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Vector models of language are based on contextual aspects of language
– distributions of words and how they co-occur in text. Truth condi-
tional models focus on logical aspects of language and on how words
combine to contribute to these aspects. In the truth conditional ap-
proach, there is a focus on the denotations of phrases. In vector mod-
els, the degree of co-occurrence of words in context determines how
similar their meanings are. The two approaches have complementary
virtues. In this paper we combine them and develop a vector seman-
tics for language, based on the typed lambda calculus. We provide two
types of vector semantics: a static one using techniques from the truth
conditional tradition, and a dynamic one with a form of interpretation
inspired by Heim’s context change potentials. We show, with exam-
ples, how the dynamic model can be applied to entailment between a
corpus and a sentence.

1 introduction

Vector semantic models, otherwise known as distributional models,
are based on the contextual aspects of language, i.e. the company
each word keeps, and patterns of use in corpora of documents. Truth
conditional models focus on the logical and denotational aspects of
language. They typically describe how words can be represented by
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functions over sets, and how these functions can be composed. Vector
semantics and truth conditional models are based on different philoso-
phies: one takes the stance that language is contextual, the other as-
serts that it is logical. In recent years, there has been much effort to
bring these two together. We have models based on a certain type
of grammatical representation, e.g. the pregroup model (Coecke et al.
2010), the Lambek Calculus model (Coecke et al. 2013), and the com-
binatorial categorial models (Krishnamurthy and Mitchell 2013; Mail-
lard et al. 2014). We also havemore concrete models that draw inspira-
tion from type theory, but whose major contribution lies in developing
concrete ways of constructing linear and multi-linear algebraic coun-
terparts for syntactic types, e.g. matrices and tensors (Grefenstette and
Sadrzadeh 2015; Baroni et al. 2014), and relational clusters (Lewis and
Steedman 2013).

What some of these approaches (Coecke et al. 2010; Krishna-
murthy and Mitchell 2013; Maillard et al. 2014) lack more than others
(Baroni et al. 2014; Lewis and Steedman 2013) is acknowledgement of
the inherent gap between contextual and truth conditional semantics:
they closely follow truth theoretic conditions to assign vector repre-
sentations to (readings of) phrases and sentences.1 Indeed, it is pos-
sible to develop a stand-alone compositional vector semantics along
these lines, but this will result in a static semantics. From the per-
spective of the underlying theory, it will also be quite natural to have
a vector semantics work in tandem with a dynamic theory, and let
the two modules model different aspects of meaning. Distributional
semantics is particularly apt at modelling associative aspects of mean-
ing, while truth-conditional and dynamic forms of semantics are good
at modelling the relation of language to reality, and also at modelling
entailment. It is quite conceivable that a theory combining the two
as separate modules will be simpler than trying to make one of the
approaches do things it was never intended for.

In this paper, we first sketch how an approach to semantics, de-
rived in many of its aspects from that pioneered by Montague (1974),
can be used to assign vector meanings to linguistic phrases. The theory
will be based on simply typed lambda calculus and, as a result, will

1Below, when we refer to phrases and sentences, strictly speaking, we mean
readings of phrases and sentences.
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be neutral with respect to the linguist’s choice of syntax, in the sense
that it can be combined with any existing syntax-semantics interface
that assumes that the semantics is based on lambdas.2 Our reason
for using lambda calculus is that it directly relates our semantics to
higher order logic, and makes standard ways of treating long-distance
dependencies and coordination accessible to vector-based semantics.
This approach results in a semantics similar to those of the static ap-
proaches listed above. The reason for providing it is to show that a
lambda calculus model of language can be directly provided with a
straightforward vector semantics. As will be seen, abstract lambda
terms, which can be used as translations of linguistic expressions, have
much in common with the Logical Forms of these expressions, and the
lambda binders in them facilitate the treatment of long-distance de-
pendencies. The use of lambda terms also makes standard ways of
dealing with coordination accessible to distributional semantics. We
provide extensive discussion of this process, and examples where the
direct use of lambdas is an improvement on the above-listed static
approaches.

The above semantics does not have an explicit notion of context,
however. The second contribution of this paper is that, based on the
same lambda calculus model of natural language, we develop a dy-
namic vector interpretation for this type theory, where denotations
of sentences are “context change potentials”, as introduced by Heim
(1983). We show how to assign such a vector interpretation to words,
and how these interpretations combine so that the vectors of the sen-
tences containing them change the context, in a dynamic style similar
to that proposed by Heim. As context can be interpreted in differ-
ent ways, we work with two different notions of context in distribu-
tional semantics: co-occurrence matrices, and entity-relation graphs,

2Linguistic trees, for example, can be associated with the abstract lambda
terms considered below via type-driven translation (Partee 1986; Klein and Sag
1985; Heim and Kratzer 1998). But other syntactic structures can be provided
with them as well. In the framework of Lexical-Functional Grammar, abstract
lambda terms can be assigned to f-structures with the help of linear logic acting
as ‘glue’ (Dalrymple et al. 1993). In Combinatory Categorial Grammar, deriva-
tions can be associated with abstract lambda terms using combinators (Steedman
2000), while proofs in Lambek Categorial Grammar can be provided with them
by the Curry-Howard morphism (van Benthem 1986).
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encoded here in the form of cubes. Both of these are built from corpora
of documents and record co-occurrence between words: in a simple
neighbourhood window, in the case of co-occurrence matrices, and
in a window structured by grammatical dependencies, in the case of
an entity-relation cube. We believe our model is flexible enough for
other distributional notions of contexts, such as networks of gram-
matical dependencies. We show how our approach relates to Heim’s
original notion of ‘files’ as contexts. Other dynamic approaches, such
as update semantics (Veltman 1996) and continuation-based seman-
tics (de Groote 2006), can also be used; we aim to do this in the
future.

Compositional vector semantics is our goal, but the nature of this
paper is theoretical. So we shall not propose – from the armchair so
to speak – concrete representations of contexts and updates and a set
of concrete vector composition operations for combining phrases, or
concrete matrices or cubes that embody them. We thus leave exhaus-
tive empirical evaluation of our model to future work, but show, by
means of examples, how the notion of “admittance of sentences by
contexts” from the context update logic of Heim (1983) and Kart-
tunen (1974) can be applied to develop a relationship between ma-
trix and cube contexts and sentences, and how this notion can be
extended from a usual Boolean relation to one which has degrees,
based on the notion of degrees of similarity between words. As this no-
tion resembles that of “contextual entailment” between corpora and
sentences, we review the current entailment datasets that are main-
stream in distributional semantics and discuss how they can or can-
not be applied to test this notion, but leave experimental evaluation
to future work.

The lambda calculus approach we use is based on Lambda Gram-
mars (Muskens 2001, 2003), which were independently introduced as
Abstract Categorial Grammars (ACGs) in de Groote (2001). The the-
ory developed here, however, can be based on any syntax-semantics
interface that works with a lambda calculus semantics – our approach
is agnostic as to the choice of a syntactic theory.

This paper is the journal version of our previous short paper
(Muskens and Sadrzadeh 2016a) and extended abstract (Muskens and
Sadrzadeh 2016b).
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2 lambda grammars

Lambda Grammars (Muskens 2001, 2003) were independently intro-
duced as Abstract Categorial Grammars (ACGs, de Groote 2001). An
ACG generates two languages, an abstract language and an object lan-
guage. The abstract language will simply consist of all linear lambda
terms (each lambda binder binds exactly one variable occurrence)
over a given vocabulary typed with abstract types. The object language
has its own vocabulary and its own types. We give some basic defini-
tions here, assuming familiarity with the simply typed λ-calculus.

If B is some set of basic types, we write TYP(B) for the smallest
set containing B such that (αβ) ∈ TYP(B) whenever α,β ∈ TYP(B).
Let B1 and B2 be sets of basic types. A function η from TYP(B1) to
TYP(B2) is said to be a type homomorphism if η(αβ) = (η(α)η(β)),
for all α,β ∈ TYP(B1). It is clear that a type homomorphism η with
domain TYP(B) is completely determined by the values of η for types
α ∈B .

Let us look at an example of a type homomorphism that can be
used to provide a language fragment with a classical Montague-like
meaning. Let B1 = {D, N , S} (D stands for determiner phrases, N for
nominal phrases, S for sentences), let B2 = {e, s, t} (e is for entities, s
for worlds, and t for truth-values), and let h0 be defined by: h0(D) = e,
h0(N) = est,3 and h0(S) = st. Then the types in the second column of
Table 1 have images under h0 as given in the fourth column. Addi-
tional information about the conventions used in Table 1 is given in a
footnote.4

We now define the notion of term homomorphism. If C is some set
of typed constants, we write Λ(C) for the set of all lambda terms with
constants only from C . The set of linear lambda terms over C is denoted
by Λ0(C). Let C1 be a set of constants typed by types from TYP(B1) and
let C2 be a set of constants typed by types from TYP(B2). A function
ϑ : Λ(C1)→ Λ(C2) is a term homomorphism based on η if η : TYP(B1)→
TYP(B2) is a type homomorphism and, whenever M ∈ Λ(C1):

3Association in types is to the right and outer parentheses are omitted; so est
is short for (e(st)), arguably a good type for predicates.

4 In Table 1, p is a variable of type st, while x is of type e. The variables w
and w′ are of type s, and P and P ′ are of type est. The constant K of type ess
denotes the epistemic accessibility relation.
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Table 1:

An Abstract Categorial
Grammar / Lambda
Grammar connecting
abstract terms with

Montague-like meanings

constant c type τ H0(c) h0(τ)

woman N woman est

man N man est

tall NN tall (est)est

smokes DS smoke est

loves DDS love eest

knows SDS λpλxλw.∀w′(K xww′→ pw′) (st)est

every N(DS)S λP ′λPλw.∀x(P ′xw→ P xw) (est)(est)st

a N(DS)S λP ′λPλw.∃x(P ′xw∧ P xw) (est)(est)st

• ϑ(M) is a term of type η(τ), if M is a constant of type τ;
• ϑ(M) is the n-th variable of type η(τ), if M is the n-th variable of
type τ;

• ϑ(M) = (ϑ(A)ϑ(B)), if M ≡ (AB);
• ϑ(M) = λy.ϑ(A), where y = ϑ(x), if M ≡ (λx .A).

Note that this implies that ϑ(M) is a term of type η(τ), if M is of type τ.
Clearly, a term homomorphism ϑ with domain Λ(C) is completely

determined by the values ϑ(c) for c ∈ C . This continues to hold if we
restrict the domain to the set of linear lambda terms Λ0(C). In order
to show how this mechanism can be used, let us continue with the
same example. Consider the (abstract) constants in the first column
of Table 1, typed by the (abstract) types in the second column. We
can now define a term homomorphism H0 by sending the constants in
the first column to their images in the third column, making sure that
these have types as in the fourth column. Since H0 is assumed to be a
type homomorphism, all lambda terms over the constants in the first
column will now automatically have images under H0. For example,
H0 sends the abstract term:5

((a woman)λξ((every man)(loves ξ)))

5We use the standard notation of lambda terms. The application of M to N is
written as (MN) (not as M(N)) and lambda abstractions are of the form (λX .A).
The usual redundancy rules for parentheses apply, but will often not be used in
abstract terms, in order to emphasise their closeness to linguistic expressions. In
some cases, to improve clarity, we will bend the rules and write M(N1, . . . , Nn)
for (MN1 . . . Nn) or A∧ B for ∧AB, for example.

[ 324 ]



Lambdas and vectors

(in which ξ is of type D), to a term βη-equivalent with:

λw∃y(woman yw∧∀x(man xw→ love y xw)) .

This term denotes the set of worlds in which some specific woman is
loved by all men.

This example sends abstract terms to translations that are close
to those of Montague (1974). While such translations obviously will
not serve as vector semantics, we will show in the next sections that
it is possible to alter the object language while retaining the general
translation mechanism. For more information about the procedure of
obtaining an object language from an abstract language, see de Groote
(2001) and Muskens (2003, 2010).

3 a static vector semantics

3.1 Vector interpretations for the object language
In order to provide an interpretation of our object language, the type
theory used must be able to talk about vectors over some field, for
which we choose the reals. We need a basic object type R such that,
in all interpretations under consideration, the domain DR of type R is
equal to or ‘close enough’ to the set of reals R, so that constants such
as the following (of the types shown) have their usual interpretation:6

0 : R

1 : R

+ : RRR

· : RRR

< : RRt

This can be done by imposing one of the sets of second-order axioms
in Tarski (1965). Given these axioms, we have DR = R in full models,
whereas we have non-standard models under the Henkin interpreta-
tion (Henkin 1950).

Vectors can now be introduced as objects of type IR, where I is
interpreted as some finite index set. Think of I as a set of words; if

6Constants such as +, ·, and < will be written between their arguments.
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Table 2:

Vector types
and their abbreviations

Type Math Abbreviation Letter Abbreviation Description
IR (I1R) V Vector
I IR I2R M Matrix
I I IR I3R C Cube
... ...

a word is associated with a vector v : IR, v assigns a real number
to each word, which gives information about the company the word
keeps. Since IR will be used often, we will abbreviate it as V . Similarly,
I IR, abbreviated as M , can be associated with the type of matrices, and
I I IR, abbreviated as C , with the type of cubes, and so on (see Table
2). In this paper, we work with a single index type, but one may also
consider cases with several index types, so that phrases of distinct
categories can live in their own space.

We need a toolkit of functions combining vectors, matrices, cubes,
etc. In the following definitions, r is of type R; i, j, and k are of type
I ; v and u are of type V ; m and c are of types M and C respectively;
and indices are written as subscripts, so vi is syntactic sugar for vi.

∗ := λrvi.r · vi : RV V

⊞ := λvui.vi + ui : V V V

⊙ := λvui.vi · ui : V V V

×1 := λmvi.
∑

j

mi j · v j : MV V

×2 := λcvi j.
∑

k

mi jk · vk : CV M

〈· | ·〉 := λuv.
∑

i

ui + vi : V VR

The reader will recognise ∗ as scalar product, ⊞ as pointwise addi-
tion, ⊙ as pointwise multiplication, ×1 and ×2 as matrix-vector and
cube-vector multiplication, and 〈· | ·〉 as the dot product. One can also
consider further operations, such as various rotation operations with
type ρ : V V V .
3.2 Abstract types and type and term homomorphisms
Let us assume again that our basic abstract types are D for determiner
phrases, S for sentences, and N for nominal phrases. But this time our

[ 326 ]



Lambdas and vectors

type and term homomorphisms will be chosen in a different way from
that used in Section 2. A very simple type homomorphism h can be
defined by:

h(D) = h(S) = h(N) = V .

So h assigns vectors to determiners, nominal phrases, and sentences.
There are other possibilities for the range of h and, in the following
section, we will sketch a more elaborate assignment in which a run-
ning context is used. The above simple h is chosen for the expository
purposes of this section.

In Table 3, we again provide abstract constants in the first column
and their abstract types in the second column; h assigns to these the
object types in the fourth column. Here, Z is a variable of type V V , and
v and u are of type V . As an example, consider the constant woman;
it has the abstract type N , and a term homomorphic image woman,
which is assigned the type V by h. We say that the translation of woman
is of type V . Similarly, the translations of tall and smoke are of type
V V , love and know are of type V V V , and those of every and a are of
type V V . The term homomorphism H is defined by letting its value for
any abstract constant in the first column be the corresponding object
term in the third column. Using this table, we automatically obtain
homomorphic images of any lambda term over the constants. But now
our previous example term:7

((a woman)λξ((every man)(loves ξ)))

is sent to a term that is βη equivalent with:

(love×2 (a×1 woman))×1 (every×1 man) .

In Table 3, nominal phrases like woman are represented by vec-
tors, adjectives and intransitive verbs like tall and smoke by matri-
ces, and transitive verbs (love) by cubes, as are constants like know.
Generalised quantifiers are functions that take vectors to vectors. The
composition operations used (×1 and ×2) are cube-vector and matrix-
vector instances of tensor contraction. There is still much debate as to

7The entry for man is no longer present in Table 3. But man can be treated
in full analogy to woman. In further examples we will also use constants whose
entries can easily be guessed.
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Table 3:

A fragment of static vector
semantics. Abstract

constants c are typed with
abstract types τ and their

term homomorphic images
H(c) typed by h(τ)

c τ H(c) h(τ)

woman N woman V

tall NN λv.(tall×1 v) V V

smokes DS λv.(smoke×1 v) V V

loves DDS λuv.(love×2 u)×1 v V V V

knows SDS λuv.(know×2 u)×1 v V V V

every N(DS)S λvZ .Z(every×1 v) V (V V )V

a N(DS)S λvZ .Z(a×1 v) V (V V )V

Table 4:
Term homomorphic

images H(c) for pointwise
addition and

multiplication, and matrix
multiplication as

composition operations

Addition Multiplication Matrix Multiplication
H(c) H(c) H(c)

woman woman woman

λv.(tall⊞ v) λv.(tall⊙ v) λv.(tall×1 v)

λv.(smoke⊞ v) λv.(smoke⊙ v) λv.(smoke×1 v)

λuv.(love⊞ u)⊞ v λuv.(love⊙ u)⊙ v λuv.(love×2 u)×1 v

λuv.(know⊞ u)⊞ v λuv.(know⊙ u)⊙ v λuv.(know×2 u)×1 v

λvZ .Z(every⊞ v) λvZ .Z(every⊙ v) λvZ .Z(every×1 v)

λvZ .Z(a⊞ v) λvZ .Z(a⊙ v) λvZ .Z(a×1 v)

the best operations for composing vectors. Mitchell and Lapata (2010)
consider pointwise addition and multiplication of vectors, while ma-
trix multiplication is used in Baroni and Zamparelli (2010). Such
operations are available to our theory. The table for these will have
a different H(c) column and will be the same in all other columns.
The H(c) columns for these models are given in Table 4.8

In this paper, we will not choose between these operations. In-
stead, we will explore how to combine such functions once an initial
set has been established (and validated empirically). Functions in the
initial set will typically combine vector meanings of adjacent phrases.
Like Baroni et al. (2014), who provide an excellent introduction to and
review of compositional vector semantics, our aim has been to pro-

8 In Table 4, we use the same typographical conventions for variables as in
Table 3, while, in its first two alternative columns, all constants written in sans
serif are taken to be of type V . In its third column, the types of these constants
(and in fact the whole column) are as in Table 3 again.
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pose a general theory that also includes dependencies between non-
adjacent phrases, e.g., in topicalisation or relative clause formation.

4 dynamic vector semantics
with context change potentials

4.1 Heim’s files and distributional contexts
Heim describes her contexts as files that have some kind of information
written on (or in) them. Context changes are operations that update
these files, e.g. by adding or deleting information from the files. For-
mally, a context is taken to be a set of sequence-world pairs in which
the sequences come from some domain DI of individuals, as follows:

ctx ⊆ {(g, w) | g : N→DI , w a possible world}
We follow Heim (1983) here in letting the sequences in her sequence-
world-pairs be infinite, although they are best thought of as finite.

Sentence meanings are context change potentials (CCPs) in Heim’s
work, functions from contexts to contexts – given any context, a sen-
tence will transform it into a new context. In particular, a sentence S
comes provided with a sequence of instructions that, given any context
ctx, updates its information so that a new context results, denoted as:

ctx+S

The sequence of instructions that brings about this update is derived
compositionally from the constituents of S.

In distributional semantics, contexts are words somehow related
to each other via their patterns of use, e.g. by co-occurring in a neigh-
bourhood word window of a fixed size, or via a dependency relation.
In practice, one builds a context matrix M over R2, with rows and
columns labelled by words from a vocabulary Σ, and with entries tak-
ing values from R (for a full description see Rubenstein and Goode-
nough 1965). Thus, M can be seen as the set of its vectors:

{−→v | −→v : Σ→ R} ,

where each −→v is a row or column in M .
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If we take Heim’s domain of individuals DI to be the vocabulary
of a distributional model of meaning, that is DI := Σ, then a context
matrix can be seen as a quantized version of a Heim context:

{(−→g , w) | −→g : Σ→ R, w a possible world} .

Thus a distributional context matrix is obtainable by endowing Heim’s
contexts with R. In other words, we are assuming not only that a file
has a set of individuals, but also that these individuals take some kind
of values, e.g. from reals.

The role of possible worlds in distributional semantics is arguable,
as vectors retrieved from a corpus are not naturally truth conditional.
Keeping the possible worlds in the picture provides a mechanism to
assign a proposition to a distributional vector by other means and can
become very useful. We leave working with possible worlds to future
studies and in this paper only work with sets of vectors as our contexts,
as follows:

ctx ⊆ {−→g | −→g : Σ→ R, g ∈ M} .

Distributional versions of CCPs can be defined based on Heim’s intu-
itions and definitions. In what follows, we show how these instruc-
tions let contexts thread through vectorial semantics in a composi-
tional manner.
4.2 Dynamic type and term homomorphisms and their interpretations
On the set of basic abstract types D, S, N , a dynamic type homomor-
phism ρ that takes into account the contexts of words is defined as
follows:

ρ(N) = (V U)U , ρ(D) = V, ρ(S) = U .

Here, sentences are treated as context change potentials. They up-
date contexts, and we therefore assign the type U (for ‘update’) to
them. A context can be a matrix or a cube, so it can be of type
I2R or I3R. A sentence can then be of type (I2R)(I2R) or (I3R)(I3R).
We have previously abbreviated IR to V , I2R to M , and I3R to C .
The sentence type then becomes M M or CC . The notation U can ab-
breviate either, depending on whether we choose to model contexts
as cubes or as matrices. The concrete semantics obtained by each
choice will be discussed in more detail in Section 5 and Section 6,
respectively.
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Update functions are presented in Table 5, where ρ is a type ho-
momorphism, i.e. ρ(AB) = ρ(A)ρ(B). Here, Z is a variable of type V U ,
Q is of type (V U)U , v of type V , c of type M , and p and q are of type U .
The functions F , G, I , and J are explained in the following paragraphs.
In the schematic entry for and, we write ρ(α) for ρ(α1) · · ·ρ(αn), if
α = α1 · · ·αn. Simple words such as names, nouns, adjectives, and
verbs are first assigned vectors, denoted by constants such as anna,
woman, tall, and smoke (all of type V ). These are then used by the
typed lambda calculus given via H(a), in the third column, to build
certain functions, which will act as the meanings of these words in
context. The object types assigned by ρ are as follows:

Type of nouns : (V U)U
Type of adjectives : ((V U)U)(V U)U
Type of intransitive verbs : V U
Type of transitive verbs : V V U

The function Z updates the context of proper names and nouns
based on their vectors e.g. anna and woman. These are essentially
treated as vectors of type V , but, since they must be made capable
of dynamic behaviour, they are ‘lifted’ to the higher type (V U)U .

The function F of an adjective takes a vector for the adjective, e.g.
tall, a vector for its argument, e.g. v, and a vector for its context, e.g.
c, then updates the context, e.g. as in F(tall, v, c). The output of this
function is then lifted to the higher type, i.e. ((V U)U)((V U)U), via the
functions Z and Q, respectively.

a τ H(a) ρ(τ)

Anna (DS)S λZ .Z(anna) (V U)U

woman N λZ .Z(woman) (V U)U

tall NN λQZ .Q(λvc.Z vF(tall, v, c)) ((V U)U)(V U)U

smokes DS λvc.G(smoke, v, c) V U

loves DDS λuvc.I(love,u, v, c) V V U

knows SDS λpvc.pJ(know, v, c) UV U

every N(DS)S λQ.Q ((V U)U)(V U)U

who (DS)NN λZ ′QZ .Q(λvc.Z v(QZ ′c)) (V U)((V U)U)(V U)U

and (αS)(αS)(αS) λR′λRλXλc.R′X (RX c) (ρ(α)U)(ρ(α)U)(ρ(α)U)

Table 5:
A fragment of
dynamic vector
semantics.
Abstract
constants a
typed with
abstract types τ
and their term
homomorphic
images H(a)
typed by ρ(τ)
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Functions G and I update contexts of verbs; they take a vector for
the verb as well as a vector for each of its arguments, plus an input
context, and then return a context as their output. So, the function G
takes a vector for an intransitive verb, e.g. smoke, a vector v for its
subject, plus a context c, and returns a modified context G(smoke, v, c).
The function I takes a vector for a transitive verb, a vector for its
subject, a vector for its object, and a context, and returns a context.

The meanings of function words, such as conjunctions, relative
pronouns, and quantifiers, will not (necessarily) be identified with
vectors. The type of the quantifier every is ((V U)U)(V U)U , where its
noun argument has the required ‘quantifier’ type (V U)U . The lambda
calculus entry for ‘every’, λQ.Q, is the identity function; it takes a Q
and then spits it out again. The alternative would be to have an entry
similar to that of ‘tall’, but this would not make much sense. Content
words, and not function words, seem to be important in a distribu-
tional setting.

The word and is treated as a generalised form of function com-
position. Its entry is schematic, as and does not only conjoin sen-
tences, but also other phrases of any category. So the type of the ab-
stract constant connected with the word is (αS)(αS)(αS), in which
α can be any sequence of abstract types. Ignoring this generalisa-
tion for the moment, we obtain SSS as the abstract type for sentence
conjunction, with a corresponding object type UUU , and meaning
λpqc.p(qc), which is just function composition. This is defined such
that the context updated by and’s left argument will be further up-
dated by its right argument. So ‘Sally smokes and John eats bananas’
will, given an initial context c, first update c to G(Sally, smoke, c),
which is a context, and then update further with ‘John eats bananas’ to
I(eat, John,bananas, G(smoke,Sally, c)). This treatment of and is easily
extended to coordination in all categories. For example, the reader
may check that and admires loves (which corresponds to loves
and admires) has λuvc.I(admire, u, v, I(love, u, v, c)) as its homomorphic
image.

The update instructions pass through phrases and sentences com-
positionally. The sentence every tall woman smokes, for example, will
be associated with the following lambda expression:

(((every (tall woman)) smokes))
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This in its turn has a term homomorphic image that is β-equivalent
with the following:

λc.G (smoke,woman, F(tall,woman, c))

which describes a distributional context update for it. This term de-
scribes an initial update of the context c according to the rule for the
constant tall, and then a second update according to the rule for the
constant smokes. As a result of these, the value entries at the cross-
ings of 〈tall, woman〉 and 〈woman, smokes〉 are increased. Much longer
chains of context updates can be ‘threaded’ in this way.

In the following, we give some examples. In each case, sentence
a is followed by an abstract term in b, thus capturing its syntactic
structure. The update potential that follows in c is the homomorphic
image of this abstract term.
(1) a. Sue loves and admires a stockbroker.

b. (a stockbroker)λξ.Sue(and admires loves ξ)

c. λc.I(admire, stockbroker, sue, I(love, stockbroker, sue, c))

(2) a. Bill admires but Anna despises every cop.
b. (every cop)

(λξ.and(Anna(despise ξ))(Bill(admire ξ)))
c. λc.I(despise, cop,anna, I(admire, cop,bill, c))

(3) a. The witch who Bill claims Anna saw disappeared.
b. the(who(λξ.Bill(claims(Anna(saw ξ))))witch)

disappears

c. λc.G(disappear,witch, I(see,witch,anna, J(claim,bill, c)))

5 co occurence matrix context
and its update

In this section, we assume that our contexts are the co-occurrence ma-
trices of distributional semantics (Rubenstein and Goodenough 1965).
Given a corpus of texts, a co-occurrence matrix has, for each of its
entries, the degree of co-occurrence between that word and neigh-
bouring words. The neighbourhood is usually a window of k words on
either side of the word. The update type U associated with sentences
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will thus take the form (I2R)(I2R), abbreviated to M M . That is, a sen-
tence will take a co-occurrence matrix as input, update it with new
entries, and return the updated matrix as output.

Since we are working with co-occurrence matrices, the updates
simply increase the degrees of co-occurrence between the labelling
words of the rows and columns of the matrix. In this paper, to
keep things simple, we work on a co-occurrence matrix with raw co-
occurrence numbers as entries. In this case, the update functions just
add 1 to each entry at each update step. This may be extended to
(or replaced with) logarithmic probabilistic entries, such as Pointwise
Mutual Information (PMI) or its positive or smoothed version PPMI,
PPMIα, in which case the update functions have to recalculate these
weighting schemes at each step (for an example, see Table 6). The cells
whose entries are increased are chosen according to the grammatical
roles of the labelling words. These are implemented in the functions
F, G, I , J , which apply the updates to each word in the sentence. Up-
dates are compositional, i.e. they can be applied compositionally to
the words within a sentence. This is evident as the updates induced
by words in a sentence are based on the grammatical roles of those
words, which act as glue.

More formally, the object terms corresponding to a word a update
a context matrix c with the information in a and the information in the
vectors of arguments u, v, · · · of a. The result is a new context matrix
c′, with different entry values, depicted below:

m11 · · · m1k

m21 · · · m2k...
mn1 · · · mnk

+ 〈a, u, v, · · · 〉=


m′11 · · · m′1k
m′21 · · · m′2k...
m′n1 · · · m′nk


The mi j and m′i j entries are described as follows:

• The function G(smoke, v, c) increases the entry value of mi j in c
by 1 in case i is the index of smoke and j is the index of its subject
v. In all other cases m′i j = mi j.

• The function I(love, u, v, c) increases the entry values of mi j, m jk,
and mik in c by 1 in case i is the index of loves, j is the index
of its subject u, and k the index of its object v. In all other cases
m′i j = mi j.
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• The function F(tall, v, c) increases the entry value of mi j in c by 1
in case i is the index of tall and j is the index of its modified noun
v. In all other cases m′i j = mi j. The entry for tall in Table 1 uses
this function, but allows for further update of context.

• The function J(know, v, c) increases the entry value of mi j in c by 1
in case i is the index of know and j is the index of its subject v. In
all other cases m′i j = mi j. The updated matrix becomes the input
for further update (by the context change potential of the sentence
that is known).
As an example, consider the co-occurrence matrices depicted in

Figure 1. The initial matrix is a snapshot just before a series of up-
dates are applied. The rationale of this example is as follows: Anna
is a woman and so this word is not frequently found in the context
man; as a result, it has a low value of 100 at that entry; Anna loves
cats (and has some herself), so the entry at the context cat is 700;
she loves other things, such as smoking, and so there is a substantial

1 2 3 4 5
man cat loves fears sleeps

1 Anna 100 700 800 500 400
2 woman 500 650 750 750 600
3 tall 300 50 500 400 400
4 smokes 400 50 600 600 200
5 loves 350 250 ε 600 500
6 knows 300 50 200 250 270
a series of updates by
============⇒

F , G, I , and J

1 2 3 4 5
man cat loves fears sleeps

1 Anna 100 700 800 500 400
2 woman 500 650 750 750 600
3 tall 650 50 500 400 400
4 smokes 700 50 600 600 200
5 loves 550 750 ε 600 500
6 knows 600 250 450 510 700

Figure 1:
An example of updates
by functions F, G, I , J on
a co-occurrence matrix
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entry at the context loves; and so on. The entries of the other words,
i.e. tall, smokes, loves, knows, are also initialised to their distribu-
tional co-occurrence matrix vectors. When an entry ci j corresponds to
the same two words, e.g. when i and j are both love, as in the initial
matrix in Figure 1, we use ε to indicate a predefined fixed value.

The intransitive verb smokes updates the initial matrix in Figure
1, via the function G at the entries c4 j. Here, in principle, j can be 1
and 2, as both man and cat, in their singular or plural forms, could
have occurred as subjects of smokes in the corpus. Assuming that cats
do not smoke and that a reasonable number of men do, a series of,
for instance, 300 occurrences of smokes with the subject man, updates
this entry and raises its value from 400 to 700. Similarly, the adjective
tall updates the entries of the c3 j cells of thematrix via the function F ,
where j can in principle be 1 and 2, but since cats are not usually tall,
it only updates c31. Again, a series of, for example, 350 occurrences of
the adjective tall as themodifier of manwould raise this number from
300 to 650. The case for loves and function I is similar. For knows,
men know cats love mice, and love to play and be stroked, etc.; they
know that cats fear water and objects such as vacuum cleaners, and
that they sleep a lot. As a result, the values of all of the entries in
row 6, that is c61, c62, c63, c64 and c65, will be updated by function J , for
instance, to the values in the updated matrix.

6 entity relation cube context
and its update

A corpus of texts can be seen as a sequence of lexical items oc-
curring in the vicinity of each other, and can thus be transformed into
a co-occurrence matrix. It can also be seen as a sequence of entities

Figure 2:
Updates of

entries in an
entity relation

cube ci jk

entity relation

entity

+(a, u, v) =

c′i jkentity relation

entity
where c′i jk := ci jk + 1
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related to each other via predicate-argument structures, which can
therefore be transformed into an entity relation graph. This can be
modelled in our setting by taking the contexts to be cubes, thus set-
ting S to have the update type U = (I3R)(I3R), abbreviated to CC . The
entity relation graph approach needs a more costly preprocessing of
the corpus, but it is useful for a systematic treatment of logical words
such as negation and quantification, as well as coordination.

An entity relation graph can be derived from a variety of re-
sources: a semantic network of concepts, a knowledge base such as
WordNet or FrameNet. We work with entities and relations extracted
from text. Creating such graphs from text corpora automatically has
been the subject of much recent research (see, for example, Yao et al.
2012, and Riedel et al. 2010, for a direct approach; see also Kamb-
hatla 2004, and Poon and Domingos 2009, for an approach based
on semantic parsing). The elements of an entity relation graph are
argument-relation-argument triples, sometimes referred to as relation
paths (Yao et al. 2012). Similarly to Lewis and Steedman (2013), we
position ourselves in a binary version of the world, where all rela-
tions are binary; we turn unary relations into binary ones using the
is-a predicate.

Similar to the matrix case, the object terms corresponding to a
constant a update a context cube c with the information in a and the
information in the vectors of arguments of a. The result is a new con-
text cube c′, with entry values greater than or equal to the originals,
as depicted in Figure 2.

The ci jk and c′i jk entries are similar to those in the matrix case, for
example:

• The function G(smoke, v, c) increases the entry value ci jk of c in
case i is the fixed index of is-a, j is the index of smoker, and k is
the index of v, the subject of smoke. Other entry values remain
unchanged.

• The function F(tall, v, c) increases the entry value ci jk of c in case
i is the fixed index of is, j is the index of tall, and k is the index of
v, the modified noun. Other entry values remain unchanged.

• The function denoted I(love, u, v, c) increases the entry value ci jk

of c in case i is the index of love, j is the index of its subject u, and k
is the index of its object v. Other entry values remain unchanged.
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Figure 3:

An example of
updates by

functions F, G, I
on an

entity-relation
cube

100

Anna is-a

smoker

update by G
=⇒

400
Anna is-a

smoker

50

Anna is

tall

update by F
=⇒ 280

Anna is

tall

200

Anna loves

cat

update by I
=⇒

Anna
350

loves

cat

As an example, consider the series of updates depicted in Figure 3.
Relative pronouns such as who update the entry corresponding to the
head of the relative clause and the rest of the clause. For example, in
the clause ‘the man who went home’, we update ci jk for i the index of
‘man’ as subject of the verb ‘went’ with index j and its object ‘home’
with index k (see also Section 4, example (3)). Propositional attitudes
such as ‘know’ update the entry value of ci jk for i the index of their
subject, j the index of themselves, and k the index of their proposition.
For instance, in the sentence ‘John knows Mary slept’, we update the
entry value for ‘John’, ‘know’ and the proposition ‘Mary slept’. The
conjunctive and is modelled as before (in Section 4, compare exam-
ples (1) and (2)).

Negation can be modelled by providing an abstract term not of
type SS with a term homomorphic image λpc.c .−pc of type UU , where
.− is pointwise subtraction of cubes (i.e. λcc′i jk.ci jk − c′i jk). The op-
eration denoted by this term first updates the context with the non-
negated sentence, after which the result is subtracted from the context
again.
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7 logic for context change potentials
The logic for sentences as context change potentials has the following
syntax.

ϕ ::= p | ¬ϕ | ϕ ∧ψ
Disjunction and implication operations are defined using the De

Morgan duality.
ϕ ∨ψ := ¬(¬ϕ ∧¬ψ)
ϕ→ψ := ¬ϕ ∨ψ

This logic is the propositional fragment of the logic of context change
potentials, presented in Muskens et al. (1997), based on the ideas
of Heim (1983). Heim extends Karttunen’s theory of presuppositions
(Karttunen 1974) and defines the context change potential of a sen-
tence as a function of the context change potentials of its parts, an idea
that leads to the development of the above logic. The logic we consider
here is the same logic but without the presupposition operation.

We refer to the language of this logic as Lccp. For a context c, a
context change potential is defined as follows.

∥p∥(c) := c + ∥p∥
∥¬ϕ∥(c) := c −∥ϕ∥(c)
∥ϕ ∧ψ∥ := ∥ψ∥(∥ϕ∥(c))

It is easy to verify that:
∥ϕ ∨ψ∥ = ∥ψ∥(c)− ∥ψ∥(∥ϕ∥(c))

∥ϕ→ψ∥(c) = c − (∥ϕ∥(c)−∥ψ∥(∥ϕ∥(c))) .

Here, ∥ϕ∥ is the context change potential of ϕ and a function from
contexts to contexts. Whereas, for Heim, both contexts and context
change potentials of atomic sentences ∥p∥ are sets of valuations, for
us, contexts are co-occurrence matrices or entity relation cubes, and
context change potentials of atomic sentences are vectors. Thus, where
the context change potential operation (Heim 1983) simply takes the
intersection of a context and a context change potential c ∩ ∥p∥, we
perform an operation that acts on matrices/cubes rather than sets.
We use the update operation of term homomorphisms, defined in the
previous sections, and define a context change potential as follows.
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Definition 1. For S a sentence in Lccp, ∥S∥ its context change potential,
H(S) the term homomorphic image of S, and c a co-occurrence matrix or
an entity relation cube, we define:

∥S∥(c) := c +′ H(S)
c −H(S) := (c +′ H(S))−1 ,

for +′ the update operation defined on term homomorphisms and −′ its
inverse, defined as follows for matrices.


m11 · · · m1k

m21 · · · m2k...
mn1 · · · mnk

 +′ 〈a, u, v, · · · 〉=


m′11 · · · m′1k
m′21 · · · m′2k...
m′n1 · · · m′nk


for m′i j :=

(
1 mi j = 1

1 mi j = 0
m11 · · · m1k

m21 · · · m2k...
mn1 · · · mnk

 −′ 〈a, u, v, · · · 〉=


m′11 · · · m′1k
m′21 · · · m′2k...
m′n1 · · · m′nk


for m′i j :=

(
0 mi j = 1

0 mi j = 0

The definitions of +′ and −′ for cubes are similar.
The +′ operation updates the co-occurrence matrix in a binary

fashion: if the entry mi j of the matrix has already been updated and
thus has value 1, then a succeeding update will not increase the value
from 1 to 2 but will keep it as 1. Conversely, when the −′ operation
acts on an entry mi j which is already 0, it will not change its value,
but if it acts on a non-zero mi j, that is an mi j which has value 1, it will
decrease it to 0. The procedure is similar for cubes. The resulting ma-
trices and cubes will have binary entries, that is, they will either be 1
or 0. A 1 indicates that at least one occurrence of the roles associated
with the entries has previously been seen in the corpus; a 0 indicates
that none has been seen or that a role and its negation have occurred.
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Fixing a bijection between the elements [1, n]×[1, k] of our matri-
ces and natural numbers [1, n×k] and between elements [1, n]×[1, k]×
[1, z] of the cubes and natural numbers [1, n×k×z], one can show that
c +′ H(S) is the table of a binary relation in the case of matrices, and
of a ternary relation in the case of cubes. Those entries (i, j) of the
matrices and (i, j, k) of the cubes that have a non-zero entry value are
mapped to an element of the relation. An example of this isomorphism
is shown below for a 2 × 2 matrix:�

1 0
1 1

�
7→

1 2
1 1 0
2 1 1

{(1,1), (2,1), (2, 2)} .

These binary updates can be seen as providing a notion of ‘contextual
truth’, that is, for example, a sentence S is true in a given a context c,
whenever the update resulting from s is already included in the matrix
or cube of its context, i.e. its update is one that does not change c.

As argued in Muskens et al. (1997), the semantics of this logic is
dynamic, in the sense that the context change potential of a sequence
of sentences is obtained by function composition, as follows:

∥S1, . . . , Sn∥(c) := ∥S1∥ ◦ · · · ◦ ∥Sn∥(c) .

Using this dynamic semantics, it is straightforward to show that:
Proposition 1. The context c corresponding to the sequence of sentences
S1, · · · , Sn, is the zero vector updated by that sequence of sentences:

c = ∥S1, . . . , Sn∥(0) ,

where ∥S∥(c) := c +H(S)

c −H(S) := (c +H(S))−1 .

In the case of co-occurrence matrices, c is the co-occurrence ma-
trix and 0 is the zero matrix. In the case of entity relation cubes, c is
the entity relation cube and 0 is the zero cube. We are using the usual
real number addition and subtraction on the mi j and ci jk entries of the
matrices and cubes:

m′i j := mi j + 1 m′i j := mi j − 1

c′i jk := ci jk + 1 c′i jk := ci jk − 1 .

We will refer to a sequence of sentences as a corpus.
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8 admittance of sentences by contexts
The notion of admittance of a sentence by a context was developed by
Karttunen (1974) for presuppositions, and extended by Heim (1983)
for context change potentials. We here define it as follows, for c a
context and ϕ a proposition of Lccp.

context c admits proposition ϕ ⇐⇒ ∥ϕ∥(c) = c

We use this notion and develop a similar notion between a corpus and
a sentence.
Definition 2. A corpus admits a sentence iff the context c (a co-
occurrence matrix or entity relation cube) built from it admits it.

Consider the following corpus:
Cats and dogs are animals that sleep. Cats chase cats and
mice. Dogs chase all animals. Cats like mice, but mice fear
cats, since cats eat mice. Cats smell mice and mice run from
cats.

It admits the following sentences:
Cats are animals.
Dogs are animals.
Cats chase cats.
Cats chase mice.
Dogs chase cats and dogs.

Note that this notion of admittance caters for monotonicity of infer-
ence. For instance, in the above example, from the sentences “Cats
[and dogs] are animals [that sleep]” and “Dogs chase all animals”, we
can infer that the context admits the sentence “Dogs chase cats”.

On the other hand, c does not admit the negation of the above,
for example it does not admit:

(*) Dogs do not chase cats.
(*) Dogs do not chase dogs.

It also does not admit the negations of derivations of the above or
negations of sentences of the corpus, for example, it does not admit:

(*) Cats are not animals.
(*) Dogs do not sleep.
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The corpus misses a sentence asserting that mice are also animals.
Hence, c does not admit the sentence ‘dogs chase mice’. Some other
sentences that are not admitted by c are as follows:

(*) Cats like dogs.
(*) Cats eat dogs.
(*) Dogs run from cats.
(*) Dogs like mice.
(*) Mice fear dogs.
(*) Dogs eat mice.
One can argue that by binarizing the update operation and us-

ing +′ and −′ rather than the original + and −, we are losing the full
power of distributional semantics. It seems wasteful simply to record
the presence or absence of co-occurrence, rather than build context
matrices by counting co-occurrences. This can be overcome by work-
ing with a pair of contexts: a binarized one and a numerical one. The
binarized context allows a notion of admittance to be defined as be-
fore, and the numerical one allows the use of numerical values, e.g.
the degrees of similarity between words. The notion of word similarity
used in distributional semantics is a direct consequence of the distribu-
tional hypothesis, where words that often occur in the same contexts
have similar meanings (Firth 1957). Various formal notions have been
used to measure the above degree of similarity; amongst the success-
ful ones is the cosine of the angle between the vectors of the words. If
the vectors are normalised to have length 1, which we shall assume,
cosine becomes the same as the dot product of the vectors. One can
then use these degrees of similarity to assign a numerical value to the
admittance relation, e.g. as follows:

A pair of binary and numerical co-occurrence matrices c and
c′ admit a sentence s′ with degree d, if c admits s, and s′ is
obtained from s by replacing a word w of s with a word w′
such that w′ has the same grammatical role in s′ as w in s and
the degree of similarity between w and w′ is d, computed
from the numerical entries of c′.

Here, c admits s, and if there is a word in s that is similar to another
word w′, then if we replace w in s with w′ (keeping the grammatical
role that w had in s), the sentence resulting from this substitution,
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Table 6: The normalised co-occurrence matrix built from the example corpus
with the co-occurrence window taken to be occurrence within the same sentence

1 2 3 4 5 6 7 8
animal sleep chase like fear eat smell run

1- cats 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

2- mice 0 0 1
6

1
6

1
6

1
6

1
6

1
6

3- dogs 1
2

1
4

1
4 0 0 0 0 0

i.e. s′, is also admitted by c, albeit with a degree equal to the degree
of similarity between w and w′. This degree is computed using the
numerical values recorded in c′. The above can be extended to the
case where one replaces more than one word in s with words similar to
them. Then the degree of entailment may be obtained by multiplying
the degrees of similarity of the individually replaced words.

The normalised context matrix of our example corpus above is as
in Table 6, where for simplicity the co-occurrence window is taken to
be “occurrence within the same sentence”.

From the context matrix, one obtains the following degrees of
similarity.

cos(cats,mice) = 6×
�

1
6
× 1

8

�
=

1
8

cos(cats,dogs) =
�

1
2

�
× 2×
�

1
4
× 1

8

�
=

1
32

cos(dogs,mice) =
1
4
× 1

6
=

1
24

The corpus lacks an explicit sentence declaring that mice are also an-
imals. Hence, from the sentences of the corpus, the negation of ‘dogs
chase mice’ follows, which is a wrong entailment in the real world.
This wrong can now be put right, since we can replace the word ‘Cats’
in the admitted sentence ‘Cats are animals’ with ‘Mice’; as we have
cos(cats,mice) = 1

8 , thus obtaining the situation where c admits the
following, both with degree 1

8 :
Mice are animals.
Dogs chase mice.
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These were not possible before. We also obtain admittance of the fol-
lowing sentences, albeit with a lower degree of 1

24 :
(*) Cats like dogs.
(*) Cats eat dogs.
(*) Dogs run from cats.

Some other examples are as follows, with a still lower degree of 1
32 :

(*) Dogs like mice.
(*) Mice fear dogs.
(*) Dogs eat mice.
Some of the above are as likely as those that were derived with

degree 1
8 . This is because the degrees come from co-occurrences in

corpora, and our corpus is quite limited. One hopes that the bigger the
corpus, the more reflective of the real world it will be. Another way
of improving word-based entailments is by using linguistic resources
such as WordNet, e.g. replacing words with their hypernyms.
8.1 Evaluating on existing entailment datasets
It remains to see if the notion of admittance of a sentence by a context
can be applied to derive entailment relations between sentences. In
future work, we will put this method to the test on inference datasets
such as FraCaS (Cooper et al. 1996), SNLI (Bowman et al. 2015), the
dataset in Zeichner et al. (2012), and the datasets in the RTE challenge.
The FraCaS inferences are logical and the lambda calculus models of
language should help in deriving them. As an example, consider the
fracas-013 test case:

fracas-013 answer: yes
P1 Both leading tenors are excellent.
P2 Leading tenors who are excellent are indispensable.
Q Are both leading tenors indispensable?
H Both leading tenors are indispensable.

In our setting, using the updates resulting from P1 and P2, one can
contextually derive H. In Zeichner et al. (2012), the similarity between
words is also taken into account. An example is the following entail-
ment between two sentences; this entailment was judged to be valid
with confidence by human annotators:
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Parents have great influence on the career development of
their children.
Parents have a powerful influence on the career development
of their children.
We can derive the above with a contextual entailment consist-

ing of a cube updated by just the above two sentences, with the de-
gree of similarity between ‘powerful’ and ‘great’, mined from the co-
occurrence matrix of a large corpus.

Judgements on the SNLI dataset are more tricky, as they rely on
external knowledge. For example, consider the entailment between
the following phrases:

A soccer game with multiple males playing.
Some men are playing a sport.

or the contradiction between the following:
A black race car starts up in front of a crowd of people.
A man is driving down a lonely road.
Deciding these correctly is a challenge for our framework. The

strength of our approach is in deciding whether a set of sentences
follows from a given corpus of texts, rather than in judging entailment
relations between a given pair or triple of sentences. Nevertheless, we
shall try to experiment with all these datasets.

9 conclusion and future directions
We showed how a static interpretation of a lambda calculus model of
natural language provides vector representations for phrases and sen-
tences. Here, the type of the vector of a word depended on its abstract
type, and could be an atomic vector, a matrix, or a cube, or a tensor
of higher rank. Combinations of these vary, based on the tensor rank
of the type of each word involved in the combination. For instance,
one could take the matrix multiplication of the matrix of an intransi-
tive verb with the vector of its subject, whereas for a transitive verb
the sequence of operations was a contraction between the cube of the
verb and the vector of its object, followed by a matrix multiplication
between the resulting matrix and the vector of the subject. A toolkit of
functions needed to perform these operations was defined. This toolkit
can be restated for types of tensors of higher order, such as I2R and I3R,
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rather than the current IR, to provide a means of combining matrices,
cubes, and their updates, if needed.

We extended the above setting by reasoning about the notion of
context and its update, and developing a dynamic vector interpreta-
tion for the language of lambda terms. Truth conditional and vec-
tor models of language follow two very different philosophies. Vector
models are based on contexts, truth models on denotations. Our first
interpretation was static and based on truth conditions. Our second ap-
proach is based on a dynamic interpretation, where we followed the
context update model of Heim (1983), and hence is deemed the more
appropriate choice. We showed how Heim’s files can be turned into
vector contexts and how her context change potentials can be used to
provide vector interpretations for phrases and sentences. We treated
sentences as Heim’s context change potentials and provided update
instructions for words therein – including quantifiers, negation, and
coordination words. We provided two concrete realisations of con-
texts, i.e. co-occurrence matrices and entity relation cubes, and in each
case detailed how these context update instructions allow contexts to
thread through vector semantics in a compositional manner. With an
eye towards a large-scale empirical evaluation of the model, we de-
fined a notion of ‘contexts admitting sentences’ and degrees thereof
between contexts and sentences, and showed, by means of examples,
how these notions can be used to judge whether a sentence is entailed
by a cube context or by a pair of cube and matrix contexts. A large-
scale empirical evaluation of the model is currently underway.

Our approach is applicable to the lambda terms obtained via other
syntactic models, e.g. CCG, and Lambek grammars, and can also be
modified to develop a vector semantics for LFG. We also aim to work
with other update semantics, such as continuation-based approaches.
One could also have a general formalisation wherein both the static
approach of previous work and the dynamic one of this work cohabit.
This can be achieved by working out a second pair of type-term homo-
morphisms that will also work with Heim’s possible world part of the
contexts. In this setting, the two concepts of meaning: truth theoretic
and contextual, each with its own uses and possibilities, can work in
tandem.

An intuitive connection to fuzzy logic is imaginable, wherein one
interprets the logical words in more sophisticated ways: for instance,
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conjunction and disjunction take max and min of their entries, or add
and subtract them. It may be worth investigating if such connections
add to the applicability of the current model and, if so, make the con-
nection formal.
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