
International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 7 Issue 6, June - 2023, Pages: 76-84

www.ijeais.org/ijaer

76

Comparative Analysis of the Performance of Popular Sorting

Algorithms on Datasets of Different Sizes and Characteristics
Ahmed S. Sabah1, Samy S. Abu-Naser2,Yasmeen Emad Helles3, Ruba Fikri Abdallatif4, Faten Y.A. Abu Samra5, Aya Helmi

Abu Taha6, Nawal Maher Massa7, Ahmed A. Hamouda8

Department of Information Technology,

Faculty of Engineering & Information Technology,

Al-Azhar University - Gaza, Palestine

Email: abunaser@alazhar.edu.ps2, rubafikrii@gmail.com4, faten.samra199@gmail.com5, ahmed882088200@gmail.com8

Abstract: The efficiency and performance of sorting algorithms play a crucial role in various applications and industries. In this

research paper, we present a comprehensive comparative analysis of popular sorting algorithms on datasets of different sizes and

characteristics. The aim is to evaluate the algorithms' performance and identify their strengths and weaknesses under varying

scenarios. We consider six commonly used sorting algorithms: QuickSort, TimSort, MergeSort, HeapSort, RadixSort, and ShellSort.

These algorithms represent a range of approaches and techniques, including divide-and-conquer, hybrid sorting, and simple

comparison-based methods. To assess their performance, we employ a diverse set of datasets, including the Iris dataset (1K), student

dataset (5.8K), Wine dataset (6.5K), Uniform (10K), Normal (10K), Exponential (10K), Bimodal (10K), Yelp dataset (10K), MNIST

dataset (42K), Uniform (100K), Normal (100K), Exponential (100K), Bimodal (100K), Uniform (500K), Normal (500K), Exponential

(500K), Bimodal (500K), Uniform (1M), Normal (1M), Exponential (1M), and Bimodal (1M). These datasets cover a wide range of

sizes and characteristics, allowing us to analyze the algorithms' performance across different dimensions. We measure and compare

several key metrics, including execution time, memory usage, algorithmic complexity and stability. By analyzing these metrics, we

gain insights into the efficiency and suitability of each algorithm for different dataset sizes and characteristics. We also discuss the

implications of the findings in practical applications. Our results reveal important trade-offs among the sorting algorithms. While

some algorithms excel in certain scenarios, others demonstrate better scalability or memory efficiency. We identify the best-

performing algorithms for specific dataset characteristics and highlight their strengths and limitations. This research can assist

developers and practitioners in selecting appropriate sorting algorithms based on their specific requirements and dataset

characteristics. In conclusion, this comparative analysis provides a valuable contribution to the understanding of sorting algorithm

performance. The findings contribute insights into the efficiency and suitability of popular sorting algorithms across datasets of

different sizes and characteristics. By evaluating key metrics and discussing the implications, we offer guidance for selecting the

most appropriate sorting algorithm in various practical scenarios.

Keywords- Sorting, Algorithms, Datasets, Performance

I. INTRODUCTION

Sorting is a fundamental operation in computer science and

plays a crucial role in various applications and industries.

Efficient sorting algorithms are essential for tasks such as data

organization, searching, and data analysis. Numerous sorting

algorithms have been developed over the years, each with its

own characteristics and performance trade-offs. However,

selecting the most suitable algorithm for a given scenario can

be challenging, as the choice depends on factors such as

dataset size, data distribution, stability requirements, and

available computational resources.

In this research paper, we present a comprehensive

comparative analysis of popular sorting algorithms,

evaluating their performance on datasets of different sizes and

characteristics. The aim is to gain insights into the efficiency

and suitability of each algorithm for various scenarios. By

examining key metrics and analyzing algorithmic behavior,

we aim to provide guidance for selecting the most appropriate

sorting algorithm in practical applications.

We consider six widely used sorting algorithms for our

analysis: QuickSort, TimSort, MergeSort, HeapSort,

RadixSort, and ShellSort. These algorithms represent a range

of techniques and approaches, including divide-and-conquer,

hybrid sorting, and simple comparison-based methods. By

selecting a diverse set of algorithms, we ensure that our

analysis covers different strategies and algorithms commonly

employed in practice.

To evaluate the performance of these algorithms, we utilize

datasets with varying sizes and characteristics. Our dataset

selection includes well-known datasets from the machine

learning domain, such as the Iris dataset and Wine dataset, as

well as synthetic datasets generated with different

distributions, including Uniform, Normal, Exponential, and

Bimodal distributions. By incorporating a wide range of

dataset characteristics, we can assess how the sorting

algorithms handle different data distributions and dataset

sizes.

We measure and compare several key metrics to evaluate the

algorithms' performance. These metrics include execution

mailto:abunaser@alazhar.edu.ps2
mailto:faten.samra199@gmail.com5
mailto:ahmed882088200@gmail.com

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 7 Issue 6, June - 2023, Pages: 76-84

www.ijeais.org/ijaer

77

time, memory usage, algorithmic complexity and stability.

Execution time provides insights into the efficiency of the

algorithms, while memory usage reflects their space

complexity. Algorithmic complexity analysis allows us to

evaluate the theoretical efficiency of the algorithms. Stability

analysis determines if the algorithms maintain the relative

order of elements with equal keys.

By conducting this comparative analysis, we aim to provide a

comprehensive understanding of the performance

characteristics of popular sorting algorithms. The results of

our analysis will assist developers and practitioners in

selecting the most appropriate sorting algorithm based on the

specific requirements and dataset characteristics of their

applications. Additionally, our findings contribute to the

existing body of knowledge on sorting algorithms, offering

insights into their strengths, weaknesses, and trade-offs.

In the following sections of this research paper, we present

detailed descriptions of the sorting algorithms under analysis

and discuss the datasets used for evaluation. We then provide

an in-depth analysis of the experimental results, comparing

the performance of the algorithms based on the defined

metrics. Finally, we discuss the implications of our findings

and offer guidance for selecting sorting algorithms in

practical scenarios.

II. PROBLEM STATEMENT

Sorting algorithms are essential for organizing and analyzing

data in various applications. However, with a plethora of

sorting algorithms available, it can be challenging to

determine the most suitable algorithm for a given scenario.

Factors such as dataset size, data distribution, stability

requirements, and available computational resources all

influence the performance and efficiency of sorting

algorithms.

The problem addressed in this research paper is to analyze and

compare the performance of popular sorting algorithms on

datasets of different sizes and characteristics. By evaluating

key metrics such as execution time, memory usage,

algorithmic complexity and stability, we aim to gain insights

into the strengths and weaknesses of each algorithm and

provide guidance for selecting the most appropriate algorithm

in practical applications.

The research questions guiding this study are:

 How do popular sorting algorithms perform on

datasets of varying sizes and characteristics?

 Which sorting algorithms demonstrate better

scalability and efficiency for different dataset sizes?

 How do the algorithms compare in terms of

memory usage and algorithmic complexity?

 Which algorithms maintain stability, preserving the

relative order of elements with equal keys?

By addressing these research questions, we can offer insights

into the performance characteristics of popular sorting

algorithms and contribute to the understanding of their

efficiency and suitability across different datasets. The

findings of this research will aid developers and practitioners

in making informed decisions when selecting sorting

algorithms for their specific requirements and dataset

characteristics.

III. OBJECTIVES

The objectives of this research paper are:

 To compare the performance of popular sorting

algorithms, including QuickSort, TimSort,

MergeSort, HeapSort, RadixSort, and ShellSort, on

datasets of varying sizes and characteristics.

 To analyze the execution time of each sorting

algorithm on different dataset sizes, providing

insights into their scalability and efficiency.

 To evaluate the memory usage of the sorting

algorithms and assess their space complexity.

 To analyze the algorithmic complexity of the sorting

algorithms and compare their theoretical efficiency.

 To determine the stability of the sorting algorithms

and assess their ability to maintain the relative order

of elements with equal keys.

 To provide guidance and recommendations for

selecting the most suitable sorting algorithm based

on dataset characteristics and requirements.

By achieving these objectives, we aim to offer a

comprehensive comparative analysis of popular sorting

algorithms and provide valuable insights into their

performance on datasets of different sizes and characteristics.

The findings of this research will aid developers and

practitioners in selecting the most appropriate sorting

algorithm for their specific needs and dataset characteristics.

IV. BACKGROUND AND RELATED WORK

A. Background

Sorting algorithms are essential tools in computer science,

and they are used to organize data in a specific order. The

most common use of sorting algorithms is to sort data in

ascending or descending order. Sorting algorithms are critical

to the performance of many applications, including search

engines, databases, and data analysis.

There are various types of sorting algorithms available, each

with its unique advantages and disadvantages. Some of the

most popular sorting algorithms include QuickSort,

MergeSort, HeapSort, InsertionSort and SelectionSort.

QuickSort is a comparison-based sorting algorithm that is

widely used due to its efficiency, especially for large datasets.

MergeSort is another popular sorting algorithm that is stable

and works well for large datasets. HeapSort is a comparison-

based sorting algorithm that works well for smaller datasets,

and SelectionSort, InsertionSort are simple sorting algorithms

that are easy to implement but not very efficient [1]-[3].

B. Related Work

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 7 Issue 6, June - 2023, Pages: 76-84

www.ijeais.org/ijaer

78

There have been numerous studies comparing the

performance of different sorting algorithms on various

datasets. For instance, [4] compared the performance of

various sorting algorithms on datasets of different sizes and

found that QuickSort and MergeSort were the most efficient

for large datasets.

Similarly, [5] compared the performance of sorting

algorithms on datasets with varying degrees of randomness

and found that MergeSort was the most efficient for highly

randomized datasets.

Another study by [6] compared the performance of various

sorting algorithms on datasets of different sizes and found that

QuickSort was the most efficient for small datasets, while

MergeSort was the most efficient for larger datasets.

Moreover, they observed that the performance of BubbleSort

deteriorated significantly as the size of the dataset increased.

One study by [7] compared the performance of six popular

sorting algorithms, including BubbleSort, SelectionSort,

InsertionSort, QuickSort, HeapSort, and MergeSort. The

authors used five different datasets with varying sizes and

degrees of randomness. They found that QuickSort was the

fastest algorithm for all the datasets, while BubbleSort was

the slowest. However, the authors noted that the relative

performance of the algorithms varied depending on the

dataset characteristics.

Another study by [8] focused on the performance of sorting

algorithms on distributed systems. The authors evaluated the

performance of four popular sorting algorithms, including

QuickSort, MergeSort, HeapSort, and BucketSort, on a

distributed system with multiple nodes. They found that the

performance of the algorithms was affected by the size of the

dataset, the number of nodes, and the communication

overhead between nodes.

Finally, a study by [9] compared the performance of various

sorting algorithms on data streams, which are continuous and

potentially infinite streams of data. The authors evaluated the

performance of QuickSort, MergeSort, and InsertionSort on

three different data stream scenarios. They found that

MergeSort performed better than QuickSort and InsertionSort

in all three scenarios.

In summary, previous research has highlighted the

importance of selecting the right sorting algorithm for specific

datasets. Different sorting algorithms perform differently on

datasets of different sizes and characteristics. Therefore, it is

crucial to analyze the performance of different sorting

algorithms on datasets with different characteristics to select

the most efficient algorithm for a given sorting task.

C. Previous studies Gaps and limitations

While the existing literature provides valuable insights into

the performance of popular sorting algorithms on datasets of

different sizes and characteristics, there are still some gaps

and limitations that this paper aims to address. These include:

1) Limited comparison of sorting algorithms:

Many of the existing studies focus on

comparing a few popular sorting algorithms,

such as QuickSort, MergeSort, and HeapSort.

However, there are many other sorting

algorithms that have not been extensively

studied, such as RadixSort, CountingSort, and

ShellSort. This paper aims to compare the

performance of a wider range of sorting

algorithms to provide a more comprehensive

analysis of their strengths and weaknesses.

2) Limited evaluation of algorithm performance on

real-world datasets: Many of the existing studies

use artificial or synthetic datasets to evaluate

algorithm performance, which may not fully

reflect the characteristics of real-world datasets.

This paper aims to evaluate the performance of

sorting algorithms on both artificial and real-

world datasets to provide a more realistic

analysis of their performance.

3) Limited analysis of algorithm performance on

parallel and distributed computing

environments: Many of the existing studies

evaluate algorithm performance on single

machines or processors. However, with the

growth of big data and distributed computing, it

is important to evaluate algorithm performance

in parallel and distributed computing

environments. This paper aims to evaluate the

performance of sorting algorithms on parallel

and distributed computing environments to

provide insights into their scalability and

efficiency.

By addressing these gaps and limitations in the existing

literature, this paper aims to provide a more

comprehensive analysis of the performance of popular

sorting algorithms on datasets of different sizes and

characteristics, and in different computing environments.

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 7 Issue 6, June - 2023, Pages: 76-84

www.ijeais.org/ijaer

79

Table 1. Compares the previous studies on the performance of popular sorting algorithms:

Study Sorting algorithms compared Datasets evaluated Key findings

[4] QuickSort, MergeSort, HeapSort,

BubbleSort, InsertionSort

Datasets of varying sizes QuickSort and MergeSort were the most

efficient for large datasets

[5] QuickSort, MergeSort, HeapSort,

ShellSort

Randomized datasets of

varying sizes

MergeSort was the most efficient for highly

randomized datasets

[6] QuickSort, MergeSort, HeapSort,

BubbleSort, InsertionSort

Datasets of varying sizes QuickSort was the most efficient for small

datasets, while MergeSort was the most

efficient for larger datasets

[7] QuickSort, MergeSort, HeapSort,

BubbleSort, InsertionSort,

SelectionSort

Datasets of varying sizes

and degrees of randomness

QuickSort was the fastest algorithm for all

datasets, while BubbleSort was the slowest

[8] QuickSort, MergeSort, HeapSort,

BucketSort

Datasets of varying sizes

on a distributed system

with multiple nodes

Algorithm performance was affected by the

size of the dataset, the number of nodes, and

the communication overhead between nodes

[9] QuickSort, MergeSort, InsertionSort Data streams MergeSort performed better than QuickSort

and InsertionSort in all scenarios

V. METHODOLOGY

A. The datasets used in the analysis and their

characteristics

In this section, we will explain the datasets used in the

analysis and their characteristics.

We used both artificial and real-world datasets to evaluate the

performance of popular sorting algorithms. The artificial

datasets were generated using the following distribution

types: uniform, normal, exponential, and bimodal.

We varied the size of the datasets from 150 to 1 million

elements to test the scalability of the algorithms.

The real-world datasets we used were obtained from various

sources, such as the UCI Machine Learning Repository and

the Kaggle platform. These datasets included the following:

1) Iris dataset: This dataset consists of 150 observations

of iris flowers, with 50 observations for each of three

species. Each observation includes measurements of

the length and width of the petals and sepals.

2) Wine quality dataset: This dataset consists of 6500

red and white wine samples, with 11 chemical and

physical properties measured for each sample.

3) MNIST dataset: This dataset consists of 42,000

images of handwritten digits, with each image

represented as a 28x28 pixel array.

4) Yelp reviews dataset: This dataset consists of over

10,000 reviews from the Yelp platform, with each

review including the user's rating and text review.

5) Student dataset: it contains 5887 rows of student

number, first name, last name, and grade point

average.

The 16 artificial datasets:

1) Uniform with 10,000, 100K, 500K, 1 Million rows.

2) Normal with 10,000, 100K, 500K, 1 Million rows.

3) Exponential 10,000, 100K, 500K, 1 Million rows.

4) Bimodal 10,000, 100K, 500K, 1 Million rows.

We chose these datasets because they represent different

types of data and have varying sizes, which allowed us to

evaluate the performance of sorting algorithms on datasets

with different characteristics. The characteristics of the

datasets, such as size and distribution, were taken into account

when analyzing the performance of the sorting algorithms.

B. The experimental setup used to compare the

performance of the sorting algorithms

In this section, we will describe the experimental setup used

to compare the performance of the sorting algorithms.

We implemented the following popular sorting algorithms in

Python: QuickSort, TimSort, MergeSort, HeapSort,

RadixSort and ShellSort. We used the same implementation

for all algorithms to ensure a fair comparison.

To compare the performance of the sorting algorithms, we

measured the execution time for each algorithm on each

dataset. We ran each algorithm on each dataset 10 times and

took the average execution time to reduce the impact of

outliers. We used the time module in Python to measure the

execution time with high precision.

We ran the experiments on a computer with the following

specifications:

 Processor: Intel Core i7-8700K CPU @ 3.70 GHz

 Memory: 8 GB DDR4 RAM

 Operating System: Windows 10 64-bit

We also used Jupyter notebooks to write and run the Python

code for the experiments.

C. Potential sources of bias and limitations in the

methodology

In this section, we will discuss potential sources of bias or

limitations in the methodology.

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 7 Issue 6, June - 2023, Pages: 76-84

www.ijeais.org/ijaer

80

One potential source of bias is the choice of programming

language and platform. We implemented the sorting

algorithms in Python and ran the experiments on a computer

with specific hardware and software configurations. The

results may differ if the algorithms were implemented in a

different programming language or if the experiments were

run on a different hardware and software platform.

Another potential limitation is the choice of datasets used in

the experiments. While we used both artificial and real-world

datasets to test the algorithms, these datasets may not be

representative of all possible datasets. The results may differ

if the algorithms were tested on different datasets with

different characteristics.

The choice of sorting algorithms also has limitations. While

we included popular sorting algorithms such as QuickSort,

MergeSort, and HeapSort, there are other sorting algorithms

that were not included in our experiments. These algorithms

may have performed differently on the datasets we used.

Additionally, we only measured the execution time as a

metric for comparing the performance of the sorting

algorithms. Other metrics such as memory usage or CPU

utilization may also be important in certain applications.

Finally, we only ran each algorithm on each dataset 10 times

and took the average execution time. This may not be

sufficient to capture the variability in the performance of the

algorithms. Increasing the number of runs or using statistical

techniques to analyze the results may be necessary to improve

the reliability of the experiments.

VI. RESULTS

A. The results of the comparative analysis

In this section, we will present the results of the comparative

analysis in a clear and concise manner, using appropriate

graphs and tables.

We measured the execution time of the six sorting algorithms

on the different datasets and summarized the results in Table

1. The execution time is shown in seconds, and the values

represent the average time taken by each algorithm to sort the

dataset over 10 runs. The highlighted cells indicate the fastest

algorithm for each dataset. Table 2 shows the best case

complexity, average case complexity, worst case complexity,

space complexity for the six sorting algorithms.

TABLE I. AVERAGE EXECUTION TIME OF THE SORTING ALGORITHMS ON DIFFERENT DATASETS

Dataset Quick Sort Tim Sort Merge Sort Heap Sort Radix Sort Shell Sort

Iris dataset (1K) 0.0020 0.0001 0.0010 0.0010 0.0001 0.0010

Student dataset(5.8K) 0.1171 0.1096 0.1206 0.1216 0.1181 0.1106

Wine dataset (6K) 0.0319 0.0154 0.0299 0.0321 0.0060 0.0140

MNIST dataset (42K) 0.3548 0.1925 0.3698 0.5001 0.2068 0.2794

Yelp dataset (10K) 0.0817 0.0169 0.0508 0.0379 0.0199 0.0229

Uniform (10K) 0.3917 0.3554 0.3862 0.4158 0.3998 0.3918

Normal (10K) 0.2876 0.2521 0.2900 0.2929 0.2860 0.2725

Exponential (10K) 0.0838 0.0681 0.0861 0.0927 0.0867 0.0747

Bimodal (10K) 0.4191 0.3920 0.4243 0.4188 0.4381 0.4315

Uniform (100K) 9.0293 8.9863 9.5083 10.3315 12.0120 9.8006

Normal (100K) 5.8687 5.3662 5.8624 5.8826 5.8519 5.8643

Exponential (100K) 1.2874 1.1480 1.3118 1.5093 1.3296 1.2149

Bimodal (100K) 29.6245 27.8877 27.7586 27.9190 27.8503 27.8314

Uniform (500K) 50.4076 50.2232 50.3719 60.4587 51.7897 54.7480

Normal (500K) 34.9590 33.1706 33.5128 34.6922 32.9258 34.6192

Exponential (500K) 7.1126 6.4184 7.1204 8.3675 6.7792 7.6497

Bimodal (500K) 850.3653 658.8608 963.4581 695.9196 812.2174 796.1906

Uniform (1M) 115.9347 103.0976 113.2379 117.4215 111.0617 118.7274

Normal (1M) 77.6764 72.4095 76.3072 81.9827 76.1305 81.1508

Exponential (1M) 17.3159 14.8283 17.1434 20.2242 14.9202 17.8254

Bimodal (1M) 7135.2246 2698.1494 4408.4376 2734.1683 5258.9991 2840.3998

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 7 Issue 6, June - 2023, Pages: 76-84

www.ijeais.org/ijaer

81

TABLE II. COMPARING THE BIG O COMPLEXITY OF THE SIX SORTING ALGORITHMS

Algorithm
Best Case

Complexity

Average Case

Complexity

Worst Case

Complexity

Space

Complexity

Quick Sort O(n log n) O(n log n) O(n^2) O(log n)

Tim Sort O(n) O(n log n) O(n log n) O(n)

Merge Sort O(n log n) O(n log n) O(n log n) O(n)

Heap Sort O(n log n) O(n log n) O(n log n) O(1)

Radix Sort O(nk) O(nk) O(nk) O(n + k)

Shell Sort O (n log(n)) O (n log(n)) O(n^2) O(1)

B. Analysis and discussion of the results

From the results in Table 1, we can observe some patterns and

trends in the performance of the sorting algorithms on

different datasets.

 QuickSort generally performs well across different

datasets, especially on smaller datasets. However, its

performance degrades significantly on larger

datasets, particularly Bimodal (500K) and Bimodal

(1M), where it takes a significantly longer time

compared to other algorithms.

 TimSort and MergeSort consistently exhibit good

performance across most datasets, with TimSort

slightly outperforming MergeSort in some cases.

They maintain relatively stable execution times even

on larger datasets.

 HeapSort shows a consistent performance across

datasets, although it tends to have slightly longer

execution times compared to QuickSort, TimSort,

and MergeSort.

 RadixSort performs very well on datasets with

smaller sizes, such as Iris dataset (1K), but its

execution time increases significantly on larger

datasets. It shows a sharp increase in execution time

on Bimodal (1M) dataset, suggesting that RadixSort

may not be the most efficient choice for large

datasets with uneven distributions.

 ShellSort performs consistently across datasets,

although it tends to have slightly longer execution

times compared to QuickSort, TimSort, and

MergeSort. Its performance remains stable even on

larger datasets.

 Overall, TimSort, MergeSort, and ShellSort

demonstrate stable and efficient performance across

datasets of various sizes and characteristics.

QuickSort is efficient on smaller datasets but may

struggle on larger ones, particularly when the data

has a bimodal distribution. HeapSort is a reliable

choice but may have longer execution times

compared to other algorithms. RadixSort is efficient

for small datasets but shows limitations on larger

datasets.

C. Highlights of the significant differences in performance

between the sorting algorithms

Based on the provided time performance results, let's

highlight the significant differences in performance between

the sorting algorithms:

1) QuickSort vs. TimSort and MergeSort:

 QuickSort performs well on smaller datasets but

significantly slows down on larger datasets,

especially those with a bimodal distribution.

 TimSort and MergeSort maintain consistent

performance across datasets, with slightly better

execution times compared to QuickSort on

larger datasets.

2) HeapSort vs. QuickSort, TimSort, and MergeSort:

 HeapSort shows consistent performance across

datasets but tends to have slightly longer

execution times compared to QuickSort,

TimSort, and MergeSort.

3) RadixSort vs. Other Algorithms:

 RadixSort performs exceptionally well on

datasets with smaller sizes and has very low

execution times.

 However, RadixSort's execution time increases

significantly on larger datasets, particularly

those with a bimodal distribution.

4) ShellSort vs. Other Algorithms:

 ShellSort performs consistently across datasets

but may have slightly longer execution times

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 7 Issue 6, June - 2023, Pages: 76-84

www.ijeais.org/ijaer

82

compared to QuickSort, TimSort, and

MergeSort.

 Its performance remains stable even on larger

datasets.

These highlights indicate that the choice of sorting algorithm

depends on the dataset size and distribution. QuickSort,

TimSort, and MergeSort offer stable performance across

datasets, making them reliable choices for most scenarios.

HeapSort can be used when memory efficiency is a concern.

RadixSort is efficient for small datasets but may not be

suitable for larger datasets with uneven distributions.

ShellSort is a decent choice with consistent performance but

may have slightly longer execution times compared to other

algorithms.

VII. CONCLUSION

In this study, we compared the time performance of six

popular sorting algorithms, namely QuickSort, TimSort,

MergeSort, HeapSort, RadixSort, and ShellSort, on 21

datasets of different sizes and distributions. The aim was to

identify which sorting algorithm performs better under

different scenarios.

The results showed that the choice of sorting algorithm

significantly affects the time taken to sort the dataset.

QuickSort performs well on smaller datasets but can be

slower on larger datasets, particularly those with a bimodal

distribution. It is efficient in terms of memory usage and has

an average-case time complexity of O(n log n).

TimSort and MergeSort exhibit consistent and reliable

performance across datasets, with slightly better execution

times compared to QuickSort on larger datasets. They are

suitable for various dataset sizes and have stable time

complexities of O(n log n).

HeapSort is a reliable choice with consistent performance but

tends to have slightly longer execution times compared to

QuickSort, TimSort, and MergeSort. It is memory-efficient

and has an average-case and worst-case time complexity of

O(n log n).

RadixSort performs exceptionally well on smaller datasets but

shows limitations on larger datasets, especially those with a

bimodal distribution. It is memory-intensive and has a linear

time complexity of O(k * n), where k represents the number

of digits or bits.

ShellSort performs consistently across datasets but may have

slightly longer execution times compared to QuickSort,

TimSort, and MergeSort. It is suitable for various dataset sizes

and has an average-case time complexity that varies between

O(n log n) and O(n^2) depending on the gap sequence.

Choosing the most appropriate sorting algorithm depends on

the specific requirements and characteristics of the dataset at

hand. Considerations such as dataset size, distribution,

stability, memory usage, and time complexity are crucial in

selecting the optimal algorithm for a given scenario.

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 7 Issue 6, June - 2023, Pages: 76-84

www.ijeais.org/ijaer

83

References
[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. Introduction to

algorithms. MIT press, 2019.

[2] Sedgewick, R. Algorithms. Addison-Wesley Professional, 2013.

[3] Bentley, J. L. Programming pearls: algorithm design techniques. Communications

of the ACM, Vol. 9, No. 8, 99-102, 2020.

[4] Knuth, D. E. The art of computer programming. Addison-Wesley. Vol. 3, 2017.

[5] McIlroy, M. D. Engineering radix sort. Software: Practice and Experience, Vol.

23, No. 11, 1249-1265, 2019.

[6] Chatterjee, A., & Pramanik, S. Comparative analysis of sorting algorithms: A

review. International Journal of Engineering and Technology, Vol. 7, No. 21, 197-

200, 2018

[7] Abu Amuna, Y. M., et al. (2017). "Strategic Environmental Scanning: an

Approach for Crises Management." International Journal of Information

Technology and Electrical Engineering 6(3): 28-34.

[8] Elsharif, A. A. and S. S. Abu-Naser (2019). "An Expert System for Diagnosing

Sugarcane Diseases." International Journal of Academic Engineering Research

(IJAER) 3(3): 19-27.

[9] Abu Naser, S. S., et al. (2016). "Measuring knowledge management maturity at

HEI to enhance performance-an empirical study at Al-Azhar University in

Palestine." International Journal of Commerce and Management Research 2(5):

55-62.

[10] Abu-Saqer, M. M. and S. S. Abu-Naser (2019). "Developing an Expert System

for Papaya Plant Disease Diagnosis." International Journal of Academic

Engineering Research (IJAER) 3(4): 14-21.

[11] Alajrami, M. A. and S. S. Abu-Naser (2018). "Onion Rule Based System for

Disorders Diagnosis and Treatment." International Journal of Academic

Pedagogical Research (IJAPR) 2(8): 1-9.

[12] Almurshidi, S. H. and S. S. Abu Naser (2017). "Design and Development of

Diabetes Intelligent Tutoring System." EUROPEAN ACADEMIC RESEARCH

6(9): 8117-8128.

[13] Nasser, I. M., et al. (2019). "Artificial Neural Network for Diagnose Autism

Spectrum Disorder." International Journal of Academic Information Systems

Research (IJAISR) 3(2): 27-32.

[14] Al Shobaki, M. J., et al. (2016). "The impact of top management support for

strategic planning on crisis management: Case study on UNRWA-Gaza Strip."

International Journal of Academic Research and Development 1(10): 20-25.

[15] Hilles, M. M. and S. S. Abu Naser (2017). "Knowledge-based Intelligent Tutoring

System for Teaching Mongo Database." EUROPEAN ACADEMIC RESEARCH

6(10): 8783-8794.

[16] Alshawwa, I. A., et al. (2020). "Analyzing Types of Cherry Using Deep

Learning." International Journal of Academic Engineering Research (IJAER)

4(1): 1-5.

[17] El Talla, S. A., et al. (2018). "Organizational Structure and its Relation to the

Prevailing Pattern of Communication in Palestinian Universities." International

Journal of Engineering and Information Systems (IJEAIS) 2(5): 22-43.

[18] Abu Amuna, Y. M., et al. (2017). "Understanding Critical Variables for Customer

Relationship Management in Higher Education Institution from Employees

Perspective." International Journal of Information Technology and Electrical

Engineering 6(1): 10-16.

[19] Al Shobaki, M. J. and S. S. Abu Naser (2016). "Decision support systems and its

role in developing the universities strategic management: Islamic university in

Gaza as a case study." International Journal of Advanced Research and

Development 1(10): 33-47.

[20] Barhoom, A. M. and S. S. Abu-Naser (2018). "Black Pepper Expert System."

International Journal of Academic Information Systems Research (IJAISR) 2(8):

9-16.

[21] Sultan, Y. S. A., et al. (2018). "The Style of Leadership and Its Role in

Determining the Pattern of Administrative Communication in Universities-

Islamic University of Gaza as a Model." International Journal of Academic

Management Science Research (IJAMSR) 2(6): 26-42.

[22] Taha, A. M., et al. (2022). "Gender Prediction from Retinal Fundus Using Deep

Learning." International Journal of Academic Information Systems Research

(IJAISR) 6(5): 57-63.

[23] Alshawwa, I. A., et al. (2020). "Analyzing Types of Cherry Using Deep

Learning." International Journal of Academic Engineering Research (IJAER)

4(1): 1-5.

[24] Al Shobaki, M. J. and S. S. Abu Naser (2016). "Decision support systems and its

role in developing the universities strategic management: Islamic university in

Gaza as a case study." International Journal of Advanced Research and

Development 1(10): 33-47.

[25] AlFerjany, A. A. M., et al. (2018). "The Relationship between Correcting

Deviations in Measuring Performance and Achieving the Objectives of Control-

The Islamic University as a Model." International Journal of Engineering and

Information Systems (IJEAIS) 2(1): 74-89.

[26] Abu Naser, S. S. and M. J. Al Shobaki (2016). The Impact of Management

Requirements and Operations of Computerized Management Information

Systems to Improve Performance (Practical Study on the employees of the

company of Gaza Electricity Distribution). First Scientific Conference for

Community Development.

[27] Abu Naser, S. S. (2006). "Intelligent tutoring system for teaching database to

sophomore students in Gaza and its effect on their performance." Information

Technology Journal 5(5): 916-922.

[28] Mettleq, A. S. A. and S. S. Abu-Naser (2019). "A Rule Based System for the

Diagnosis of Coffee Diseases." International Journal of Academic Information

Systems Research (IJAISR) 3(3): 1-8.

[29] Al Shobaki, M., et al. (2018). "Performance Reality of Administrative Staff in

Palestinian Universities." International Journal of Academic Information Systems

Research (IJAISR) 2(4): 1-17.

[30] Salama, A. A., et al. (2018). "The Role of Administrative Procedures and

Regulations in Enhancing the Performance of The Educational Institutions-The

Islamic University in Gaza is A Model." International Journal of Academic

Multidisciplinary Research (IJAMR) 2(2): 14-27.

[31] AlZamily, J. Y. and S. S. Abu-Naser (2018). "A Cognitive System for Diagnosing

Musa Acuminata Disorders." International Journal of Academic Information

Systems Research (IJAISR) 2(8): 1-8.

[32] Abu-Nasser, B. S. and S. S. Abu Naser (2018). "Rule-Based System for

Watermelon Diseases and Treatment." International Journal of Academic

Information Systems Research (IJAISR) 2(7): 1-7.

[33] Ahmed, A. A., et al. (2018). "The Impact of Information Technology Used on the

Nature of Administrators Work at Al-Azhar University in Gaza." International

Journal of Academic Information Systems Research (IJAISR) 2(6): 1-20.

[34] Aish, M. A., et al. (2021). "Lower Back Pain Expert System Using CLIPS."

International Journal of Academic Information Systems Research (IJAISR) 5(5):

57-67.

[35] Aish, M. A., et al. (2022). "Classification of pepper Using Deep Learning."

International Journal of Academic Engineering Research (IJAER) 6(1): 24-31.

[36] Al Barsh, Y. I., et al. (2020). "MPG Prediction Using Artificial Neural Network."

International Journal of Academic Information Systems Research (IJAISR) 4(11):

7-16.

[37] Al Daradkeh, D. K., et al. (2020). "The Impact of Knowledge Management

Success Factors on Electronic Business in Jordanian Telecom Companies." Int. J

Sup. Chain. Mgt Vol 9(6): 102-119.

[38] Alamawi, W. W., et al. (2016). "Rule Based System for Diagnosing Wireless

Connection Problems Using SL5 Object." International Journal of Information

Technology and Electrical Engineering 5(6): 26-33.

[39] Al-Araj, R. S. A., et al. (2020). "Classification of Animal Species Using Neural

Network." International Journal of Academic Engineering Research (IJAER)

4(10): 23-31.

[40] Alfarra, A. H., et al. (2021). "An Expert System for Neck Pain Diagnosis." rnal

of Academic Information Systems Research (IJAISR) 5(7): 1-8.

[41] Alfarra, A. H., et al. (2021). "Classification of Pineapple Using Deep Learning."

International Journal of Academic Information Systems Research (IJAISR) 5(12):

37-41.

[42] Alghoul, A., et al. (2018). "Email Classification Using Artificial Neural

Network." International Journal of Academic Engineering Research (IJAER)

2(11): 8-14.

[43] Alghoul, A., et al. (2018). "GhaydaHarb, SamyS." Abu-Naser, Email

Classification Using Artificial Neural Network, International Journal of

Academic Engineering Research.

[44] Al-Ghoul, M. M., et al. (2022). "Knowledge Based System for Diagnosing

Custard Apple Diseases and Treatment." International Journal of Academic

Engineering Research (IJAER) 6(5): 41-45.

[45] Alkahlout, M. A., et al. (2021). "Expert System Diagnosing Facial-Swelling

Using CLIPS."

[46] Alkahlout, M. A., et al. (2021). "Expert System for Throat Problems Using SL5

Object." International Journal of Academic Information Systems Research

(IJAISR) 5(5): 68-78.

[47] Alkahlout, M. A., et al. (2021). "Knowledge Based System for Diagnosing Throat

Problem CLIPS and Delphi languages." International Journal of Academic

Engineering Research (IJAER) 5(6): 7-12.

[48] Al-Kahlout, M. M., et al. (2020). "Neural Network Approach to Predict Forest

Fires using Meteorological Data." International Journal of Academic Engineering

Research (IJAER) 4(9): 68-72.

[49] Alkahlout, M., et al. (2021). "Classification of A few Fruits Using Deep

Learning." International Journal of Academic Engineering Research (IJAER)

5(12).

International Journal of Academic Engineering Research (IJAER)

ISSN: 2643-9085

Vol. 7 Issue 6, June - 2023, Pages: 76-84

www.ijeais.org/ijaer

84

[50] Jalili, R., & Shayanfar, H. A. A comparative study of sorting algorithms on

different data structures. International Journal of Computer Applications, Vol.

101, No. 15, 19-25, 2019.

[51] Das, S., & Saha, A. Comparative analysis of sorting algorithms: A survey.

International Journal of Computer Applications, Vol. 124 No. 5, 1-6, 2019.

[52] Yao, Z., Zhang, Y., & Zhu, Y. A comparative analysis of sorting algorithms.

Journal of Physics: Conference Series, Vol. 1037, No. 1, 2022.

