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Abstract The present paper deals with the problem of evaluating empirical

evidence for therapeutic decisions in medicine. The article discusses the views of

Nancy Cartwright and John Worrall on the function that randomization plays in

ascertaining causal relations with reference to the therapies applied. The main

purpose of the paper is to present a general idea of alternative method of evaluating

empirical evidence. The method builds on data analysis that makes use of rough set

theory. The first attempts to apply the method show that it is an interesting alter-

native to randomized controlled trials.

Keywords Rough set theory � Epistemology � Clinical evidence �
Randomized controlled trials � Causality

Introduction

Clearly, no one would deny the fact that clinical decisions need to be empirically

justified. The question is, what data can be regarded as a reliable empirical base?

With regard to therapeutic decisions, the contemporary approach to this issue has

been dominated by evidence-based medicine (EBM), which emerged in the 1990s.

This approach postulates a hierarchy of empirical evidence. According to EBM, the

most reliable data come from randomized controlled trials (RCTs), i.e., clinical

experiments. The data that come from non-experimental studies and from models
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describing causative mechanisms of therapy in basic sciences are regarded as

significantly less reliable. The last two decades have established the conviction that

the EBM approach provides the only correct evaluation of the empirical evidence

that is required for therapeutic decisions.

The postulate of a hierarchy of empirical evidence plays a crucial part in

contemporary medical practice. Although the postulate, being a strong epistemo-

logical thesis, requires appropriate justification [1, 2], the supporting argumentation

in the literature leaves much to be desired. The main problems concern the

privileged epistemological status of the data obtained in RCTs and the relation

between the results of these trials and the causal claims that specify clinical events.

These objections are my point of departure for developing new methods of

obtaining empirical evidence in medicine.

The purpose of this paper is to present a method of obtaining empirical evidence

for medical decisions that could be an alternative to RCTs. In this method, an

analysis of the clinical data is conducted with the use of rough set theory (RST). The

present article will show how applying this method allows one to determine the

causal relations of clinical events. The method thus appears to be an interesting

alternative to RCT research, in which determining causal relations is frequently a

problem.

Randomized controlled trials and the concept of probabilistic causality

In medicine, empirical data can be obtained in various ways. For quite a long time,

it was assumed that decisions regarding a therapeutic method ought to be justified

by theories and models from the basic sciences. Within this approach, therapeutic

decisions were based on knowledge from biochemistry, pharmacokinetics, patho-

physiology, and various findings from other basic sciences. They provided only

indirect empirical evidence: they were confirmed only insofar as the theories of the

basic sciences were also confirmed.

Direct empirical evidence, which concerns the effectiveness of a given therapy,

can be obtained via appropriately conducted clinical trials. Three major kinds of

trials can be distinguished: case–control studies, cohort studies, and RCTs. While

the first two are classified as non-experimental studies, the RCTs are valued highest.

In this type of study, a set of patients is randomly divided into an experimental

group and a control group. The appraisal of effectiveness consists in comparing the

effects of the therapy in the treatment group and the control group. An RCT can be a

double-blind study (neither the subject nor the doctor knows whether a real

treatment or a placebo is applied) or a single-blind study (either the subject or the

doctor does not know whether a real treatment or a placebo is applied).

The development of the EBM approach strengthened the conviction that RCTs

provide the most reliable empirical evidence for a therapy’s effectiveness. This

assumption is, nevertheless, a strong epistemological thesis. Consequently, it seems

advisable to investigate how the assumption is justified. John Worrall identifies four

major arguments put forward by the proponents of randomization [1]. Two of these

are particularly relevant to our analysis.
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The first one concerns the distribution of the confounding factors in the control

and experimental group. The uneven distribution of such factors can result in a

selection bias. The proponents of RCTs maintain that randomization guarantees an

equal distribution of both known and unknown confounding factors in the groups.

However, the opponents point out that an equal distribution of the known

confounders does not guarantee that randomization will provide an equal

distribution of the unknown confounders [1–4].

Another important argument in favor of randomization is formulated by the

proponents of probabilistic theories of causality. Here, the basic idea is that

probabilistic dependencies must have causal explanations [5]. Such a position is

embraced by David Papineau [6]. In his opinion, randomization guarantees that the

applied therapy is not itself objectively correlated with any other characteristics that

influence the recovery. Consequently, if it is ascertained that in randomization, the

probability of recovery (R) given the therapy (T) is greater than the probability of

recovery given the absence of the therapy (:T), i.e.,

PðR=TÞ[ PðR=:TÞ;

then one may also assume that T causes R [6].

Worrall opposes this argument by considering an example that is based on the

following assumptions:

(i) in the case of disease D, therapy T causes recovery R, iff factors f1, …, fi appear

in patient;

(ii) factors f1, …, fi occur very rarely in the population, and the doctors are not

familiar with them;

(iii) in the case of the absence of these factors, therapy T causes severe side effect

:R in a given patient.

(iv) an RCT has been conducted and randomization has led to an equal

distribution of the known and the unknown confounders in the experimental

and the treatment groups [7].

Nevertheless, due to the fact that factors f1, …, fi occur very rarely in the population,

it has been ascertained that:

gðR=TÞ\gðR=:TÞ; where g is frequency:

In this example, Papineau would suggest that the researchers should draw the

conclusion that therapy T is the cause of :R [6]. However, such a conclusion would

be wrong, according to Worrall, because of assumption (i). Worrall admits that the

example is unrealistic, but it nonetheless allows one to show that randomization

cannot provide a basis for causal claims.

In what follows, it will be argued that Worrall’s example is not different from

various cases that occur in actual medical practice. First, however, the example

supports an observation that will prove crucial for my further consideration:

S1: Establishing the causal relations between events T and R requires identifying

factors f1, …, fi, whose occurrence together with T will determine the occurrence of R.

Randomized controlled trials versus rough set analysis 273

123



Such an account of the causal relation has been endorsed by Nancy Cartwright [5].

In her probabilistic theory of causality, Cartwright assumes the following principle

for determining causal relations.

CC : T causes R iff PðR=T^KiÞ[ PðR=:T^KiÞ;

where Ki is a complete causal set for R (obviously apart from T) and Ki = {f1, …, fi}

[7–9].

When analyzing the issue, Cartwright introduces the concept of the ideal RCT [5,

8, 9]. An ideal RCT is characterized as research in which applying the procedure of

randomization causes an equal distribution of factors from set Ki in the treatment

and the control group. However, the problem is—as Cartwright notices herself—

that it is not clear how close the real RCT is to the ideal one [5, 10].

One more issue regarding the CC principle needs to be pointed out. The

confounding factors that appear in set Ki can have different values. Consequently,

certain values of the factors confounding therapy T may cause R, whereas other

values of the same factors may cause :R. Randomization ought to secure not only

an equal distribution of the confounders in both groups, but also an equal

distribution of the values of these confounders. Conducting ideal RCT would show

the essential advantage of randomization: it allows one to learn causal relations

without having to know what the possible confounding factors actually are, and how

they ought to be characterized [5].

The advantage that Cartwright points to is, nevertheless, rather illusive. The lack

of knowledge about the confounding factors is the major obstacle in preparing a

deterministic decision algorithm (DDA) for the particular patients. At most, one can

hope that the RCT’s experimental population was a representative sample of the

target population, and that the findings of the RCT will also be valid in the target

population.1 Yet, in this case, the findings concerning the target population are

merely statistical. One can, for example, ascertain the absolute risk reduction (ARR)

for an unfavorable clinical event. Once the value is determined, the number needed

to treat (NNT), i.e., the number of patients that have to be treated if one of them is to

be treated successfully, may be specified. Still, what is the value of such

information? Consider the following example. If on the basis of an RCT it is

established that NNT = 100, then this means that only 1 patient out of 100 will

benefit from the therapy. Without knowing the effect that the confounding factors

have on the therapy, one cannot ascertain what the benefits will be for any particular

patient.

The fact that we have a probabilistic theory of causality at our disposal is not of

much help if we do not know which patients will benefit from the therapy and which

will not. In order to establish that, we need to specify the set of confounding factors

and the range of values in which T causes R. Lack of knowledge about the

confounding factors can hardly be treated as an advantage of randomization. Neither

does randomization seem to be perceived in this way by clinicians. In clinical trials,

there is a clear tendency to narrow down the range of the population qualified for

trials due to the occurrence of certain known confounders. Moreover, one should

1 This is commonly discussed as the external validity issue; see for example [9].
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also bear in mind that clinical trials are frequently subject to further subgroup

analysis, in which the population under investigation is divided with regard to

certain special factors. Such analyses point to a tendency that is crucial in clinical

practice: from a clinical perspective it is important to specify what factors (and their

values) qualify the patient for a given therapy.

Summing up, we may say that randomization is conducted not because we are not

interested in the specification of the confounding factors, but rather because we have

no knowledge of these factors. By applying it, we hope that randomization will

enable us to make certain approximations about the effectiveness of the therapy,

precisely when no knowledge of these factors is available. These approximations

are, however, purely statistical. In medical practice, deterministic knowledge, i.e.,

knowledge that specifies for which particular patients applying a given treatment

will bring about the expected benefits, is highly preferred. This kind of knowledge

might be the basis for creating deterministic decision algorithms. I will now take a

closer look at this issue, using the basic rules regarding the classification procedure.

Classification and algorithms of therapeutic decision making

Assume there is a set U of certain objects. Making the classification of the elements

that belong to set U, one can distinguish its subsets in such a way that the following

conditions are met:

(i) the intersection of any subsets is an empty set, i.e., none of the objects can be

an element of more than one subset;

(ii) every object from set U must be an element of one of the subsets, i.e., the

union of the subsets equals U;

(iii) none of the subsets can be empty.

A simple example can be considered in which U = {a1, a2, a3, a4}. By

distinguishing subsets A1 = {a1, a2}, A2 = {a3}, and A3 = {a4}, the criteria for

classifying the elements in set U are met because (i) the subsets share no elements,

(ii) all the elements in set U are elements of one of the subsets, and (iii) none of the

subsets is empty.

One can now observe that the notion of classification can be easily applied to

situations regarding therapeutic practice, forming the basis for creating decision

algorithms. Suppose that there is a set of patients U who have been diagnosed with

the same disease D. These patients, suffering from the same condition, differ in the

values of additional attributes f1, …, fi. The values of some of these attributes

depend on the patients’ individual characteristics (age, sex, race, etc.), while others

can be the result of disease development. One can thus state that the values of

attributes f1, …, fi form a patient’s pre-therapy characteristics. Knowing these

values, one can classify patients from set U according to their pre-therapy

characteristics.

Assume, then, that different values of pre-therapy attributes influence the effects

of the therapy in particular patients (principle S1). Some experience a spectacular

improvement while others enjoy relatively small therapeutic benefits. Thus, taking
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into account the effects of the applied therapy, one can make a classification of

patients, mapping them to different recovery classes R1, …, Ri.

In an ideal situation, for each set of patients defined by the values of pre-therapy

attributes, one could map exactly one recovery class. In such a situation, S1 can be

expanded as follows:

S2: Establishing a deterministic decision algorithm (DDA) requires specifying the

values of the factors f1, …, fi, whose occurrence together with T will determine R.

DDA: For any population A, which is characterized by set of factors f1, …, fi, the

relation T(A) ? R(A) holds true [5, 8].

If such an algorithm could be formed for specific clinical cases, it would enable one

to unequivocally determine the rational procedure for making therapeutic decisions.

In RCT research, however, classification of patients is conducted in a different

manner from the one described above. It is true that there are two subgroups (the

treatment group and the control group),2 and that the three conditions of

classification (i–iii) are fulfilled. The randomization procedure is supposed to

ensure equal distribution of known and unknown confounding factors in the

treatment group and the control group. What guarantee is there, however, that such

equal distribution will occur? Proponents of randomization argue that the

knowledge of equal distribution of known confounding factors increases the

probability of equal distribution of unknown factors.

But what notion of probability do they have in mind in this situation? They would

surely want the odds of having an equal distribution of unknown factors to have an

objective character. Therefore, they would have to accept the frequency concept of

probability. However, the knowledge of the known does not increase frequency

probability of the occurrence of the unknown. The knowledge of the equal

distribution of known confounders does not increase the objective probability of the

occurrence of unknown factors, but at most, adds to belief-type probability,

understood as the strength of a person’s belief regarding the occurrence of these

factors [11, p. 9].

A person’s subjective conviction is not enough, however, to claim that correctly

performed randomization guarantees an equal distribution of unknown factors. The

problem is that by classifying patients using the procedure of randomization, we

give up on attaining a much more valuable cognitive objective, which is

determining the effects of confounders on the course of therapy. This objective

may be achieved, however, using RST data analysis, which I will now consider.

Classification and confounding factors in therapy

I now consider how the classification procedure can be used for assessing the

influence of confounders. I assume the following:

2 I am using the simplest scenario of an RCT, in which the classification has a dichotomous character,

and there is only one study group. Of course, it does not have to be so.
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(1) we consider a set of patients U = {a1,…a8} diagnosed with disease D,

(2) f1, f2, f3 are the attributes of the patient before therapy T (i.e., condition

attributes),

(3) attributes f1 and f2 take values 0 or 1,

(4) attribute f3 takes values 0, 1, or 2,

(5) applying therapy T leads to two recovery classes, i.e., X = {Y1, Y2}.

This means that every patient under the therapy can be characterized by

additional attribute r, taking values 0 or 1. These can be interpreted in the following

way: 0 = patient deterioration, 1 = recovery (r can be termed a ‘‘decision

attribute’’).3 The values of the attributes for a particular set of hypothetical patients

and their outcomes are illustrated in Table 1.

Each line in Table 1 provides certain information about a given patient. On the

basis of this information, one can make two classifications of patients from set

U. The first classification would be made according to the values of pre-therapy

attributes. The second would be made according to the value of attribute r, which

determines the therapy effects.

In the case of the first classification, the following subsets of patients can be

differentiated:

X1 ¼ a1; a5f g; X2 ¼ a2; a4f g; X3 ¼ a3f g; X4 ¼ a6f g; X5 ¼ a7f g; X6 ¼ a8f g
ð1Þ

Patients in each of these subsets have the same characteristics of pre-therapy

attributes: {f1, f2, f3}. In the case of the second classification, the recovery classes

are subsets:

Y1 ¼ a1; a3; a4; a5; a8f g; Y2 ¼ a2; a6; a7f g ð2Þ

Observe that the example I am considering represents Worrall’s ‘‘unrealistic’’

example, as most of the patients do not benefit from the therapy. The therapy is

beneficial to only three patients (a2, a6, a7). Conducting an RCT would thus only

average the results, showing the therapy to be harmful.

Table 1 Values of pre-therapy

attributes and their influence on

the therapy results

f1(ai) f2(ai) f3(ai) r(ai)

a1 0 1 0 0

a2 1 0 2 1

a3 0 0 0 0

a4 1 0 2 0

a5 0 1 0 0

a6 1 1 1 1

a7 0 1 1 1

a8 0 0 1 0

3 Of course, one can differentiate more recovery classes, e.g. improvement, no improvement, patient

deterioration. For the purpose of my analyses, it is enough to differentiate two of the three mentioned.
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There is one problem, however. It should be noted that patients a2 and a4 from

Table 1 cannot be unequivocally assigned to any recovery class on the basis of the

values of the pre-therapy attributes. That is, even among patients who have the same

relevant attributes, only some of the patients given the therapy recover. Conse-

quently, one cannot establish a DDA for those future patients xi, whose attribute

values will be the same as the attribute values of patients a2 and a4. The set {a2, a4}

must be characterized as a doubtful region of classification [12]. It turns out, then,

that one does not have complete knowledge of the indications and contra-indications

for conducting the therapy. Unfortunately, this is a situation that most doctors are

faced with in their practice. How, then, should one make clinical decisions? An

attempt to solve this problem can be made on the basis of RST [12–14].

Recovery classes in the RST data analysis

Therapeutic decisions are based on the knowledge about circumstances in which a

given therapy will be beneficial for a patient and circumstances in which it can

cause adverse effects. The knowledge of the indications for conducting the therapy

is not obviously tantamount to the knowledge of contra-indications for this therapy.

Knowing that certain values of pre-therapy attributes are causally relevant to

producing positive therapy effects, we cannot infer that their other values constitute

contra-indications to conducting the therapy. An additional hindrance to establish-

ing indications and contra-indications is the fact that we do not possess complete

knowledge about the effects caused by particular confounders due to the doubtful

region of classification—in the discussed example, {a2, a4}. Using the empirical

information about pre-therapy attributes and the results of treatment from a

hypothetical example depicted in Table 1, one can characterize recovery classes

with better accuracy. This accuracy can be defined in RST as the accuracy of

approximation of a given recovery class by the set of pre-therapy attributes [15].

Characterizing the term approximation of a given recovery class by the set of pre-

therapy attributes one should take into account the following:

(a) the fact that there are patients who (based on information from Table 1)

definitely belong to particular recovery classes,

(b) the fact that there are patients about whom it is unclear which recovery class

they belong.

These latter patients (described in point b, above) are the patients from the doubtful

region of classification, i.e., a2 and a4 in the hypothetical example.

Based on the findings, one can thus ascertain that the accuracy of approximation

for a given recovery class should be inversely proportional to the breadth of the

doubtful region of classification, i.e., the larger the set of the patients who cannot be

unequivocally assigned to one recovery class based on the values of the pre-therapy

attributes, the lower the accuracy of the approximation will be. The accuracy of

approximation should, then, increase if fewer patients fall into the doubtful region of

classification. This intuition within RST is understood in such a way that the

accuracy of approximation is characterized as the ratio of the number of patients
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who have been definitely assigned to a given recovery class divided by the total

number of patients in that recovery class (i.e., the sum of the definitively and the

doubtfully classified as either recovering or not recovering) [15]. This description

can be illustrated with an example showing the accuracy of approximation for

recovery class Y1.

Based on classifications (1) and (2) it can be said that patients a1, a3, a5, a8 are

definitely correctly assigned to recovery class Y1 (non-recovery), since Table 1

contains no other patients who would display the same characteristics of pre-therapy

attributes and who would belong to a recovery class other than Y1. The set of these

patients can be marked as P. It is a four-element set. To this the set of patients from

the doubtful region of classification, i.e., {a2, a4}, can be added. The resulting set

has six elements (it is marked L). Thus, the accuracy of approximation of recovery

class Y1 based on the set of attributes f1, f2, f3 is:

aðY1Þ¼ cardðPÞ
cardðLÞ ¼ 4=6 ¼ 0:66 ð3Þ

Where card(P) and card(L) are the cardinality of set P and L respectively.

In a similar way, one can calculate the accuracy of approximation for recovery

class Y2. Based on (1) and (2) we can ascertain that patients a6, a7 certainly belong

to this recovery class. The set of these patients can be marked as P0, and the set of

patients from the doubtful region of classification, i.e., {a2, a4}, can be added to it.

The resulting set has four elements (it is marked L0). So, the accuracy of

approximation of recovery class Y2 is:

aðY2Þ¼ cardðP0Þ
cardðL0Þ ¼ 2=4 ¼ 0:5 ð4Þ

It is thus evident that the doubtful region of classification can affect to varying

degrees the accuracy of approximation of a given recovery class. One recovery class

may be characterized with very high accuracy, while others may be characterized

with much lower accuracy. In such a situation, there would be a well determined

decision algorithm for a certain group of patients, whereas the prognosis for the

remaining patients with different characteristics of pre-therapy attributes could be

very inaccurate.

It should be noted that in RCTs, one does not know the precise characteristics of

the recovery classes. Acquainting oneself with the results of an RCT, one only

learns what the inclusion criteria were for patients in the trial but not what additional

factors characterized the patients who recovered or did not benefit from the therapy.

The causal relevancy of attributes in RST approach

The possibility of specifying the accuracy with which patients are assigned to

particular recovery classes also allows one to determine the causal relevancy of

particular pre-therapy attributes [16]. The idea is as follows.

If a given pre-therapy attribute is causally significant for the effects of the

therapy, then removing it from the Table should reduce the accuracy of
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approximation for at least one recovery class. This intuition can be illustrated using

the example analysed earlier, by removing attribute f2 from Table 1, and seeing

whether the accuracies of approximation in recovery classes Y1 and Y2 will change.

After removing attribute f2, the following classification of patients results on the

basis of the values of attributes f1, f3.

Definitive non - recovery : X01 ¼ a1; a3;a5

� �

Doubtful non - recovery : X02 ¼ a2; a4f g
Definitive recovery : X03 ¼ a6f g

Doubtful recovery : X04 ¼ a7; a8f g

ð5Þ

The overall classification of patients as given in (2), above, will not be altered since

they belong to recovery classes Y1 and Y2.

Based on (5) and (2) one can state that patients a1, a3, a5 are definitely correctly

assigned to recovery class Y1 (non-recovery), because there are no other patients

from X01 who would display the same characteristics of pre-therapy attributes, and

who would belong to a recovery class other than Y1. Patient a8, however, cannot be

correctly assigned to this recovery class. Removing attribute f2 caused patient a8 to

display exactly the same specifications of pre-therapy attributes as patient a7 (both

now belong to set X04). The problem is, however, that critical information has been

lost. Patient a8 is assigned to two different classes of recovery. Removing attribute

f2 thus caused an increase in the doubtful region of classification, which must now

be specified as {a2, a4, a7, a8}. This loss of information resulted in lowering the

accuracy of the approximation for both recovery classes.4 It can, therefore, be

inferred that attribute f2, differentiating pre-therapy specifications of patients a7 and

a8, is causally relevant to the course of therapy.

As described, RST also allows one to determine relatively easily which pre-

therapy attributes are most causally relevant for the therapeutic effects. One can

remove successive attributes from the Table, and check the extent to which the

accuracy of approximation for particular recovery classes will decrease. The larger

the decrease in the accuracy of approximation for a given class, the greater the

causal relevancy of the removed attribute. For instance, one should note that in the

hypothetical example given in Table 1, the doubtful region of classification would

be much greater if one removed attribute f3 instead of attribute f2. Consequently, the

accuracy of approximation for both recovery classes would also decrease

significantly.5 Based on this, one can conclude that attribute f3 is causally more

significant for the therapeutic effect than attribute f2.

4 For the sake of clarity, I am not discussing this issue in detail. In the specified case, one can easily

calculate the accuracy of approximation for both recovery classes using the hypothetical data presented in

the previous paragraph.
5 As in the previous case, I will not specify the accuracy of approximation. I will only draw attention to

the fact that attribute f3 differentiated three patients: a1, a5, a7. After removing it, the doubtful region of

classification increased to form set: {a1, a2, a4, a5, a7}. Undoubtedly, then, the accuracy of approximation

for both recovery classes decreased.
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123



Rough set theory versus subgroup analysis

Does RST offer any advantages over subgroup analysis? A skeptic might argue that

the procedure of removing successive attributes is in fact similar to subgroup

analysis, which can be conducted after an RCT. In this type of analysis, similarly to

RST analysis, one is also looking for factors differentiating the effects of the

therapy. Nonetheless, methodologists have raised serious doubts about the validity

of conducting subgroup analysis after an RCT [17–19]. Does RST analysis not raise

similar doubts?

The difference between the two procedures lies in the assumptions made for the

purpose of realizing one’s cognitive objectives. RST data analysis is based on the

assumption that it is possibile to evaluate the causal relevancy of particular pre-

therapy attributes. Under the working assumptions of an RCT, such evaluation

would be superfluous since it is assumed that the treatment group and the control

group can be standardized with respect to these attributes.

The differences in the assumptions underlying both procedures affect the way the

research goals within them are pursued. RST data analysis allows one to determine

the initial value of the accuracy of approximation for particular recovery classes.

That is why the subsequent procedure of removing successive attributes allows one

to determine their causal relevancy. There is a point of reference, which is the initial

value of the accuracy of the approximation. However, in an RCT, one does not have

the initial value of the accuracy of approximation. It is assumed, after all, that

randomization brought about an equal distribution of the confounding factors.

Therefore, subgroup analysis cannot determine the effects of a change in the initial

value of pre-therapy attributes. All that subgroup analysis after an RCT can do is to

point out statistical correlations. Inference in subgroup analysis about causative

factors based on accidental correlations may lead to erroneous or even absurd

conclusions, for example, that a given treatment is harmful for people born under

the signs of Gemini and Libra [20].

Identyfing redundant information in an RST approach

An additional advantage of the RST method is the fact that it allows one to

determine easily which pre-therapy attributes are not causally relevant to the effects

of the therapy. The intuition is simple. The information about the values of pre-

therapy attributes allows us to classify patients into outcome classes. Therefore, if

removing a given attribute will not change this classification, one can claim that it is

not causally relevant to the effects of the therapy. Such an attribute can be termed as

a superfluous attribute [15].

The possibility of identifying superfluous pre-operational attributes is an

important merit of the RST method. The development of new diagnostic techniques

(including genetic, biochemical, and imaging tests) makes it possible to obtain more

and more information about the condition of patients. These techniques make it

possible to diagnose disease in its early stage and to monitor its development. It is

common knowledge that patients who have been diagnosed with the same disease
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can differ with regard to the values of many diagnostic and prognostic factors.

Frequently, different values of these factors can be of great importance to the results

of therapy. It can also happen, however, that different values of a given attribute

exert no impact on the therapy whatsoever. In these cases, the usefulness of a

particular factor may be limited solely to the diagnostic process, whereas in the

process of making therapeutic decisions, the information about the values of the

diagnostic clue is irrelevant. Such a situation occurred precisely when the usefulness

of highly selective vagotomy was assessed.

The case study of highly selective vagotomy

In a similar example to the one formulated by Worrall in his arguments against

Papineau, assume that therapy T has been applied to people diagnosed with disease

D. It has been ascertained that in certain patients the given therapy produced an

advantageous result R, whereas in others the same therapy produced a disadvan-

tageous result :R. In light of these divergent results, one might assume that the final

outcome of the therapy was affected by some additional factors. In such a case, the

RCT research would lead only to ‘‘averaging’’ the divergent results. This example

shows a considerable limitation of the RCT approach to research. Contrary to

Worrall, however, I claim that such examples do occur in ‘‘real’’ medical practice.

In order to support my thesis, I would like to cite the example of evaluating the

effectiveness of surgical treatment of duodenal ulcer. In this case, although the RCT

results seemed unequivocal, I will show how RST gives different results.

From the 1970s to the 1990s, one of the most frequently applied treatments of

duodenal ulcer was highly selective vagotomy.6 The treatment consists in

selectively severing the gastric branches of the vagal nerve, which innervates the

gastrin producing area. Of all the treatments available, this one resulted in the least

organ damage and produced a reasonable quality of life. Nevertheless, the surgeons

did not agree in their assessments of the long-term effects of this therapy [21]. In the

surgical literature, there were reports of certain cases of patients who benefited from

the treatment, and of patients who did not [22–24]. The incompatible results pointed

to the possible influence of some confounding factors.

The confounding factors can be postulated to be patient characteristics, some of

which are closely connected with the development and degree of the disease. In this

case, one could mention the following: duration of the disease, history of ulcer

complications, gastric juice volume, HCl concentration, etc. These characteristics

constitute a set of diagnostic indicators. Different values of these indicators could

identify different states of disease D. Furthermore, one could also take into account

characteristics such as age and sex, which are not determined by the disease, but

which could be causally associated with the development and severity of the disease

and, obviously, also affect treatment. All these characteristics can be labeled as

attributes.

6 Until 1990s. Later, highly selective vagotomy was replaced by pharmacological treatment.
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Different therapeutic results suggest that different values of these attributes affect

the treatment [25, 26]. Nevertheless, the surgeons did not agree what values of these

attributes affected the therapeutic results. Indications for treatment varied. Some

authors considered the duration of disease to be the most important causal attribute.

Others regarded the patient’s age as the basis for treatment. The opinions

concerning the value of the gastric juice attributes were, however, particularly

inconsistent. Various authors recognized extremely diverse values of this attribute

as the justification for treatment [26, 27].

The above situation points to a very important epistemological problem: What

way of obtaining empirical evidence would make it possible to provide a reliable

assessment of the effectiveness of the treatment? Clinical trials could only average

the results obtained without providing any directions for those asking what

combination of these various attributes warranted treatment [28–30]. As Blackett

and Johnston write:

when the patients with recurrence of ulcer were compared with the patients

without recurrence, no preoperative factors could be identified that might be

used to predict recurrence. Thus, for the two groups sex distribution, age,

length of the ulcer history, previous ulcer complications, and preoperative acid

outputs (basal and maximal) were very similar. Hence, contrary to some

previous reports, no evidence was found that patients who are hypersecretors

of acid, either basal or maximal, before operation should be treated by

vagotomy.… The only factor which was found to influence the incidence of

recurrent ulceration after highly selective vagotomy strongly was the surgeon

who performed the operation. [25, p. 705].

When trying to establish the indications for treatment, one had to determine

which of the attributes in question were causally relevant and what value of each

attribute would determine the results of the therapy. Applying RST for this purpose

was its first use in medicine [15].

When assessing the usefulness of highly selective vagotomy, the RST analysis

initially considered 11 attributes characterizing 122 patients who had previously

undergone the operation. In the assessment of the therapy’s long-term effects, this

analysis employed Visick’s scale. It was demonstrated that eliminating two of the

eleven attributes did not change the initial classification of the patients [15]. Thus,

these two attributes were characterized as superfluous for the process of establishing

the therapeutic indications.

As far as the remaining nine attributes are concerned, the RST analysis examined

the extent to which the accuracy of approximation of recovery classes would

decrease when the remaining attributes were eliminated. The iterative procedure

began by eliminating the first attribute and determining the accuracy of approx-

imation of the recovery classes. Subsequently, the second attribute was eliminated,

and so on. Ultimately, five attributes were distinguished as the most relevant to the

therapy effects. Eliminating any of these resulted in a significant decrease in the

accuracy of classification of at least one of the recovery classes. Eliminating the

remaining four attributes resulted in a slight decrease in the accuracy of

approximation. Identifying the most important pre-operative attributes made it
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possible to establish the ‘‘models’’ of patients for each recovery class of highly

selective vagotomy [15]. However, it has to be noticed that in clinical practice, one

takes into account only those attributes that are of greatest causal significance. In

RST analysis, remaining attributes are not incorporated into the process of a

patient’s model building. The decision concerning the causal importance of

attributes is completely arbitrary, which I will demonstrate using the discussed

example at the end of the article.

Epistemological assumptions of rough set theory in evaluation of clinical data

Applying RST to assessing medical data may be particularly interesting for

philosophers of science concerned about the epistemology of biomedical research.

It is worth investigating what RST’s major underlying assumption is.

First, we should note that many attributes characterizing the patient’s condition

have values from the set of real numbers (e.g., results from the majority of

biochemical tests). Nonetheless, applying the RST method requires characterizing

patients in categorical sets using qualitative values. Thus, in order for the analysis to

be conducted, the quantitative values need to be changed into qualitative ones which

are represented by means of integers from the {0,1} set or accordingly greater. For

example, for a given attribute fi, such that 0.3 B fi(x) B 7.8, fi = 0, and for fi, such

that 7.8 B fi(x), one assumes that fi = 1, etc. The problem is that the transformation

is arbitrary. The categorization of patients with respect to pre-therapy value

attributes is not based on a difference between normal and pathological values.

Furthermore, it frequently does not rely on the reference ranges that are established

for diagnostic purposes. Let us consider a simple example.

Let us assume that a given attribute, fi, is the concentration of a certain enzyme in

an organism. Assume that there is an established reference range for fi from 0.3 to

0.78. In individuals diagnosed with disease D, the value of 0.78 has been exceeded.

Attribute fi can, thus, be a diagnostic clue of disease D.7 Assume also that the value

of the attribute in the group in question ranges from 0.78 to 13. The example reveals

the major problem with applying the RST method to assessing medical data. How

can one distinguish the therapy relevant values for attribute fi [ 0.78? The most

obvious answer would be to regard the extent of disease as the decisive factor.

Consider that as the disease develops, the value of attribute fi increases so that in the

final stage it reaches the value of 13. In this case, however, there is no point in

making use of the RST method for the purpose of establishing the rather obvious

conclusion that the therapies may be less effective in later stages of the disease.

A far more interesting example could be the situation when the value of attribute

fi for various patients is not correlated with the disease’s stage, but rather depends

on certain additional factors (unknown to the therapists). In this case, there is no

clarity as to what attribute value (low, high, or very high) is beneficial for the

therapy results. Obtaining such information would obviously be crucial for

7 I disregard the issue of determining the effectiveness of diagnostic tests for diagnosing disease D

(specificity and sensitivity of diagnostic tests).
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establishing indications and contra-indications for the therapy, but the problem is

that we do not know how to distinguish the ranges of these values. Should we

assume that the low range comprises the values from 0.78 to 3.4 or perhaps only

2.6? While the choice here is completely arbitrary, it nevertheless affects the results

obtained in the RST analysis. This issue is considered more closely below.

Assume that a data analysis based on the RST method has shown that several

patients having the same value attributes before the therapy belong to different

recovery classes. If one assumes that recovery classes have been established on the

basis of objective, measurable values, then there are two deterministic ways of

explaining the results obtained.8 First, incoherent therapy results can mean that one

has failed to take into consideration an unknown attribute which additionally

differentiates the patients’ pre-therapeutic characteristics. The other possibility is

that one has assumed erroneous value ranges for the particular attributes. The

incoherence of the results obtained can thus be eliminated by modifying the value

ranges of these attributes. The problem is that one does not know whether the

incoherent results are due to one’s having failed to notice a causally relevant

attribute or whether they are rather due to one’s erroneous differentiation of the

value ranges for the attributes that have been included in one’s analysis.

Determining the influence of the particular attributes for the therapy results

requires thus that two assumptions be met. Firstly, one must ascertain the value

ranges for the particular attributes characterizing the patients before the therapy.

Secondly, one’s analysis must take into account all attributes that are causally

relevant for the therapy effects. The last of these assumptions shows that there ought

to be a criterion for a preliminary selection of attributes that can be recognized as

causally relevant for the therapy effects. RST alone does not provide one with such

a method of attribute selection.9

Another problem with applying the RST method for evaluating medical data is

connected with eliminating attributes that have the smallest impact on the accuracy

of approximation for recovery classes. Such a procedure occurred in the case of

highly selective vagotomy. Recall that when two superfluous attributes were

discarded, the RST analysis identified five attributes that had the greatest impact on

the therapeutic outcome. On the other hand, four other attributes were characterized

as having a very small impact on the results of treatment. Thus, it was assumed that

attributes having the greatest impact provided a satisfactory accuracy of approx-

imation for recovery classes, whereas the other four could be omitted in

constructing patient models [15]. Nevertheless, the term ‘‘satisfactory accuracy of

approximation for recovery classes’’ is an epistemological term, and it, therefore,

needs to be specified epistemologically. After all, eliminating attributes that are

even slightly causally relevant must be appropriately justified.

It is worth noting that the problems indicated above are a consequence of

defining the particular research goals that direct the performance of one’s RST

8 Yet another alternative would be that the recovery process based on the attribute is irretrievably

stochastic, but I will not discuss this further.
9 That is why applying RST is in practice limited to analyzing those attributes that appear as diagnostic

clues for a given disease.
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analysis. The arbitrariness of establishing the value range of pre-therapy attributes,

formulating explanations of contradictory therapy effects for patients displaying the

same pre-therapy attribute values, as well as defining the border for satisfactory

accuracy of approximation of recovery classes are not issues in the conduct of

RCTs. In this type of research, however, one does not take into account the diversity

of patients according to the values of pre-therapy attributes. The assumption that

attributes will be equally distributed as a result of randomization renders these

problems moot.

Conclusion

In the light of the problems I have elucidated, a question arises about whether RST

offers enough advantages to recommend it over classical RCT analysis. One of the

indisputable advantages of RST (compared with RCTs and other statistical

methods) is that it can be applied in situations in which there is information

regarding a large number of attributes. Statistical methods make it possible to

establish correlations exclusively for a small number of attributes. In these methods,

every increase in the number of attributes considered requires increasing the number

of patients examined.

Rough set theory (RST) is one of the many methods for assessing the data

currently applied in medicine. At the very least, it is an interesting alternative to

statistical methods for obtaining data from clinical trials, RCTs included. Both RCT

studies and the RST method for assessing data make it possible to create decision

algorithms. These algorithms are, however, differently justified and differ in

accuracy. RCTs do not specify the rules of medical decision making for particular

patients. The trial only provides information about a population, which must be

subject to proper interpretation by a doctor (e.g., with the use of PICO10 analysis) in

making decisions for particular patients. The RST method, on the other hand, allows

one to determine patients’ pre-therapy characteristics, and provides clues about how

to deal with particular patients who have set values of pre-therapy attributes. This is

undoubtedly of great help in the process of clinical decision making.

The afore-discussed issues do not exhaust the problems connected with applying

RST to medical data evaluation. They allow us, however, to identify a new area of

research that ought to be examined in epistemological terms, for RST seems to be an

interesting supplement to the statistical analyses that are currently applied in

contemporary medicine.
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