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Abstract. We consider a simple modal logic whose non-modal part has conjunction and
disjunction as connectives and whose modalities come in adjoint pairs, but are not in general
closure operators. Despite absence of negation and implication, and of axioms corresponding to
the characteristic axioms of (e.g.) T, S4 and S5, such logics are useful, as shown in previous
work by Baltag, Coecke and the first author, for encoding and reasoning about information and
misinformation in multi-agent systems. For the propositional-only fragment of such a dynamic
epistemic logic, we present an algebraic semantics, using lattices with agent-indexed families of
adjoint pairs of operators, and a cut-free sequent calculus. The calculus exploits operators on
sequents, in the style of “nested” or “tree-sequent” calculi; cut-admissibility is shown by constructive
syntactic methods. The applicability of the logic is illustrated by reasoning about the muddy children
puzzle, for which the calculus is augmented with extra rules to express the facts of the muddy
children scenario. Key Words: positive modal logic, epistemic, doxastic, distributive lattice, Galois
connection, adjunction, information, belief, proof theory.

§1. Introduction Modal logics include various modalities, represented as unary
operators, used to formalize and reason about extra modes such as time, provability,
belief and knowledge, applicable in various areas (we have that of security protocols in
mind). Like disjunction and conjunction, modalities often come in pairs, e.g. 3 and 2: one
preserves disjunctions and the other conjunctions. According to the intended application,
further axioms such as monotonicity and idempotence can be imposed on the modalities.

As well as relational (or Kripke) models, one may consider as models for such logics
various ordered structures, such as lattices with operators. The question then arises as to
what is the simplest way of obtaining a pair of these operators. If the lattice is a Boolean
Algebra and thus has negation, any join-preserving operator (such as 3) immediately
provides us with a meet-preserving one (such as 2) by de Morgan duality. In a Heyting
Algebra, the lack of De Morgan duality will cause one of these operators to preserve meets
only in one direction. What if no negation is present, e.g. in a distributive lattice? The
categorical notion of adjunction (aka Galois connection) is useful here: any (arbitrary) join-
preserving endomorphism on a lattice has a Galois right adjoint, which (by construction)
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preserves meets. For example, in the category Sup of sup-lattices with join-preserving
maps, every such map is residuated, i.e. has a right adjoint.

In this paper, we consider a minimal modal logic where the underlying logic has only two
binary non-modal connectives—conjunction and disjunction—and where the modalities
are adjoint but have no closure-type properties (such as idempotence). As algebraic
semantics one may consider a bounded distributed lattice, the modalities thereof being
residuated lattice endomorphisms. Examples are quantales and Heyting algebras when
one argument of their residuated multiplication and conjunction (respectively) is fixed.
One may also consider a relational semantics. In the proof of relational completeness, the
absence of negation prohibits us from following standard canonical model constructions,
as we can no more form maximally consistent sets. We overcome this by developing an
equivalent Hilbert-style axiomatization for our logic and then using the general Sahlqvist
results of Gehrke et al. (2005) based on completion of algebras with operators.

We provide a sequent calculus, which contains, in addition to axioms for the logical
constants >,⊥, only the operational left and right rules for each connective and operator.
We prove admissibility of the structural rules of Contraction, Weakening and Cut by
constructive syntactic methods. In the absence of negation and of closure-type properties
for the modalities, developing well-behaved sequent calculus rules for the modalities (in
particular the left rule for the right adjoint 2) was a challenging task; a calculus not
obviously allowing cut-elimination was given in Baltag et al. (2007). Our sequents are
a generalization of Gentzen’s where the contexts (antecedents of sequents), as well as
formulae, have a structure and can be nested. For application, we augment our calculus
with a rule that allows us to encode assumptions of epistemic scenarios, and show that Cut
is still admissible.

We interpret our adjoint modalities as information and uncertainty and use them to
encode and prove epistemic properties of the puzzle of muddy children. Owing to the
absence of negation, we can only express and prove positive versions of these epistemic
properties. But, our proofs are simpler than the proofs of traditional modal logics, e.g. those
in Huth & Ryan (2000). In a nutshell, in just one proof step the adjunction is unfolded and
the information modality is replaced by the uncertainty modality; in the next proof step,
the assumptions of the scenario are imported into the logic via the assumption rule. At
this stage the modalities are eliminated and the proof continues in a propositional setting.
Since our information modality is not necessarily truthful, we are able to reason about
more challenging versions of epistemic scenarios, for example when agents are dishonest
and their deceitful communications lead to false information. Properties of these more
challenging versions have not been proved in traditional modal logic in computer science
approaches, like that of Huth & Ryan (2000).

A cut-elimination theorem for intuitionistic linear logic with a modal operator is
presented in (Restall, 2000, p. 122), as corollary of a rather general theorem requiring
certain syntactic conditions to hold; it is easily extendible to a distributive lattice
setting, and, as Restall remarks, structural rules can be varied to our “heart’s content”.
Our treatment differs: Weakening and Contraction are built into our rules, rather than
(optionally) included as primitive, and, in not using Restall’s general theorem about Cut-
admissibility, we are (we believe) better placed for a proposed extensive development
where Cut-admissibility is to be shown for a more complex calculus covering two kinds of
sequent, with not just propositions but also actions, as in Baltag et al. (2007); Sadrzadeh
(2006).
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Our approach is similar to deep inference systems, e.g. by Brünnler (2006) and Kashima
(1994) for full modal logics. Of these two formalisms, the closest to ours is that for the
tense logic of Kashima. Other than differences in logic (presence of negation and two-
sided sequents), which lead to different modal rules (based on de Morgan duality), our
proof theoretic techniques have (we believe)some advantages over those of Kashima: (1)
we formalize deep substitution in the nested sequents and as a result do not need to develop
two different versions of the calculus and prove soundness and completeness separately,
and (2) our Cut-admissibility proofs are done explicitly via a syntactic construction rather
than as a consequence of semantic completeness.

Some proof systems encode modalities by introducing semantic labels to encode
accessibility and satisfaction relations; these are better placed to produce cut-free systems
for adjoint modalities, e.g. the comprehensive work of Negri (2005) and Simpson (1993)
for classical and intuitionistic modal logics. The former in particular can be adapted to
provide a cut-free labelled sequent calculus for our logic. However, that these systems are
strongly based on the relational semantics of modal logic and mix it with the syntax of
the logic does not fit well with the spirit of the algebraic motivation behind our own rather
sparse logic.

Finally, Bonnette & Goré (1998) present a labelled sequent system for the minimal tense
logic Kt, which, with negation, implication and half of the tense operators removed and
the remaining operators (’always in the future’ and ’some time in the past’) cloned, once
for every agent, is similar to our logic. Their labelled sequent system is much more geared
to efficient implementation (and correspondingly less geared to human use) than ours;
moreover, it is not clear how the agent-indexed multitude of pairs of modal operators
would be modelled in that particular labelled style or whether the lack, in our negation-
free context, of a negation normal form is more than just a notational difficulty. Goré
(1998) presents Belnap-style display calculi for a wide range of substructural logics, in
some cases with adjoint pairs of modalities, and mentions Wansing (1994) for the specific
case of display calculi for tense logics; despite the advantage of a uniform and general
cut-admissibility theorem, as in Restall’s work, these approaches seem much less suitable
than our own for human use, because of the wide range of primitive structural rules and
notational conventions required to display principal formulae.

On the application side, adjoint modalities have been originally used to reason about
time in the context of tense logics, e.g. in Prior (1968); von Karger (1998). Their epistemic
application is novel and was initiated in the dynamic epistemic algebra of Baltag et al.
(2007); Sadrzadeh (2006), comprising a quantale of “actions” with an “update” operation
on a lattice of “propositions”. The logic of the algebra is an abstraction from the Dynamic
Epistemic Logic of Baltag & Moss (2004), developed for reasoning about information
flow in multi-agent systems. A sound and complete sequent calculus was developed
in Baltag et al. (2007) and in Sadrzadeh (2006), but the eliminability of its cut rules
(necessary to prove completeness) is problematic. This paper takes a first step to solve
the problem, by solving it for the propositional part of the logic. We shall endeavor to
extend the cut-free calculus of this paper with “actions” and “updates” in a sequel.

The present paper is the full version of a conference paper: Sadrzadeh & Dyckhoff
(2009).

§2. Sequent calculus for positive logic with adjoint modalities
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2.1. Sequent Calculus We refer to our logic as APML for “adjoint positive modal
logic”, with the suffix Tree when we consider a tree-style sequent calculus. The set M of
formulae m of APML is generated over a set A of agents A and a set At of atoms p by
the following grammar:

m ::= ⊥ | > | p | m ∧m | m ∨m | 2A m | �Am

Items I and contexts Γ are generated by the following syntax:

I ::= m | ΓA Γ ::= I multiset

where ΓA will be interpreted as �A(
∧

Γ), for
∧

Γ the meet of the interpretations of
elements in Γ.

Thus, contexts are finite multi-sets of items, whereas items are either formulae or agent-
annotated contexts. The use of multi-sets rather than sets makes the role of the Contraction
rule explicit, with the rules in a form close to the requirements of an implementation. The
union of two multi-sets is indicated by a comma, as in Γ,Γ′ or (treating an item I as a one
element multiset) as in Γ, I . Sequents are of the form Γ ` m.

If one of the items inside a context is replaced by a “hole” [], we have a context-with-a-
hole. More precisely, we have the notions of context-with-a-hole ∆ and item-with-a-hole
J , defined using mutual recursion as follows:

∆ ::= Γ, J J ::= [] | ∆A

and so a context-with-a-hole is a context (i.e. a multiset of items) together with an item-
with-a-hole, i.e. either a hole or an agent-annotated context-with-a-hole. To emphasise that
a context-with-a-hole is not a context, we use ∆ for the former and Γ for the latter; similarly
for items-with-a-hole J and items I .

Given a context-with-a-hole ∆ and a context Γ, the result ∆[Γ] of applying the first to
the second, i.e. replacing the hole [] in ∆ by Γ, is a context, defined recursively (together
with the application [yielding not an item but a context] of an item-with-a-hole to a context)
as follows:

(Γ′, J)[Γ] = Γ′, J [Γ] ([])[Γ] = Γ (∆A)[Γ] = ∆[Γ]A

Given contexts-with-a-hole ∆′,∆, and an item-with-a-hole J , the combinations ∆′ •∆
and J •∆ are defined as follows by mutual recursion on the structures of ∆′ and J :

(Γ, J) •∆ = Γ, (J •∆) ([]) •∆ = ∆ (∆′′A) •∆ = (∆′′ •∆)A

LEMMA 2.1. Given contexts-with-a-hole ∆′,∆, an item-with-a-hole J and a context Γ,
the following equations between contexts hold:

(∆′ •∆)[Γ] = ∆′[∆[Γ]] (J •∆)[Γ] = J [∆[Γ]]

Proof. Routine. �

We have the following initial sequents (in which p is restricted to being an atom):

Γ, p ` p
Id ∆[⊥] ` m

⊥L Γ ` > >R

The rules for the lattice operations and the modal operators are:
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∆[m1,m2] ` m

∆[m1 ∧m2] ` m
∧L

Γ ` m1 Γ ` m2

Γ ` m1 ∧m2
∧R

∆[m1] ` m ∆[m2] ` m

∆[m1 ∨m2] ` m
∨L

Γ ` m1

Γ ` m1 ∨m2
∨R1

Γ ` m2

Γ ` m1 ∨m2
∨R2

∆[mA] ` m′

∆[�A(m)] ` m′ �AL
Γ ` m

Γ′,ΓA ` �A(m)
�AR

∆[(2Am,Γ)A,m] ` m′

∆[(2Am,Γ)A] ` m′ 2AL ΓA ` m
Γ ` 2A m

2AR

The two indicated occurrences of p in the Id rule are principal. Each right rule has
its conclusion’s succedent as its principal formula; in addition, the �AR rule has ΓA

as a principal item and Γ′ (which is there to ensure admissibility of Weakening) as its
parameter. Each left rule has a principal item; these are as usual, except that the 2AL rule
has the formula 2Am principal as well as the principal item (2Am,Γ)A.

Note that the 2AL rule duplicates the principal item in the conclusion into the premiss;
in examples, we may omit this duplicated item for simplicity. This duplication allows a
proof of the admissibility of Contraction, and thus of completeness. To see its necessity,
note that the following sequent is (according to the algebraic semantics in Section §3.)
valid:

�A(2A(m ∨ n)) ` (m ∧ �A(2A(m ∨ n))) ∨ (n ∧ �A(2A(m ∨ n)))

It is, however, not derivable unless the principal item of 2AL is duplicated into the rule’s
premiss.

As a standard check on the rules, we show the following:

LEMMA 2.2. For every formula m and every context Γ, the sequent Γ,m ` m is
derivable.

Proof. By induction on the size of m. In case m is an atom, or ⊥, or >, the sequent
Γ,m ` m is already initial. For compound m, consider the cases. Meet and join are routine.
Suppose m is �A(m′); by inductive hypothesis, we can derive m′ ` m′, and by �AR we
can derive Γ,m′A ` �A(m′), whence Γ,�A(m′) ` �A(m′) by �AL. Now suppose m is
2Am′. By inductive hypothesis, we can derive (Γ,2Am′)A,m′ ` m′, and by 2AL we get
(Γ,2Am′)A ` m′; from this we obtain Γ,m ` m by 2AR. �

We refer to instances of this derived sequent also as Id. Since we use multisets (for
contexts) rather than sets or lists, the rules of exchange and associativity are inexpressible.
As an example of a derivation, we prove the above valid sequent (the second premiss of
∨L is just like the first):
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(2A(m ∨ n))A, m ` m
Id

2A(m ∨ n) ` 2A(m ∨ n)
Id

(2A(m ∨ n))A, m ` �A(2A(m ∨ n))
�AR

(2A(m ∨ n))A, m ` m ∧ �A(2A(m ∨ n))
∧R

(2A(m ∨ n))A, m ` (m ∧ �A(2A(m ∨ n))) ∨ (n ∧ �A(2A(m ∨ n)))
∨R

. . .

(2A(m ∨ n))A, m ∨ n ` (m ∧ �A(2A(m ∨ n))) ∨ (n ∧ �A(2A(m ∨ n)))
∨L

(2A(m ∨ n))A ` (m ∧ �A(2A(m ∨ n))) ∨ (n ∧ �A(2A(m ∨ n)))
2AL

�A(2A(m ∨ n)) ` (m ∧ �A(2A(m ∨ n))) ∨ (n ∧ �A(2A(m ∨ n)))
�AL

To allow induction on the sizes of items, we need a precise definition, with a similar
definition for contexts. The size of a formula is just the (weighted) number of operator
occurrences, counting each operator �A and 2A as having weight 2; the size of an item ΓA

is the size of Γ plus 1, and the size of a context is the sum of the sizes of its items. The size
of a sequent Γ ` m is just the sum of the sizes of Γ and m. Note that each premiss of a
rule instance has lower size than the conclusion, except for the rule 2AL, whose presence
leads to non-termination of a naive implementation of the calculus.

LEMMA 2.3. The following Weakening rule is admissible:

∆[Γ] ` m

∆[Γ,Γ′] ` m
Wk

Proof. Induction on the depth of the derivation of the premiss and case analysis (on the rule
used in the last step). Suppose the last step is by �AR, with m = �Am′, and with premiss
Γ∗ ` m′ and conclusion Γ′′,Γ∗A ` m, so ∆[Γ] = Γ′′,Γ∗A. To obtain ∆[Γ,Γ′] from this
there are two possibilities. In the first case, Γ occurs inside Γ∗A, and we make a routine use
of the inductive hypothesis and reapply �AR with the same parameter. In the second case,
we just use the �AR rule with a different parameter. Other cases are straightforward. �

LEMMA 2.4. The �AL and 2AR rules are invertible, i.e. the following are admissible:

∆[�A(m)] ` m′

∆[mA] ` m′ �AInv
Γ ` 2Am

ΓA ` m
2AInv

Proof. Induction on the height of the derivation of the premiss. �

LEMMA 2.5. The ∧L, ∨L and ∧R rules are invertible.

Proof. Induction on the height of the derivation of the premiss. �

LEMMA 2.6. The following Item Contraction rule is admissible

∆[I, I] ` m

∆[I] ` m
IContr

Proof. Strong induction on the size of the item I , with a subsidiary induction on the
height of the derivation of the premiss, together with case analysis and the above inversion
lemmas. Consider the cases of the last step; first, when I is non-principal, we permute the
contraction up and (keeping I fixed) apply the subsidiary induction hypothesis; when the
premiss is an initial sequent, so is the conclusion; when the step is by �AR with I principal
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(and thus of the form Γ′A) the premiss of that step has antecedent Γ′ from which the copy
of I is absent, allowing reuse of the �AR rule to yield ∆[I] ` m; and, when I is otherwise
principal, the last step is one of the four one-premiss left rules. The 2AL case is handled
by the subsidiary inductive hypothesis (for the two cases, where I is an item (2Am′,Γ)A

and where it is a formula 2Am′ inside such an item), and the other cases (∧L,∨L, �AL)
are handled by the invertibility lemmas and the main inductive hypothesis. �

COROLLARY 2.7. The following Contraction rule is admissible

∆[Γ,Γ] ` m

∆[Γ] ` m
Contr

Proof. Induction on the size of the context Γ, by Lemma 2.6.. �

LEMMA 2.8. The rule >L− is admissible:

∆[>] ` m

∆[Γ] ` m
>L−

Proof. Induction on the depth of the derivation of the premiss and case analysis. �

THEOREM 2.9. The Cut rule is admissible

Γ ` m ∆′[m] ` m′

∆′[Γ] ` m′ Cut

Proof. Strong induction on the rank of the cut, where the rank is given by the pair (size of
cut formula m, sum of heights of derivations of premisses).

To clarify the different reductions used (and to show how all cases are covered), we
present the different cases in tabular form: in the top row are the different cases for the last
step of the first premiss of the cut and in the left column are the different cases for the last
step of the derivation of the second premiss of the cut. The letters refer to the case in the
treatment below. The attributes like “Non-Principal” refer to the status of the cut formula
w.r.t. the rule.
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Id ⊥L >R ∧L ∨L �AL 2AL ∧R ∨R �AR 2AR

Id (Principal) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (a)
⊥L (Non-Principal) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (11) (b)
>R (11) (c)

∧L (Non-Principal) (11) (d)
∨L (Non-Principal) (11) (e)
�BL (Non-Principal) (11) (f)
2BL (Non-Principal) (11) (g)

2AL (Principal) (11) (h)

∧R (11) (i)
∨R (11) (j)
�BR (11) (k)
2BR (11) (l)

1. The first premiss is an instance of Id.

Γ′, p ` p
Id ∆′[p] ` m′

∆′[Γ′, p] ` m′ Cut

is transformed to
∆′[p] ` m′

∆′[Γ′, p] ` m′ Wk

2. The first premiss is an instance of ⊥L.

∆[⊥] ` m
⊥L ∆′[m] ` m′

∆′[∆[⊥]] ` m′ Cut

is transformed, using Lemma 2.1. to identify ∆′[∆[⊥]] and (∆′ •∆)[⊥], to

∆′[∆[⊥]] ` m′ ⊥L

3. The first premiss is an instance of >R.

Γ ` > >R ∆′[>] ` m′

∆′[Γ] ` m′ Cut

transforms to the following using Lemma 2.8.

∆′[>] ` m′

∆′[Γ] ` m′ >L−

4. The first premiss is an instance of ∧L. Straightforward.
5. The first premiss is an instance of ∨L. Straightforward.
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6. The first premiss is an instance of �AL.

∆[mA] ` m′

∆[�A(m)] ` m′ �AL
∆′[m′] ` m′′

∆′[∆[�A(m)]] ` m′′ Cut

transforms (using Lemma 2.1.) to

∆[mA] ` m′ ∆′[m′] ` m′′

∆′[∆[mA]] ` m′′ Cut

∆′[∆[�A(m)]] ` m′′ �AL

7. The first premiss is an instance of 2AL.

∆[(2Am,Γ)A,m] ` m′

∆[(2Am,Γ)A] ` m′ 2AL
∆′[m′] ` m′′

∆′[∆[(2Am,Γ)A]] ` m′′ Cut

transforms to

∆[(2Am,Γ)A,m] ` m′ ∆′[m′] ` m′′

∆′[∆[(2Am,Γ)A,m]] ` m′′ Cut

∆′[∆[(2Am,Γ)A]] ` m′′ 2AL

8. The first premiss is an instance of ∧R.

Γ ` m1 Γ ` m2

Γ ` m1 ∧m2
∧R ∆[m1 ∧m2] ` m′

∆[Γ] ` m′ Cut

transforms to

Γ ` m2

Γ ` m1

∆[m1 ∧m2] ` m′

∆[m1,m2] ` m′ Inv ∧ L

∆[Γ,m2] ` m′ Cut

∆[Γ,Γ] ` m′ Cut

∆[Γ] ` m′ Contr

9. The first premiss is an instance of ∨R.

Γ ` mi

Γ ` m1 ∨m2
∨Ri ∆[m1 ∨m2] ` m′

∆[Γ] ` m′ Cut

transforms to

Γ ` mi

∆[m1 ∨m2] ` m′

∆[mi] ` m′ Inv ∨ L

∆[Γ] ` m′ Cut

10. The first premiss is an instance of �AR.

Γ ` m

Γ′,ΓA ` �A(m)
�AR

∆′[�A(m)] ` m′

∆′[Γ′,ΓA] ` m′ Cut
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is transformed to

Γ ` m

∆′[�A(m)] ` m′

∆′[mA] ` m′ Inv�AL

∆′[ΓA] ` m′ Cut

∆′[Γ′,ΓA] ` m′ Wk

11. The first premiss is an instance of 2AR. This now depends on the form of the second
premiss.

(a) Id

ΓA ` m
Γ ` 2Am

2AR
∆[2Am], p ` p

Id

∆[Γ], p ` p
Cut

transforms to

∆[Γ], p ` p
Id

(b) ⊥L

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][⊥] ` m′ ⊥L

∆[Γ][⊥] ` m′ Cut

transforms to

∆[Γ][⊥] ` m′ ⊥L

(c) >R

ΓA ` m
Γ ` 2Am

2AR
∆[2Am] ` > >R

∆[Γ] ` > Cut

transforms to

∆[Γ] ` > >R

(d) ∧L, non-principal

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][m1,m2] ` m′

∆[2Am][m1 ∧m2] ` m′ ∧L

∆[Γ][m1 ∧m2] ` m′ Cut

transforms to

Γ ` 2Am ∆[2Am][m1,m2] ` m′

∆[Γ][m1,m2] ` m′ Cut

∆[Γ][m1 ∧m2] ` m′ ∧L

(e) ∨L, non-principal

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][m1] ` m′ ∆[2Am][m2] ` m′

∆[2Am][m1 ∨m2] ` m′ ∨L

∆[Γ][m1 ∨m2] ` m′ Cut
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transforms to
Γ ` 2Am ∆[2Am][m1] ` m′

∆[Γ][m1] ` m′ Cut
Γ ` 2Am ∆[2Am][m2] ` m′

∆[Γ][m2] ` m′ Cut

∆[Γ][m1 ∨m2] ` m′ ∨L

(f) �BL, non-principal

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][[m′′]B ] ` m′

∆[2Am][�B(m′′)] ` m′ �BL

∆[Γ][�B(m′′)] ` m′ Cut

transforms to
Γ ` 2Am ∆[2Am][[m′′]B ] ` m′

∆[Γ][[m′′]B ] ` m′ Cut

∆[Γ][�B(m′′)] ` m′ �BL

(g) 2BL, non-principal

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][(2Bm′′,Γ′)B ,m′′] ` m′

∆[2Am][(2Bm′′,Γ′)B ] ` m′ 2BL

∆[Γ][(2Bm′′,Γ′)B ] ` m′ Cut

transforms to

Γ ` 2Am ∆[2Am][(2Bm′′,Γ′)B ,m′′] ` m′

∆[Γ][(2Bm′′,Γ′)B ,m′′] ` m′ Cut

∆[Γ][(2Bm′′,Γ′)B ] ` m′ 2BL

(h) 2AL, principal

ΓA ` m
Γ ` 2Am

2AR
∆′[(2Am,Γ′)A,m] ` m′

∆′[(2Am,Γ′)A] ` m′ 2AL

∆′[(Γ,Γ′)A] ` m′ Cut

transforms to

ΓA ` m

Γ ` 2Am ∆′[(2Am,Γ′)A,m] ` m′

∆′[(Γ,Γ′)A,m] ` m′ Cut

∆′[(Γ,Γ′)A,ΓA] ` m′ Cut

∆′[(Γ,Γ′)A, (Γ,Γ′)A] ` m′ Wk

∆′[(Γ,Γ′)A] ` m′ Contr

(i) ∧R

ΓA ` m
Γ ` 2Am

2AR
∆[2Am] ` m1 ∆[2Am] ` m2

∆[2Am] ` m1 ∧m2
∧R

∆[Γ] ` m1 ∧m2
Cut

transforms to
Γ ` 2Am ∆[2Am] ` m1

∆[Γ] ` m1
Cut

Γ ` 2Am ∆[2Am] ` m2

∆[Γ] ` m2
Cut

∆[Γ] ` m1 ∧m2
∧R
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(j) ∨R

ΓA ` m
Γ ` 2Am

2AR
∆[2Am] ` mi

∆[2Am] ` m1 ∨m2
∨Ri

∆[Γ] ` m1 ∨m2
Cut

transforms to
Γ ` 2Am ∆[2Am] ` mi

∆[Γ] ` mi
Cut

∆[Γ] ` m1 ∨m2
∨Ri

(k) �BR

ΓA ` m
Γ ` 2Am

2AR
∆[2Am] ` m′

Γ′,∆[2Am]B ` �B(m′)
�BR

Γ′,∆[Γ]B ` �B(m′)
Cut

transforms to
Γ ` 2Am ∆[2Am] ` m′

∆[Γ] ` m′ Cut

Γ′,∆[Γ]B ` �B(m′)
�BR

(l) 2BR

ΓA ` m
Γ ` 2Am

2AR
∆[2Am]B ` m′

∆[2Am] ` 2Bm′ 2BR

∆[Γ] ` 2Bm′ Cut

transforms to
Γ ` 2Am ∆[2Am]B ` m′

∆[Γ]B ` m′ Cut

∆[Γ] ` 2Bm′ 2Bm′

�

LEMMA 2.10. The following rule (the name K is roughly from Moortgat (1995)) is
admissible:

∆[ΓA,Γ′A, (Γ,Γ′)A] ` m

∆[(Γ,Γ′)A] ` m
K

Proof. Let γ =
∧

Γ and γ′ =
∧

Γ′. The proof uses Cut and is as follows, where a superfix
∗ indicates several instances of a rule:

. . .
Γ,Γ′ ` γ

∧R∗ . . .
Γ,Γ′ ` γ′

∧R∗
∆[ΓA,Γ′A, (Γ,Γ′)A] ` m

∆[γA, γ′A, (Γ,Γ′)A] ` m
∧L∗

∆[(Γ,Γ′)A, (Γ,Γ′)A, (Γ,Γ′)A] ` m
Cut∗

∆[(Γ,Γ′)A] ` m
Contr∗

�

§3. Semantics
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3.1. Algebraic Semantics

DEFINITION 3.11. Let A be a set, with elements called agents. A DLAM over A is a
bounded distributive lattice (L,>,⊥) with two A-indexed families {�A}A∈A : L → L
and {2A}A∈A : L → L of order-preserving maps, with each �A left adjoint to 2A. Thus,
the following hold, for all l, l′ ∈ L:

l ≤ l′ implies �A(l) ≤ �A(l′) (1)
l ≤ l′ implies 2A(l) ≤ 2A(l′) (2)

�A(l) ≤ l′ iff l ≤ 2A(l′) (3)

PROPOSITION 3.12. In any DLAM the following hold, for all l, l′ ∈ L:

�A(l ∨ l′) = �A(l) ∨ �A(l′) (4)
2A(l ∧ l′) = 2A(l) ∧2A(l′) (5)
�A(l ∧ l′) ≤ �A(l) ∧ �A(l′) (6)

2A(l) ∨2A(l′) ≤ 2A(l ∨ l′) (7)
�A(⊥) = ⊥ 2A(>) = > (8)
�A(2A(l)) ≤ l (9)

l ≤ 2A(�A(l)) (10)

Proof. (4) follows from (1) and (3); similarly (5) follows from (2) and (3). (6) follows
routinely from (1); similarly (7) follows from (1). (8) is routine, using (3), ⊥ ≤ 2A(⊥)
and �A(>) ≤ >. (9) follows from (3) and 2A(l) ≤ 2A(l); (10) is similar. 2

Let L be a DLAM over a set A of agents A. An interpretation of the set M of formulae
(over the same set of agents and a given set At of atoms) in L is a map [[−]] : At → L. The
meaning of formulae is obtained by induction on the structure of the formulae:

[[m1 ∨m2]] = [[m1]] ∨ [[m2]], [[m1 ∧m2]] = [[m1]] ∧ [[m2]],
[[�A(m)]] = �A([[m]]), [[2Am]] = 2A[[m]],

[[>]] = >, [[⊥]] = ⊥ .

The meanings of items and of contexts are obtained by mutual induction on their structure:

[[m]] = as above
[[ΓA]] = �A([[Γ]])

[[I1, · · · , In]] = [[I1]] ∧ · · · ∧ [[In]]
[[∅]] = >

Note that, since ∧ is commutative and associative, the meaning of a context Γ is
independent of its presentation as a list of items in a particular order.

A sequent Γ ` m is true in an interpretation [[−]] in L iff [[Γ]] ≤ [[m]]; it is true in L iff
true in all interpretations in L, and it is valid iff true in every DLAM.

LEMMA 3.13. Let Γ,Γ′ be contexts with [[Γ]] ≤ [[Γ′]] and ∆ a context-with-a-hole. Then

[[∆[Γ]]] ≤ [[∆[Γ′]]].

Proof. Routine induction on the structure of ∆ (using also a similar result for items-with-
a-hole). �
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THEOREM 3.14. (Soundness) Any derivable sequent is valid, i.e. the derivability of
Γ ` m implies that [[Γ]] ≤ [[m]] is true in any interpretation [[−]] in any DLAM.

Proof. We show that the initial sequents of the sequent calculus are valid and that the rules
are truth-preserving.

• Initial sequents: these are routine.
• The right rules:

— ∧R and ∨R are routine.
— �AR. We have to show

[[Γ]] ≤ [[m]] implies [[Γ′,ΓA]] ≤ [[�A(m)]]

Assuming [[Γ]] ≤ [[m]], by definition of [[−]] we have to show [[Γ′]] ∧ �A([[Γ]]) ≤
�A([[m]]), which follows by monotonicity of �A and definition of meet.

— 2AR. We have to show

[[ΓA]] ≤ [[m]] implies [[Γ]] ≤ [[2Am]]

This follows directly from the definition of [[−]] and property (1) in the definition
of a DLAM as follows

�A([[Γ]]) ≤ [[m]] iff [[Γ]] ≤ 2A[[m]]

• The left rules: these are done by induction on the structure of ∆
— ∧L and ∨L are routine.
— �AL, we have to show

[[∆[mA]]] ≤ [[m′]] implies [[∆[�A(m)]]] ≤ [[m′]]

which easily follows from the definition of [[ ]].
— 2AL, we have to show

[[∆[(2Am,Γ)A,m]]] ≤ [[m′]] implies [[∆[(2Am,Γ)A]]] ≤ [[m′]]

for which it is enough to show

[[∆[(2Am,Γ)A]]] ≤ [[∆[(2Am,Γ)A,m]]]

By definition of contexts (and items) with holes this breaks down to three cases
1. [[(2Am,Γ)A]] ≤ [[(2Am,Γ)A,m]] which by definition of [[ ]] is equivalent to

the following

�A(2A[[m]] ∧ [[Γ]]) ≤ �A(2A[[m]] ∧ [[Γ]]) ∧m

and follows since by proposition 3.12. and definitions of �A and ∧ we have

�A(2A[[m]] ∧ [[Γ]]) ≤ �A(2A[[m]]) ∧ �A([[Γ]]) ≤ �A(2A[[m]]) ≤ m

2. [[Γ′, J [(2Am,Γ)A]]] ≤ [[Γ′, J [(2Am,Γ)A,m]]] follows from case 1 by
recursively unfolding the definition of an item-with-a-hole.

3. [[∆′[(2Am,Γ)A]B ]] ≤ [[∆′[(2Am,Γ)A,m]B ]] follows from case 1 by
recursively unfolding the definitions of a context-with-a-hole and an item-
with-a-hole.

�
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THEOREM 3.15. Completeness. Any valid sequent is derivable, i.e. if [[Γ]] ≤ [[m]] for
every DLAM and every interpretation [[−]] therein, then Γ ` m is derivable.

Proof. We follow the Lindenbaum-Tarski proof method of completeness (building the
counter-model) and show the following

1. The logical equivalence ∼= defined as `a over the formulae in M is an equivalence
relation, i.e. it is reflexive, transitive (by the admissibility of Cut), and symmetric.

2. The order relation ≤ defined as ` on the above equivalence classes is a partial order,
i.e. reflexive, transitive and anti-symmetric.

3. The operations ∧,∨,�A, and 2A on the above equivalence classes (defined in
a routine fashion) are well-defined. To avoid confusion with the brackets of the
sequents, i.e. ∆[Γ′], we occasionally drop the brackets of the equivalence classes
and for example write �A(m) for [�A(m)].

(a) For �A[m] := [�A(m)] we show

[m] ∼= [m′] =⇒ [�A(m)] ∼= [�A(m′)]

The proof tree of one direction is as follows, the other direction is identically
easy

m ` m′

mA ` �A(m′)
�AR

�A(m) ` �A(m′)
�AL

(b) For 2A[m] := [2Am] we show

[m] ∼= [m′] =⇒ [2Am] ∼= [2Am′]

The proof tree of one direction is as follows, the other direction is identically
easy

m ` m′

(2Am)A ` m′ 2AL

2Am ` 2Am′ 2AR

(c) Similarly for [m1] ∧ [m2] := [m1 ∧m2] and [m1] ∨ [m2] := [m1 ∨m2].

4. The above operations satisfy properties of a DLAM, as in definition 3.11., as follows:

(a) The proofs for properties of ∧ and ∨ are routine.
(b) The proof trees for order preservation of �A and 2A are as follows

m ` m′ Id

mA ` �Am′ �AR

�Am ` �Am′ �AL

(2Am)A,m ` m
Id

(2Am)A ` m′ 2AL

2Am ` 2Am′ 2AR

(c) The proof trees for the adjunction between �A and 2A are as follows

m ` 2Am′

mA ` m′ 2AInv

�A(m) ` m′ �AL

�A(m) ` m′

mA ` m′ �AInv

m ` 2Am′ 2AR

�
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3.2. Examples of Algebraic Semantics We point out some examples for the algebraic
semantics of our calculus.

EXAMPLE 3.16. The simplest example of a DLAM is a Heyting Algebra:

PROPOSITION 3.17. A Heyting Algebra H is a DLAM.

To see this let �A(−) be h ∧ − for some h ∈ H , then, since ∧ is residuated, the Galois
right adjoint to �A exists and is obtained from the implication. For instance we can set

• �A(−) = > ∧− and we obtain �A = 2A = id,

• �A(−) = ⊥ ∧− = ⊥ and we obtain 2A = >,

• H = A and we obtain �A(−) = A ∧ −, hence 2A− = A ⊃ − where ⊃ is the
implication.

EXAMPLE 3.18. One can argue that in a Heyting Algebra meets are commutative and
idempotent but our �As generally are not. So a closer match would be a residuated lattice
monoid:

PROPOSITION 3.19. A residuated lattice monoid Q is a DLAM.

Recall that a residuated lattice monoid Q is a lattice (Q,∨,∧,>,⊥) with a monoid
structure (Q, •, 1) such that the monoid multiplication preserves the joins and has a right
adjoint in each argument, i.e. q •− a −/q and −• q a q \−. Thus if we take �A(−) to be
either q •− or −• q then it will have a right adjoint in each case. For instance, we can set

• �A(−) = 1 • − or − • 1 and obtain �A = 2A = id,

• or set �A(−) = ⊥ • − or − • ⊥ and obtain a 2A which is a bi-negation operator,
i.e. ¬l− = −/⊥ and ¬r− = ⊥ \ − respectively for each argument.

• Alternatively, we can have L = A and thus obtain �A(−) = A • −, hence 2A− =
−/A, and similarly for the other argument.

3.3. Relational Semantics In this section, we develop a Hilbert-style calculus
APMLHilb for APML and show that this calculus provides an axiomatization equivalent
to APMLTree. We show that this logic is sound and complete with regard to ordered
Kripke Frames, by applying the general Salqhvist theorem for distributive modal logics,
developed in Gehrke et al. (2005).

The set of formulae M is the same as that of APMLTree. Since the language does not
include implication, the sequents are, following Dunn (2005), of the form m ` m′ for
m,m′ ∈ M . The axioms and rules are:
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Axioms.
m ` m, ⊥ ` m, m ` >

m ∧ (m′ ∨m′′) ` (m ∧m′) ∨ (m ∧m′′)

m ` m ∨m′, m′ ` m ∨m′, m ∧m′ ` m, m ∧m′ ` m′

�A(m ∨m′) ` �A(m) ∨ �A(m′), �A(⊥) ` ⊥

2Am ∧2Am′ ` 2A(m ∧m′), > ` 2A>

�A(2Am) ` m, m ` 2A�A(m)
Rules.

m ` m′ m′ ` m′′

m ` m′′ cut

m ` m′′ m′ ` m′′

m ∨m′ ` m′′ ∨ m ` m′ m ` m′′

m ` m′ ∧m′′ ∧

m ` m′

�A(m) ` �A(m′)
�A

m ` m′

2Am ` 2Am′ 2A

PROPOSITION 3.20. APMLHilb is sound and complete with respect to DLAMs.

Proof. Soundness is easy. Completeness follows from a routine Lindenbaum-Tarski
construction. �

PROPOSITION 3.21. A sequent of the form m ` m′ is derivable in APMLTree if and
only if it is derivable in APMLHilb.

Proof. Follows from proposition 3.20.. �

A Hilbert-style modal logic is Sahlqvist whenever its modal axioms correspond to
first-order conditions of a Kripke frame. According to Sahlqvist’s Theorem, these modal
logics are sound and complete with regard to their corresponding canonical Kripke
models Blackburn et al. (2001).

PROPOSITION 3.22. APMLHilb is Sahlqvist.

Proof. It suffices to show that the two axioms m ` 2A�A(m) and �A(2Am) ` m are
Sahlqvist. According to the method developed in Gehrke et al. (2005), the former sequent
is Sahlqvist if and only if m is left Sahlqvist and 2A�A(m) is right Sahlqvist. The first is
obvious; the negative generation tree of the latter is as follows

− - (2A,−) - (�A,−) - (m,−)

This is right Sahlqvist since the only choice node 2A does not occurs in the scope of the
only universal node �A. The proof of �A(2Am) ` m being Sahlqvist is similar. �

For a Kripke semantics, we consider a simplification of that in Gehrke et al. (2005):

DEFINITION 3.23. A multi-modal Kripke frame for APMLHilb is a tuple

(W,≤, {RA}A∈A, {R−1
A }A∈A),
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where W is a set of worlds, each RA is a binary relation on W and R−1
A is its converse,

and ≤ is a partial order on W satisfying

≤ ◦R−1
A ⊆ R−1

A ◦ ≤ and ≥ ◦RA ⊆ RA◦ ≥

A Kripke structure for APMLHilb is a pair M = (F, V ) where F is a multi-modal Kripke
frame for APMLHilb and V ⊆ W×P is a binary relation, called a valuation. Given such a
Kripke structure, the satisfaction relation |= is defined on W and formulae of APMLHilb

in a routine fashion. The clauses for the modalities are as follows:

• M, w |= �A(m) iff ∃v ∈ W, wR−1
A v and M, v |= m

• M, w |= 2Am iff ∀v ∈ W, wRAv implies M, v |= m

From the general Sahlqvist theorem of Gehrke et al. (2005) for distributive modal logics
and our propositions 3.22. and 3.21. it follows that

THEOREM 3.24. APMLTree is sound and complete with respect to Kripke structures
for APMLHilb.

3.4. Representation Theorem We end this section by stating some definitions and
results about a concrete construction for DLAMs and a representation theorem for perfect
DLAMs. They follow from our previous results together with the general definitions and
results of Gehrke et al. (2005) about representation theorems for distributive modal logics.

DEFINITION 3.25. The complex or dual algebra of a multi-modal Kripke frame for
APMLHilb is the set of subsets of W that are downward-closed with respect to ≤.

DEFINITION 3.26. A distributive lattice is called perfect whenever it is complete,
completely distributive, and join-generated by (i.e. each element of it is equal to the join
of) the set of all of its completely join-irreducible elements.

LEMMA 3.27. The complex algebra of a multi-modal Kripke frame for APMLHilb is
closed under intersection, union and the modal operators (for Z ⊆ W )

2AZ := {w | ∀v ∈ W,wRv =⇒ v ∈ Z}

and

3AZ := {w | ∃v ∈ W,wR−1v, v ∈ Z}.

PROPOSITION 3.28. The complex algebra of a multi-modal Kripke frame for
APMLHilb is a perfect DLAM.

THEOREM 3.29. Given a perfect DLAM L, there is a frame whose complex algebra is
isomorphic to L.

Proof. By the above proposition 3.28., it suffices to construct a frame from L in a way
that the complex algebra of the frame is isomorphic to L. As shown in lemma 2.26 and
proposition 2.25 of Gehrke et al. (2005), the atom structure of a perfect DLAM is a such a
frame. �

§4. Epistemic Applications Following previous work Baltag et al. (2007); Sadrzadeh
(2006, 2009), we interpret �A(m) as “agent A’s uncertainty about m”, that is, in effect, the
conjunction of all the propositions that A considers as possible when in reality m holds.
Accordingly, 2Am will be interpreted as “agent A has information that m”. We could
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use the terminology of belief, but wish to avoid this as too suggestive about mental states.
Agents can cheat and lie, so “knowledge” is inappropriate.

The intended application of our calculus is to scenarios where extra information is
available about the uncertainty of agents. This will always be of the form of one or more
assumptions of the form �A(p) ⊃ m′′ where p is an atom and m′′ is a disjunction of
atoms, e.g. p1∨p2. Such assumptions express ideas that would, in the relational semantics,
be encoded in the accessibility relation, e.g. that such and such a world can access certain
other worlds. Such implications are not even formulae of our language; we can however
add them as follows, by adding (for each such given assumption) the following evidently
sound rule

∆[(Γ, p)A,m′′] ` m

∆[(Γ, p)A] ` m
Assn

It is routine to note that the proofs of admissibility of Weakening (2.3.) and of
Contraction (2.6.) still work when these extra rules are considered; it is important for
example that the principal item of Assn be of the form (Γ, p)A rather than �A(p). The
same applies to the invertibility lemmas. Let APMLAssn

Tree be the name of the extended
calculus.

PROPOSITION 4.30. The Cut rule is admissible in APMLAssn
Tree .

Proof. There are three extra cases:

(xii) The first premiss is an instance of Assn:

∆[(Γ, p)A,m′′] ` m

∆[(Γ, p)A] ` m
Assn

∆′[m] ` m′

∆′[∆[(Γ, p)A]] ` m′ Cut

is transformed to

∆[(Γ, p)A,m′′] ` m ∆′[m] ` m′

∆′[∆[(Γ, p)A,m′′]] ` m′ Cut

∆′[∆[(Γ, p)A]] ` m′ Assn .

(xi)(m) The first premiss is an instance of 2AR and the second premiss is an instance of
Assn, with the cut formula 2Am non-principal, i.e. not occurring as an element in
the principal item of Assn.

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][(Γ′, p)B ,m′′] ` m′

∆[2Am][(Γ′, p)B ] ` m′ Assn

∆[Γ][(Γ′, p)B ] ` m′ Cut

is transformed to

ΓA ` m
Γ ` 2Am

2AR
∆[2Am][(Γ′, p)B ,m′′] ` m′

∆[Γ][(Γ′, p)B ,m′′] ` m′ Cut

∆[Γ][(Γ′, p)B ] ` m′ Assn

(xi)(n) The first premiss is an instance of 2AR and the second premiss is an instance of
Assn, with the cut formula 2Am principal, i.e. occurring in the principal item of
Assn.
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ΓA ` m
Γ ` 2Am

2AR
∆[(Γ′,2Am, p)B ,m′′] ` m′

∆[(Γ′,2Am, p)B ] ` m′ Assn

∆[(Γ′,Γ, p)B ] ` m′ Cut

is transformed to

ΓA ` m
Γ ` 2Am

2AR
∆[(Γ′,2Am, p)B ,m′′] ` m′

∆[(Γ′,Γ, p)B ,m′′] ` m′ Cut

∆[(Γ′,Γ, p)B ] ` m′ Assn

�

As an example consider the muddy children puzzle. It goes as follows: n children are
playing in the mud and k of them have muddy foreheads. Each child can see the other
children’s foreheads, but cannot see his own. Their father announces to them “At least one
of you has a muddy forehead.” and then asks them “Do you know it is you who has a
muddy forehead?”. After k−1 rounds of ‘no’ answers by all the children, the muddy ones
know that they are muddy. After they announce it in a round of ‘yes’ answers, the clean
children know that they are not muddy.

To formalize this scenario, assume the children are enumerated and the first k ones are
muddy. Consider the propositional atoms sβ for β ⊆ {1, · · · , n} where sβ stands for the
proposition that exactly the children in β are muddy and s∅ stands for ‘no child is muddy’.
The formula �i(sβ) stands for the uncertainty of child i about each of these atoms before
father’s announcement. Since child i can only see the other children’s foreheads and not
his own, he is uncertain about himself being muddy or not. Let k = the set {1, . . . , k} (we
write s1,··· ,k rather than s{1,··· ,k}), then the assumption for the uncertainty of the muddy
child i is �i(sk) ⊃ sk ∨ sk\i, captured in the calculus by the following instance of the
assumption rule

∆[(Γ, sk)i, sk ∨ sk\i] ` m

∆[(Γ, sk)i] ` m
Assn

The assumption for the uncertainty of the clean child w is �w(sk) ⊃ sk ∨ sk∪w and
its Assn rule is similar. For 1 ≤ i, j ≤ k and k + 1 ≤ w we have that, before the
k− 1’th announcement, a muddy child i is uncertain about having a muddy forehead:
sk ` 2i(sk ∨ sk\i) (i.e. �i(sk) ` sk ∨ sk\i). The proof tree of this property is as follows

(sk)i, sk ∨ sk\i ` sk ∨ sk\i

Id

(sk)i ` sk ∨ sk\i

Assn

sk ` 2i(sk ∨ sk\i)
2iR
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The uncertainties of children change after each announcement as follows1: the k’s
announcements eliminates the sγ disjunct from the uncertainty before the announcement
when γ ⊆ {1, · · · , n} is of size k ; father’s announcement eliminates the s∅ disjunct. For
example, after the series of 1 to k−1’th announcements all the disjuncts except for sk will
be eliminated from muddy child i’s uncertainty; hence his previous uncertainty assumption
rule changes to

∆[(Γ, sk)i, sk] ` m

∆[(Γ, sk)i] ` m
Assn

The assumption for the uncertainty of the clean child w changes in a similar way. We
have that, after the k − 1’th announcement, a muddy child i obtains information (a) that
he is muddy and (b) that other muddy children also obtain information that he is muddy:
sk ` (2isk) ∧ (2i2jsk). However, a clean child w will be uncertain about being muddy
before and after the k−1’th announcement: sk ` 2w(sk ∨ sk∪w). The proof tree of the
property for a muddy child i (where child j is also muddy) is as follows:

(sk)i, sk ` sk

Id

(sk)i ` sk

Assn

sk ` 2isk

2iR

((sk)i, sk)j , sk ` sk

Id

((sk)i, sk)j ` sk

Assn

(sk)i, sk ` 2jsk

2jR

(sk)i ` 2jsk

Assn

sk ` 2i2jsk

2iR

sk ` (2isk) ∧ (2i2jsk) ∧R

Consider a twist to the above scenario. Suppose that none of the children are muddy but
that the father is a liar (or he cannot see properly) and the children do not suspect this (thus
their uncertainties change in the same way as above). After father’s false announcement,
any child i will (by reasoning) obtain false information that he is the only muddy child:
s∅ ` 2isi. The proof tree is as follows:

(s∅)i, si ` si
Id

(s∅)i ` si
Assn

s∅ ` 2isi
2iR

§5. Conclusion and Future Work We have developed a tree-style (aka nested)
sequent calculus for a positive modal logic where the modalities are adjoints rather than
De Morgan duals. We have shown that the structural rules of Weakening, Contraction
and Cut are admissible in our calculus. We have also shown that our calculus is sound
and complete with regard to bounded distributive lattices with agent-indexed adjoint pairs
of operators. Examples of these are complete Heyting Algebras and residuated lattice
monoids. Using general results of Gehrke et al. (2005), we have shown that our calculus is
sound and complete with respect to ordered Kripke frames, by developing a Hilbert-style

1 The way the uncertainties change after each announcement is formalized in the sequent calculus
of previous work Baltag et al. (2007); Sadrzadeh (2006) via adding a dynamic logic for actions
and extra rules for epistemic update; that calculus was not cut-free; Here, we change the
assumptions of these uncertainties by hand and defer a full formalization to future work; for
more details see next section.
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calculus with the same deductive power. We have motivated the applicability of our modal
logic by encoding in it partial assumptions of real-life scenarios and proving epistemic
properties of agents in the milestone puzzle of muddy children, but also with a newer mis-
information version of it where father’s announcement is not necessarily truthful. Since
our box modality is not necessarily truthful, we can as well reason about the settings where
agents obtain false information as a result of dishonest announcements. Our proof method
of unfolding the adjunction and then renaming the left adjoint to its assumed values has
made our proofs considerably simpler than the usual proof method of epistemic logics for
the muddy children puzzle which uses the fixed point operator of the box. See (Kriener
et al. (2009)) for an implementation and the (routine) decidability proof.

Our logic may be seen as a positive version of Kt, i.e. tense logic. Thus one can deduce
that a proof theory thereof can be obtained by restricting any proof system for tense logic to
rules for conjunction and disjunction, the existential past and the universal future that only
satisfy the K axiom. We are unaware of a tree-style proof theory for this kind of modal
logic in the literature, noting that the presence of T, 4, 5 axioms make the proof theory far
easier than their absence in the logic. Thus we believe that our tree-style deep inference
proof theory and its automated decision procedure are novel and so is its application to
epistemic scenarios.

Future directions of our work include:

• A tree-style cut-free sequent calculus that is sound and complete with regard to
residuated monoids with adjoint modalities has been developed in Moortgat (1995);
it may be extended to quantales. We believe that pairing this extension with what
we have in this paper, i.e. adding to it the rules for the action of the quantale
on its right module such that it remains cut-free, will provide a cut-free sequent
calculus for a distributive version of the Epistemic Systems of Baltag et al. (2007)
and thus a negation-free version of the Dynamic Epistemic Logic of Baltag & Moss
(2004). This calculus will be an improvement on the algebraic decision procedure
of Richards & Sadrzadeh (2009), which only implements a sub-algebra of the
algebra of Epistemic Systems (namely one that allows �A only on the right and
2A only on the left hand side of the sequent).

• A representation theorem for perfect DLAMs follows from general results of Gehrke
et al. (2005). But DLAMs need not be complete and completion involves
introduction of, in principle, infinitary lattice operations. In Celani & Jansana (1999)
similar results are obtained for positive modal logics where 2 and 3 come from the
same relation; it might be possible to alter their duality theorem and make it suitable
for our adjoint modal logic. However, those results, like those of Gehrke et al. (2005),
are with respect to the less intuitive ordered frames. We are more inclined towards
work with the usual non-ordered frames, along the lines of Dunn (2005), i.e. by using
theory and counter-theory pairs to build our canonical frames.

• As shown in propositions 3.17. and 3.19., Heyting algebras and residuated lattice
monoids are examples of DLAMs. So in principle our nested tree sequents might be
adapted to provide a new sound and complete cut-free proof system for the logics
based on these algebras, i.e. for intuitionistic and linear logics where the conjunction
and tensor (respectively) are treated as adjoint operators. In the former case, we will
need extra rules to take care of the commutativity of conjunction, but in the latter case
we hope to obtain a new cut-free proof theory for non-commutative intuitionistic
multiplicative linear logic. It is also worth investigating how logics with classical
negation and thus de Morgan dual connectives can be formulated in this context.
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du Québec à Montréal.
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