
The Necessity of Learning for Agency

Tim Räz

March 9, 2016

Abstract

The present paper examines the notion of agency using a model from
artificial intelligence (AI). The main thesis of the paper is that learning is
a necessary condition for agency: Agency presupposes control, and control
is acquired in a learning process. This thesis is explored using the so-called
PS model. After substantiation the thesis, the paper explores the relation
between agency and different kinds of learning using the PS model.

Contents
1 Introduction 1

2 The Main Thesis 3

3 Possible Worries 4

4 Introducing the PS Model 5

5 Is the PS Model an Agent? 7

6 Learning in Dynamic Environments 9

7 Learning in Complex Environments 11

8 Learning to Generalize 13

9 Learning Speed Matters 17

10 Conclusion 18

A The Formal PS Model 19

1 Introduction
The concept of agency is a tangled web at the core of several philosophical de-
bates such as action theory, free will, and moral responsibility; see Schlosser

1

(2015). In these debates, the notion of agency is examined from different per-
spectives, and in view of different applications. In the present paper, I will
examine what is involved in an agent’s having control. The main thesis of the
paper is that an agent has to acquire control in a process of learning. The goal
of the paper is to defend and explore this thesis. I thus presuppose that an
agent needs a certain kind of control over her actions, that is, control is nec-
essary for agency. What control amounts to exactly is a contentious matter.
It can be taken to mean that the action is “up to” the agent, that the reason
(or mechanism) that leads to the action “belongs to” the agent.1 It is easier to
judge in particular cases whether an agent has control in this sense or not, and
the judgement is easiest when control is absent because someone or something
else is in control. The focus on the concrete, and on the contrast between clear
(negative) and not-so-clear (potentially positive) cases will make the task of
judging whether control is present or absent easier.

Traditionally, debates concerned with agency have focused on distinctively
human agency; sometimes it is presupposed that only a person has the ability
to act, or that only beings with consciousness, or beings with reasons, are candi-
dates for agency. In the present paper, I will focus on a thinner notion of agency,
which makes less heavy requirements. Agency is assumed to include behavior
that is not explicitly intentional or guided by reasons, and it is not restricted
to human agency.2 I will therefore not require that the agent owns the reasons
for her actions, but use the more liberal requirement that the agent owns the
mechanism leading to the action. The discussion of agency in the present paper
is based on an artificial agent that qualifies for this thin notion of agency. I
will use the so-called “Projective Simulation” (PS) model from reinforcement
learning.3 This model processes its input using a network with probabilistic
transitions between nodes; and, as a result of the reasoning process, it outputs
a certain behavior, which is a (potential) action. The model is able to update
the transition probabilities, which can be interpreted as a simple form of learn-
ing, and it can be provided with other, more sophisticated kinds of learning, as
we will see. It is important to note that there is no representation of reasons or
intentions in the model.

The paper proceeds as follows. I formulate and discuss the main thesis of
the paper in the next section. The use of a probabilistic, artificial model in
a discussion of agency can be seen as problematic for several reasons – I will
discuss these worries in section 3. The PS model is introduced in section 4 (note
that the more formal aspects of the model are relegated to the appendix). In
section 5, I discuss the question why we should consider the PS model to be an
agent. In section 6 to 9, some of the consequences of the thesis that learning
is closely related to agency are explored, and we reap the fruits of employing

1See, e.g., Fischer and Ravizza (1998), Dennett (2003).
2As Elisabeth Anscombe (1957, p. 5) has pointed out, the movements of a cat can be

interpreted as intentional, or even be intentional, without there being explicit intentions or
reasons.

3See Russell and Norvig (2003) for an introduction to AI, Sutton and Barto (1998) for an
introduction to reinforcement learning, and section 4 for references concerning the PS model.

2

a formal model by investigating the relation between agency and learning in
more complex settings, different kinds of learning, and quantitative aspects of
learning.

2 The Main Thesis
The main thesis of the present paper concerns control. Control presupposes
that the mechanism leading to an action belongs to the agent, or that the
agent “owns” the mechanism. But how does an agent acquire ownership of the
mechanism in the first place? I propose that ownership is acquired in a learning
process. Take yourself as an example. You are an agent. However, this was
not always the case – you were not an agent when you were born. Somewhen
between your birth and your reading this sentence, you acquired the ability to
act, by pushing the world, and by noting how the world pushes back. If you
have reasons to act, these reasons are your reasons because of what you have
learned in interaction with the world, by learning what behavior is successful
and what is not. The main thesis, then, is the following:

No Agency Without Learning: Learning is a necessary condition for agency:
agency requires control, and control has to be acquired in a learning pro-
cess.

The main goal of the present paper is to substantiate and explore this thesis.
In a first step, I should clarify the concept of learning. What is a learning agent?
One important feature of learning is that it is temporally extended: we learn if
we take past experience into account. Thus, a necessary requirement for learning
is history-dependence. If an agent’s present behavior is in no way influenced by
past experience, it is not a learning agent. However, history-dependence is not
sufficient for being a learning agent – in particular, history-dependence is not
sufficient for control, as we will see below.4

A second important ingredient of learning is that once we have learned, we
become more successful in our behavior. It is therefore tempting to require that
the result of the learning process be manifested in successful behavior. While I
believe that there is in fact a connection between learning and some measures
of successful behavior, we have to be careful here. For one, what has been
learned need not be manifested in behavior; an agent may simply disregard
what she has learned. Also, successful behavior need not be based on learning.
However, under certain circumstances, learning is an indispensable part of an
agent’s success. We will return to this point below.

One of the problems we face when we want to explore the relation between
agency and learning is that the learning process is temporally extended and
mostly hidden, such that it is hard to gain insight into learning in biological

4The point that control is a historical notion has been made by Fischer and Ravizza (1998,
Ch. 7), who argue that the ownership of control is essentially historical. They also note the
importance of learning in the process of acquiring responsibility by children. See Dunjko et al.
(201x, p. 5) for a formal statement of the history-dependence of learning in the context of AI.

3

agents. How can the thesis that learning is necessary for agency be substan-
tiated in view of this problem? The solution that will be adopted here is to
use an artificial agent, more specifically, a model from machine learning. In
such models, the process of learning is simple, but more transparent than in
actual, biological agents. I will examine how the model can be provided with a
(rudimentary) degree of control, and, consequently, a (rudimentary) degree of
agency.

3 Possible Worries
The use of models from AI in the context of agency can raise several worries.
One worry concerns the use of a probabilistic model. This has a flavor of inde-
terminism, which, in turn, is thought to be incompatible with control by some
compatibilists. I hope to keep the arguments in the present paper relatively in-
dependent of the question of the relation between agency and (in-)determinism.
This is justified because the model on which I will focus is stochastic, but it can
be emulated both in a deterministic and in an indeterministic world. The thesis
that an agent has to be able to learn to acquire control should be explored in-
dependently of the fundamental (in-)deterministic nature of the world in which
the agent is situated.

The method of using artificial agents has precedents in the literature on
agency and free will; importantly, the method has been employed by both lib-
ertarians and compatibilitsts. Briegel and Müller (2015) use an artificial agent
to argue for the compatibility of indeterminism and agency. They propose that
the PS model should be considered to be an agent because its memory, which
generates the model’s output, has its roots in the model’s own learning history.
On the other side of the aisle, Dennett (2003, p. 46) notes that artificial agents
have the ability to acquire their own reasons for acting in a deterministic set-
ting, that this is a gradual learning process, during which control is handed over
from the designers of a model to the artificial agent. The fact that both deter-
minists and indeterminists note the role of acquiring reasons, or a mechanism,
for agency suggests that we should explore the relation between learning and
agency in its own right.

One could, more generally, doubt that the use of an artificial model is in-
structive in the context of agency. It could be thought that artificial agents
are categorically different, or just too far removed, from humans and, maybe,
higher animals, so that examining artificial agents is useless if one wants to get
a grip on real agency. I grant that the danger of taking the model too seriously
is real. We should not carelessly generalize our findings from simple artificial
models to human agents. Some features of the model might be genuine phe-
nomena of agency, others might be pure artifacts of the simplicity of the model.
Ideally, the hypotheses generated on the basis of the model will be confronted
with empirical results from cognitive science and psychology, where the same
set of questions is studied using real, human (or animal) agents.

However, the use of simple, artificial agents has several advantages, which

4

are not to be had if the usual philosophical methods are employed. First, we
can observe the process of how the artificial agent learns, acquires control, and
acts, and we can do this in a transparent manner. We can directly inspect the
different ways in which the model learns, and we can see how learning is affected
by different scenarios and changing environments, because the artificial agent is
a formal model. I believe that the relation between learning and agency has not
received sufficient attention because the process of learning is too complex to be
examined the usual philosophical methodology with its focus on single-action
thought experiments.

Second, constructing an agent that has control complements the usual ap-
proach, taken in Frankfurt-type thought experiments; see, e.g., Frankfurt (1969).
In these thought experiments, control and agency is examined by (artificially)
restricting an agent’s control. The present paper pursues a modeling strategy
instead of a conceptual, subtractive strategy. The formal and quantitative na-
ture of the model suggests interesting conceptual relations that would be harder
to discover and explore in the usual philosophical methodology.

Third, the modeling approach to learning and agency provides us with an
additional handle on control. We can examine how the artificial agent acquires
control by gradually handing it over to the agent: The artificial agent acquires
control, while the designers of the artificial agent give it up. One of the impor-
tant contrasts is between properties of the model that are up to us, the designers
of the model, and properties that are not up to us, and thus (potentially) up to
the model.5

4 Introducing the PS Model
The PS model is a directed graph with probabilistic transitions between nodes;
see figure 1 for a schematic representation.6 The model receives input on the
initial nodes, usually dubbed “percepts”; the final nodes are the model’s output,
usually dubbed “actions”. Here I will usually call the final nodes “output”, in
order to make it clear that the output need not be an action in a substantive
sense. The transition probabilities pij between the nodes are updated according
to a learning rule, which rewards successful behavior.7 The learning rule is a
core component of the model, and we will encounter different versions of the
rule in the course of the discussion. A second core feature of the model is its
graph structure, which is also subject to modification: Nodes can be added and
subtracted in some incarnations of the model.

Consider, first, the basic PS model in a simple scenario. The scenario is
called invasion game; see figure 2.8 The attacker (A) wants to invade the world;
it can do so at discrete points on a line. The attacker starts at some fixed

5This point is also made and explored in Dennett (2003).
6A brief, formal introduction of the PS model can be found in the appendix; see H. J. Briegel

(2012); Mautner et al. (2015) for a comprehensive introduction of the model. Figure 1 is taken
from H. J. Briegel (2012, p. 3).

7See equation (3) in the appendix for the standard learning rule of the PS model.
8The scenario was first introduced in H. J. Briegel (2012); figure 2 is taken from there.

5

stimulus-reflex circuit, where the structure of this circuit changes over
time. In the language of artificial agent research, this could be modeled
as a reflex agent, whose program is modified over time (which
represents the learning of the animal). In such type of learning, we
have a separation of time scales into ‘‘learning’’ (shaping of circuit)
versus ‘‘reflex’’ (execution of circuit) which is possible only for simple
agents, but it cannot explain more complex patterns of behavior.

Phenomenologically speaking, more complex behavior seems to
arise when an agent is able to ‘‘think for a while’’ before it ‘‘decides
what to do next.’’ This means the agent somehow evaluates a given
situation in the light of previous experience, whereby the type of
evaluation is different from the execution of a simple reflex circuit.
An essential step towards such more complex behavior seems to be
the capability of reinvoking memory without inducing immediate
motor action, which requires a separate level of representation and
storage of previous experience. Such type of memory must thus be
decoupled from immediate motor action and cannot, per definition,
be part of a reflex circuit.

To model intelligent behavior, people have studied artificial agents
of various sorts (utility-based, goal-oriented, logic-based, plan-
ning,…)2 whose actions are the result of some program or set of
rules. In so-called learning agents, the emphasis lies on modeling
the emergence of behavior patterns when there are no specific rules
a priori specified, except that the agent remembers in one way or the
other that certain percept-action pairs were rewarded or punished
(reinforcement learning).

Here we introduce a learning-type agent, whose decisions – i.e.
‘‘what to do next’’ in a given situation – depend not only on its
previous experience with similar situations, but also on fictitious
experience which it is able to generate on its own. The central element
is a projection simulator (PS), together with a type of episodic mem-
ory system (ECM), which helps the agent to project itself into ‘‘con-
ceivable’’ situations. Triggered by perceptual input, the PS calls
memory and induces a random walk through episodic memory
space. This random walk is primarily a replay of past experience
associated with the perceptual input, which is evaluated before it
leads to concrete action. However, memory itself is changed dynam-
ically, both due to actual experience and due to certain compositional
principles of memory recall, which may create new content corres-
ponding to fictitious experience that never really happened. In this
model, it is essential to have a representation of the environment in
terms of the episodic memory, which enables the agent to decouple
from immediate connection with the environment and reflect upon
its future actions. Importantly, this reflection is not realized as a
sophisticated computational process, but it can be seen as a struc-
tural-dynamical feature of memory itself.

As a physical basis of the PS, one can imagine a neural-network-
type structure, where any primary experience is accompanied by a
certain spatiotemporal excitation pattern of the network. The details
of this architecture, including the way of encoding information, the
concise learning rules, etc., are not important. The only relevant
feature is that a later re-excitation with a similar pattern, due to
whatever cause, will invoke similar experience. As the agent learns,
it will relate new input with existing memory and thereby change the
structure of the network. The only relevant aspect of the neural-
network idea is, for our purposes, that any recall of memory is
understood as a dynamic re-play of an excitation pattern, which gives
rise to episodic sequences of memory.

By episodes we mean patches of stored previous experience. In the
specific context of vision, one could also call it a ‘‘movie fragment’’ or
‘‘clip’’. In the following, we will use the terms episode and clip inter-
changeably. Clips represent basic (but variable) units of memory
which will be accessed, manipulated, and created by the agent.
Clips themselves may be composed of more basic elements of
cognition such as color, shape, or motion, but they represent the
functional units in our theory of memory-driven behavior.

Formally, episodic memory will be described as a probabilistic
network of clips as illustrated in Figure 2. An excited clip calls, with
certain probabilities, another, neighboring clip. The neighborhood of
clips is defined by the network structure, and the jump probabilities
will be functions of the percept history. In the simplest version, only
the jump probabilities (weights) change with time, while the network
structure (graph topology) and the clip content is static. In a refined
model, new clips (nodes in the graph) may be added, and the content
of the clip may be modified (internal dimension of the nodes). A call
of the episodic memory triggers a random walk through this memory
space (network). In this sense, the agent jumps through the space of
clips, invoking patchwork-like sequences of virtual experience. Action
is induced by screening the clips for specific features. When a certain
feature (or combination of features) is present and above a certain
intensity level, it will trigger motor action.

In the following sections, we shall put some of these notions in a
more formal framework, and illustrate the idea of projective simu-
lation with concrete examples. These examples should be under-
stood as illustrations of the underlying notions and principles. We
discuss them in the context of simple problems of reinforcement
learning, but the notion of projective simulation is more general and
can be seen as a principle and building block for complete agent
architectures.

Mathematical modeling and notation. In physical terms, the
behavior of an agent (see Figure 1) can be described as a stochastic
process that maps input variables (percepts) to output variables
(actions). An external view of the agent consists in specifying, at
each time t, the conditional probability P(t)(ajs) for action agA,
given that percept sgS was encountered. This is also called the
agent’s policy in the theory of reinforcement learning1. Here, S and
A denote the set of possible percepts and actuator moves,
respectively, which we are going to describe in more detail shortly.

The dependence of this probability distribution on time t indi-
cates, for any non-trivial agent, the existence of memory. Usually,
one assumes that the agent operates in cycles, in which case t is an
integer variable. When writing P(t)(ajs), one then refers to the
conditional probability for choosing action a 5 a(t) at the end of
cycle t, if it was presented with s 5 s(t) at the beginning of the
same cycle. In general, the probability with which the agent
chooses action a(t) may depend on its entire previous history, i.e.
the percepts and actions s(t21), a(t21), … s(1), a(1) in all earlier cycles
of the agent’s life. However, the interesting part of the agent is
how it learns, i.e. how its history changes its internal state, which
in turn determines its future policy. A corresponding internal
description connects P(t)(ajs) with the memory of the agent and
explains how memory is built up under a given history of percepts
and actions.

In our model of the agent, memory consists of a network of
episodes (or clips), which are sequences of ‘remembered’ percepts
and actions. The operation cycle of an agent can be described
as follows: (i) Encounter of percept sgS which happens with a cer-
tain probability P(t)(s). The encounter of percept sgS triggers the

Figure 2 | Model of episodic memory as a network of clips.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 400 | DOI: 10.1038/srep00400 3

Figure 1: The PS model

position. It can move one step to the left or one step to the right. The attacker
announces its moves by showing either the right or the left arrow, before moving
one position to the right or to the left. The defender (D), the basic PS model, can
block these attacks by moving to the grid point of the attack, i.e., by imitating
the attacker’s behavior. The point of the game is that, in the beginning, the
PS model does not “know the meaning” of the arrows; it has to learn how the
attacker’s signals and moves hang together.

excitation of memory clip cgC according to a fixed ‘‘input-coupler’’
probability function I (cjs). (ii) Random walk through memory/clip
space C, which is described by conditional probabilities p(t)(c9jc) of
calling/exciting clip c9 given that c was excited. (iii) Exit of memory
through activation of action a, described by a fixed ‘‘output-coupler’’
function O(ajc).

In the following, we shall only consider finite agents, acting in a
finite world. Percepts, actions, and clips are then elements of finite-
sized sets, according to the following definitions:

?Percept space:
s: s1,s2, . . . ,sNð Þ [S1| # # #|SN:S, si 5 1, …, jSij. The struc-
ture of the percept space S, a cartesian product of sets, reflects the
compositional (categorical) structure of percepts (objects). For
example, s1 could label the category of shape, s2 category of color,
s3 category of size, etc. The maximum number of distinguishable
input states is given by the product Sj j~ S1j j # # # SNj j.

?Actuator space:
a: a1,a2, . . . ,aMð Þ [A1| # # #|AM:A, aj 5 1, …, jAjj. The
structure of the actuator space A reflects the categories (or, in
physics terminology, the degrees of freedom) of the agent’s
actions. For example a1 could label the state of motion, a2 the
state of a shutter, a3 the state of a warning signal, etc. All of this
depends on the specification of the agent and the environment.
The maximum number of different possible actions is given by
the product Aj j~ A1j j # # # AMj j.

Clips or episodes are elementary, short-time, dynamic processes
in the agent’s memory that relate to past experience and that can
be triggered by similar experience. A clip can be seen as a
sequence of remembered (real or fictitious) percepts and actions.
We distinguish percept sgS that is directly caused by the envir-
onment at a given time t, from a remembered (or a fictitious)
percept m(s)gm(S) that has a certain representation in the agent’s
memory system. Similarly, we distinguish real actions agA exe-
cuted by the agents from remembered (or fictitious) actions
m(a)gm(A), which can be (re-)called by the agent without neces-
sarily leading to real action. Instead of the symbol m(a) we will
also use qa ; m(a) for a remembered action. The formal definition
of a clip reads then as follows:

?Clip space:

c: c 1ð Þ,c 2ð Þ, . . . ,c Lð Þ! "
[C; c lð Þ [m Sð Þ|m Að Þ. The index L spe-

cifies the length of the clip. A simple example for L 5 2 is the clip
c 5 (m(s), m(a)) ; (qs ,qa), which corresponds to a simple percept-
action pair. Clips of length L 5 1 consist of a single remembered
percept or action, respectively. In the subsequent examples, we
will mainly consider probabilistic networks of such simple clips.

Projective simulation is realized as a random walk in episodic
memory, which serves the agent to reinvoke past experience and
to compose fictitious experience before real action is taken.
Learning is achieved by evaluating past experience, for example by
simple reinforcement learning. In memory, this will lead to a modi-
fication of the transition probabilities between different clips, e.g. via
Bayesian updating. We emphasize, again, that such kind of the evalu-
ation happens entirely within memory space. If a certain percept-
action sequence s R a was rewarded at time step t, it will typically
mean that, in the subsequent time step t 1 1, the transition prob-
ability p(t11)(ajs) between clips qs and qa will be enhanced. This is
only indirectly related to the conditional probability P(t11)(ajs) for
real action a given percept s.

For convenience, and to emphasize the role of fictitious experience
in episodic memory, we shall also introduce a third space which we
call

?Emotion space:
e: e1,e2, . . . ,eKð Þ [E1| # # #|EK:E, ek 5 1, …, jEkj. In the
simplest case K 5 1 and jE1j 5 2, with a two-valued emotion
state e1:e[{ , }. Emotional states are tags, attached to transi-
tions between different clips in the episodic memory. The state of
these tags can be changed through feedback (e.g. reward) from the
environment. They are internal parameters and should be distin-
guished from the reward function itself, which is defined extern-
ally. Informally speaking, emotional states are remembered
rewards for previous actions, they have thus a similar status as
the clips.

The reward function L is a mapping from S 3 A to I5R (real
numbers), where in most subsequent examples we consider the case I
5 0, 1, …, l. In the simplest case, l 5 1: If L(s, a) 5 1 then the
transition s R a is rewarded; if L(s, a) 5 0, it is not rewarded. A
rewarded (unrewarded) transition will set certain emotion tags in the
episodic memory to (), as discussed previously. We shall also
consider situations where the externally defined reward function
changes in time, which leads to an adaptation of the flags in the
agent’s memory.

Simple example: Invasion game. To illustrate some of these
concepts, let us consider the following simple game, which we call
invasion (see Figure 3). It has two parties, an attacker (A) and a
defender (D) (the robot/agent). The task of D is to defend a certain
region against invasion by A. The attacker A can enter the region
through doors in a wall, which are placed at equal distances. The
defender D can block a door and thereby prevent A from invasion.

Initially, defender D and attacker A stand face-to-face at some
door k, see Figure 3. Next, the attacker will move either to the left
or to the right, with the intention to pass through one of the adjacent
doors. For simplicity, we may imagine that A disappears at door k
and re-appears some time t later in front of one of the doors k 2 1 or
k 1 1. The defender D needs to guess – based on some information
which we will specify shortly – where A will reappear and move to
that door. (We may assume that D moves much faster than A so that,
if its guess is correct, it will arrive at the next door before A). If A
arrives at an unblocked door, it counts as a successful passage/inva-
sion. The task of D is to hold off the attacker for as long (i.e. for as
many moves) as possible. We can define an appropriate blocking
efficiency. If A has successfully invaded, this particular duel is over,
and the robot D will be faced with a new attacker appearing in front
of the door presently occupied by the robot.

Suppose that the attacker A follows a certain strategy, which is
unknown to the robot D, but, before each move, A shows some
symbol that indicates its next move. In the simplest case, as illustrated
in Figure 3, this could be a simple arrow pointing right,), or left, ,
indicating the direction of the subsequent move. It could also be a
whole number, 6m, indicating how far A will move and in which
direction. The meaning of the symbols is a priori completely

Figure 3 | Game invasion. Defender agent D, whose task is to block the
passage against invasion by the attacker A, tries to guess A’s next move
from a symbol shown.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 400 | DOI: 10.1038/srep00400 4

Figure 2: Invasion Game

The basic PS model’s structure9 is as follows: It has two possible percepts,
{→,←} shown by the attacker, and it has two possible outputs, {+,−}, moving
to the right (+) or to the left (-). Both percepts are connected to both outputs.
Initially, the PS model is a blank slate: the probabilities of choosing (+) or
(-) when it receives → as an input are both 0.5; the same is true when the
input is ←. This means that, initially, the model’s behavior is random. The
second core part of the model is the learning rule, which determines how the
probabilities of the connections between percepts and outputs changes according
to the success, or failure, of the model’s behavior. Informally speaking, the
learning rule captures the fact that successful behavior (blocking the attacker)
is rewarded by increasing the weight of the corresponding edge, while non-
successful behavior is not rewarded.10

It is possible to simulate the above scenario; usually, the typical changes
in success probabilities are determined by training a large number of identical
agents in the same scenario, which yields an average learning curve. After
several rounds of training, we observe that the transition probabilities change

9See figure 3; figure 3 is taken from H. J. Briegel (2012, p. 5).
10The formal learning rule used in H. J. Briegel (2012) is equation (3) below.

6

unknown to the robot, but the symbols can be perceived and distin-
guished by the robot. The only requirement we impose at the
moment is that the meaning of the symbol stays the same over a
sufficiently long period of time (longer than the learning time of the
robot). Translated into real life, the ‘‘symbol’’ could be as mundane as
the ‘‘direction into which the attacker turns it body’’ before disap-
pearing (a robot does not know what this means a priori), it could be
an expression on its face, or some abstract symbol that A uses to
communicate with subsequent invaders. The described setup is
reminiscent of certain behavior experiments with drosophila, using
a torsion-based flight simulator system and a reinforcement mech-
anism to train drosophila to avoid objects in its visual field33,34. In this
sense, the presented analysis many also be interesting for the inter-
pretation of behavior experiments with drosophila or similar species.

Using this simple game, we want to illustrate in the following how
the robot can learn, i.e. increase its blocking efficiency by projective
simulation. We will consider different levels of sophistication of the
simulation process (recovering simple reinforcement learning and
associative learning as special cases).

Put into the language introduced in the previous section, we con-
sider a percept space that comprises two categories

– Symbol shown by attacker: { ,)} 5 S1,
– Color of symbol: {red, blue} 5 S2,

while the actuator space comprises a single category

– Movement of defender: {2, 1} 5 A,
as does the emotion space

– Emoticons: { , } 5 E.

In memory space, , fi, etc. correspond to memorized percepts/
actions that have been perceived/executed by the agent. In the
following, we regard and fi as separate clips of length L 5 1.
The role of the emotional tags is to indicate, at a given time, which
of the transitions in clip space have recently led to a rewarded action.

For the reward function L : S 3 A R 0, 1, …, l, we often consider
the simplest case l 5 1 (except where explicitly indicated). For
L(s, a) 5 1 (0) the transition s R a is rewarded (not rewarded). A
rewarded transition, L(s, a) 5 1, will set certain emotion tags in the

episodic memory to , which will influence the simulation
dynamics. We shall also consider situations where the attacker
changes its strategy over time, which leads to a time-dependent
reward function and a corresponding adaptation of the flags in the
agent’s memory.

The conditional probability that a running (or active) clip calls
clip fi will be denoted by p(n)(2j), where the upper index n
indicates the time step (‘‘experience of the agent’’), i.e. how many
encounters with an attacker have occured.

Suppose that the attacker indicates with the symbols ,) that it
will move one door to the left, or to the right, respectively. Then, the
episodic memory that will be built up by the agent has the graph
structure as shown in Figure 4.

Projective simulation & learning without composition. As we have
mentioned earlier, the interaction of the agent with the environment
goes in cycles. In our simple example, the description of the nth cycle
(or time step) is as follows: First, the agent perceives a percept s,
which induces the excitation of the percept clip qs . Here we assume
that this excitation happens with unit probability, which corresponds
to a simple choice for the input coupler function I(cjs) 5 d(c 2 qs)
introduced above. The excited percept clip qs then triggers the
excitation of action clip qa g{fi, ›} with probability p(n)(ajs). This
can happen either in direct sequence, or after some other memory
clips have been excited in between, as will be described in the follow-
ing subsection. The excitation of an actuator clip qa usually leads to
immediate (real) motor action a, corresponding to a simple choice
for the output couplerO(ajc) 5 d(c 2 qa). But we will also consider
different scenarios where the translation into motor action may be
delayed and depend itself on the emotional tag of the transition qc R
qa , resulting from a reward or penalty of that transition in previous
cycles. After motor action a has been taken, it will either be
rewarded or not. The result of this evaluation will then be fed back
into the state of the episodic memory, leading to an update of the
transition probabilities p(n11)(ajs) for the next cycle and of the
emotion state tagged to this transition. This completes the descrip-
tion of the n-th cycle.

To provide a complete description of the episodic memory we now
need to specify the update rules, i.e. how a positive or negative reward
(L 5 1 or 0) changes the transition probability between the assoc-
iated clips. There are many choices possible. In the following, we
choose a simple frequency rule, somewhat reminiscent of Hebbian
learning in neural network theories, but we emphasize that other
rules are equally suitable35.

We assume that, under positive feedback, the conditional prob-
abilities p(n)(ajs), with ag{2,1}, sg{ ,)}, grow in proportion
with the number of previous rewards following the clip transition
qs R qa . This means that, if, in time step n, the agent takes the
rewarded action a after having perceived percept s, this will increase
the probability that, in subsequent time step n 1 1, an excited percept
clip qs will excite an actuator clip qa . In other words, this will increase
the probability that, after perceiving the percept s next time, the agent
will simulate the correct action a. Depending on the details how the
simulation is translated into real action, this will typically also
increase the probability that the agent executes the rewarded action.
Note, however, that the distinction between simulated action
and real action is an essential point and will give the agent more
flexibility.

Quantitatively, we define the transition probability p(n)(ajs) in
terms of a weight matrix h:

p nð Þ a sjð Þ~
h nð Þ s,að Þ
h nð Þ sð Þ

, ð1Þ

where h(n)(s) is the marginal

h nð Þ sð Þ~
X

a[A

h nð Þ s,að Þ: ð2Þ

Figure 4 | Episodic memory that is built up by the defender-agent in
Figure 3, if the attacker follows the static strategy to move one door to the
left (right) after showing the symbol ()). The ‘‘emotion tags’’ at each
of the transitions in the network indicate the associated feedback that is
stored in the memory’s evaluation system. Informally, emotion tags can be
seen as remembered rewards for previous actions. They help the agent to
evaluate the result of a simulation and to translate it into real action. If a
clip transition in the simulation leads subsequently to a rewarded action,
the state of its tag is set (or confirmed) to , and the transition probability
in the next simulation is amplified. Otherwise the tag is set to and the
transition probability is attenuated (or simply not amplified).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 400 | DOI: 10.1038/srep00400 5

Figure 3: The structure of the PS model (the labels can be interpreted as
rewarded and unrewarded outputs respectively)

such that the PS model has a high probability of blocking the attacker, while
initially, the blocking probability was random. Informally speaking, this means
that the model gradually “learns” to choose + when perceiving →, and - when
it perceives ←, because this behavior is rewarded.

5 Is the PS Model an Agent?
The basic PS model allows us to make our investigation into the relation between
agency, control, and learning more concrete. The first question is whether the
basic PS model in the above scenario is a candidate agent. Consider, first, the
situation of the PS model in the first round of training in the invasion game.
The structure of the model has been chosen by us, the designers of the model.
We have fixed the possible percepts and outputs of the model. What is more, we
have also initialized the probabilities to be random. Finally, a random generator
determines the first actual output of the model according to the probability given
by us. This means that all aspects that contribute to the model’s output are
under our control, except for the random source. Thus, the resulting output
cannot be interpreted as an action. It is fully determined by the structure and
the random choice. We are not warranted in calling the behavior of the PS
model an action in the first rounds of training.

Compare this to the situation after the PS model has undergone several
rounds of training. As we have observed above, the transition probabilities can
change over time, depending on the interaction between model and environment.
This change in the transition probabilities can be interpreted as a simple form
of learning. Typically, the PS model will enhance its blocking probability by
associating the right move with the right perceptual input. The increase in
blocking probability has the shape of a typical learning curve; see figure 4 below
for an example of such a curve. The important point is that the transition
probabilities have not been preset by us, the designers of the model. Rather,
they arise as a result of the model’s interaction with the environment. The
model has learned which behavioral patterns lead to success; the transition
probabilities can be interpreted as simple “reasons” – the model’s reasons – for
behaving in a certain way. The transition probabilities are not up to us, and
they are not random; rather, they are up to the model because they have been

7

acquired by the model in a learning process. In this sense, we can interpret the
outputs of the model as – admittedly very rudimentary – actions.

The PS model’s behavior in this scenario does certainly not constitute full-
blown agency. The model’s structure, the “reasoning process” leading to the
model’s output, and the environment, are much too simple for such an attribu-
tion. However, if simplicity is our reason for refusing to call the model’s behavior
actions, then we may have made a step in the right direction. If the point of
contention is the model’s simplicity, then it is sensible to continue the investiga-
tion by making the model more complex – in the right way. The qualification is
key: If the model’s simplicity is the main problem, then not any kind of added
complexity will do. We do not want to decrease the obvious inadequacy of the
simple model by making the model’s reasoning process incomprehensible.

There are still various reasons for not granting a model the status of an agent.
In order to see why the basic PS model might be a step in the right direction,
it is helpful to contrast it with two other models. Take, first, the following
alternative model, in the setting of the invasion game. Instead of using proba-
bilistic transitions between clips, this model is provided with hard-wired edges,
such that the model always “chooses” the same, correct move in response to the
attacker’s announcements, i.e., we use the deterministic connections (→,+) and
(←,−). This model behaves perfectly from the start in the above environment.
However, its behavior is completely determined by us, the designers, and it does
not have a chance to acquire anything akin to reasons. We should not attribute
even a rudimentary form of agency to this model. Second, consider a model
with probabilistic transition rules, but without learning rule. In this model,
the transitions between percepts and output are completely random, and stay
random. This model behaves successfully with a probability of 0.5. However,
just as in the deterministic case, this fully indeterministic model is not a can-
didate agent, but merely a random generator. Note that, in contrast to these
two models, the PS model steers clear both of being fully deterministic and of
being fully indeterministic, or random.11

There is a clear contrast between the basic PS model on the one hand,
and the hard-wired and the fully random model on the other. Our reluctance to
accept the basic PS model’s behavior as agency is different from our denying that
the latter two models are candidate agents. In the latter cases, the mechanism
yielding the output is not the model’s. Both the hard-wired and the fully random
model have not acquired the mechanism on their own. What is more, there is no
possibility that these models will ever acquire such a mechanism on their own –
they cannot learn. In the case of the PS model, the reason is not equally clear-
cut. Initially, all properties of the model are preset by us; this is why we should
not consider the model’s behavior to be actions in the first few rounds of training.
However, over time, the model changes its behavior through interaction with its
environment, and increases its success rate. Our reservations about the status

11Here I follow Briegel and Müller’s (2015) argumentative strategy of avoiding the “agency
dilemma”, van Inwagen’s (1983) “consequence argument”, designed to show the incompatibility
of agency and determinism on the one hand, and van Inwagen’s (2000) “replay argument”,
designed to show the incompatibility of agency and indeterminism on the other.

8

of the later outputs of the basic PS model, whatever they may be, are not of
the same kind as in the case of the models that are unable to learn.

Again, this does not establish that the basic PS model exhibits real agency.
There is still the reasonable worry that we should not call the behavior of such
a simple model an action. In particular, the model has very little “wiggle room”:
The learning process is elementary, its outcome predictable, and the connections
between percepts and outputs are fixed except for their weights. We can make
this worry more concrete: The structure of the model’s memory (the edges of
the graph), is not up to the model, but to us, the designers. The same is true
for the learning rule, which is constant, and thus also up to the designers. These
difficulties are real, but they are not insurmountable. There are ways in which
the model can be made more independent of the designer’s choices along both
of these dimensions. The model can be made more flexible with respect to its
own structure, and with respect to its learning rule. In the next few section, we
will see how the PS model can be provided with more learning abilities, and,
consequently, more control as the scenarios get more complex.

6 Learning in Dynamic Environments
In the version of the invasion game we considered above, the environment is
constant, i.e., the association between the arrows shown by the attacker, and
the reward for a correct response, does not change. Let us now consider a
simple example of a changing, dynamic environment, in which the “meaning” of
the signs shown by the attacker changes after a certain period of time. I will
then discuss how this affects the PS model and the other models we considered
above, and what this tells us about agency.

The dynamic scenario is divided into two time periods. In the first period,
the attacker announces its moves with arrows pointing in the correct direction,
and the connections (+,→) and (−,←) are rewarded. The PS model learns
to associate the announcements and the moves appropriately, and increases its
success rate. Then, after 250 rounds of learning, the second period begins. In
the second period, the meaning of the signs is suddenly inverted: the attacker
announces its moves by pointing in the opposite direct, and the connections
(+,←) and (−,→) are rewarded. This can be interpreted as a radical change
in the environment.

In figure 412, we can see how a dynamic environment affects different versions
of the PS models with different “degrees of forgetfulness”, formalized as settings
of the damping parameter γ; see equation (3) in the appendix. The effect of more
damping is that the model gradually “forgets” what it has learned over time.
We can see that the models’ maximal success rate depends on the damping
parameter: if there is more damping, the maximal success rate is lower. On
the left hand side of figure 4, models with high damping have a low asymptotic
success rate. If the environment is dynamic, a high damping parameter turns
into an advantage: The models with higher damping recover faster from a change

12Figure 4 is taken from H. J. Briegel (2012, p. 6).

9

in the environment; see the right hand side of figure 4. Of course, we have to
be careful in the interpretation of these results; interpreting parameter settings
in terms of forgetfulness is metaphorical.

The weight matrix is, unless otherwise specified, initialized as

h 1ð Þ s,að Þ~1 Va,s, ð3Þ

so that the conditional probability distributions {p(1)(ajs)}a are uni-
form for all s.

The stepwise evolution of p(n)(ajs), as a function of n, is stochastic
and may, for a given agent, depend on the entire history of percepts
and the actions taken by the agent. Suppose that, in time step n, the
agent perceives symbol s(n) and then executes action a(n). There are
two possible cases which we need to distinguish.
Case (1): L(s(n), a(n)) 5 1, i.e. the agent did the ‘‘right thing’’ and
the percept-action sequence (s(n), a(n)) is rewarded. In this case, the
weight of the h matrix will be increased by unity on the transition qs
Rqa with s 5 s(n) and a 5 a(n), while it stays constant on all other
transitions. To model the possibility that the agent can also forget, we
introduce an overall dissipation factor c (0 # c # 1) that drives the
weights h(n)(s, a) towards the equilibrium (uniform) distribution. Put
together we thus have the update rule:

h nz1ð Þ s,að Þ{h nð Þ s,að Þ~d s,s nð Þ
! "

d a,a nð Þ
! "

{c h nð Þ s,að Þ{1
h i

:
ð4Þ

Case (2): L(s(n), a(n)) 5 0, i.e. the agent did the ‘‘wrong thing’’ and the
percept-action sequence (s(n), a(n)) is not rewarded. In this case, all
weights of the h-matrix are simply decreased:

h nz1ð Þ s,að Þ{h nð Þ s,að Þ~{c h nð Þ s,að Þ{1
h i

: ð5Þ

The two cases can be combined into a single formula

h nz1ð Þ s,að Þ{h nð Þ s,að Þ~{c h nð Þ s,að Þ{1
h i

zld s,s nð Þ
! "

d a,a nð Þ
! " ð6Þ

with ; L(s(n), a(n)), which also generalizes to a situation with values
of the reward function L different from 0 and 1.

From the updated weights h(n11)(s, a), we obtain the transition
probabilities (in clip space) for the next cycle,

p nz1ð Þ ajsð Þ~ h nz1ð Þ s,að ÞP
a h nz1ð Þ s,að Þ

: ð7Þ

The updating of the weights from h(n)(s, a) to h(n11)(s, a) at the end
of cycle n thus depends on which specific percept-action sequence
(s(n), a(n)) has actually occurred in cycle n. The probability for the
latter is given by the joint probability distribution P(n)(s, a) 5
P(n)(s)P(n)(ajs) for (s, a) 5 (s(n), a(n)). While P(n)(s) will be given extern-
ally (it is controlled by the attacker, for example P(n)(s) 5 1/jSj for
random attacks), the conditional probability P(n)(ajs) will depend on
the memory, that is, on the weights h(n)(s, a) and how the simulation
is translated into real action.

In the simplest model, the agent has reflection time 1, which
corresponds to the following process. Initially the percept s activates
the percept clip qs . This excites the actuator clip qa with probability
p(n)(ajs). Regardless of whether the action a was previously rewarded
or not, qa is coupled out, i.e., it is translated into the action a. In other
words, any transition that ends up in a clip describing some ‘‘virtual
action’’, leads to the corresponding real action. In this case, we obtain

P nð Þ ajsð Þ~p nð Þ ajsð Þ~
h nð Þ s,að ÞP
a h nð Þ s,að Þ

, ð8Þ

which complements the update rules of Eqs. (4) and (5), together
with Eq. (1).

A slightly more sophisticated model is obtained when the state of
the emotion tags (or), which is set by previous rewards, is used

to affirm or inhibit immediate motor action. In this model, the
memory is one step further detached from immediate action and
the agent has a chance to ‘‘reflect’’ upon its action. To be specific,
let us consider a strategy with reflection time R, which corresponds to
the following process. As in the previous case, initially the percept s
activates the percept clip qs , which activates the actuator clip qa with
probability p(n)(ajs). However, only if the sequence qs R qa is tagged

(i.e. it was evaluated L(s, a) 5 1 on the last encounter), the
actuator clip qa is ‘‘coupled out’’, i.e. translated into a real action. If
this is not the case (either the transition was not evaluated before or it
was evaluated), the percept clip qs is re-excited, which in turn
activates again some actuator clip (where and qa may be the
same or different). If the new sequence (s, a9) is tagged , triggers
real actuator motion a9. Otherwise, the process is again repeated. For
a model with reflection time R, the maximum number of repetitions
is R 2 1. At the end of the Rth round, the simulation must exit from
any actuator clip, regardless of its previous evaluations. We are spe-
cifically interested in the success probability P nð Þ a#s js

$
that the agent

chooses a rewarded action a#s after a given percept s L s,a#s
$

~1
$

.
For reflection time R, this is given by

P nð Þ a#s js
$

~1{ 1{p nð Þ a#s js
$! "R

, ð9Þ

which increases with R. Clearly, for larger reflection times the mem-
ory is used more efficiently.

In our invasion game, the quantity of interest is the blocking
efficiency, r(n), which corresponds to the average success probability
(averaged over different percepts, i.e. symbols shown by the
attacker). After the nth round, the blocking efficiency is thus given by

Figure 5 | Learning curves of the defender agent for different values of the
dissipation rate c. The blocking efficiency increases with time and
approaches its maximum value exponentially fast in the number of cycles.
For c 5 0 the blocking efficiency approaches the limiting value 1, i.e. for
each shown percept it will choose the right action. For larger values of c, the
maximum achievable blocking efficiency is reduced, since the agent forgets
part of what it has learnt. At time step n 5 250, the meaning of symbols is
inverted, i.e. the symbol) () now indicates that the attacker is going to
move left (right). Since the agent has already built up memory, it needs
some time to adapt to the new situation. One can see a trade-off between
adaptation speed, one one side, and achievable blocking efficiency, on the
other side. Here, we have chosen an unbiased training strategy, P(n) 5
15 | S | . The curves are averages of the learning curves for an ensemble of
1000 agents. Error bars (indicating 1 standard deviation over the sample
mean) are shown on every fifth data point not to clutter the diagram, which
also applies to the error bars in subsequent Figures.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 400 | DOI: 10.1038/srep00400 6

Figure 4: Dynamic Invasion Game: Learning curve

Generally speaking, the effect of the sudden change of the environment on
the PS model is drastic. Consider the red learning curve in figure 4. The success
rate of this model drops from a very high to a very low level. At the end of the
first learning period, this PS model has a success rate of over 90%; immediately
after the change in the environment, its success rate drops to under 10%, much
worse than random. However, we can also see that the PS model is able to
overcome the radical change in the second learning period: it can learn the
meaning of the inverted signs, and after more trials, it reaches the same success
rate as before the inversion; see the right hand side of figure 4. This shows that
the basic PS model is not only able to learn in a static environment, but that
it can also cope in a dynamic environment.

To fully appreciate the PS model’s performance, it is useful to compare it
with the hard-wired and the fully random model. The fully random model does
equally bad in the dynamic as in the static environment, because it is not able
to learn. The hard-wired model, equipped with the edges (+,→) and (−,←), is
slightly more interesting. In the first period, it does better than the PS model
in that its success rate is perfect. In the second period, however, the hard-wired
model’s success rate drops to zero. It is hard-wired in the wrong way – it does
exactly the opposite of what leads to success. Thus, the PS model has an edge
over these two alternative models in a dynamic environment.

Of course, the PS model is not the only model that can cope with dynamic
environments. We can improve on the hard-wired model such that it does at
least as good as the PS model in the dynamic environment just considered. Take
the following, improved hard-wired model: Given one of the percepts, it chooses

10

one of the two outputs in the first round of learning. If this output is rewarded,
it continues to use this connection. If it is not rewarded, it chooses the second
output the next time the percept comes up. This improved hard-wired model
will do fine in the dynamic environment. What is more, it is also a learning
model in the sense that its output does not only depend on the last percept,
but also on previous ones.

However, we would not want to attribute even a rudimentary form of agency
to the improved hard-wired model, just as we did not want to attribute agency
to the simple hard-wired model. The reason is the same as above: The improved
hard-wired model lacks control. It has been told by us, the designers, how to
react in every possible situation. It does not help that this model’s output is
history-dependent, i.e., that its output is not only a function of the last percept,
but of other, past percepts. The point is that the output function is fixed and
entirely determined by the designers; therefore, the model is not a candidate
agent. This shows that learning cannot be mere history-dependence. An agent
has to be able to learn “in the right kind of way”. In order for this to be the
case, the output function itself needs to be able to be changed depending on the
environment.

Why is the PS model’s mode of learning superior to the improved hard-
wired model’s mode of learning? The most important difference is that the
improved hard-wired model has been provided with all relevant information
about the environment. We, the designers, have anticipated what will happen,
and programmed the reactions into the structure of the model. The improved
hard-wired model is nothing more than a database, in which an output is stored
for every possible history. The same is not true for the PS model, which is
more autonomous, and has to learn what the appropriate behavior is as the
environment changes. Thus, we should add the following as a requirement for
real learning agents: The mechanism producing the action should not merely
be history-dependent, but it should be able to change in interaction with the
environment.

7 Learning in Complex Environments
In the previous section, I have argued that learning is more than mere history-
dependence: hard-wired models, even if they are history-dependent, do not
learn in the right kind of way. In the present section, I will argue that the
right kind of learning is not only a theoretical requirement for agency, but also
a practical necessity if we want to build models that are able to cope in more
complex environments. The scenario we will examine is the so-called grid-world
scenario.13 In the grid-world scenario, models are situated in a world of finitely
many grid points; see figure 5.14

13The grid-world scenario is a standard benchmark scenario to test models from reinforce-
ment learning; see Melnikov et al. (2014) for a discussion of grid world and the PS model’s
performance in this scenario.

14Figure 5 is taken from Melnikov et al. (2014, p. 3).

11

3

III. GRID WORLD

The grid-world environment [7, 9] is a maze in which an agent should learn an optimal path to a fixed goal. The
world is divided into discrete cells (or rooms) in which the agent can reside. At each time step the agent can move
to one of the neighboring cells by choosing among four actions: left, right, up or down. Here we consider the maze
from [7] as shown in Fig. 2, which consists of 6 by 9 cells, some of which are walls (marked as black cells), and a goal
(marked by a star) which is always located at the top right cell. At the beginning of each trial the agent is placed in
the first cell of the third row from the top. If the agent decides to go to a square labeled as “wall” or to go beyond
the grid, then no movement is performed but the time step is counted. The agent receives a reward of � = 1 only
after reaching the goal, which also marks the end of the trial. A performance of an agent in this task is evaluated
by the number of steps it makes before reaching the goal at each trial. A learning agent will need less and less steps
as it goes through more and more trials. The learning time can be defined by the number of trials required to get
a certain level of performance. A more e�cient agent will require a smaller number of trials to attain a substantial
improvement of its performance.

FIG. 2: The grid-world task: The goal of the game is to find the “star”. At the beginning of each trial the agent is placed in
the (1,3) cell, as shown. The shortest path to the goal is composed of 14 steps, one such optimal path is marked by a dashed
line.

The main challenges posed by the grid-world task are its relative large input space (46 possible positions in our
case) and the fact that the reward is much delayed. In fact, at the first trial, and for many time steps, the agent has
no preference toward any direction until the goal is found by sheer coincidence. Only after the agent is rewarded for
the first time, it can start developing a preference toward reaching the goal.

In the following we examine the performance of the PS agent in the grid-world task. To that end we use a two-
layered clip network structure, as shown in Fig. 3, composed of 46 percept-clips (first row in Fig. 3) representing
potential positions on the maze, 4 action-clips (second row in Fig. 3) and directed edges connecting percepts (s) to
actions (a). Each edge (s,a) between percept and action is assigned a time dependent h-value h(t)(s, a) and a glowing
value g(t)(s, a), as explained in Sec. II. Those values are then updated through experience, according to generalized
update rules of Eqs. (4)-(5). To obtain statistically meaningful results we average the PS performance over 104 agents.
(see [5] for an error bars analysis of the PS agent’s learning curves, albeit in a di↵erent scenario).

As shown in previous works [1, 5] the PS performance depends on the value of its internal � and ⌘ damping
parameters. In particular, it was shown that a nonzero damping parameter �, i.e. an ongoing process of forgetting, is
beneficial when the environment changes, whereas for constant environments it merely limits the maximum achievable
success probability of the agent. Since in the grid-world task the environment is constant we set � = 0 to avoid
forgetting and to observe the model’s best performance. The dependence of the PS performance on the value of the
glow-damping parameter ⌘ is, however, more involved. Fig. 4(a) shows the PS performance, characterized by the
number of steps required to find the goal after 100 trials, as a function of the ⌘ parameter. We consider both the basic
and the softmax probability functions p(t)(cj |ci) as given in Eqs. (1) and (2), shown in solid red and dashed blue lines,
respectively. One can see that in both cases the PS agent performs quite badly with ⌘ ! 0: even after 100 trials it
requires more than 100 steps to reach the goal (in fact for ⌘ = 0 the agents require 842 and 570 steps, after 100 trials,
using the basic and the softmax functions, respectively, not shown). This is because a small ⌘ parameter inhibits the
decay of the edge glow, so that all previous actions are always rewarded with the same value � = 1. Since the PS
agent starts the first trial with no preferred actions, the first path to the goal consists of completely random moves
and is thus very long on average. The probability of taking again the same long path of random moves increases and
makes it almost impossible to learn something. Setting ⌘ = 1 may even be worse. The reason is that with ⌘ = 1
all g values are damped to 0 and the “edge glow” mechanism is e↵ectively turned o↵, such that only the last action
in the trial can be learned. Setting an intermediate value can help as it allows to reward moves which are near the
goal higher than those which are far from it. In other words, the last few actions before reaching the goal are highly

Figure 5: The Grid World Scenario

In this scenario, the models have to learn to get from the starting point to
one particular square of the grid, marked with a star. The models are only
rewarded if they find the target, but not for the other moves. During the game,
a model has the four basic options of moving up, down, right or left. A model
receives coordinates as percepts, e.g., (x, y) = (2, 3). Every move is counted as
a time step. If a model hits the boundary or a wall, it stays where it is, but the
time step is counted. Once a model finds the target, it is rewarded and returned
to its initial position, and the next trial begins.

Let us examine how different models cope in this scenario. Consider, first, a
hard-wired model. Such a model could be programmed to just systematically go
through all grid points by moving out from the starting point in a spiral motion.
Once it has found the target, and been rewarded, it uses its database, where
the shortest paths to all possible grid points are stored, and, from trial two on,
always uses the shortest possible path. This hard-wired model does not learn
anything; it just does what it is told. It is not a candidate agent. What may
be even more important is that the hard-wired model has a practical drawback.
On a naive implementation, the memory that is necessary to store all possible
paths will be quite large. The model needs to store the optimal path for every
possible target position; if we choose, for the sake of simplicity, a quadratic
grid of size n2, it will, on a brute force approach, need a memory for n2 − 1
paths. The situation gets even worse as the environment gets more complex.
Not only can we make the grid larger, but we can also add and subtract walls
at all grid points. The number of possible scenarios, and consequently, of paths
to be stored, now grows exponentially, and the memory of the enhanced model
will have to grow accordingly.15 The memory necessary to build the hard-wired
model explodes and becomes a practical impossibility, even for grid worlds of
modest size.

Thus, in this scenario, a clever, learning model becomes a practical necessity.
One of the difficulties to be overcome in scenarios such as grid world is that the

15There are en
2
possible grid worlds of size n2 if walls can be added to all grid points. Note

that not all of these scenarios will be viable.

12

reward is delayed. The reward is only handed out after many basic moves, and
irrespective of how exactly the complex search was carried out. The model does
not get any guidance on how to carry out the search, it is only rewarded for
completing it. How is a model supposed to learn how to carry out the search
more efficiently? One way of solving this problem, proposed in Melnikov et al.
(2014), is to supplement the PS model’s learning rule with the so-called “glow
mechanism”. The idea is that not all basic moves should be rewarded equally,
but higher rewards should be given to basic moves that were carried out more
recently. The glow mechanism works as follows. The model memorizes the se-
quence of basic moves in that, if a certain basic move is taken, the corresponding
edge is set to glow. The glow decays over time at a constant proportion. If the
model finds the target, the reward is distributed to the basic move leading to
success according to their glow: more glow means more reward. The rationale
behind this reward scheme is that the more recent moves contributed more to
the successful completion of the path than those lying further in the past.16

One of the main findings of Melnikov et al. (2014) is that this mechanism
works. On the basis of the glow mechanism, the PS model is able to learn to
find the target after a reasonable number of training runs. The average number
of basic steps needed to find the goal decrease from several hundred in the
beginning of training to around 15 steps. The performance of the PS model is
comparable to other models of reinforcement learning. The exact quantitative
performance depends on the exact form of the learning rule. What is remarkable
about the PS model in the grid world scenario is that the path is not “given” to
the model in any obvious sense, but the model genuinely “finds” the path on its
own; the path crystallizes in the course of the learning process. The complex
“action” of choosing a short path towards the goal itself is not controlled in an
obvious sense by the designers of the model.

In sum, we can learn three main lessons form the PS model in the grid world
scenario. First, in contrast to a naive hard-wired model, the PS model is not
provided with the information of how to behave in all possible situations, but
it genuinely finds the solution to the problem on its own; a good solution path
crystallizes in a learning process in interaction with the environment. Second,
as scenarios get more complex, learning is no longer a luxury, but a practical
necessity; from a certain point on, building a model without a certain degree of
control becomes infeasible because resources such as memory are limited. Third,
the PS model achieves this by filtering out the relevant information: Not all the
basic moves contribute equally to its success. This is what the glow mechanism
achieves.

8 Learning to Generalize
I have noted in section 5 that the basic PS model is limited in several respects.
One limitation is that the model’s structure, its graph, is fixed; see figure 3.
From the perspective of agency, the graph structure is not “up to” the model;

16See the appendix A, especially equation (4), for the formal details of the glow mechanism.

13

consequently, the output of the model should not be considered to be an action,
insofar as the output is due to the graph structure. The same observation applies
to the learning rule of the basic PS model: the learning rule does not change,
and, therefore, limits the model’s ability to learn.

The model’s inflexibility also puts practical limitations on the kind of prob-
lem it can solve. In the present section, we will see environments in which the
basic PS model is inefficient, or even entirely inadequate; there are cases in
which the basic PS model is never able to produce an output on the basis of
an updated probability, i.e., it is not able to act. This motivates a modification
of the model. The modified model has the ability to adapt its structure to the
environment: it has the ability to add edges to its own structure under certain
conditions. The model is provided with a transition rule not only for proba-
bilities, but also for these modification. In this way, the design of the model’s
structure is “handed over” to the model.

More specifically, the enhanced PS model here has the ability to “general-
ize”.17 Intuitively, a model with generalization can learn from percepts that it
has not encountered before. This is possible if the model can recognize that a
new percept is similar to percepts which it has encountered before. Consider
the following environment, which is a modification of the invasion game. The
attacker announces its moves using arrows (→,←). Additionally, the arrows
are now colored either red or green. Thus, there are now four percepts. The
outputs are, again, moving right or left. In this environment, generalization is
a relevant ability: We can create different scenarios, in which some properties
of the percepts are relevant, while other can be neglected. In one scenario, only
the shape of the arrows matter. The model has to learn to move to the right
when it is shown a (green or red) right arrow, and to the left when it is shown a
(green or red) left arrow. In a different scenario, the model should learn to pay
attention to colors only, such that it moves to the right when it sees green, and
to the left when it sees red, irrespective of the direction of arrows.

The basic PS model is able to cope in this environment. Consider the model
depicted in figure 6.18 Assume we are in a scenario where only the direction
of the arrows matters, while the colors of the arrows are irrelevant. Over time,
the basic PS model will build up the appropriate probabilities for all percepts.
However, the model is not able to “recognize” that the distinction between red
and green is irrelevant. The shapes are in no way correlated by the model.

In contrast, a PS model with generalization is able to “recognize” that certain
distinctions are relevant, while others are not. Such a model can modify its
structure along the following lines. An additional layer of classification clips
can be added between percept and output clips. In the present scenario, there
are two kinds of categories, color and shape. For each property, red, green, left,
and right, a clip can be added: If the model is given a percept, say, a green left
arrow, it adds the corresponding categories, which provides it with the option
of classifying this percept as green or left; see figure 7.19

17The following discussion is based on Melnikov et al. (2015).
18Figure 6 is taken from Melnikov et al. (2015, p. 3).
19Additionally, a “fully general” clip, #, which comprises all of the above categories, can be

14

3

a = (a1, a2, ..., aM) 2 A ⌘ A1 ⇥ A2 ⇥ ... ⇥ AM , ai 2
{1, ..., |Ai|}, where |A| = |A1| · · · |AM | is the number of
possible actions. Once again, each of the M dimensions
provides a di↵erent aspect of an action, e.g. walking,
jumping, picking-up, etc. Here, however, we restrict our
analysis to the case of M = 1 and varying |A1|.

Each directed edge from clip ci to clip cj has a time

dependent weight h(t)(ci, cj), which we call the h-value.
The h-values define the conditional probabilities of hop-
ping from clip ci to clip cj according to

p(t)(cj |ci) =
h(t)(ci, cj)P
k h(t)(ci, ck)

. (1)

At the beginning, all h-values are initialized to the same
fixed value h0 > 0, where we usually set h0 = 1. This
ensures that, initially, the probability to hop from any
clip to any of its neighbors is completely uniform.

Learning takes place by the dynamical strengthening
and weakening of the internal h-values, in correspondence
to an external feedback, i.e. a reward �, coming from the
environment. Specifically, the update of the h-values is
done according to the following update rule:

h(t+1)(ci, cj) = h(t)(ci, cj)� �(h(t)(ci, cj)� 1) + �, (2)

where the reward � is non-negative (� = 0 implies no
reward), and is added only to the h-values of the edges
that were traversed in the last random walk. The damp-
ing parameter 0  �  1 weakens the h-values of all
edges and allows the agent to forget its past experience,
a useful feature in changing environments [19, 24].

III. GENERALIZATION WITHIN PS

Generalization is usually applicable when the percep-
tual input is composed of more than a single category.
In the framework of the PS model, this translates to the
case of K > 1 in percept space. In particular, when
two (or more) stimuli are similar, i.e. share a set of com-
mon features, or, more precisely, have the same values for
some of the categories, it may be useful to process them
in a similar way. Here we enhance the PS model with a
simple but e↵ective generalization mechanism based on
this idea.

The key feature of this mechanism is the dynamical
creation of a class of abstracted clips that we call wildcard
clips. Whenever the agent encounters a new stimulus, the
corresponding new percept clip is created and compared
pairwise to all existing clips. For each pair of clips whose
1  l  K categories carry di↵erent values, a new wild-
card clip is created (if it does not already exist) with all
the di↵erent l values replaced with the wildcard symbol
#. Such a wildcard clip then represents a categorization
based on the remaining K � l common categories.

A wildcard clip with l wildcard symbols is placed in
the lth layer of the clip network (we consider the percept
clip layer as the zeroth layer). In general, there can be

up to K layers between the layer of percept clips and the
layer of action clips, with

�
K
l

�
wildcard clips in layer l for

a particular percept. From each percept- and wildcard-
clip there are direct edges to all action clips and to all
matching higher-level wildcard clips1.

To demonstrate how this mechanism operates we con-
sider the example from the introduction. An agent acts
as a driver who should learn how to deal with tra�c
lights and arrow signs. While driving, the agent sees a
tra�c light with an arrow sign and should choose among
two actions (|A1| = 2): continue driving (+) or stop the
car (�). The percepts that the agent perceives are com-
posed of two categories (K = 2): color and direction.
Each category has two possible values (|S1| = |S2| = 2):
red and green for the color, and left and right for the
direction. At each time step t the agent thus perceives
one of four possible combinations of colors and arrows,
randomly chosen by an environment, and chooses one of
the two possible actions. In such a setup, the basic PS
agent, described in the previous section, would have a
two-layered network of clips, composed of four percept
clips and two action clips, as shown in Fig. 2. It would
then try to associate the correct action for each of the
four percepts separately. The PS with generalization, on
the other hand, has a much richer playground: it can, in
addition, connect percept clips to intermediate wildcard
clips, and associate wildcard clips with action clips, as
we elaborate below.

()) (

+ �

FIG. 2: The basic PS network as it is built up for the driver
scenario. Four percept clips (arrow, color) in the first row are
connected to two action clips (+\�) in the second row. Each
percept-action connection is learned independently.

The development of the enhanced PS network is shown
step by step in Fig. 3 for the first four time steps of the
driver scenario (a hypothetical order of percepts is con-
sidered for illustration). When a left-green signal is per-
ceived at time t = 1, the corresponding percept clip is
created and connected to the two possible actions (+\�)
with an initial weight h0, as shown in Fig. 3(a). In the
second time step t = 2, a right-green signal is shown.
This time, in addition to the creation of the correspond-
ing percept clip, the wildcard clip (#, green) is also cre-

1 By matching higher-level wildcard clips, we mean wildcard
clips with more wildcard symbols, whose explicit category val-
ues match with those of the lower-lever wildcard clip. In
essence, a matching higher-level wildcard clip (e.g. the clip
(s1, s2, #, #)) generalizes further a lower-level wildcard clip (e.g.
(s1, s2, s3, #)).

Figure 6: Generalization: basic model

4

ated – since both of the encountered percepts are green –
and placed in the first layer of the network2. Newly cre-
ated edges are shown in Fig. 3(b) as solid lines, whereas
all previously created edges are shown as dashed lines.
Next, at time t = 3, a right-red signal is presented. This
leads to the creation of the (), #)-clip, because both
the second and the third percepts have a right arrow.
Moreover, since the first percept does not share any sim-
ilarities with the third percept, the full wildcard clip (#,
#) is created and placed in the second layer, as shown in
Fig. 3(c) (depicted as a circle with a single # symbol).
Last, at t = 4, a left-red signal is shown. This causes the
creation of the ((, #)-clip (the left-arrow is shared with
the first percept) and the (#, red) clip (the red color is
shared with the third clip), as shown in Fig. 3(d). After
the fourth time step the network is fully established and
from this point on will only evolve through changes in
the weights of the edges, i.e. by modifying the h-values.

(a) t = 1

(

+ �

(b) t = 2

()

+ �

(c) t = 3

())

+ �

)

#

(d) t = 4

()) (

+ �

) (

#

FIG. 3: The enhanced PS network as it is built up for the
driver scenario, during the first four time steps. The following
sequence of signals is shown: left-green (t = 1), right-green
(t = 2), right-red (t = 3), and left-red (t = 4). Four percept
clips (arrow, color) in the first row are connected to two layers
of wildcard clips (first layer with a single wildcard and second
layer with two) and to two action clips (+\�) in the fourth
row. Newly created edges are solid, whereas existing edges are
dashed (relative weights of the h-values are not represented).

The mechanism we have described so far, realizes, by
construction, the first two characteristics of meaningful
generalization: categorization and classification. In par-
ticular, categorization, the ability to recognize common
properties, is achieved by composing the wildcard clips
according to similarities in the coming input. For exam-
ple, it is natural to think of the (#, red) wildcard clip as
representing the common property of redness3. Likewise,
classification, the ability to relate a new stimulus to the
group of similar past stimuli, is fulfilled there by connect-
ing of the lower-level wildcard clips to matching higher
lever wildcard clips, as described above (where percept
clips are regarded here as zero-order wildcard clips)4.

2 To simplify the visualization we draw the wildcard clip (#, green)
as a green circle with no direction (and without the # symbol).
In general, we omit one # symbol in all figures.

3 In that spirit, one could interpret the full wildcard clip (#, #)
as representing a general perceptual input.

4 Note that classification is done, therefore, not only on the level
of the percept clips, but also on the level of the wildcard clips.

While categorization and classification are realized by
the very structure of the clip network, the remaining list
of requirements, namely, relevant, correct, and flexible
generalization, is fulfilled via the update of the h-values.
To illustrates that, we next confront the agent with four
di↵erent environmental scenarios, one after the other.
Each scenario lasts 1000 time steps, following by a sud-
den change of the rewarding scheme, to which the agent
has to adapt. The di↵erent scenarios are listed below:

(a) At the beginning (1  t  1000), the agent is re-
warded for stopping at red light and for driving at
green light, irrespective of the arrow direction.

(b) At the second phase (1000 < t  2000), the agent is
rewarded for doing the opposite: stopping at green
light and driving at red light.

(c) At the third phase (2000 < t  3000), the agent
should only follow the arrows: it is rewarded for
driving (stopping) when the arrow points to the
left (right). Colors should thus be ignored.

(d) In the last phase (3000 < t  4000), the environment
rewards the agent whenever it chooses to drive, ir-
respective of neither the signal’s color nor its arrow.

Fig. 4 sketches four di↵erent network configurations
that typically develop during the above phases. Only
strong edges of relative large h-values are depicted, and
we ignore direct edges from percepts to actions, for clar-
ity, as explained later. At each stage a di↵erent config-
uration develops, demonstrating how the relevant wild-
card clips play an important role, via strong connections
to action clips. Moreover, those wildcard clips are con-
nected strongly to the correct action clips. The relevant
and correct edges are built through the update rule of
Eq. (2), which only strengthens edges that, after hav-
ing been traversed, lead to a rewarded action. Finally,
the presented flexibility in the network’s configuration,
which reflects a flexible generalization ability, is due to:
(a) the existence of all possible wildcard clips in the net-
work; and (b) the update rule of Eq. (2), which allows
the network, through a non-zero damping parameter � to
adapt fast to changes in the environment. We note that
Fig. 4 only displays idealized network configurations. In
practice, other strong edges may exist, e.g. direct edges
from percepts to actions, which may be rewarded as well.
In the next Section we address such alternative configu-
rations and analyze their influence on the agent’s success
rate.

Fig. 5 shows the e�ciency, that is, the averaged success
probability, of the PS agent in the driver scenario, as a
function of time, averaged over 104 agents. A reward of
� = 1 is given for correct actions and a damping parame-
ter of � = 0.005 is used5. It is shown that on average the

5 As always in the PS model, there is a trade o↵ between adapta-

Figure 7: Model with Generalization

The model with generalization has the ability to learn which categories are
relevant in a particular scenario, e.g., that only the color of arrows matters in
a particular situation. All we have to presuppose is that the model knows the
different categories, e.g., color and direction, and has the ability to recognize
percepts as falling into the different categories. The model learns on its own
which classifications are relevant and should be associated with particular ac-
tions. It can be shown that, in this scenario, it is an advantage if the model has
the ability to generalize: The model with generalization learns faster than the
basic model.

An even more striking result about generalization is that in some scenarios,
models without generalization are unable to learn at all, while models with
generalization do fine. The scenario is such that there are, again, two kinds of
categories, direction and color. Each percept has one of four directions: left,
right, up and down. However, the percepts come in infinitely many different
colors, and in each round, the model in question gets a percept with a new
color, such that no color is repeated twice. Thus, while the model is exposed to
percepts with the same direction many times, it never sees two percepts with
the same color. This scenario is dubbed “never-ending color scenario”.20

We can now compare the basic model and the model with generalization
with respect to this scenario. The structure of the basic model is such that

added in a third layer. Figure 7 is taken from Melnikov et al. (2015, p. 4).
20See Melnikov et al. (2015, Sec. IV) for a full description of the scenario.

15

each percept is directly related to the output clips of moving in one of the four
directions. However, each percept is entirely new, it has never been perceived
before. Therefore, the basic model’s choice between moving in one of the four
directions is random.21 Compare this to the model with generalization. Over
time, this model will learn to connect the direction categories with the correct
action with high probability. The ability to categorize does not merely give the
model with generalization an edge over the basic model. In the never-ending
color scenario, the ability to generalize makes the difference between candidate
agency and non-agency: The basic model is never able to produce an output
that is not random. The model with generalization, on the other hand, is able
to draw on its experience, and exhibits a (still rudimentary) form of agency.
In the never-ending color scenario, generalization makes the difference between
agency and non-agency.22

At first sight, it might seem that the never-ending scenario is extreme in
that we never allow the same color to return twice; on this basis, we could
question the real-life relevance of the scenario. However, in reality, we never
encounter the exact same situation twice, we only encounter situations that are
very similar some relevant respect. Our perceptions are always classified in one
respect or another – encountering the exact same perceptual input twice is only
possible in an abstract, formal setting. We thus should not dismiss this scenario
as implausible or contrived prematurely.

In sum, we have seen that it is possible to provide a model with a certain
degree of control over its own structure, such that it is able to deal with classi-
fication tasks. Additionally, we have also seen that such a modification can be
a necessity in certain scenarios in that a model without this ability is not able
to cope at all. Of course the model’s control is still limited. In particular, the
model is not able to form its own categories. Also, the model has to be provided
with the ability to recognize percepts as falling under one or the other of the
categories. Melnikov et al. (2015, Sec. V) explicitly point out these inflexibilities
and discuss ways in which these limitations might be overcome; for example,
classification could be made independent of fixed semantic information. In this
way, the task of forming a classificatory system would be turned over to the
model.

21Note that there is a 0.25 chance that the model makes the correct move, and the prob-
ability of the corresponding choice is raised according to the updating rule. However, the
model is never able to apply this “knowledge”, because it only perceives every percept once.
Its performance never rises above the level of random behavior.

22This does not mean that the basic model is worthless. It is important to note that if the
scenario were slightly different, in that colors come up more than once, the basic model would
be able to act as well. In this sense, it is appropriate to call the basic model a “potential
agent”: There is a slight modification of the scenario that enables the model to perform at
least one action.

16

9 Learning Speed Matters
In the two previous sections, we have seen that different kinds of environment
necessitate different kinds of learning – forgetfulness, and being able to recognize
similarities, can be a blessing. In the present section, we will examine a further
quantitative aspect of learning with a direct impact on agency: We will see that
the speed at which a model learns can make the difference between agency and
non-agency.

In the scenarios we have considered so far, the environments were so-called
round-based environments. In round-based environments, the environment pro-
vides an input and then lets the model process the input, waiting until the model
provides an output. Everything is on hold during the deliberation process. The
performance of models in round-based environments is measured on the basis
of rounds, and does not take into account how long it takes a model to reason
from input to output. This is no problem as long as the models’ deliberation
process is simple, as it is the case with the models we considered above: deliber-
ation only takes a few steps on a small graph, and negligible time. However, the
deliberation process can get more complex and take up a non-negligible amount
of time as the models themselves get more complex. Deliberation speed may
then influence learning speed and, consequently, agency.23

Take the following scenario. Recall that, in the dynamic invasion game from
section 6, it took the basic PS model approximately 100 learning rounds to
achieve its maximal success probability. The deliberation speed of the basic PS
model is very high – it only takes one step in the network – and can, therefore,
be neglected. What would happen if the deliberation speed of the model was,
say, 300 times lower? Such a slow model could not produce an output in the
environment from which it has received the input. In this sense, it would never
be able to act: The environment has changed before the model was able to learn
anything about it.

More generally, here is why deliberation speed matters. Take two models
X,Y that have the same input-output profile and are thus indistinguishable
in a round-based environment. Assume that the environment is dynamic and
non-recurrent, i.e., once the environment has changed, it does not change back
to a previous state. Assume, further, that the internal deliberation speed of X
is small in comparison to changes in the environment, but the internal delib-
eration speed of Y is large in comparison to changes in the environment. How
do models X and Y perform in this environment? X is able to learn and cope
in this environment, while Y is not able to learn at all. Consequently, X is, at
least potentially, an agent, while Y is not. This shows that if we take internal

23Cases where internal deliberation speed matters have been explored in the PS framework;
see Paparo et al. (2014). Paparo et al. distinguish “passive scenarios”, where only the agent’s
input-output profile, its round-based behavior, is taken into account, while the internal de-
liberation speed is ignored, and “active scenarios”, where deliberation speed is also taken into
account. Paparo et al. show a quadratic speed-up in learning can be achieved by a PS model
that has quantum properties in comparison to a model that does not employ quantum prop-
erties. Here I will not go further into the details of this particular result, although it would
be interesting in itself.

17

deliberation speed into account, and the deliberation speed of a model is slower
than changes in the environment, then this model is unable to learn, and, there-
fore, unable to act. A quantitative difference between models, their learning
speed, can lead to the qualitative gap between agency and non-agency.24

In what kind situation might a difference in reasoning speed actually occur?
One way of making the abstract argument more concrete is if the changes in the
environment are brought about by other agents. Take a scenario where several
models compete for the same reward. The model that wins the competition
might harvest the reward, which prevents slower models from learning, because
if there is no reward, there is no learning. In this scenario, the fastest model
is the pace-maker for changes in the environment. This scenario has several
connections to situations that might be of actual scientific relevance. Take, for
example, a classroom situation, in which a teacher asks questions and rewards
only those students that come up with the answer first. If only the same, fast
student that is rewarded, while the other students remain empty handed, the
slower students might not learn at all and might lose interest, while the fastest
student gets faster and faster.

In sum, comparing different, concrete models in different, dynamic scenarios
brings interesting, quantitative aspects of the relation between learning and
agency to the fore. In particular, we saw that the deliberation speed of a model
can make all the difference between that model’s being able to learn, and not
being able to learn at all.

10 Conclusion
The main thesis I proposed and defended in the present paper is that there
is a close connection between agency and learning; more specifically, I claimed
that learning is necessary for agency, mediated by control. In order for an
agent to own the mechanism producing her actions, she has to acquire this
mechanism in a learning process. I explored this thesis with the help of the PS
model. I contrasted the PS model with models that are not able to learn and,
consequently, unable to act; this contrast suggested that, while the PS model
exhibits a very rudimentary form of agency, the reservations we may have about
this model are no longer of a principled nature, but a matter of degree.

I then explored further the relation between agency and learning with the
help of the PS model. The examination revealed connections between agency
and learning that would be hard to obtain on the basis of the usual philosophical
methodology of single-action thought experiments. We saw that agency becomes
salient in environments that are dynamic and complex, such that an needs to
be able to learn the best course of action. Furthermore, while it is clear that
the basic PS model is not the final word on real agency, its concrete structure
suggests how the model can be provided with more and more control, e.g., by
providing it with the possibility of modifying its own structure. This reveals a
confluence between the philosophical question of how agents can acquire control,

24This argument was first proposed in a slightly different form in Paparo et al. (2014, p. 3).

18

and the engineering task of building models with more and more autonomy.
Finally, we saw that there is a close connection between the internal reasoning
speed and a model’s ability to actualize its agency.

In the present paper, I have drawn on the PS model in order to substantiate,
and explore, the thesis that learning is a necessary condition for agency. The use
of models from AI is fruitful because these models make it possible to articulate
and test subtle relationships between aspects of learning, memory, and agency in
a perspicuous manner. The methodology of directly testing philosophical theses
using the PS model will be pursued further; the prospect of examining learning
in multi-agent scenarios is particularly exciting. Of course, it would be desirable
to test the ideas articulated in the present paper using other models form AI
as well. However, these ideas can also be confronted with empirical findings
about animal and human agency, by drawing on cognitive science, psychology,
and biology.

A The Formal PS Model
The core structure of the PS model25 is a directed graph, together with an
assignment of probabilities to the edges. The graph is defined on a set {c1, c2, ...}
of vertices called clips. The set of vertices can be differentiated into input clips
s1, s2, ..., output clips a1, a2, ..., and internal clips; all of these can be provided
with further structure if needed. Edges are written as (ci, cj), which should be
read as ci → cj . In order to define the transition probabilities assigned to the
edges, we first define the function h(t)(ci, cj), the so-called h-value, which is a
time-dependent edge weight. Usually, the PS model is initialized as a “blank
slate”, i.e., we set h(0) = 1 for all edges. The h-value then yields the conditional
probability of transitioning from clip ci to cj :

p(t)(cj |ci) =
h(t)(ci, cj)∑
k h

(t)(ci, ck)
(1)

This means that the probability of going to cj , given that we are at ci, is the
h-value of the edge (ci, cj) relative to the sum of all h-values of the outgoing edges
of ci. Put differently, we normalize the h-value to get the conditional probability.
Note that, initially, all transitions are equiprobable, i.e., the transitions are
random.

The PS model is formulated within the paradigm of reinforcement learning.
One way in which the model can be taken to learn is by updating the transition
probabilities according to rewards; the rewards, in turn, are assigned depending
on the model’s outputs, which yield a more or less successful interaction with
the environment. The simplest learning rule that implements this idea modifies
the h-values as follows:

h(t+1)(ci, cj) = h(t)(ci, cj) + λ (2)
25See H. J. Briegel (2012); Mautner et al. (2015) for an introduction of the model.

19

The parameter λ can be interpreted as the reward, which is provided by the
environment. It is non-negative, where λ = 0 means that a certain output is not
rewarded. We only modify those h-values that were used in the random walk
resulting in a particular output. If λ > 0, the h-value increases in the time step
in question, and the probability increases accordingly. The standard PS model
uses a learning rule adds an additional damping or “forgetfulness” parameter:

h(t+1)(ci, cj) = h(t)(ci, cj)− γ(h(t)(ci, cj)− 1) + λ (3)

In this equation, a damping term with parameter γ is added. The damping
parameter 0 ≤ γ ≤ 1 decreases the h-values of all edges in every round, such
that the model “forgets” what it has learned in previous rounds. Obviously, (2)
results from (3) if we let γ = 0. The damping parameter has the advantage that
a PS model with damping is able to adapt faster to changing environments;
however, it has the drawback of limiting the optimal success probability below
1. This is due to the fact that the model continually forgets positive rewards
even if the environment is constant.

The PS model in the grid world scenario uses the glow mechanism.26 The
glow mechanism assigns a glow to edges that are used in the course of the
“reasoning process”. If an edge is visited, glow is set to 1, and it decreases
at a constant rate over time. In order to implement the glow mechanism, the
learning rule is modified by adding a glow function g:27

h(t+1)(ci, cj) = h(t) + g(t)(ci, cj)λ (4)

The glow function g is updated according to the following rule, using the
glow parameter η:

g(t+1)(ci, cj) = g(t)(ci, cj)(1− η) (5)

The efficiency of the glow mechanism depends, in particular, on the setting
of the glow parameter, η. η takes values between 0 and 1, where 0 means that
glow does not decrease at all, while 1 means that glow disappears after one time
step. Extreme settings do not lead to successful behavior. More concretely, in
the grid world scenario shown in figure 5, if we set η to 0, the model learns at a
very slow rate – quantitatively, the model needs more than 800 basic moves on
average to find the target after 100 training runs. Thus, it is very hard, or even
impossible, to learn a path if all, or none, of the basic moves are remembered.
For the above form of the learning rule, η = 0.07 can be shown to be optimal
in this scenario.

References
Anscombe, G. E. M. 1957. Intention. Oxford: Basil Blackwell.

26The following discussion is adapted from Melnikov et al. (2014); see this paper for a
detailed exposition and discussion of the glow mechanism.

27I have left out the “forgetfulness parameter” from equation (3) for simplicity’s sake.

20

Briegel, H. J. and T. Müller. 2015. A chance for attributable agency. Minds
and Machines 25(3): 261–79.

Dennett, D. C. 2003. Freedom Evolves. Penguin.

Dunjko, V., J. M. Taylor, and H. J. Briegel. 201x. Framework for learning agents
in quantum environments. ArXiv xxxx.

Fischer, J. M. and M. Ravizza. 1998. Responsibility and Control. Cambridge
University Press.

Frankfurt, H. 1969. Alternate Possibilities and Moral Responsibility. Journal
of Philosophy 66: 258–78.

H. J. Briegel, G. D. l. C. 2012. Projective simulation for artificial intelligence.
Scientific Reports 2(400).

Mautner, J., A. Makmal, D. Manzano, M. Tiersch, and H. J. Briegel. 2015. Pro-
jective simulation for classical learning agents: a comprehensive investigation.
New Generation Computing 33(1): 69–114.

Melnikov, A. A., A. Makmal, and H. J. Briegel. 2014. Projective simulation
applied to the grid-world and the mountain-car problem. Artificial Intelligence
Research 3(24).

Melnikov, A. A., A. Makmal, V. Dunjko, and H. J. Briegel. 2015. Projective
simulation with generalization. ArXiv:1504.02247v1.

Paparo, G., V. Dunjko, A. Makmal, M. A. Martin-Delgado, and H. J. Briegel.
2014. Quantum Speedup for Active Learning Agents. Physical Review X
4(031002).

Russell, S. J. and P. Norvig. 2003. Artificial Intelligence - A Modern Approach.
New Jersey: Prentice-Hall.

Schlosser, M. 2015. Agency. The Stanford Encyclopedia of Philosophy, Edward
N. Zalta (ed.), http://plato.stanford.edu/entries/agency/.

Sutton, R. and A. Barto. 1998. Reinforcement Learning. MIT Press, 1st ed.

van Inwagen, P. 1983. An Essay on Free Will. Oxford University Press.

———. 2000. Free will remains a mystery: The eighth Philosophical Perspec-
tives lecture. Philosophical Perspectives 14: 1–19.

21

