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Mathematical models are increasingly proposed to describe tumor’s dynamic response to treatments with the aims of improving
their efficacy. The most widely used are nonlinear ODE models, whose identification is often difficult due to experimental
limitations. We focus on the issue of parameter estimation in model-based oncological studies. Given their complexity, many
of these models are unidentifiable having an infinite number of parameter solutions. These equivalently describe experimental
data but are associated with different dynamic evolution of unmeasurable variables. We propose a joint use of two different
identifiability methodologies, structural identifiability and practical identifiability, which are traditionally regarded as disjoint. This
newmethodology provides the number of parameter solutions, the analytic relations between the unidentifiable parameters useful
to reduce model complexity, a ranking between parameters revealing the most reliable estimates, and a way to disentangle the
various causes of nonidentifiability. It is implementable by using available differential algebra software and statistical packages.This
methodology can constitute a powerful tool for the oncologist to discover the behavior of inaccessible variables of clinical interest
and to correctly address the experimental design. A complexmodel to study “in vivo” antitumor activity of interleukin-21 on tumor
eradication in different cancers in mice is illustrated.

1. Introduction

Many mathematical models of tumor growth at different
levels from gene expression to the macroscopic tumor
development have been formulated, [1–11]. Recently, mathe-
maticalmodels of tumor-immune interactions have also been
considered to evaluate the efficacy of immunotherapy in the
context of tumor challenge. Models of cancer treatments,
both chemotherapy or/and immunotherapy, have been also
widely employed. Furthermore, pharmacokinetic-pharma-
codynamic (PK-PD) models are developed to describe the
interaction between tumor growth, drug absorption, and
effect of the drug in terms of patients’ response to ther-
apies. Among different mathematical frameworks used to
describe these models, the most widely used in mathemat-
ical oncology are based on nonlinear ordinary differential
equations (ODE). These models are being intensely studied

to describe the complex processes of tumorigenesis and to
produce an integrated mathematical view of tumorigenesis,
cancer progression, and evaluation of anticancer agents
under different oncological settings. Often, mathematical
models are combined with optimal control techniques for
quantitatively describing tumor progression and optimal
treatment planning. Clinically validated mathematical mod-
els have been proposed for the development of the so-
called “virtual patient” [12] to accurately predict efficacy and
toxicity of various oncological therapeutic combinations in
individuals and in populations. Many of these models have
been successfully simulated and validated against clinical
observations, promoting modeling and optimization control
as a therapy planning tool in clinic.

Given the increased model complexity required to
describe the more and more available data, many of the
models employed in oncological studies are unidentifiable;
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that is, they have an infinite number of parameter solutions.
However, this problem is not always recognized. Typically,
these solutions are equivalently describing experimental data,
but they are associated with different dynamic evolution of
the not directly measurable variables. Such a situation is
undesirable and frustrates one of the most useful aspects of
mathematical models, that is, that of providing a means to
infer unobservable quantities and time-varying phenomena.

By starting from these observations, in this paper, we
focus on unidentifiable models, in particular on the math-
ematical issue of parameter estimation [13] in model-based
oncological studies. This issue will become crucial also to
increase the precision of the recently proposed treatments
personalization methods.

To guarantee goodness and reliability of the parameter
estimation results, we propose a new joint use of two different
identifiability methodologies, namely, structural identifia-
bility and practical identifiability, which are traditionally
regarded as disjoint because they are based, in turn, on
differential algebraic manipulations or numerical simulation
of systems equations. Nevertheless, also the structural anal-
ysis can provide useful practical information if applied in a
particular point of the admissible parameter space of clinical
interest.

We first propose an algorithmic method to count the
number of parameter solutions of amodel, technically speak-
ing to check the structural identifiability of the model [14, 15].
In particular, if the model parameterization is unique (global
identifiable model), the numerical estimate of the unknown
parameter provided by whatever optimization algorithm is
correct and allows arriving at reliable conclusions.

From a methodological point of view, testing struc-
tural identifiability before collecting experimental data is an
essential prerequisite for assessing whether the experimental
design is adequate for a hypothesized model and whether the
parameter estimation problem is well posed. In the model-
based oncological studies literature, however, the identifiabil-
ity issue is still neglected, and collection of experimental data
precedes the formulation of mathematical models, which is
often carried out by trial and error by fitting different model
structures to the acquired data. This approach is surely dic-
tated by the fact that there aremany software tools to perform
parameter estimation, while checking identifiability in some
cases can be prohibitively complex, for example, for large
models containing many states and parameters. However, if
the postulated model has an infinite number (unidentifiable)
of parameter solutions, the parameter estimates that could
still be obtained by some numerical optimization algorithms
would be unreliable and vary randomly depending, for
instance, on the initialization of the algorithm [15]. Vice versa,
in case of nonidentifiability, the outcome of structural identi-
fiability, that is, theGröbner bases of the exhaustive summary,
provides algebraic nonlinear equations which define the
relations between unidentifiable parameters [16, 17]. These
equations describe the equivalence class of parameters with
respect to their ability to describe the output function. Just
by inspection, one can know the degrees of freedom of
the system and thus which are the redundant parameters
of the model. In particular, the analytic expressions of the

dependencies among parameters can be included in the
original model in order to reduce its number of parameters
and to define an equivalent identifiable model of reduced
complexity.

Although necessary, structural identifiability is not suf-
ficient to guarantee an accurate identification of the model
parameters from real, possibly noisy, input/output data. The
parameter estimates obtained by standard algorithms, even
for a structurally identifiable model, may be very sensitive
to noise and a measure of this sensitivity can be important
in applications. Thus, there is a need to perform, besides
structural identifiability tests, a practical identifiability anal-
ysis. In many studies, to have an idea of how much the
outputs of the model are biased by the parameter values,
the sensitivity of the output functions with respect to each
parameter is calculated. Usually the parameter correlations
are also calculated to try to identify, by trial and error, which
are the right parameters to fix in order to calculate the
others. In this paper, we show how to analytically calculate
the relations between the unidentifiable parameters. These
relations remain completely hidden to the investigator when
calculating the correlations. From these, it is immediate to
knowwhich parameter to fix in order to analytically calculate
all the correlated parameters.

In principle, the whole proposed methodology can be
checked by suitable mathematical procedures directly on the
model, without the need for collecting experimental data.
This may avoid waste of resources for doing uninformative
experiments, given the high costs, not only in economic
terms, of oncological experiments. Only structural identifi-
ability can be tested without assuming prior knowledge on
parameter values, whereas practical identifiability, based on
sensitivity analysis, requires “nominal” parameter values for
numerical simulation [18].

We choose to illustrate our procedure and to show our
results in a simple linear model.

Finally, this paper aims to demonstrate that, in oncolog-
ical studies, when a model is formulated and its parameters
need to be estimated from available measurements, checking
the uniqueness of the parameter solution is crucial. Since the
conclusions of model-based oncological studies are generally
founded on the numerical estimates of the unknown param-
eters from experimental data, by neglecting all the solutions
of an unidentifiable parameter (except that estimated with an
optimization algorithm), the investigator can arrive at totally
erroneous conclusions. Furthermore, the calculation of the
analytic relations between the unidentifiable parameters is an
effective approach to discover the behavior of nonaccessible
variables of clinical interest as well as for scheduling cancer
therapy by guaranteeing the reliability of the results. In order
to do this, we will apply our methodology to a relevant
benchmarkmodel.This is amathematicalmodel to study and
evaluate the “in vivo” antitumor activity of interleukin-21 (IL-
21) on tumor eradication in different cancers in mice [4, 8].

2. Mathematical Background

2.1. Definitions. This section provides the reader with the
definitions that are necessary to set the notations used in
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the paper. Consider a nonlinear dynamic system described
in state space form as

ẋ (𝑡) = f (x (𝑡) , u (𝑡) , 𝜃)
y (𝑡) = g (x (𝑡) , u (𝑡) , 𝜃) (1)

with state x(𝑡) ∈ R�푛, input u(𝑡) ∈ R�푞 ranging on some
vector space of piecewise smooth (infinitely differentiable)
functions, output y(𝑡) ∈ R�푚, and constant unknown para-
meter vector 𝜃 belonging to some open subset Θ ⊆ R�푝.
Whenever initial conditions are specified, the relevant equa-
tion x(0) = x0 is added to the system. The essential assump-
tion here is that the functions f and g are vectors of rational
functions in x. We also assume that there is no feedback, so
that u is a free variable not depending on y.

In the following, we will assume that the input-output
map of system (1) which started at the initial state x0 exists
and we denote it with

y = 𝜓x0 (𝜃, u) . (2)

2.2. Structural Identifiability via Differential Algebra. In gen-
eral, the assessment of parameter values of ODE models
can only be approached indirectly as a parameter estimation
problem starting from external, input-output measurements.
A basic question is whether the parameters of the model can
be determined (uniquely) from input-output measurements,
at least for suitable input functions, assuming that all observ-
able variables are error-free. This is a mathematical property
called a priori or structural identifiability of the model. It is a
property of the model alone and of course it depends on how
it is parameterized. Structural identifiability can (and should)
in principle be checked before collecting experimental data.

We adopt the definitions of structural identifiability used
in Saccomani et al.’s work [16].

Definition 1. System (1) is a priori globally (or uniquely)
identifiable from input-output data if, for at least a generic set
of points 𝜃∗ ∈ Θ, there exists (at least) one input function u
such that the equation

𝜓x0 (𝜃, u) = 𝜓x0 (𝜃∗, u) (3)

has only one solution 𝜃 = 𝜃∗ for almost all initial states x0 ∈𝑋 ⊆ R�푛.

If (3) has generically an infinite number of solutions for
all input functions u, system (1) is unidentifiable.

We will apply structural identifiability based on differ-
ential algebra and on the free dedicated software DAISY
(Differential Algebra for Identifiability of SYstems), [19]. The
reader is referred toAudoly et al. [14] and Saccomani et al. [16]
for a detailed explanation of the theory behind the software
tool and to Bellu et al. [19] for the algorithm.

Briefly, this algorithm permits eliminating the unob-
served state variables from system (1) and finding the input-
output relation: a set of polynomial differential equations
involving only the variables (u(𝑡), y(𝑡)) and their time deriva-
tives describing all input-output pairs satisfying the original

dynamic system. The coefficients of the input-output rela-
tion provide a set of (nonlinear) algebraic functions of the
unknown parameter 𝜃 of the original model.These functions
form the exhaustive summary of the model. They appear
linearly in the input-output relation so that they can be easily
extracted. Identifiability is tested by checking injectivity of the
exhaustive summary function with respect to parameter 𝜃.
By applying Buchberger’s computer algebra algorithm [20],
it is possible to compute a Gröbner basis of the system.
This algorithm represents a common generalization for
nonlinear equations and for more variables of the Gaussian
and the Euclidean algorithm, respectively. In particular, the
Gröbner basis allows counting the number of solutions of
the unknown parameter 𝜃 and shows if parameters satisfy
algebraic relations or have instead a one-to-one relation with
the exhaustive summary, in which case the model is globally
identifiable.

DAISY automatically ranks the input, output, state vari-
ables and their derivatives, starts the pseudodivision algo-
rithm, and calculates the differential polynomials which form
the input-output relation of the model. Buchberger’s algo-
rithm is then applied to the (nonlinear) algebraic equations
obtained after equating the coefficients of the input-output
relation to a set of pseudo-randomly chosen numerical points
in their range set. DAISY calculates the Gröbner basis of this
algebraic nonlinear system and provides the identifiability
results holding in all the parameter space.

In general, a Gröbner basis can be represented as

G (𝜃, 𝜃∗) = {G1 (𝜃, 𝜃∗) , . . . ,G�푟 (𝜃, 𝜃∗)} ∈ R
�푟, (4)

where G�푖(𝜃, 𝜃∗) are algebraic nonlinear polynomials.
The possibly finite or infinite multiple solutions of the

system of 𝑟 equations in the 𝑝 unknowns 𝜃,

G (𝜃, 𝜃∗) = 0, (5)

provide a parametrization of 𝜃, which satisfies (3).
In the case of unique identifiability, the Gröbner basis

functions become simply

G�푖 (𝜃, 𝜃∗) = 𝜃�푖 − 𝜃∗�푖 , ∀𝑖 = 1, . . . , 𝑝. (6)

In case of a unidentifiable model, that is, at least one
parameter is unidentifiable, the Gröbner basis (4) provides
the analytic relations between the unidentifiable parameters
which hold in the whole admissible parameter space, not only
around a given parameter value [16]. The 𝑟 < 𝑝 solutions
of (5) provide a uniquely identifiable parametrization of 𝜃,
as function of the known parameters 𝜃∗ and with 𝑝 − 𝑟
unknowns that are unidentifiable. These unknowns are free
parameters that can be assigned arbitrary values without
affecting the input-output relationship (3).

2.3. Practical Identifiability via Sensitivity Analysis. In the
literature, practical identifiability [21, 22] is generally under-
stood as a study of the sensitivity of some criterion function,
for example, the likelihood, with respect to the parameters to
be estimated, in particular with the purpose of detecting sen-
sitive or nonuniqueminima.This can be done onmore realis-
ticmodels which explicitly involve noise in themeasurements
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andmay use actualmeasurement data subject to disturbances
of various nature. Checking practical identifiability by data-
based (or simulation-based) procedures cannot, however,
provide a mathematically rigorous answer to the uniqueness
problem.

However, since for a fixed input function the parame-
ter estimates should minimize a criterion function which
depends, besides the parameter vector, on the actual output
function, the nonuniqueness of minima can also be studied
by studying the sensitivity of the output with respect to
parameter variations. It should be evident from the very
problem setting that this sensitivity should play a key role in
identifiability analysis: obviously a model whose output has
zero sensitivity with respect to some parameter variations is
clearly indicative of nonidentifiability. But the role goesmuch
farther, since likelihood optimization generally requires the
calculation of the gradient of the cost function which in turn
depends on the output sensitivities.

The choice of a particular approach for testing practical
identifiability can lead, however, to inconclusive or only
qualitative results, particularly if random noise is added
to numerical simulations in the attempt of making them
more realistic. Large unpredictable errors can also occur if
model output sensitivities are determined numerically by
finite difference approximation, which are easily affected by
roundoff errors if sensitivities with respect to parameters
are very small. This latter kind of errors can be avoided by
algorithmic differentiation. Still, random noise in sensitivity
analysis may obfuscate deterministic relationships among
parameters that can be assessed only through analytic math-
ematical approaches.

The practical parameter identification framework con-
sidered is based on (simulated) noisy measurements of the
dynamic system (see (1)) output taken over a finite horizon at
discrete time points {𝑡�푗, 𝑗 = 1, . . . , 𝑁}; that is,

z (𝑡�푗) = y (𝑡�푗, 𝜃∗) + 𝑒 (𝑡�푗) . (7)

For notation simplicity, it is assumed that 𝑒(𝑡�푗) ∼ N(0,W−1�푗 ).
To check practical identifiability from a finite set of𝑁 input-
output measurements, one can form the average weighted
squared prediction error:

𝑉�푁 (𝜃)
fl

1
𝑁
�푁∑
�푗=1

[z (𝑡�푗) − ŷ (𝑡�푗, 𝜃)]⊤W�푗 [z (𝑡�푗) − ŷ (𝑡�푗, 𝜃)] , (8)

where ŷ(𝑡�푗, 𝜃) is the output predictor based on a generic
parameter value 𝜃. Assume that 𝑉�푁(𝜃) has only one absolute
minimum,

𝜃̂ = argmin
𝜃

𝑉�푁 (𝜃) , (9)

compared to Ljung [13]. According to Raue et al. [23], the 𝑖th
component 𝜃�푖 of the parameter is practically unidentifiable if
the one-dimensional confidence region about 𝜃̂�푖 extends to
infinity. Naturally this statement cannot be checked exactly

with real data and needs to be interpreted as an asymptotic
statement for sample sizes 𝑁 → ∞ when 𝑉�푁(𝜃̂) has an
asymptotic distribution of 𝜒2 type. Approximate confidence
regions of parameter estimates can be, however, calculated a
priori from the Fisher informationmatrix or simply from the
rank of the sensitivity matrix formed as

S (𝜃)�푇 = [S1 (𝜃)�푇 , S2 (𝜃)�푇 , . . . , S�푚 (𝜃)�푇] , (10)

where S�푖(𝜃)�푇 = [∇𝜃y�푖(𝑡1), . . . , ∇𝜃y�푖(𝑡�푁)] and ∇𝜃y�푖(𝑡�푗) are the
sensitivities of model outputs at sampling times 𝑡�푗 of the 𝑖th
output components with respect to the parameter vector 𝜃.
Without loss of generality, but notwithout side effects because
sensitivity analysis is susceptible to parameter scaling, (10)
can be thought of as normalized sensitivities according to
various possible definitions. For instance, with heteroscedas-
tic measurement noise, for example, W−1/2�푗 in (8), to reduce
the effect of parameter scaling and without assumptions on
measurement noise, we consider the following sensitivities
as derivatives of (unnormalized) model outputs with respect
to fractional parameter variations or logarithmic derivatives;
that is, S = {𝜕𝑦�푖/𝜕 log 𝜃�푗}�푖�푗 = {(𝜕𝑦�푖/𝜕𝜃�푗)𝜃�푗}�푖�푗.

The above theory is implemented in almost all the sta-
tistical model fitting software usually based on the quadratic
approximation of the likelihood function or also, for example,
onMonte Carlo simulation.The reader is referred to AMIGO
[24], PLE [23], and COPASI [25] for the biological and
physiological models and to NONMEM [26] and ADAPT
[27] for population pharmacokinetic and pharmacokinetic-
pharmacodynamic modeling.

Practical identifiability is then tested here by the long-
standing Principal Component Analysis, for example, Vajda
et al. [28], for which we can finally give the following formal
definition.

Definition 2. The system described by (1) and (7) identified
by nonlinear least squares is practically identifiable if the
sensitivity matrix 𝑆(𝜃) has full rank.

This can be ascertained through Singular Value Decom-
position (SVD) which provides the following factorization:

S (𝜃) = UΣV�푇, (11)

where U ∈ R�푚⋅�푁×�푚⋅�푁 and V ∈ R�푝×�푝 are the orthonormal
eigenvector matrices of S(𝜃)S(𝜃)�푇 and S(𝜃)�푇S(𝜃), respec-
tively, and Σ ∈ R�푚⋅�푁×�푝 is diagonal (referring to the top𝑝 × 𝑝 submatrix) with sorted singular values 𝜎1 ≥ 𝜎2 ≥⋅ ⋅ ⋅ ≥ 𝜎�푝 ≥ 0, which are also the square roots of the
eigenvalues of the positive-semidefinite matrix S(𝜃)�푇S(𝜃).
The theoretical (practical) rank of S(𝜃) is defined as the
smallest 𝑟 ≤ 𝑝 at which 𝜎�푟+1 = 0 (𝜎 > 𝜎�푟+1, with 𝜎 being
a user-defined threshold). A known application of SVD
consists in representing estimated parameter vectors 𝜃 as
linear combinations of the first 𝑟 ≤ 𝑝 eigenvectors of V, with
significance ranking given by the singular values [18].

In contrast to this common application, in this paper, we
aim to exploit the results of SVD on the lower end of singular
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values to provide a ranking between unidentifiable param-
eters, possibly to distinguish between strictly structurally
and loosely practically unidentifiable parameters. The work-
ing hypothesis is that structurally unidentifiable parame-
ters should be associated exactly with zero singular values,
whereas practically nonidentifiability should bemore vaguely
defined.

The SVD algorithm is implemented in all the general
purpose software, as MATLAB (MathWorks, Inc., USA) or R
[29], normally through standard linear algebra packages, for
example, LAPACK [30].

3. New Perspectives on the Joint
Use of Structural and Practical
Identifiability Analysis

Structural identifiability analysis can provide, compared to
practical identifiability analysis based on sensitivities, a much
deeper insight into the properties of a given model and can
indicate how to reparameterize a model that turns out to be
unidentifiable. However, the analyticmethods can be usefully
employed also a posteriori, after having performed some pre-
liminarymodel fitting to data. For this purpose, there is in fact
no need of having all parameters identifiable, because tuning
a model to experimental data is feasible even with overpa-
rameterized unidentifiable models [18]. In this context, the
structural result may indicate which is the identifiable subset
of the parameter vector.

The aim of the present paper is to exploit properties
and results of structural identifiability to provide an analytic
approach for interpreting parameter estimation results. For
this purpose, we summarize already mentioned properties of
Gröbner bases.

Practical identifiability techniques are essentially based
on simulations and on the study of the level curves of a cost
function, typically the likelihood function. Assuming that
the minimization yields a unique parameter value, the level
curves around the minimum define the confidence region.
Nonidentifiability is defined in terms of diverging confidence
regions in some direction above given thresholds. Instead,
structural identifiability provides a dichotomous answer that
does not depend on parameter values.

In case of global identifiability, sensitivity analysis pro-
ceeds in the classical way to show if for a given experiment
design parameters still remain identifiable also in the practi-
cal situation around a nominal point (local identifiability). If
the parameter turns out to be practically unidentifiable, only
if structural identifiability of the model has been first tested
is it possible to know whether there is a problem with experi-
ment design or with the model structure, problems that must
be solved differently in the two cases, to reach identifiability.

Here we show how practical identifiability analysis, based
on model output sensitivities, can take advantage of infor-
mation provided by structural identifiability analysis based
on differential algebra by applying the following line of
reasoning.

A practical numerical approach useful to assess
(non)identifiability around a nominal point (locally) is to

consider the linear approximation of (5) and to evaluate
whether small admissible perturbations in the parameter 𝛿𝜃
exist. That is, if the expression

G�푖 (𝜃 + 𝛿𝜃, 𝜃∗) ≈ G�푖 (𝜃, 𝜃∗) + ∇G�푖 (𝜃, 𝜃∗)�푇 𝛿𝜃 (12)

is satisfied, locally, the perturbation 𝛿𝜃 belongs to the null-
space of the vector columns of ∇G�푖 or, geometrically, 𝛿𝜃 lies
on the tangent plane to the constraint surface (5).

In particular, by exploiting the results of SVD, we will see
that this joint use of structural and practical identifiability
analysis allows the following:

(1) Distinguishing between identifiable and unidentifi-
able parameters

(2) Providing a uniquely identifiable parameterization to
reduce the complexity of the model and to correctly
proceed with optimization techniques

(3) Exploiting the analytic relations among unidentifiable
parameters described by Gröbner basis. The investi-
gator can thus choose which parameter is convenient
to fix, on the basis of its a priori knowledge, to
analytically derive the related ones

(4) Ordering the parameters with respect to their ability
to influence the output function. This provides a use-
ful suggestion to the oncologist by indicating which
parameters are going to be estimated more precisely
than others from the experimental data.

4. A Simple Example

The usefulness of the joint use of structural and practical
identifiability analysis to analytically calculate the relation
between correlated parameters is applied to a typical example
of unidentifiable model: the two-compartment, single-input
single-output model, with one accessible pool and elimina-
tion from both compartments. The model is linear in the
input-output relationship but nonlinear in the parameters,
which therefore does not lessen significance of the example.
The model is described by the following equations:

𝑥̇1 = − (𝑘01 + 𝑘21) 𝑥1 + 𝑘12𝑥2 + 𝑢 (𝑡)
𝑥̇2 = 𝑘21𝑥1 − (𝑘02 + 𝑘12) 𝑥2

𝑦 (𝑡) = 𝑥1 (𝑡) .
(13)

To carry out numerical calculations, the following arbitrary
nominal parameter values are assumed: 𝜃∗ = {𝑘01 =0.005, 𝑘02 = 0.003, 𝑘12 = 0.01, 𝑘21 = 0.02}. The input is
modeled as triangular-shaped profile with unit area.

We first perform the Practical identifiability, based on
sensitivities of the model output trajectory with respect to
the parameters, calculated at some nominal values 𝜃∗. Results
are shown in Figure 1, which does not evidence the fact that
sensitivities are correlated. This information is provided by
SVD, where the singular values computed numerically are
diag(Σ) = [318.8, 61.4, 11.2, 4.69 × 10−14] which clearly sup-
ports the conclusion that the sensitivity matrix has a reduced
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Figure 1: Time course of model output sensitivities with respect to
parameters.

rank revealing that the model is overparameterized. Thus it
should be simplified by reducing the degree of freedom.

Another bit of information that can be derived from the
SVD is the right eigenvector associated with the (nearly)
zero singular value, which was k4 = [0.6325, −0.3162, 0.3162,−0.6325], where 0.6325 is the component corresponding to𝑘01, 0.3162 to 𝑘02, 0.3162 to 𝑘12, and 0.6325 to 𝑘21. It expresses
the sensitivity of the output trajectory with respect to small
perturbations of the parameter vector in this direction. The
sensitivity in this case is (nearly) zero and thus a small
displacement along k4 does not modify the model output.
In practice, k4 is a locally unfruitful search direction that
changes all model parameters but without affecting the
system output.

So far we know that the parameters are unidentifiable,
but we do not know whether the problem stays in the model
structure or in the experimental setting.

Structural identifiability is determined from the Gröbner
basis, obtained with a given ranking. In principle, to check
structural identifiability, the Gröbner basis could be calcu-
lated from a point randomly chosen in the parameter space.
Here we apply, for the first time, this structural method to
a nominal parameter value, to know not only the number
of the parameter solutions and the exact functional relations
among the unidentifiable parameters in the whole complex
space, which is not so useful, but also the values of the
parameter solutions and the above relations around the
parameter value of clinical interest. Only the union of the two
identifiability approaches allows arriving at these results of
practical interest.

For the simple model of (13), one such Gröbner basis is

G (𝜃, 𝜃∗) = {40 ⋅ 𝑘01 + 40 ⋅ 𝑘21 − 1, 1000 ⋅ 𝑘02 + 1000
⋅ 𝑘12 − 13, 5000 ⋅ 𝑘12𝑘21 − 1} , (14)

which vanishes, as expected, at the above assumed nominal
parameter value; that is,G(𝜃∗, 𝜃∗) = 0. Note thatwe represent
numerical parameter values as rational numbers; thus all
their calculations are without roundoff error.

The equation G(𝜃, 𝜃∗) = 0 does not provide a unique
solution in 𝜃, because there are only three equations in four
unknowns. This means that, in this example, the investigator
would obtain the same input-output behavior obtained with
𝜃
∗ by assigning arbitrarily values to one parameter and using

(14) to calculate the remaining three.Thus we are now able to
assess that nonidentifiability comes from themodel structure.
This is an important finding because it practically suggests
how to solve the nonidentifiability problem: the oncologist
should modify the model structure not the experimental
setup. This allows avoiding wasting resources in uselessly
modifying the experiment.The above Gröbner basis suggests
also how to modify the model in order to make it uniquely
identifiable. A possible solution, with 𝑘02 taken as free
variable, yields

𝑘21 = −1
5 ⋅ (1000 ⋅ 𝑘02 − 13) ,

𝑘01 = 200 ⋅ 𝑘02 − 1
8 ⋅ (1000 ⋅ 𝑘02 − 13) ,

𝑘12 = 13 − 1000 ⋅ 𝑘021000 .

(15)

These constraints, shown in Figure 2, exactly define a class
of equivalence of the model parameters with respect to their
ability to describe the output function. Practically speaking,
all the parameter values satisfying these constraints are
equivalent in describing the output function. However, they
predict the unobservable variable 𝑥2 in different ways. This
means that if the investigator calculates the parameters from
the experimental data and she/he is not aware that parameters
are unidentifiable, she/he would ignore that the prediction of𝑥2 is totally random. Given that in most oncological models
the aim of the studies is to infer unmeasured variables, this
ambiguity has to be absolutely avoided. The correct way to
proceed is thus to eliminate the degree of freedom present
in the Gröbner basis (see (14)) to obtain a system having
only one solution in the unknown parameters. In order to do
this, the investigator has to fix one parameter to a sensible
value, known from independent sources. In this case, the
nominal value of 𝑘02 = 0.003 of Table S1 of Elishmereni et al.
[8] is used and the remaining nominal parameter values are
calculated from (15).The crucial point here is that this is only
one of the infinite elements of the equivalence class (see (14))
of parameter solutions with respect to the output function.
This means that, by fixing 𝑘02 to a different value, she/he can
calculate a different corresponding solutions of 𝑘01, 𝑘21, and𝑘12. This second solution will predict the same time course of𝑥1 but a different time course of the unmeasured variable 𝑥2
(Figure 3).

It is worth noting that, by constraining the parameters
to be nonnegative, the above equations provide admissible
values for a range of 𝑘02 ∈ [0, 0.005], because of 𝑘01 becoming
zero. Thus the definition of the equivalent classes can embed
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Figure 2: Equivalent parameterizations of 𝑘01, 𝑘12, and 𝑘21 as
functions of 𝑘02 (see (15)).
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Figure 3: Time courses of model state trajectories 𝑥1(𝑡) (measured)
and 𝑥2(𝑡).

constraints on parameters such as positivity and thus can
allow, for the first time, to reject some inadmissible solutions.
This is an important resultwhichwas not provided by the only
structural identifiability analysis.

We can conclude that, for each (admissible) value of𝑘02 and with the remaining parameters computed from the
Gröbner basis as described above, the input-output behavior
of the model is invariant; that is, measured outputs do not

change bymoving the parameters on the surfaceG(𝜃, 𝜃∗) = 0.
This is shown in Figure 3, where the state trajectories for
different admissible values of 𝑘02 are reported. As anticipated,
the time course of the measured state variable, 𝑥1(𝑡), does
not change with parameterization but only that of the hidden
state, 𝑥2(𝑡).
5. A Mathematical Model for Evaluating
Antitumor Activity of IL-21 and Potential
Immunotherapy Treatments

We choose to show our results taking inspiration from a
mathematical model for interleukin-21 (IL-21) immunother-
apy based on the state of-the-art biology of the system [8].
Originally the model was developed to study the antitumor
effects of IL-21 on tumor eradication in the three different
cancers of varying immunogenicity and growth dynamics
[4]. We will use the model of the nonimmunogenic B16
melanoma as a benchmark model on which to apply our
methodologies.

In particular, the model describes the underlying biolog-
ical processes and its parameters were originally evaluated
from experimental data in tumor-bearing mice treated with
IL-21 via three different administration methods (the first
drug application was associated with tumor mass; the other
two were independent of tumor mass). This model has been
successively modified and included in a more comprehensive
PK-PD-disease model to predict relevant scenarios of IL-21
treatment following IC, SC, or IP administration in different
cancer indications.

In this model, each parameter has a specific physical
meaning and obviously different parameter numerical esti-
mates from the experimental data lead to different conclu-
sions. Given the clinical relevance of the study based on this
model, it becomes of fundamental importance (1) to know
if the estimated parameter value is unique or if there is a
class of parameters which are equivalent with respect to the
input/output and (2) to analytically calculate the class of
equivalence.

Below we report the ODE equations of the model, where
a logistic growth was assumed for the total tumor cells 𝑧:

̇𝑛 = 𝑟1𝑛(1 − 𝑛 (𝑥�푇 (𝑡) + 𝑞1)(𝑝1𝑥�푇 (𝑡) + 𝑝2))

̇𝑐 = 𝑟2𝑐 (1 − 𝑐
(ℎ2 (0) + 𝜎𝑚/ (1 + 𝑚/𝐷)))

𝑚̇ = 𝑎𝑥�푇 (𝑡) − 𝜇2𝑚
𝑝̇ = 𝑏1𝑥�푇 (𝑡)(𝑏2 + 𝑥�푇 (𝑡)) − 𝜇3𝑝
𝑧̇ = 𝑟3𝑧 (1 − 𝑧

𝐾) − 𝑘1𝑝𝑛𝑧 − 𝑘2𝑝𝑐𝑧
𝑦1 (𝑡) = 𝑛 (𝑡)
𝑦2 (𝑡) = 𝑐 (𝑡)
𝑦3 (𝑡) = 𝑧 (𝑡) ,

(16)
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where {𝑛, 𝑐, 𝑚, 𝑝, 𝑧} are the five state variables; 𝑥�푇 is the
known input; 𝑦1, 𝑦2, and 𝑦3 are the output equations;
𝜃 = {𝑎, 𝑏1, 𝑏2, 𝐷, ℎ2(0), 𝐾, 𝑘1, 𝑘2, 𝜇2, 𝜇3, 𝑝1, 𝑝2, 𝑞1, 𝑟1, 𝑟2, 𝑟3, 𝜎}
is the unknown parameter vector.

A detailed derivation of the model can be found in [8].
Only for simplicity of presentation, we will assume the

following:
(1) The input 𝑥�푇 is described by an exponential function

simulating the PK model [8].
(2) A uniform sampling schedule is applied.
(3) The nominal parameter values are 𝜃∗ = {0.57, 0.1, 0.1,

190, 0.0018, 1501.4, 0.376, 5.184, 0.014, 0.08, 0.01, 1.054, 0.54,
0.095, 0.26, 0.018, 0.0071} given in Table S1 of Elishmereni et
al. [8].

(4) Initial conditions of state variables are known.
The results of the study hold irrespective of the above

hypotheses.
First, by applying the differential algebra algorithm

described in Section 2.2, we calculate the Gröbner basis
around the nominal parameter value 𝜃∗ and obtain the
following results.

parameters {𝑏2, ℎ2(0), 𝐾, 𝜇2, 𝜇3, 𝑝1, 𝑝2, 𝑞1, 𝑟1, 𝑟2, 𝑟3} are
uniquely identifiable, while {𝑎, 𝑏1, 𝐷, 𝑘1, 𝑘2, 𝜎} are uniden-
tifiable. The novelty of the result here is that the Gröbner
basis provides the following analytic relations between
unidentifiable parameters holding not in the whole complex
space but around the parameter value of clinical interest:

𝑏1 = 47
(1250𝑘1)

𝑘2 = 648𝑘147
𝑎 = 3𝐷

1000
𝜎 = 1349

(1000𝐷) .

(17)

We know that all the values of parameters 𝑘1, 𝑘2, 𝑏1, satisfying
the first two above equations, and 𝑎,𝐷, 𝜎, satisfying the last
two, equivalently describe the output function of the model;
thus, they cannot be distinguished by any sensitivity-based
approach. Equations (17) indicate the number of degrees of
freedom and provide the exact constraints to include into
the model equations in order to reach global identifiability.
In this case, it is easy to see from (17) that there are only
two free parameters (𝑘1, 𝐷). By including (17) in the model
equations (16), the four redundant parameters {𝑏1, 𝑘2, 𝑎, 𝜎} are
constrained as functions of the two free parameters.

Now we want to show that this result could be qual-
itatively determined by a sensitivity-based identifiability
approach, possibly arriving to discover a correlation between
the above six unidentifiable parameters.

As done in the previous simple example, see Section 4,
in order to check practical identifiability of model of (16), we
calculate the sensitivity matrix of the model and the SVD of
the sensitivitymatrix, as described in Section 2.3.The singular
values, sorted in decreasing order, provide a ranking among
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Figure 4: Singular values of the sensitivity matrix of model of (16)
obtained with nominal parameter values and reported in decreasing
order (the cutoff line at 10−6 was chosen arbitrarily).

the parameters with respect to their ability to affect the output
function, which reveals the following:

(i) On the upper side, the parameters that affect most the
output function, thus providing most reliable estimates

(ii) On the lower side, the presence of linear dependence
among the output sensitivities, if the singular values of the
sensitivity matrix are zero

In Figure 4, the singular values of the sensitivities matrix
of model of (16) are reported in decreasing order. It is evident
that the model is practically unidentifiable, since there are at
least two singular values nearly zero.Thismeans that there are
at least two candidate solutions for markedly unidentifiable
parameter combinations. We are interested in these smallest
singular values and in their corresponding eigenvectors. We
report in Table 1 the four last columns representing the eigen-
vectors corresponding to the smallest singular values (SV) in
reverse order. The smallest SV reveals a relation between the
three parameters 𝑎,𝐷, 𝜎, and the mathematical form of this
relation is exactly given by (17) provided by the structural
identifiability. Interesting is to observe that the values in the
same column reveal dependence of these parameters also
from ℎ2(0), whichwas structurally identifiable.Thuswe know
that to reach its identifiability the investigator should modify
the experimental setup, not the model structure.

The remaining eigenvectors reported in Table 1 show that
there are parameters which are practically unidentifiable even
if theywere found to be structurally identifiable. In particular,
by looking, for example, at the value corresponding to
parameter “𝐾” in the second eigenvector or to “𝑞1” in the last
eigenvector, it is evident that these two structurally identifi-
able parameters turn out to be practically unidentifiable.This
is not surprising; in fact, the inability to practically estimate
model parametersmay be caused by a number of distinct rea-
sons, such as (1) excessive noise in themeasurements, (2) poor
or very sparse sampling schedules, and (3) poorly designed
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Table 1: The four smallest singular values of Figure 4 with their
corresponding eigenvectors.

Par.
Singular values

2.2 ⋅ 10−10 9.4 ⋅ 10−10 2.2 ⋅ 10−6 3 ⋅ 10−5
Right singular eigenvectors

𝑎† 0.525‡ −0.003 0 0
𝑏1 0 0 −0.085 −0.004
𝑏2 0 0.002 0.969 −0.003
𝐷 0.526 −0.003 0 0
ℎ2 (0) 0.414 −0.003 0 0
𝐾 0.006 1.000 −0.002 0
𝑘1 0 0 −0.002 0
𝑘2 0 0 0.049 0.002
𝜇2 0 0 0 0
𝜇3 0 0 −0.068 −0.002
𝑝1 0 0 0 −0.04
𝑝2 0 0 0 −0.017
𝑞1 0 0 0 −0.998
𝑟1 0 0 0 −0.033
𝑟2 0 0 0 0
𝑟3 0 0 0.216 0.009
𝜎 −0.526 0.003 0 0
†Model parameters perturbations are expressed as linear combinations of
rows elements. ‡Table entries are in boldface if they are larger than about 5%
and are 0 if they are smaller than 10−3.

experiments, where measurement locations or inputs are
insufficiently informative. However, if the model turns out to
be practically unidentifiable, only by first checking structural
identifiability is it possible to know for sure if the problem lays
on an unwarrantedmodel complexity or on the above reasons
related to experimental data.

6. Conclusion

Mathematical ODE models employed in oncological studies
are in general complex models. For this reason, very often
they are unidentifiable; that is, they have an infinite number
of parameter solutions. However, this problem is not always
recognized and, by ignoring the fact that a parameter has
more solutions, the investigator can arrive at totally erro-
neous conclusions. Model identifiability tests are essential to
determine whether a model can be possibly inferred from
the experimental data. In this paper, we propose a unified
viewpoint of two different identifiability analysis techniques
andmotivate their joint use.The twomethodologies, namely,
structural identifiability and practical identifiability, are tradi-
tionally regarded as disjoint because they are based, in turn,
on differential algebraic manipulations and on numerical
simulation of systems equations.

Nevertheless, also the structural analysis can provide use-
ful practical information if applied around a particular point
of clinical interest belonging to the admissible parameter
space.

In this paper, we propose utilizing first the structural
identifiability test and successively, by taking advantage of

its analytic results, the sensitivity approach. For the first
time, the joint implementation of these two identifiability
methodologies allows the following:

(1) Disentangling the various causes of nonidentifiability
assessed with sensitivity-based approaches, actually
providing some additional information helpful for
experiment design (a priori) and for the interpreta-
tion of parameter estimation results (a posteriori)

(2) Exactly knowing the analytic relations between the
correlated parameters

(3) Reducing the model’s complexity by redefining an
identifiable model equivalent to the original one but
with a reduced number of unknown parameters

(4) Making the parameter identification process from
real data more rigorous and reliable

All the above findings would help the prognostic decision-
making of the oncologist by simultaneously reducing the
costs associated with clinical developments.

In principle, the whole proposed methodology does not
require experimental data and thus it can be viewed as a tool
for addressing the experiment design problem. Furthermore,
it is implementable by using available differential algebra
software together with statistical packages.

Finally, to show that the calculation of the analytic
relations between unidentifiable parameters is an effective
approach to discover the behavior of nonaccessible variables
of clinical interest, we apply our methodology to a relevant
benchmark model: a mathematical model to study the “in
vivo” antitumor activity of interleukin-21 (IL-21) on tumor
eradication in different cancers in mice.
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Cobelli, “Global identifiability of nonlinearmodels of biological
systems,” IEEE Transactions on Biomedical Engineering, vol. 48,
no. 1, pp. 55–65, 2001.

[15] C. Cobelli and M. P. Saccomani, “Unappreciation of a priori
identifiability in software packages causes ambiguities in num-
erical estimates,” American Journal of Physiology-Endocrinology
and Metabolism, vol. 258, no. 6, pp. E1058–E1059, 1990.

[16] M. P. Saccomani, S. Audoly, and L. D’Angiò, “Parameter iden-
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