
ar
X

iv
:c

s.
A

I/0
61

00
67

 v
3

 1
7

O
ct

 2
00

6

Language, logic and ontology: uncovering the
structure of commonsense knowledge*

Walid S. Saba

Computational and Statistical Sciences Center
American Institutes for Research

1000 Thomas Jefferson Street, NW,
Washington, DC 20007

WSaba@air.org

Abstract

The purpose of this paper is twofold: (i) we argue that the structure of commonsense
knowledge must be discovered, rather than invented; and (ii) we argue that natural
language, which is the best known theory of our (shared) commonsense knowledge,
should itself be used as a guide to discovering the structure of commonsense
knowledge. In addition to suggesting a systematic method to the discovery of the
structure of commonsense knowledge, the method we propose seems to also provide an
explanation for a number of phenomena in natural language, such as metaphor,
intensionality, and the semantics of nominal compounds. Admittedly, our ultimate goal
is quite ambitious, and it is no less than the systematic ‘discovery’ of a well-typed
ontology of commonsense knowledge, and the subsequent formulation of the long-
awaited goal of a meaning algebra.

Keywords: Ontology, semantics, commonsense knowledge, reasoning

1. Introduction

In Logic and Ontology Cocchiarella (2001) convincingly argues for a view of “logic as a
language” in contrast with the (now dominant) view of “logic as a calculus”. In the latter,
logic is viewed as an “abstract calculus that has no content of its own, and which depends
on set theory as a background framework by which such a calculus might be syntactically
described and semantically interpreted.” In the view of “logic as a language”, however,
logic has content, and “ontological content in particular.” Moreover, and according to
Cocchiarella, a logic with ontological content necessitates the use of type theory (and
predication), as opposed to set theory (and set membership), as the background framework.
An obvious question that immediately comes to mind here is the following: what exactly is
the nature of this strongly-typed ontological structure that will form the background
framework for a new logic that has content?

In our opinion, part of the answer lies in an insightful observation that Hobbs (1985)
made some time ago, namely that difficulties encountered in the semantics of natural

* To appear in IJHCS – International Journal of Human Computer Studies

language are due, in part, to difficulties encountered when one attempts to specify the exact
nature of the relationship between language and the world. While it has not received much
attention, the crucial point that Hobbs makes is the observation that if one “assumes a
theory of the world that is isomorphic to the way we talk about it” (emphasis added), then
“semantics becomes very nearly trivial”. The picture we have in mind, depicted graphically
in figure 1, is a logic and a semantics that is grounded in a strongly-typed ontology, an
ontology that in turn reflects our commonsense view of the world and the way we talk
about it.

Assuming the existence of such an ontological structure, semantics might indeed
become ‘nearly’ trivial, and this is demonstrated in this paper by investigating some
challenging problems in the semantics of natural language, namely lexical ambiguity, the
semantics of intensional verbs and the semantics of nominal compounds.

Figure 1. Language, logic and ontology

In the remainder of this paper we (i) discuss the intimate relationship between language and
knowledge and argue that language ‘understanding’ necessitates the use of a strongly-typed
ontological structure that reflects our commonsense view of the world; (ii) we briefly
outline a process that uses language itself as a guide to discovering the nature of this
ontological structure; (iii) we show how the semantics of several natural language
phenomena becomes nearly trivial in a logic that is grounded in an ontological structure
that is isomorphic to our commonsense view of the world; and (iv) we finally conclude by
discussing some steps towards achieving the long-awaited dream of a meaning algebra.

2. Language and Knowledge

Cognitive scientists have long recognized the intimate relationship between natural language
understanding (NLU) and knowledge representation and reasoning (KR&R) - or, in short,
the intimate relationship between language and knowledge. In fact, research in NLU seems
to have been slowly embracing what we like to call the ‘understanding as reasoning’
paradigm, as it has become quite clear by now that understanding natural language is, for the
most part, a commonsense reasoning process at the pragmatic level. As an example

illustrating this strong interplay between language understanding and commonsense
reasoning, consider the following:

(1) a) john defended a jailed activist in every country

 b) john knows a jailed activist in every country

From the standpoint of commonsense, most readers would find no difficulty in a reading
for (1a) that implies John’s support for the ‘same’ activist in every country. However, the
same is not true in (1b), as one can hardly conceive of a single activist being jailed in every
country. Thus, while a wide scope a, implying a single activist is quite plausible in (1a), the
more plausible reading in (1b) is the one implying several activists, making (1b) read
something like ‘in every country, John knows some jailed activist’. What we suggest here is
that such inferences lie beyond syntactic and semantic explanations, and are in fact a
function of our commonsense knowledge of how the world (the possible world we actually
live in!) really is. This process is even more complex due to the fact that different
individuals may have different scope preferences in the same linguistic context, as the
experiments of Kurtzman & MacDonald (1993) have suggested. Consistent with this
‘understanding as reasoning’ paradigm, an inferencing strategy that models individual
preferences in the resolution of scope ambiguities at the pragmatic level has been suggested
in (Saba & Corriveau, 1997). While it has been argued that such problems do not always
require the storage of and reasoning with vast amounts of background knowledge (see Saba
& Corriveau, 2001), other linguistic comprehension tasks clearly do. For instance, consider
the resolution of ‘He’ in the following:

(2) John shot a policeman. He immediately
a) fled away.
b) fell down.

Clearly, such references must be resolved by recourse to commonsense knowledge – for
example, that, typically, when Shot(x,y) holds between some x and some y, x is the more
likely subject to flee (2a), and y is the more likely subject to fall down (2b). Note, however,
that such inferences must always be considered defeasible, since quite often additional
information might result in the retraction of previously made inferences. For example, (2b)
might, after all, be describing a situation in which John, a 7-year old who was shooting a
bazooka, fell down. Similarly, (2a) might actually be describing a situation in which the
policeman, upon being slightly injured, tried to flee away, perhaps to escape further
injuries! Computationally, there are clearly a number of challenges in reasoning with un-
committed (or ‘underspecified’) logical forms, and this has indeed received considerable
attention by a number of authors (e.g., see Kameyama, 1996, and the excellent collection of
papers in van Deemter & Peters, 1996). However, the main challenge that such processes
still face is the availability of this large body of commonsense knowledge along with a
computationally effective reasoning engine.

While the monumental challenge of building such large commonsense knowledge
bases was indeed faced head-on by a few authors (e.g., Lenat & Ghua, 1990), a number of

other authors have since abandoned (and argued against) the ‘knowledge intensive’
paradigm in favor of more quantitative methods (e.g., Charniak, 1993). Within linguistics
and formal semantics, little or no attention was paid to the issue of commonsense reasoning
at the pragmatic level. Indeed, the prevailing wisdom was that NLU tasks that require the
storage of and reasoning with a vast amount of background knowledge were ‘highly
undecidable’ (e.g., van Deemter, 1996; Reinhart, 1997).

In our view, both trends were partly misguided. In particular, we hold the view that (i)
language ‘understanding’ is for the most part a commonsense ‘reasoning’ process at the
pragmatic level, and, consequently, the knowledge bottleneck problem cannot be solved by
being ignored, but must be faced head-on; and (ii) the ‘understanding as reasoning’
paradigm, and the underlying knowledge structures that it utilizes, must be formalized if we
ever hope to build scalable systems (or, as John McCarthy once said, if we ever hope to
build systems that we can actually understand!). In this light we believe the work on
integrating logical and commonsense reasoning in language understanding (Allen, 1987;
Pereira & Pollack, 1991; Zadrozny & Jensen, 1991; Hobbs, 1985; Hobbs et al., 1993;
Asher & Lascarides, 1998; and Saba & Corriveua, 2001) is of paramount importance1.

The point we wish to make here is that successful NLU programs necessitate the design
of appropriate knowledge structures that reflect our commonsense view of the world and
the way we talk about it. That, on its own, is not nearly novel. Indeed, investigating the
formal properties of the commonsense world have long been investigated in the pioneering
work of Hayes and Hobbs (1985). Moreover, a number of other substantial efforts towards
building ontologies of commonsense knowledge have also been made since then (e.g.,
Lenat & Ghua, 1990; Mahesh & Nirenburg, 1995; Sowa, 1995), and a number of promising
trends that advocate ontological design based on sound linguistic and logical foundations
have indeed started to emerge in recent years (e.g., Guarino & Welty, 2000; Pustejovsky,
2001). However, a systematic and objective approach to ontological design is still lacking.
In particular, we believe that an ontology for commonsense knowledge must be discovered
rather than invented, and thus it is not sufficient to establish some principles for ontological
design, but that a strategy by which a commonsense ontology might be systematically and
objectively designed must be developed. In this paper we propose such a strategy.

3. Language and Ontology

Our basic strategy for discovering the structure of commonsense knowledge is rooted in
Frege's conception of Compositionality. According to Frege (see Dummett, 1981, pp. 4-7),
the sense of any given sentence is derived from our previous knowledge of the senses of
the words that compose it, together with our observation of the way in which they are
combined in that sentence. The cornerstone of this paradigm, however, is an observation
regarding the manner in which words are supposed to acquire a sense that, in our opinion,

1 Outside the domain of NLU, other pioneering work such as that of (McCarthy 1980), was also done in the same
spirit, namely to integrate logical and commonsense reasoning.

has not been fully appreciated. In particular, the principle of Compositionality is rooted in
the thesis that “our understanding of [those] words consists in our grasp of the way in
which they may figure in sentences in general, and how, in general, they combine to
determine the truth-conditions of those sentences.” (Dummett, 1981, pp. 5). Thus, the
meanings of words (i.e., the concepts and the corresponding ontological structure), and the
relationships between them, can be reverse-engineered, so to speak, by analyzing how
these words are used in everyday language. As will be argued below, reservations (that
abound!) regarding Compositionality can be alleviated once the roots of Frege’s
Compositionality is understood in this light. To see this let us first begin by introducing a
predicate App(p,c) which is taken to be true of a property p and a concept c iff “it makes
sense to speak of the property p of c”. Consider now the following two sets of adjectives
and nouns:

(3) P = {Strong, Smart, Imminent}

(4) C = {Table, Elephant, Event}

A quick analysis of App(p,c) on the nine adjective-noun combinations yields the structure
shown in figure 2. That is, while it makes sense to say ‘strong table’, ‘strong elephant’, and
‘smart elephant’, it does not make sense to say ‘smart table’, ‘smart event’, ‘imminent
elephant’, etc. First it must be pointed out that the structure shown in figure 2 was
discovered and not invented! Moreover, in applying the predicate App(p,c) on a specific
property/relation p and a specific concept c, we must be wary of metaphor and polysemy.

Figure 2. Structure resulting from the analysis of App(p,c) on nine adjective-noun
combinations

For example, while it makes sense to say ‘big table’ and ‘big discovery’, it is clear that the
sense of ‘big’ is different in the two instances. We will have more to say about metaphor
and polysemy later in the paper. For now, however, it should be pointed out that this kind
of analysis is not much different from the type inferencing process that occurs in modern,

strongly-typed, polymorphic programming languages. As an example, consider the type
inferences corresponding to the linguistic patterns shown in table 1.

Pattern Type Inference

x + 3 x is a Number
Reverse(x) x is a Sequence
Insert(x,y) x is an Thing; y is Sequence of x Things
Head(x) x is a Sequence
Even(x) x is a Number

Table 1. Some linguistic patterns and their corresponding type inferences

From x + 3, for example, one can infer that x is a number since numbers are the “kinds of
things” that can be added to 3 (or, for the expression ‘x + 3’ to make sense, x must be a
Number!) In general, the most generic type possible is inferred (i.e., these operations are
assumed to be polymorphic). For example, all that can be inferred from Reverse(x) is that x
is the generic type Sequence, which could be a List, a String (a sequence of Characters), a
Vector, etc. Note also that in addition to actions (called functions or methods in
programming lingo), properties (truth-valued functions) can also be used to infer the type
of an object. For example, from Even(x) one can infer that x is a Number, since lists,
sequences, etc. are not the kinds of objects which can be described by the predicate Even.
This process can be more formally described as follows:

1. we are given a set of concepts }{= mccC ,...,1 and a set of actions (and properties)

}{= mppP ,...,1

2. a predicate App(p,c), where Cc ∈ and Pp∈ is said to be true iff the action (or
property) p applies to (makes sense of) objects of type c.

3. a set }|{=),(cpAppcCp , denoting all concepts c for which the property p is
applicable is generated, for each property Pp∈ .

4. a concept hierarchy is then systematically discovered by analyzing the subset
relationship between the various sets generated.

To illustrate how this process (systematically) yields a type hierarchy, we consider
applying the predicate App(p,c), where Pp∈ and Cc ∈ and where the sets C and P are
the following:

C = {Set, List, Bag, Map, Tree, Relation}
P = {Reverse, Size, MemberOf, Head, Tail, ElementAt,
 NumOfOccur, RemoveDups, Root, Leaves, etc.}

The result of repeated analysis of the predicate App(p,c) on these sets results in the
following:

CSize= {Set, Bag, Relation, Map, Tree, List}

CNumOfOccur= {Bag, List}

{ , , , , }MemberOfC = Set Bag List Map Tree

RemoveDupsC = {Bag,List}

ReverseC = {List}

etc.

Thus, whatever the type of the container, we can always ask whether a certain object is a
MemberOf the container; whether or not the container is Empty; and it always makes sense
to ask for the Size of a container. Moreover, and while it makes sense to ask for the
number of occurrences (numOfOccur) of a certain object in both a Bag and a List (as both
can contain duplicates), it only makes sense to speak of the Head and Tail of a List, as the
order of the objects in a Bag is not important. Thus, a Bag is a Set with duplicates, and a List
is a Bag (and thus a Set) with duplicates and where the order is important. The result of the
above analysis is the structure shown in figure 3. What is important to note here is that each
(unique) set corresponds to a concept in the hierarchy.

Figure 3. Structure implied by repeated applications of the App(p,c) predicate on several
objects and properties

Equal sets (e.g. CTail and CHead) correspond to the same concepts. The label of a given
concept could be any meaningful label that intuitively represents all the sub-concepts in
this class. For example, in figure 3 Set was used to collectively refer to any collection
(ordered, unordered, with or without duplicates, etc). It is also interesting to note the

similarity at structurally isomorphic places in the hierarchy. For example, while we may
ask for the Head and the Last of a List, we usually speak of the Root and the Leaves of a
Tree. As will be discussed below, in the context of natural language, properties at
structurally isomorphic locations represent metaphorical derivations, while variations in the
interpretation of a property at lower levels (e.g., Empty in figure 3) represents polysemy.
Finally, it should be noted here that there are a number of rules that can be established from
the concept hierarchy shown in figure 3. For example, one can state the following:

(5) (∀c)(App(Reverse,c) ⊃ App(Size,c))

(6) (∃c)(App(Size, c) ∧ ¬ App(Reverse,c))

(7) (∀c)(App(Tail,c) ≡ App(Head,c))

Here (5) states that whenever it makes sense to reverse an object c, then it also makes sense
to ask for the size of c. This essentially means that an object to which the Size operation
can be applied is a parent of an object to which the Reverse operation can be applied. (6),
on the other hand, states that there are objects for which the Size operation applies, but for
which the Reverse operation does not apply. Finally, (7) states that whenever it makes
sense to ask for the Head of an object then it also makes sense to ask for its Tail, and vice
versa. It is important to note here that in performing this analysis we have assumed that
App(p,c) is a Boolean-valued function, which has the consequence that the resulting type
hierarchy is a strict binary tree. In fact, this is one of the main characteristics of our
method, and has led to two important results: (i) multiple inheritance is completely
avoided; and (ii) by not allowing any ambiguity in the interpretation of App(p,c), lexical
ambiguity, polysemy and metaphor are explicitly represented in the hierarchy. This issue
will be discussed in more detail below.

4. Language and Commonsense Knowledge

The work described here was motivated by the following two assumptions: (i) the process
of language understanding is, for the most part, a commonsense reasoning process at the
pragmatic level; and (ii) since children master spoken language at a very young age,
children must be performing commonsense reasoning at the pragmatic level, and
consequently, they must posses all the commonsense knowledge required to understand
spoken language2. In other words, we are assuming that deciding on a particular App(p,c) is
not controversial, and that children can easily answer questions such as those shown in
table 2 below.

Note that in answering these questions it is clear that one has to be coconscious of
metaphor. For example, while it is quite meaningful to say strong table, strong man, and
strong feeling, it is clear that the senses of strong in these three cases are quite distinct. The
issue of metaphors will be dealt with below. For now, all that matters, initially, is to

2 Thus it may very well be the case that everything we need to know we learned in kindergarten!

consider posing queries such as App(Smart, Elephant) – or equivalently, questions such as
‘does it make sense to say smart elephant?’, to a five-year old. Furthermore we claim that
App(p,c) is binary-valued; that is, while it could be a matter of degree as to how smart a
certain elephant might be (which is a quantitative question), the qualitative question of
whether or not it is meaningful to say ‘smart elephant’ is not a matter of degree3.

Query Does it make sense to say…

App(Walk, Elephant) elephants walk?
App(Talk, Elephant) elephants talk?
App(Smart, Elephant) elephants are smart?
App(Scream, Book) books scream?
App(Happy, Sugar) happy sugar?

Table 2. Deciding on a particular App(v,c) from the standpoint of commonsense.

With this background we now show that an analysis of how verbs and adjectives are used
with nouns in everyday language can be used to discover a fragment of the structure of
commonsense knowledge:

1. We are given }{= mppP ,...,1 , a set of (distinct senses of) adjectives and verbs,

2. We are given C = {c1, ..., cn} , a set of (distinct senses of) nouns

3. Generate for every pair),(ji cp , Ppi ∈ and ci! C

4. Generate the structure implied by all sets

We are currently in the process of automating this process, and in particular we are
planning on generating some of the sets in step 3 above by analyzing a large corpus. The
fragment of the structure shown in figure 4 was however generated manually by analyzing
about 1000 adjectives and verbs as to how they may or may not apply to (or make sense of)
about 1000 nouns.

3 As Elkan (1993) has convincingly argued, to avoid certain contradictions logical reasoning must at some level
collapse to a binary logic. While Elkan's argument seemed to be susceptible to some criticism (e.g., Dubois et al
(1994)), there are more convincing arguments supporting the same result. Consider the following:

(1) John likes every famous actress
(2) Liz is a famous actress
(3) John likes Liz

Clearly, (1) and (2) should entail (3), regardless of how famous Liz actually is. Using any quantitative model
(such as fuzzy logic), this intuitive entailment cannot be produced (we leave to the reader the details of
formulating this in fuzzy logic) The problem here is that at the qualitative level the truth-value of Famous(x) must
collapse to either true or false, since at that level all that matters is whether or not Liz is famous, not how certain
we are about her being famous.

Ci! {C1, ...,Cm}

Ci= {c | App (pi, cj)}

Note that according to our strategy every concept at the knowledge- (or commonsense)
level must ‘own’ some unique property, and this must also be linguistically reflected by
some verb or adjective. This might be similar to what Fodor (1998, p. 126) meant by
“having a concept is being locked to a property”. In fact, it seems that this is one way to
test the demarcation line between commonsense and domain-specific knowledge, as
domain-specific concepts do not seem to be uniquely locked to any word in the language.
Furthermore, it would seem that the property a concept is locked to (e.g., the properties
Reason and Talk of a RationalLivingThing or a Human) is closely related to the notion of
immutability of a feature discussed in (Sloman et al, 1998), where the immutable features
of a concept are those features that collectively define the essential characteristics of a
concept.

Figure 4. A Human is a Physical, LivingThing that is Formed, it Grows, it Develops, it
Moves, it Sleeps, it Rests, it (makes sense to say it) Walks, Runs, Hears, Sees, Talks,

Thinks, Reasons, etc.

5. Polysemy and Metaphor

In our approach the occurrence of a verb or an adjective in the hierarchy always refers to a
unique sense of that verb or adjective. This has meant that a highly ambiguous verb tends
to apply to concepts higher-up in the hierarchy. Moreover, various senses (shades of a
meaning) of a verb v end-up applying at various levels below v. This is illustrated in the
small fragment hierarchy shown in figure 5, where we have assumed that we Make, Form,
and Develop both an Idea and a Feeling, although an Idea is Formulated while a Feeling is
Fostered. Thus developing, formulating, and forming are considered specific ways of

making (that is, one sense of Make is Develop, or one way of making is developing). While
the occurrence of similar senses of verbs at various levels in the hierarchy represents
polysemy, the occurrence of the same verb (the same lexeme) at structurally isomorphic
places in the hierarchy indicates metaphorical derivations of the same verb. Consider the
following:

(8) App(Run, LeggedThing)

(9) App(Run, Machine)

(10) App(Run, Show)

(8) through (10) state that we can speak of a legged thing, a machine, and a show running.
Clearly, however, these examples involve three different senses of the verb run. It could be
argued that the senses of ‘run’ that are implied by (8) and (10) correspond to a
metaphorical derivation of the actual running of natural kinds, the sense implied by (8), as
suggested by figure 6.

Figure 5. An explanation of polysemy.

It is also interesting to note that these metaphorical derivations occur at various levels:
first from natural kinds to artifacts; and then from physical to abstract. This is not
inconsistent with research on metaphor, such as Lakoff’s (1987) thesis that most of
linguistic derivations are metaphorical in nature, and that these metaphors are derived from
physical concepts (that can all be reduced to a handful of experiential cognitive schemas!)

Note also that the mass/count distinction on the physical side seems to have a mirror image
of a mass/count on the abstract side. For example, note the following similarity between
water (physical substance) and information (abstract substance, so to speak):

• Water/Information (over)flows
• we filter, process, distill, etc. Water/Information
• Water/Information can be clear and polluted
• we can drown in and be flooded by Water/Information
• a little bit of Water/Information is (still) Water/Information

One interesting aspect of these findings is to further investigate the exact nature of this
metaphorical mapping and whether the map is consistent throughout; that is, whether same-
level hierarchies are structurally isomorphic, as the case appears to be so far (see figure 6).

6. Types vs. Predicates

Although it is far from being complete, in the remainder of the paper we will assume the
existence of an ontological structure that reflects our commonsense view of the world and
the way we talk about it. As will become apparent, it will not be controversial to assume
the existence of such a structure, for two reasons: (i) we will only make reference to
straightforward cases; and (ii) in assuming the existence of such a structure in the analysis
of the semantics of the so-called intensional verbs and the semantics of nominal
compounds it will become apparent that the analysis itself will in turn shed some light on
the nature of this ontological structure. Before we proceed, however, we introduce some
additional notation.

Figure 6. Isomorphic structures explaining metaphors.

We shall use a first-order representation where all variables are type annotated. Thus,
x::LivingThing means x is an object of type LivingThing, and Large(x::Physical) means the
predicate or property Large is true of some x which must be an object of type Physical. We
shall write Human ≺ LivingThing ≺ … ≺ Physical ≺ Thing to state that an object of type
Human ‘isa’ object of type LivingThing, which is ultimately a Physical object, etc. We write

x F x(::)(())∃ T to state that the property F (which can be a complex logical expression) is
true of some (actual) object x of type T; when the property F is true of some ‘unique’ object
x of type T we shall write x F x1(::)(())∃ T and, finally, we shall write ax F x(::)(())∃ T to
state that the property F is true of some object x that only abstractly exists – i.e., an object
that need not actually (or physically) exist. Since all variables must be type annotated, a
variable in a single scope might receive more than one type annotation, as in the following:

(::) (::)∧Human PhysicalArtist x Old x

While Artist is a property that can be applied to (or makes sense of) objects that are of type
Human, Old is a property that makes sense of objects of type Physical. In such an instance
some sort of type unification must occur. To illustrate the notion of type unification let us
consider the steps involved in the derivation of the meaning of a simple phrase such as ‘an
old piano’:

(11) � �an old piano
 ()(() ())= ∃ ∧x Piano x Old x (a)
 ()((::) (::))= ∃ ∧x Piano x Old xPiano Physical (b)
 (:: ())(() ())= ∃ ∧x Unify Piano x Old xPiano,Physical (c)
 (::)(() ())= ∃ ∧x Piano x Old xPiano (d)
 (::)(())= ∃x Old xPiano (e)

In (11a) we have a straightforward translation into first-order logic4. However, in our
(strongly-typed) approach we require that every variable be annotated (at least once in
every scope) with the appropriate type. By the ‘appropriate’ type we mean the type of
object that the predicate (property or relation) applies to (or makes sense of). This is done
in (11b), where it was assumed that the predicate Old makes sense of (or applies to) objects
that are of type Physical. What we now have, however, is an object x, which, in a single
scope, is considered to be a Piano as well as a Physical object. This necessitates some sort of
type unification, as shown in (11c).

Assuming that ≺Piano Physical (i.e., assuming our ontology reflects the fact that a
Piano is a Physical object), the unification should clearly result in Piano, as given by (11d).
Finally, the predicate Piano can now be removed without any loss, since it is redundant to
state that there is an object of type Piano, of which the predicate Paino is true (11e). In the
final analysis, therefore, ‘an old piano’ refers to some object of type Piano, which happens

4 an old piano P x Paino x Old x P x[()(() () ())]λ= ∃ ∧ ∧� � is actually the more accurate translation. For simplicity

in notation, however, we shall avoid the obvious.

to be Old. Note that with this approach there is an explicit differentiation between types
and predicates, in that predicates will always refer to properties or relations – what
Cochiarella (2001) calls second intension, or logical concepts, as opposed to types (which
Cochiarella calls first intension, or ontological concepts)5. To appreciate the utility of this
representation, consider the steps involved in the derivation of the meaning of ‘john is a
young professor’, where 1(::)∃ j Human refers to some unique object j which is of type
Human:

(12) � �john is a young professor

 1(::)((::) (::))= ∃ ∧Human Human PhysicalProfessorj j Young j
 1(:: (,))(() ())= ∃ ∧Human Physical Professorj Unify j Young j
 1(::)(() ())= ∃ ∧Human Professorj j Young j

Therefore, while it does not explicitly mention a Human, ‘john is a young professor’ makes
a statement about some unique object j of type Human, which happens to be Young and
Professor. Note, further, that Professor in (12) is not a first-intension (ontological) concept,
but a second-intension (logical) concept, which is a property of some first-intension
concept, namely a Human6. Stated yet in other words, what (ontologically) exist are objects
of type Human, and not professors, and Professor is a mere property that may or may not be
true of objects of this type. Moreover, and in contrast with ontological (or first intension)
concepts such as Human, concepts such as Young and Professor are logical concepts in that
they are true of a certain object by virtue of some logical expression, as suggested by the
following:

(13) 1(::)(() ())∀ ≡dfx Young x F xPhysical

(14) 2(::)(() ())∀ ≡dfx Professor x F xHuman

That is, some Physical object x is Young iff some logical expression F1 is satisfied, and
similarly for Professor. Furthermore, we suggest that unlike first-intension ontological
concepts which tend to be universal and static, second-intension logical concepts tend to be
more dynamic and contextual. For example, in

dfx Leader x F x3(::)(() ())∀ ≡Human

it can be argued that while ≺Human LivingThing is a universal (i.e., shared) fact that can
stand the test of time, it is conceivable that the exact nature of the predicate F3 might be

5 Incidentally, Cochiarella (2001) suggests a similar representation where explicit differentiation between types
and predicates (relations) is made. Although our starting point was perhaps different, we believe that, ultimately,
similar reasons have led to this decision.

6 Such properties are usually referred to as ‘roles’.

susceptible to temporal, cultural, and other contextual factors, depending on what, at a
certain point in time, a certain community considers a Leader to be7.

7. Compositional Semantics Grounded in an Ontology of
Commonsense Knowledge

With the machinery developed thus far we are now ready to tackle some challenging
problems in the semantics of natural language. In this section we consider the semantics of
the so-called intensional verbs, the semantics of nominal compounds and lexical ambiguity.

7.1 So-Called Intensional Verbs

Consider the following examples, which Montague (1969) discussed in addressing a puzzle
pointed out to him by Quine:

(14) (a) john painted an elephant� � x Elephant x Painted j x()(() (,))= ∃ ∧
 (b) john found an elephant� � = x Elephant x Found j x()(() (,))∃ ∧

The puzzle Quine was referring to was the following: both translations admit the inference
(∃x)(Elephant(x)) – that is, both sentences imply the existence of some elephant, although
it is quite clear that such an inference should not be admitted in the case of (14a). In
addressing this problem, Montague however discussed the sentence ‘John seeks a unicorn’.
Using the tools of a higher-order intensional logic, Montague suggested a solution that in
effect treats ‘seek’ as an intensional verb that has more or less the meaning of ‘tries to
find’. However, this is, at best, a partial solution, since the source of this puzzle is not
necessarily in the verb ‘seek’ nor in the reference to unicorns. Logically speaking, painting,
imagining, or even just dreaming about a unicorn does not entail the actual existence of a
unicorn – nor does the painting or dreaming about an elephant, or the reader, for that
matter. Instead of speaking of intensional verbs, what we are suggesting here is that the
obvious difference between (14a) and (14b) must be reflected in an ontological difference
between Find and Paint in that the extensional type (e→(e→t)) both transitive verbs are
typically assigned is too simplistic. In other words, a much more sophisticated ontology
(i.e., a more complex type system) is needed, one that would in fact yield different types
for Find and Paint. One reasonable suggestion for the types of Find and Paint, for
example, could be as follows:

(15) find :: e e t(())→ →Animal Entity
(16) paint :: e e t(())→ →Human Representation

7 Thanks are due here to an anonymous reviewer who suggested discussing this issue as it pertains to our specific
proposal.

That is, instead of the flat type structure implied by e e t(())→ → , what we suggest
therefore is that the types of Find and Paint should reflect our commonsense belief that we
can always speak of some Animal that found something (i.e., any Entity whatsoever), and of
a Human that painted some Representation. With this background, consider now the
translation of ‘john found an elephant’ which would proceed as follows:

(17) john found an elephant� �

 j x Elephant x1(::)()((::)= ∃ ∃ ∧Human Elephant Found j x(:: , ::))Animal Entity

What we have in (17) is a straightforward translation into first-order logic, where variables
are annotated by the appropriate type, and where, as above, by the ‘appropriate type’ we
mean the type of objects that a property or a relation applies to (or makes sense of). Note
now that the variables j and x are annotated, within a single scope, with different types, and
thus some type unification must occur, as follows:

(18) john found an elephant� �

 j Unify x1(:: (,))()= ∃ ∃Human Animal

 Elephant x Unify Found j x((:: (,) (,))∧Elephant Entity

Assuming that our ontology reflects the facts that ≺ ≺Human ... Animal and that
≺ ≺Elephant ... Entity , the type unifications in (18) should result in the following

(19) john found an elephant� �

 j x Elephant x Found j x= ∃ ∃ ∧1(::)()((::) (,))Human Elephant

Finally, as discussed previously, the predicate Elephant can now be removed since its
redundant to speak of an object of type Elephant of which the predicate Elephant is true,
resulting in the following:

(20) john found an elephant� � j x Found j x1(::)(::)((,))= ∃ ∃Human Elephant

The interpretation of ‘John found an elephant’ is therefore the following: there is some
unique object j which is of type Human, and some object x which is an Elephant, and such
that j found x. Note, further, that (20) admits the existence of an elephant – that is, if ‘John
found an elephant’ then indeed an actual elephant does exist. However, consider now the
interpretation of ‘John painted an elephant’, which should proceed as follows:

(21) john painted an elephant� �
 j x Elephant x1(::)()((::)= ∃ ∃ ∧Human Elephant
 Painted j x(:: , ::))Animal Representation

As in (17), type unification for the variables j and x must now occur. Also, as in (18),
Unify(Human, Animal) should also result in Human. Unlike the situation in (18), however,
resolving the type the variable x must be annotated with is not as simple. Since the types
Elephant and Representation are not related by the ‘isa’ relationship, we are in fact referring
to two genuinely different types and some relation between them, say RepresentationOf8,
with the caveat that one of these objects need not actually exist. What we suggest therefore
is the following:

(22) john painted an elephant� �
 aj x y1(::)(::)(::)= ∃ ∃ ∃Human Elephant Representation
 RepresentationOf y x Painted j y((,) (,))∧

Essentially, therefore, ‘john painted an elephant’ roughly means ‘join made a
representation of some object (that need not physically exist), an object that we call an
elephant’. Note now that if ‘john painted an elephant’ than what exists is a Representation of
some object of type Elephant9. Thus, while (22) admits the existence of some Representation,
(22) only admits the abstract existence of some object we call an Elephant.

Finally it should point out that while the interpretation of ‘John painted an elephant’
given in (22) allows one to make the right inference, namely that a representation and not
an elephant is what actually exists, one should also be able to make several other
inferences. This would actually require a more elaborate event-based representation. For
example, consider the following:

John bought an old piano# -

=(7e: :BuyingEvent) (7
1
j: :Human) (7x: :Piano)

 (Old (x) / Agent (e, j) / Object (e,x))

That is, ‘John bought an old piano’ essentially says there is some unique object j which is
of type Human, some object x of type Piano, such that x is Old, and such that j and x are
involved in some BuyingEvent e as follows: j is the agent of the event and x is the object.
Assuming that Piano ‘isa’ MusicalInst and BuyingEvent ‘isa’ PurchasingEvent; then the
following inferences, among others, can be made:

John bought an old piano# -
=(7e: :BuyingEvent) (7

1
j: :Human) (7x: :Piano)

 (Old (x) / Agent (e, j) / Object (e,x))

8 In the ontology, RepresentationOf(x,y) would actually be defined between a Representation and a type higher-up
in the hierarchy, e.g. Entity.
9 The point of this example will perhaps be made more acutely if ‘elephant’ was replaced by ‘unicorn’.

 1(::)(::)(::)e j x⇒ ∃ ∃ ∃PurchasingEvent Human Piano

 (() (,) (,))Old x Agent e j Object e x∧ ∧
 1(::)(::)(::)e j x⇒ ∃ ∃ ∃BuyingEvent Human MusicalInstr

 (() (,) (,))Old x Agent e j Object e x∧ ∧

 .etc⇒

That is, if ‘John bought an old piano’ then one must be able to infer that ‘John purchased a
piano’, ‘John bought an old musical instrument’, etc.

7.2 The Semantics of Nominal Compounds

The semantics of nominal compounds have received considerable attention by a number of
authors, most notably (Kamp & Partee, 1995; Fodor & Lepore, 1996; Pustejovsky, 2001),
and to our knowledge, the question of what is an appropriate semantics for nominal
compounds has not yet been settled. Recall that the simplest (extensional) semantic model
for simple nominal constructions is that of conjunction (or intersection) of predicates (or
sets). For example, assuming that Red(x) and Apple(x) represent the meanings of red and
apple, respectively, then the meaning of a nominal such as red apple is usually given as

(23) { | }red apple x Red x Apple x() ()= ∧� �

What (23) says is that something is a red apple if it is red and apple. This simplistic model,
while seems adequate in this case (and indeed in many other instances of similar
ontological nature), clearly fails in the following cases, both of which involve an adjective
and a noun:

(24) former senator

(25) fake gun

Clearly, the simple conjunctive model, while seems to be adequate for situations similar to
those in (23), fails here, as it cannot be accepted that something is a former senator if it is
former and senator, and similarly for (25). Thus, while conjunction is one possible function
that can be used to attain a compositional meaning, there are in general more complex
functions that might be needed for other types of ontological categories. In particular, what
we seem to have here is something like the following:

(26) a) { | }red apple x Red x Apple x() ()= ∧� �

 b) former senator� � { | }x WasButIsNotNowASenator x()=
 c) fake gun� � { | }x LooksLikeButIsNotActuallyAGun x()=

The fact that every adjective-noun combination seem to suggest a different compositional
function have led some authors to argue against compositionality (e.g., Lahav, 1989).

However, it would seem in fact that there might be just a handful of templates of
compositional functions for a number of ontological categories. Consider for example the
following reasonable definitions for Fake and Former:

(27) dfx Former x∀ ≡(::)(()Human P t t now P x t P x now[()(() (,) (,))]λ ∃ < ∧ ∧ ¬)
(28) dfx Fake x()(()∀ ≡:: Artifact Ay IsA x y Similar x y()((,) (,)))∃ ¬ ∧: PhyEntity

What (27) says is the following: a certain x is a Former P iff x was a P at some point in
time in the past and is not now a P, where P is some property which applies to objects of
type Human. On the other hand, what (28) says is that a certain object x, which must be of
type Artifact, is a Fake y, which must be an object of type PhyEntity, iff x is not actually a y
but is similar, with regard to some property A, to y.

First, it is interesting to note here that the intension of Fake and Former was in one
case represented by recourse to possible worlds semantics (27), while in (28) the intension
uses something like structured semantics, assuming that ()A x,ySimilar which is true of
some x and some y if x and y share a number of important features, is defined. What is
interesting in this is that it suggests that possible-worlds semantics and structured semantics
are not two distinct alternatives to representing intensionality, as has been suggested in the
literature, but that in fact they should co-exist. Note further that the proposed meaning of
Fake given in (28) suggests that fake expects a concept which is of type Physical, and thus
something like fake idea, or fake song, etc., should sound meaningless from the standpoint
of commonsense10.

Figure 7. Roles that share the same behavior

Second, the proposed meaning of ‘former’ given in (27) suggests that former expects a
property which has a time dimension, i.e. is a temporal property. Finally, we should note
that the goal of this type of analysis is to discover the ontological categories that share the
same behavior. For example, conjunction, which as discussed above is one possible

10 One can of course say fake smile, but this is clearly another sense of fake. While fake gun refers to a gun (an
Artifact) that is not real, fake smile refers to a dishonest smile, or a smile that is not genuine.

function that can be used to attain a compositional meaning, seems to be adequate for all
nominal constructions of the form [A N] where A is a PhyProperty (such as Color, Weight,
Size, etc.) and N is a PhyObject (such as Car, Person, Desk, etc.), as expressed in (29).

(29) � � { | }A N x A x N x() ()= ∧
PhyProperty PhyObject

Similarly, an analysis of the meaning of ‘former’, given in (27), suggests that there are a
number of ontological categories that seem to have the same behavior, and could thus
replace P in (27), as implied by the fragment hierarchy shown in figure 7. Finally it should
be noted here that (29) simply states that some adjectives are intersective, although it does
not say anything about the meaning of any particular adjective. While this is not our
immediate concern, such concepts are assumed to be defined by virtue of a logical
expression. To do so, we assume first the existence of a predicate P

ATypical x(::)T , which
is used to state that an object of type T is a typical P as far as some attribute A is concerned,
where the typicality of a certain object regarding some attribute is assumed to be defined
by virtue of some logical expression α , as P

A dfx Typical x α∀ ≡T(::)(()) . For example, the
following is an expression that defines the typical age of a gymnast, Gymnast

AgeTypical x() :

Gymnast
Age dfx Typical x Age x a n a m∀ ≡ ∧ ≤ ≤Human(::)(() ((,) ()))

Consider now the definition of an adjective such as ‘old’, as it relates to the age of objects
of type Human:

P dfx Old x P P xλ∀ ≡Human(::)(() [() P
Agey P y Typical y∧ ∃ ∧Human(::)(() ()

 Age x ax Age y ay ax ay(,) (,) ())])∧ ∧ ∧ ≫

What the above is saying is the following: some object x of type Human is an Old P, iff its
Age is larger than the Age of another object, y, which has a typical Age as far as P objects
are concerned. It would seem, then, that the meaning of such adjectives is tightly related to
some attribute (large/size, heavy/weight, etc.) of the corresponding concept. Furthermore, it
would seem that some adjectives are context-dependent in two respects: the types of
objects they apply to (or makes sense of) as well as the property or relation that the
adjective is to modify. That is, ‘old’ in ‘old person’ is quite different from ‘old’ in ‘old
piano’. Furthermore, a certain object of type Human, say, can be an ‘old P’ and a ‘young Q’
at the same time. For example, consider the following:

john is an old gymnast� � Gymnastj Gymnast x Old x1(::)(() ())= ∃ ∧Human

Given that ‘John is an old gymnast’, and, for example, ‘John is a professor’, one would not,
in our representation, conclude that ‘John is an old professor’, since John is an old gymnast
while it might very well be the case that as far professors go, John is quite young.

7.3 Compositional Semantics of Nominal Compounds

While the semantics of [Adj Noun] constructions can be problematic, it is the semantics of
nominal compounds in the case of noun-noun combinations that have traditionally posed a
challenge to the whole paradigm of compositional semantics. The difficulty in analyzing
the meaning of noun-noun combinations is largely due to the multitude of possible
relations that are usually implicit between the two nouns. For example, consider the
following:

(30) { | is a that is }brick house x x MadeOf =� � House Brick

(31) { | is a that is a }dog house x x MadeFor =� � House Dog

That is, while a brick house is a house ‘made of’ brick, a dog house is a house that is ‘made
for’ a dog. It would seem, then, that the relation implicitly implied between the two nouns
differs with different noun-noun combinations. However, assuming the existence of a
strongly-typed ontology might result in identifying a handful of patterns that can account
for all noun-noun combinations. As shown in the fragment hierarchy of figure 8, it would
seem that MadeOf is the relation implicit between all N N

1 2
[] combinations whenever N

1

is a Substance and N
2
 is an Artifact, which expressed more formally in (32).

Figure 8. Relations between ontological categories

(32) � �N N
Substance Artifact { }|x y MadeOf x y:: (::)((,))= ∃Artifact Substance

The following is an example instance of (32), denoting the meaning of brick house, where
it is assumed that our ontology reflects the fact that ...≺ ≺House Artifact and that

...≺ ≺Brick Substance :

(33) � �brick house { }|:: (::)((,))= ∃House Brickx y MadeOf x y

Note, further, that specific instances of Substance and specific instances of Artifact might
require the specialization of the relation suggested in (32). For example, while Knife which

is an Artifact, combines with a raw Substance, such as Plastic, Bronze, Wood, Paper, etc. with
the relation MadeOf, Knife as an Instrument combines with a FoodSubstance, such as Bread,
with the relation UsedFor, and similarly for Coffee and Mug, and Cereal and Box, as follows:

(34) � �N N

FoodSubstance Instrument { }|x y UsedFor x y:: (::)((,))= ∃Instrument FoodSubstance

Although we will not dwell on such details here, we should point out here that since the
purpose of an object of type Instrument (and more specifically, a Tool) is to be used for
something, the specific type of usage would in turn be inferred from the specific
Instrument/Tool (e.g., cutting in the case of a Knife, holding in the case of Mug, etc.)

7.4 Lexical Disambiguation as Type Inferencing

First let us suggest the following types for the transitive verbs marry and discover:

(35) marry :: e e t(())→ →Human Human

(36) discover :: e e t(())→ →Animal Entity

That is, we are assuming that one sense of the verb marry is used to refer to an object of
type Human that may stand in the ‘marry’ relationship to another object which is also of
type Human; and that it makes sense to speak of an object of type Animal that discovered an
object of type Entity. Consider now the following, where { , })Star x(:: Human Star is used to
refer to the fact that Star is a predicate that applies to, among possibly some others, an
object of type Human or an object of type Star (which is a subtype of CelestialBody):

(37) john married a star� �

 { , }j x Star x1(::)()((::)= ∃ ∃Human Human Star Married j x(:: , ::))∧ Human Human

As usual, since x is annotated with more than one type in a single scope, some type
unification must occur. The unification between Star (the CelestialBody) and Human will fail,
however, leaving one possible meaning for (37):

(38) john married a star� �

 j x Star x Married j x1(::)(::)(() (,))= ∃ ∃ ∧Human Human

Note, therefore, that ‘star’ in ‘John married a star’ was translated to a property of an object
of type Human, rather than an ontological type, such as Star, which is a subtype of
CelestialBody. However, consider now the following:

(39) john discovered a star� �

 { , }j x Star x1(::)()((::)= ∃ ∃Human Human Star

 Discovered j x(:: , ::))∧ Animal Entity

In this case both type unifications are possible, as Entity unifies with both a Human and a
Star (and of course Animal trivially unifies with Human), resulting in two possible meanings,
in which ‘star’ is translated into a property of an object of type Human, and into an
ontological object referring to a celestial body, as given in the following:

(40) john discovered a star� �

 j x Star x Discovered j x1(::)(::)(() (,))⇒ ∃ ∃ ∧Human Human
 j x Discovered j x1(::)(:)((,))⇒ ∃ ∃Human Star

Lexical disambiguation will clearly not always be as simple, even with a rich ontological
structure underlying the various lexical items. For one thing, several lexical items might be
ambiguous at once, as the following example illustrates:

(41) john is playing bridge� �

 j x1(::)()= ∃ ∃Human { , }Bridge x((::)CardGame Structure
 { , } Playing j x(:: , ::))∧ Animal Game Instrument

Here it was assumed that ‘bridge’ can refer to a Structure or to a CardGame, while ‘playing’
can be a relation that holds between an object of type Animal and a Game, or an object of
type Human and an Instrument. While there are potentially four possible readings for (41)
that are due only to lexical ambiguity, CardGame and Game is the only successful type
unification, resulting in the following:

(42) john is playing bridge� �

 j x1(::)(::)= ∃ ∃Human CardGame Bridge x Playing j x(() (,))∧

Finally it must be noted that in many instances the type unification, while it might result in
more than one possible unification, one of which, might be more plausible than the others.
That, however, belongs to the realm of pragmatics, and requires type information form
larger linguistic units, perhaps at the level of a paragraph. While we cannot dwell on this
issue here, the point of the above discussion, as in the case in our discussion of nominal
compounds, was to simply illustrate the utility of a strongly-typed ontological structure that
reflects our commonsense view of the world in tackling a number of challenging problems
in the semantics of natural language.

8. Towards a Meaning Algebra

If Galileo was correct and mathematics is the language of nature, then Richard Montague
(see the paper on ELF in (Thomasson, 1974)), is trivially right in his proclamation that
there is no theoretical difference between formal and natural languages. Moreover, if
Montague is correct, then there should exists a formal system, much like arithmetic, or any
other algebra, for concepts, as advocated by a number of authors, such as Cresswell (1973)
and Barwise (1989), among others. What we are arguing for here is a formal system that
explains how concepts of various types combine, forming more complex concepts. To
illustrate, consider the following:

(43) a) artificial :: NatPhyObj → ManMadePhyObj

 b) flower :: ≺ ≺ ≺ ≺ ≺ ≺...Plant LivingThing NatPhyObj Thing
 c) artificial flower :: ManMadePhyObj

What the above says is the following: artificial is a property that applies on an object of
type NatPhyObj returning in an object of type ManMadePhyObj (43a); a flower is a Plant,
which is a LivingThing, which in turn is a NatPhyObj (43b); and, finally, an artificial flower is
a ManMadePhyObj (43c). Therefore, ‘artificial c’, for some NatPhyObj c, should in the final
analysis have the same properties that any other ManMadePhyObj has. Thus, while a flower,
which is of type Plant, and is therefore a LivingThing, grows, lives and dies like any other
LivingThing, an ‘artificial flower’, and like any other ManMadePhyObj, is something that is
manufactured, does not grow, does not die, but can be assembled, destroyed, etc.

The concept algebra we have in mind should also systematically explain the interplay
between what is considered commonsense at the linguistic level, type checking at the
ontological level, and deduction at the logical level (recall figure 1). For example, the
concept ‘artificial car’, which is a meaningless concept from the standpoint of
commonsense, is ill-typed since Car is an ManMadePhyObj, which does not unify with
NatPhyObj. The concept ‘former father’, on the other hand, which is also a meaningless
concept from the standpoint of commonsense, escapes type-checking since Father is a
property that applies to objects of type Human, as expected by the meaning of ‘former’.
However, the reader can easily verify that the meaning of ‘former’ suggested in (27) and
the following,

()x t Father x t1 1:: (()((,)∀ ∃Human t t t Father x t2 2 1 2()(() (,))))⊃ ∀ > ⊃

which states a temporal property about the concept of ‘father’, namely that once an object
of type Human is father then they are always a father, lead to a logical contradiction. What
we envision, therefore, is a logic that has content, and ontological content in particular, and
where linguistic expressions that do not confirm with our commonsense view of the world,
are either caught at the type-checking level, or, if it escapes type- checking, is caught at the
logical level.

9. Concluding Remarks

In this paper we argued for and presented a new approach to the systematic design of
ontologies of commonsense knowledge. The method is based on the basic assumption that
“language use” can guide the classification process. This idea is in turn rooted in Frege’s
principle of Compositionality and is similar to the idea of type inference in strongly-typed,
polymorphic programming languages.

The experiment we conducted shows this approach to be quite promising as it seems to
simultaneously provide for an adequate solution to a number of problems in the semantics
of natural language. Admittedly, however, much of what we presented here is work in
progress, more so than a final result, and much work remains to be done. In particular, we
are in the process of automating the process described in section 4 by using a corpus
analysis that would generate sets of concepts for which adjectives and verbs may or may
not apply. Another interesting aspect of this work is identifying the top-level categories that
share the same behavior, leading to the identification of a number of template
compositional functions, as those given in (26) and (27), a step that is essential in our quest
for a meaning algebra that is grounded in a strongly-typed ontology that reflects our
commonsense view of the world and the way we talk about it in ordinary language.

References

Allen, J. (1987), Natural Language Understanding, Benjamin/Cummings Menlo Park:CA.
Asher, N. and Lascarides, A. (1998), The Semantics & Pragmatics of Presupposition,

Journal of Semantics, 15:239-299.
Barwise, J. (1989), The Situation in Logic, CSLI, Stanford.
Charniak, E. (1993), Statistical Language Learning, Cambridge, Mass.: MIT Press.
Cochiarella, N. B. (2001), Logic and Ontology, Axiomathes, 12, pp. 117-150.
Cresswell, M. J. (1973), Logics and Languages, Methuen & Co., London.
Dubois, et al. (1994), Fuzzy Logic vs. Possibilistic Logic, IEEE Expert, 9(4), pp. 15-19
Dummett, M. (1981), Frege: Philosophy of Language, Harvard Univ. Press, Cambridge:

MA.
Elkan, C. (1993), The Paradoxical Success of Fuzzy Logic, In Proceedings of the 11th

National Conference on Artificial Intelligence, AAAI-93, pp. 698-703..
Fodor, J. (1998), Concepts – Where Cognitive Science Went Wrong, New York, Oxford

University Press.
Fodor, J. & Lepore, E. (1996), The pet fish and the red herring: why concepts aren't

prototypes, Cognition 58: 243–276.
Guarino, N. and Welty, C. (2000), A Formal Ontology of Properties, In Proc. 12th Int.

Conf. on Knowledge Engineering & Knowledge Management, LNCS, Springer.
Hobbs, J. (1985), Ontological Promiscuity, In Proc. of the 23rd Annual Meeting of the

Assoc. for Computational Linguistics, pp. 61-69, Chicago, Illinois, 1985.
Hobbs, J. R., et al. (1993), Interpretation as Abduction, Artificial Intelligence, 63:69-142.
Hobbs, J. R. and Moore, R. (Eds.) (1985), Formal Theoreis of the Commonsense World,

Norwood, N.J. : Ablex Publishers.

Kamp, H. & B. Partee. 1995. Prototype theory & Compositionality, Cognition 57:129-191.
Kurtzman, H. and MacDonald, M. (1993), Resolution of Quantifier Scope Ambiguities,

Cognition, 48: 243-279.
Lahav, R. (1989), Against Compositionality: the Case of Adjectives, Philosophical Studies,

57:261-279
Lakoff, G. (1987), Women, Fire and Dangerous Things – What Categories Reveal About

the Mind, Chicago, IL, University of Chicago Press.
Lenat, D. B. and Guha, R.V. (1990), Building Large Knowledge-Based Systems:

Representation & Inference in the CYC Project. Addison-Wesley.
McCarthy, J. (1980), Circumscription - A Form of Non-Monotonic Reasoning, Artificial

Intelligence, 13:27-39.
Mahesh, K. and Nirenburg, S. (1995), A Situated Ontology for Practical NLP, In IJCAI-95

Workshop on Basic Ontological Issues in Knowledge Sharing, IJCAI-95, August 1995,
Montreal, Canada.

Montague, R. (1960), On the Nature of Certain Philosophical Entities. The Monist, 53:159-
194

Montague, R., 1974. In Thomason, R. (1974) (Ed.), Formal Philosophy: Selected Papers of
Richard Montague, Yale University Press.

Pereira, F. C. N. and Pollack, M. E. (1991), Incremental Interpretation, Artificial
Intelligence, 50:37-82.

Pustejovsky, J. (2001), Type Construction and the Logic of Concepts, In P. Bouillon and F.
Busa (eds.), The Syntax of Word Meanings, Cambridge University Press.

Reinhart, T. (1997), Quantifier Scope: How Labor is Divided between QR and Choice
Functions, Linguistics and Philosophy, 20(4): 335-397

Saba, W. S. and Corriveau, J.-P. (1997), A Pragmatic Treatment of Quantification in
Natural Language, In Proc. of the 1997 National Conference on Artificial Intelligence,
pp. 610-615, Morgan Kaufmann

Saba, W. S. and Corriveau, J-P. (2001), Plausible Reasoning and the Resolution of
Quantifier Scope Ambiguities, Studia Logica, 67(1):271-289

Sloman, AS., Love, B. and Ahn, W-K. (1998), Feature Similarity and Conceptual
Coherence, Cognitive Science, 22(2):189-228.

Sowa, J. F. (1995). Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Boston, MA: PWS Publishing Company.

van Deemter, K. (1996), Towards a Logic of Ambiguous Expressions, In van Deemter and
S. Peters (1996).

van Deemter and S. Peters (1996) (Eds.), Semantic Ambiguity and Underspecification,
CSLI, Stanford, CA.

Zadronzy, W. & Jensen K. (1991), Semantics of Paragraphs, Computational Linguistics,
17(2):171-209.

