simultaneous. It is a matter of fact that the one-way speed of light
(in vacuo) is always c. This view has been especially fueled by Malament’s (1977) result
the only non-trivial simultaneity relation definable from the causal structure of Minkowski
spacetime has for its equivalence classes the hyperplanes orthogonal to the world lines at
rest in the inertial frame in question. Norton (1992) sees this as “one of the most dramatic
reversals in debates in the philosophy of space and time” (p. 194). Despite this, Grünbaum
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(2009) and other defenders of the conventionality thesis have not been persuaded.1 As
Allen Janis puts it in his Stanford Encyclopedia entry (2010) on the topic, “The debate
about conventionality of simultaneity seems far from settled, although some proponents on
both sides of the argument might disagree with that statement.”

In what follows, I offer a new take on the problem which has the merit of nailing the
exact sense in which simultaneity is conventional. It is conventional in precisely the same
sense in which the gauge freedom that arises in the general theory of relativity makes the
choice between diffeomorphically related models conventional. In fact, the account given
here can be seen as nothing more than a variant of the hole argument. If the rationale is
not Einstein’s of 1905, it is at least a rationale Einstein could have, and maybe should have
given after 1915. Nonetheless, the Problemstellung is taken from the Einstein of 1905.

2. Initial Conditions

Recall the very first steps Einstein takes in developing the kinematics of special relativity
in the first section of Zur Elektrodynamik bewegter Körper (Einstein 1905). Initially, we
are granted an inertial frame F , “a coordinate frame in which the equations of Newtonian
mechanics hold.” Think of this as just an inertial fibration of an <4 manifold. Next,
Einstein specifies the use of rigid rods and Euclidean geometry in order to assign position
coordinates to a material point at rest. Since we want to do without coordinates to the
extent we can, think of this as the assignment of a Euclidean metric hab on the space F
of fibres. Finally, Einstein populates his inertial frame with stationary clocks of identical
constitution [von genau derselben Beschaffenheit ]. Thus, we have a temporal metric θA on
each fibre A ∈ F .

Granted this much, which we will call the Einstein frame-structure, it remains impos-
sible to describe a material point in motion. As Einstein puts it, we so far have defined,
for fibres A and B, only an ‘A-time’ and a ‘B-time’, but no ‘common time’ for A and
B. Famously, such a ‘common time’ arises by stipulating by definition [durch Definition
festsetzt , emphasis Einstein’s] that it takes the same amount of time for light to travel from
A to B as from B to A.2

In slightly more detail, suppose at the ‘A-time’ tA a light ray is sent from A to B, at the
B-time tB is reflected from B towards A, and at the A-time t′A arrives back at A. Then
the two clocks run synchronously by definition [definitionsgemäß] if

tB − tA = t′A − tB.

Presumably, though, this is an arbitrary choice. It could have been stipulated, alternatively,
that it takes twice the time for light to go from A to B as from B to A, or half the time,

1For a bibliography up until 2006, see Jammer (2006).
2Einstein (1917) reads “[whether it takes the same amount of time] is in truth no assumption or hypothesis

about the physical nature of light, but a stipulation that I can make at my discretion in order to arrive at
a definition of simultaneity.” (p. 15, translation mine, emphasis in original)
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or any given ratio you will. That is, in the equation

(1)
tB − tA
t′A − tB

= α

any choice of α ∈ <+ is just as legitimate as any other. There is no fact of the matter to
be captured, at least according to Einstein. And presumably, Einstein’s only reason for
choosing α = 1 is descriptive simplicity.

If we set

(2) ε :=
α

1 + α
,

we retrieve the familiar Reichenbach equation

tB = tA + ε(t′A − tA).

For Einstein’s stipulation of α = 1, equation (2) implies ε = 1/2, and since α must be
positive ε is constrained to lie in the open interval (0, 1). All this is familiar. But rather
than following the tradition that begins with Reichenbach, I would like to set out along a
slightly different path.3

3. From Times of Transit to Local Time and Back

Suppose we have two pairs of clocks at A and B, one pair synchronized according to the
Einstein stipulation α = 1, the other pair synchronized non-standardly. (If you like, for the
sake of definiteness, take α > 1. But nothing hinges on this in what follows.) How do the
two systems of ‘common’ time, let us say t for the standard and τ for the non-standard,
compare with one another?

When light is emitted from A, we can, without loss of generality, set tA = 0 = τA. Let
d be the distance from A to B. Since the two clocks at A are supposed to be of identical
constitution, it follows that t′A = 2d/c = τ ′A. So the question is, how do the clocks at B
compare? Plugging these values for t-time at A into equation (1) for α = 1 yields tB = d/c,
as expected. Doing the like for τ -time gives

τB − 0
(2d/c)− τB

= α,

or
τB =

2α
α+ 1

· d
c
.

Thus,

τB − tB =
α− 1
α+ 1

· d
c
.

Now let us suppose that the interval between A and B lies along the positive x-axis with
A at the origin. Suppose that α 6= 0 only along the x-axis, and furthermore suppose that
α is not a function of x. If we set

v :=
(

1− α
1 + α

)
c,

3For a reevaluation of Reichenbach’s conventionality thesis, see (Rynasiewicz 2003).
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and now let x be the distance between the clocks, then

(3) τB = tB − vx/c2.

This is Lorentz’s equation for local time in the Versuch (1895).
Conversely, a choice of v in the equation for local time determines a unique value

α =
(

1− v/c
1 + v/c

)
in the fundamental equation

tB − tA
t′A − tB

= α.

Thus, any choice of simultaneity criterion is equivalent to the choice of a velocity in
Lorentz’s equation for local time. I’m inclined to think that this equivalence is too ele-
mentary for Einstein to have missed and that there is an historical story to be told here.
But that is not the concern at present. Rather, local time affords us a standard point
mapping whose action on Minkowski spacetime is equivalent to stipulating a different si-
multaneity criterion.

4. The Action of Local Time

Let M = 〈E4, η〉 be a Minkowski space-time, i.e., E4 is a manifold diffeomorphic to
<4 and η is a Minkowski metric on E4. Choose some inertial fibration F of M, and let
C = (t, x, y, z, ) be a global chart adapted to F in which

ηµν =


c2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Finally, let d : E4 → E4 be a diffeomorphism such that for all p ∈ E4,

t(dp) = t(p)− (v/c2)x(p)(4)
x(dp) = x(p)(5)
y(dp) = y(p)(6)
z(dp) = z(p).(7)

The action of d on various geometrical objects is as follows. First of all, d maps each
fibre A ∈ F to itself. For these are world-lines with constant coordinates independent of
t. Second, since each fibre is mapped to itself, d maps hab to itself. Third, for each fibre
A ∈ F , the temporal metric θA is mapped to itself. For θA registers only time differences,
and d does not shrink or expand time intervals. In other words, d preserves all of the
Einstein frame-structure.
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However, d is not an isometry of M. It does not preserve the Minkowksi metric. Specif-
ically,

d∗ηµν =


c2 0 0 v
0 −1 0 0
0 0 −1 0
v 0 0 −(1− v2/c2)

 .

Not only is d not an isometry, it is not a conformal mapping. It does not map light cones to
light cones. The image of the forward light cone at the origin, which satisfies the equation

t = ±
√
x2 + y2 + z2

c
,

maps to a cone tilted to the left along the x-axis, satisfying the equation

(8) t =
vx

c2
±
√
x2 + y2 + z2

c
.

The degree of tilting is easier to read if one restricts equation (8) to the x-t plane by setting
y = 0 = z. Then the equations for the rays in the positive and negative directions are,
respectively,

t = (1 + v/c)
(x
c

)
and

t = (1− v/c)
(
−x
c

)
.

The tilting of the light cone is the result of choosing anisotropic speeds for light propagation
along the x-axis corresponding to the local time transformation (5).

What we have seen so far is that the Einstein frame-structure underdetermines the con-
formal structure of Minkowski spacetime. Does this vindicate Einstein’s claim to the effect
that there is no fact of the matter as to the ratio of the time out to the time back? After
all, the two Minkowski spacetimes M and d∗M = 〈E4, d∗η〉 share the same Einstein frame-
structure, but disagree on the speed of light along the x-axis. Is an arbitrary, stipulative
definition required to pick out one of these two isometric4 geometries over the other?

5. Interpretive Options

The options may become clearer if we pose the question in terms familiar from the
so-called hole argument. That argument proceeds by applying a diffeomorphism d to a
relativistic spacetime A = 〈M, g〉, where M is an arbitrary four-dimensional manifold, g is
a Lorentzian metric, and d is the identity map up through some given time but diverges
from the identity on some remaining region R ⊆M so that d∗g 6= g in R. One has at hand
two interpretive options.

Model Literalism: d∗A =df 〈M,d∗g〉 represents a physical situation distinct from
that represented by A.

4The isometry in question is just d. For d is a diffeomorphism of E4, and, trivially, d maps η to d∗η.
However, d is not an isometry (automorphism) of 〈E4, η〉 since d∗η 6= η as shown above.
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Gauge Equivalence: d∗A represents the same physical situation as that represented
by A.

Opting for model literalism saddles one to a commitment to indeterminism-no-matter-what
in classical field theory. For then we have two worlds that agree on the entire past prior
to R, but disagree on R. And the construction is completely general and applicable to
any relativistic spacetime. Thus, gauge equivalence is the reasonable interpretive option,
not just for instances where radical local indeterminism threatens, but for pairs of models
related by any diffeomorphism whatsoever. This is standard practice for working relativists.

Now the case of distinct Minkowski spacetimes related by a diffeomorphism is just a
special case of relativistic spacetimes in general. Indeed, in Einstein’s original hole argu-
ment [Lochbetrachtung ], the region R is a “matter hole” in which the stress-energy tensor
vanishes identically and the metrics inside R are Minkowskian. Gauge equivalence in our
case means that a pair of globally Minkowski metrics related by a local time transforma-
tion represent one and the same situation. Although they disagree on the layout of the
light cones on E4 and hence on the one-way speeds of light along the x-axis of chart C,
they nonetheless represent the same factual situation. Thus, on gauge equivalence, this
apparent difference is merely a formal difference — a difference in representation, not in
fact. Hence, the choice of one-way speeds of light is an arbitrary conventional choice.

It may be instructive to see what happens if one opts for model literalism. Suppose the
world is as special relativity portrays it. Then there arises a factual question as to whether
M or d∗M (or some other of the continuum of Minkowski spacetimes on the manifold E4)
correctly portrays the actual world. How might we find out which? You might think this
is just a matter of following how the light cones physically get traced out on E4. In order
to trace them out, though, we need some way of identifying which point is which. Why not
just rely on the chart C = (t, x, y, z) for this? Well, there is a complete symmetry between
M and d∗M. In chart C, model M represents the choice of standard simulaneity while d∗M
represents a non-standard choice, viz., one in which α = (1− v/c)/(1 + v/c). But in chart
C′ = (t− vx/c2, x, y, z) it is d∗M that represents the choice of standard simultaneity, while
M represents a non-standard choice with α = (1 + v/c)/(1 − v/c). Unless we are given
either M or d∗M to begin with, we cannot tell whether we are using chart C or C′. And
being granted M or d∗M at the outset simply begs the question. All that we would know
is that there is some chart in which the speed of light is isotopic, although we can never
know which. It would then be a cosmic coincidence if the choice α = 1 in chart (t, x, y, z)
selected the true one-way speeds of light.

6. Familiar Objections to Simultaneity by Convention

Having seen how the conventionality of simultaneity arises as a corollary to the hole argu-
ment, it is instructive to review the usual objections to the conventionality of simultaneity
to see just where they miss the mark.

6.1. Trivial Coordinate Freedom. Both Friedman (1983) and Norton (1992) have charged
that the conventionality thesis becomes trivial if all that it shows is that it is possible to
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use a coordinate chart corresponding to a non-standard choice of simultaneity. To quote
from Norton (1992),

Winnie (1970) showed that we can generalize a standard coordinate system
of special relativity to a new coordinate system with time coordinate tε
in such a way that events with equal tε are judged simultaneous by some
ε-criterion. It is sometimes thought that this fact by itself is sufficient
to vindicate the conventionalist claim. This is obviously false since all
that has been shown is that we can extend the covariance of the theory so
that it can use tε coordinate systems. We have seen that it is possible to
extend the covariance of the theory even further to general covariance, which
allows arbitrary coordinate systems. Indeed we have seen that we can give
generally covariant formulations of every spacetime theory considered so far.
If we can automatically read the t coordinate of any of these formulations
as giving a criterion of simultaneity, then we could vindicate the strangest
of simultaneity relations, including nonstandard simultaneity relations even
in Newtonian spacetimes. What is needed is some independent means of
arguing that the t coordinate of a given formulation does represent a possible
simultaneity relation, such as the causal theory of time seeks to provide for
tε. (p. 222)

We have not simply switched from a coordinate chart (t, x, y, z) in which the simul-
taneity relation is standard to a chart (t − vx/c2, x, y, z) in which that relation is non-
standard. Rather we have used that transformation to induce an active point mapping
of the Minkowski spacetime to a new Minkowski spacetime in which the simultaneity re-
lation is standard in the new chart (t − vx/c2, x, y, z). The indiscernability of the two
(isomorphic) spacetimes gives us an independent reason for arguing that there are different
possible simultaneity relations for a given Einstein frame-structure on the manifold.

The quote, however, raises another concern. Can’t we also use local time boosts in
Newtonian spacetimes to generate non-standard simultaneity relations? The answer to
this question depends on the physics we imagine in Newtonian spacetime. If light remains,
as Reichenbach called it, a first signal, i.e., an upper bound on causal propagation, then
we should expect the possibility of non-standard simultaneity relations. This replicates the
historical situation at the end of the nineteenth century. But if the physics includes, say,
Newtonian gravitation, then not. The reason is that then more is built into the original
frame-structure by relying on instantaneous gravitational signaling or clock transport. And
this addition to the frame-structure (which turns out to be nothing other than absolute
simultaneity) is not preserved under local time boosts. This is very different from simply
grafting coordinate charts onto the geometry.

6.2. Extra, Gratuitous Structure. It has seemed to many that if the speed of light is not
isotropic, then there must exist some additional, symmetry breaking spacetime structure
to define a preferred direction along which the speed of light is anisotropic. This is what
Friedman (1983) has in mind when he writes,
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. . . it is clear that if we wish to employ a nonstandard (ε 6= 1/2) simultaneity-
relation-for-σ we must add further structure to Minkowski space-time. For
example, to employ our “tilted” simultaneity relation we have to pick out
a distinguished spatio-temporal orientation that is not itself definable from
the (“isotropic”) metric g. This additional structure has no explanatory
power, however, and no useful purpose is served by introducing it into
Minkowski space-time. Hence, the methodological principle of parsimony
favors the choice of Minkowski space-time, with its “built-in” standard si-
multaneity, over Minkowski space-time plus any additional nonstandard
simultaneity. (p. 312)

This would be true if we attempted to define simultaneity only after having fixed the light
cone structure on spacetime. But as we have seen, the problem of defining simultaneity is
equivalent to the problem of determining how to draw the light cones in spacetime after
having been given an Einstein frame-structure on the spacetime, i.e., an inertial frame
with Euclidean geometry and an ensemble of identically constituted clocks at rest in that
frame. The speed of light is isotropic or anisotropic only with respect to a coordinate
chart adapted to that frame. This coordinate chart is not part of the intrinsic structure
of spacetime. As we have seen, if the speed of light is anisotropic in one coordinate chart,
there is a chart related to it by a local time transformation in which the speed of light is
isotropic.

6.3. Malament’s Result. By far the most influential objection has been based on a result
due to David Malament (1977). Again, quoting from Norton (1992),

We return to the conventionality of simultaneity . . . to see one of the most
dramatic reversals in debates in the philosophy of space and time. David
Malament has recently derived a theorem in special relativity which, he
urges, shows that the causal relations of special relativity do not leave the
simultaneity relation underdetermined and thus the relation cannot be set
conventionally within the causal theory of time. He shows that the only
nontrivial simultaneity relation definable in terms of the causal relations of
special relativity is the familiar standard simultaneity relation of ε = 1/2.
(p. 194)

Malament’s result, however, has simply been misapplied to the problem of the convention-
ality of simultaneity. For the result presupposes that we first fix the light cone structure,
i.e., the one-way speeds of light, and then ask what simultaneity relations are definable
from this. And obviously the standard relation is uniquely definable from this. The original
problem, however, was whether there is a unique way to draw in the light cones, given the
Einstein frame-structure. If we draw the cones in with anisotropic one-way velocities, that
also defines a unique, but non-standard simultaneity relation.

It may seem there is a paradox here. For doesn’t the causal structure fix the light cone
structure? Yes, it does. However, the Einstein frame structure does not fix the causal
connectability relation κ on the manifold. In his (1977), Malement set up his result by
using specifically the manifold <4. In a footnote he observes: “In a suitable second-order
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formal language containing a single two-place predicate symbol (for κ) one can formulate
a finite set of axioms every model of which is isomorphic to (R4, κ)” (fn 2, p. 300). What
do the other models isomorphic to (R4, κ) look like? Well, some of them can be on a
manifold that is not R4 but diffeomorphic to R4. That is one possibility. But what about
other isomorphic models on R4? There are as many of them as there are diffeomorphisms
of R4 modulo automorphisms. For let d be a diffeomorphism that is not a symmetry.
This induces a relation d∗κ such that p is d∗κ related to q if and only if d−1(p) is κ
related to d−1(q). Thus, one can have many different causal connectability relations on the
same manifold, all of which represent one and the same physical situation according to the
policy of “gauge equivalence.” The situation is no different than the initial value problem in
general relativity. The metric, including the conformal and causal structure, is determined
from the given Cauchy surface only up to a choice of gauge. The synchronization problem
is nothing more than a fixing of gauge for flat relativistic spacetime.

If you say that synchronization and the (one-way) speed of light is conventional, does this
not mean then that causal connectability is also conventional, and isn’t that a reductio of
your thesis? No. The proper thing to say is not that causal connectability is conventional.
For the physical facts expressed by the equivalence class of isomorphic models is certainly
not a matter of convention. However, the choice between the many different representa-
tions of causal connectability is conventional. And so it goes with simultaneity. There are
certainly things about the conformal structure of Minkowski spacetime that are not con-
ventional (e.g., that it’s flat). But the choice between the many different representations
of conformal structure on the manifold certainly is conventional, and what differs between
those various representations is the one-way speed of light in a given chart adapted to the
Einstein frame-structure. That is the exact sense in which simultaneity is conventional.

7. Conclusion

In what precedes I have offered a very different rationale for taking seriously the conven-
tionality of simultaneity than any that have appeared before. Choices of different standards
of simultaneity are equivalent to active boosts under local time. Active boosts under local
time preserve the antecedently given Einstein frame-structure but do not preserve light
cone structure, and hence one-way speeds of light. Yet models related by local time boosts
represent the same physical situation. Thus, the one-say speed of light does not have a
unique representation in spacetime.

While I tend to believe that Einstein was aware of the connection between local time and
the choice of simultaneity criterion in May or June of 1905, and even though he ultimately
resolved his Lochbetractung with gauge equivalence in 1915, he never, to my knowledge,
put the two together, even though the opportunity presented itself in 1916 when he drafted
his popular exposition of relativity (Einstein 1917). There he makes sufficient todo about
the conventionality of simultaneity (the reader should not read on without understanding
it), but the rationale is of an operationalist sort: the concept exists for the physicist only
if it can be determined in concrete cases whether or not the concept applies. Nonetheless,
gauge equivalence is just the cure for these verificationist impulses.
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Two issues remain. The first is, why are we restricted at the outset to Einstein frame-
structure? The easy answer is that that is all that Einstein gives us, and that my purpose
here is a limited one: to reconstruct rationally the sense in which Einstein claimed that
simultaneity is conventional. But the issue can be pressed further. Did Einstein take into
consideration all means available for fixing coordinate charts? I believe that if one consid-
ers the totality of what he understood to be granted in constructing charts in Newtonian
spacetime, Einstein frame-structure is all that can be rightly carried over to the relativis-
tic setting. It’s fairly easy to predict that anything richer that suffices to fix conformal
structure will have a convention built in equivalent to a choice of one-way light speeds.

The second issue is whether the sense given here in which simultaneity is conventional is
non-trivial. Now there are only examples of triviality but no criteria for triviality. Clearly,
it’s not trivial semantic conventionality. Nor is it trivial coordinate freedom. As indicated
earlier, it is basically a corollary of the hole argument, and so is no more trivial than the
recognition of gauge equivalence in general relativity. If the latter strikes you as trivial, I
suggest it’s only because you’ve run through the hole argument so many times that you
now find it humdrum. Good. If you find the conventionality of simultaneity similarly
unexciting, it’s only because it is now so obvious to you.
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[Grünbaum(1973)] . Philosophical Problems of Space and Time. Boston Studies in the Philosophy
of Science, vol, 12. Synthese Library. Dordrecht and Boston: Reidel, 1973, 2nd enlarged edition.
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