In: Artificial Intelligence: New Research ISBN 978-1-60456-282-8
Editors: R.B. Bernstein et al, pp. 299-321 (© 2008 Nova Science Publishers, Inc.

Chapter 6

ANALOGY-MAKING IN SITUATION THEORY

Emre Sahin and Varol Akman*
Bilkent University
Department of Computer Engineering
06800 Bilkent, Ankara, Turkey

Abstract

Analogy-making is finding analogies between different situations. In this paper,
we provide a new model of computational analogy-making which uses Situation The-
ory as its formal background. Situation Theory is a semantic and logical theory which
provides a naturalistic way to represent relations in situations. The system described
in this paper is aimed at solving analogy problems made by basic geometric figures in
a chessboard-like environment.

1. Introduction

Despite its importance in understanding creativity and in general intelligence, Computer
Science research on analogy is narrow and does not fully reflect the importance of this
faculty of human mind.

As an example of the natural analogy making ability, we offer this excerpt [12] (p. 9):

Consider the following discussion between a mother and her four-year-old son,
Neil, who was considering the deep issue of what a bird might use for a chair.
Neil suggested, reasonably enough it would seem, that a tree could be a bird’s
chair. A bird might sit on a tree branch. His mother said that was so and
added that a bird could sit on its nest as well, which is also its house. The
conversation went on to other topics. But several minutes later, the child had
second thoughts about a tree is to a bird: “The tree is not the bird’s chair —it’s
the bird’s backyard!”

The following definition, which we regard as the most encompassing in the literature, is
from Gentner [10] (p. 107):

*E-mail address: {iesahin, akman} @bilkent.edu.tr

300 Emre Sahin and Varol Akman

Analogies are partial similarities between different situations' that support fur-
ther inferences. Specifically, analogy is a kind of similarity in which the same
system of relations holds across different objects. Analogies thus capture par-
allels across different situations.

In this paper we introduce SITAR, a new model of analogy-making based on Situation
Theory. We will concentrate on the modeling of analogy from a computational perspective.
In the next section (section 2), we describe three models that represent the basic ideas
available in the literature. Then, the microworld of SITAR is described (in section 3). The
representation of analogy via situation-theoretic means and the architecture of SITAR are
found in section 4.

2. Representatives from the Literature

Analogical Reasoning is one of the earliest projects in Artificial Intelligence. One of the
pioneering works is the ANALOGY program of Evans. Structure Mapping Theory (SMT)
and its implementation, the Structure Mapping Engine (SME) of Gentner and colleagues,
and the Copycat of Mitchell and Hofstadter are two other influential works.

2.1. ANALOGY

This is a program to model analogy questions appearing in IQ tests. Despite the modest
computational standards of 1960s, it represented an important attempt.

ANALOGY receives a set of 3+5 figures as input. The first three of these are labelled
as A, B and C. There is a relation between A and B. The program selects one of the
five candidate figures as having the same relation with C'. The analogy is represented like
A: B :: C: X where X is the label of one of the five figures supplied to the program. An
example can be seen in Figure 1.

In the example, the change between A and B is detected to be (i) disappearance of the
dot in A and (ii) relocation of the rectangle outside of the triangle. Comparing all candidate
figures with ', the program finds a similar change between C' and 2, to wit (i) disappearance
of the dot in C and (ii) relocation of the Z-shape outside of the “pie slice”.

ANALOGY takes input figures as strings, denoting basic elements like dots, lines and
curves symbolically. It first determines the transformation that took A to B. Then it com-
pares rules that transform C' to each candidate with the rules that transform A to B. It
selects the most similar set of rules between C' and the candidates.

2.2. Structure Mapping Theory and SME

Gentner established foundations of this theory in [9]. The theory assumes a predicate logic
representation of the situations it tries to map, so it is the foremost representative of the
symbolic approaches to analogical reasoning.

'The word “situation” in this definition is used in the usual sense. Later in this paper, we’ll study situations
in the situation-theoretic sense.

Analogy-Making in Situation Theory 301

Al Lo |

A is to B as C
is to which one of these?
° []
1 2 3 4 5

Figure 1. Evans’ ANALOGY program (from [3]).

Gentner does not assume some domain dependent representation like ANALOGY. Two
contributions of the Structure Mapping Theory are the following:

e The relation-matching principle: Analogies are mappings that are based upon
(polyadic) relations instead of attributes.

e The systematicity principle: Mappings of coherent systems of relations must be pre-
ferred over individual relations.

Gentner identifies four types of mappings: Literal Similarity, Analogy, Abstraction and
Anomaly. Except in Anomaly, in all cases there are relational mappings between the base
and the target. In Literal Similarity, however, there are also many attribute mappings along
with relation mappings and the “quality” of mapping is thus reduced by these attribute
mappings. An example of Literal Similarity is “The K5 Solar System is like our solar
system.” For Analogy, in which attribute mappings are few, “The atom is like our solar
system” is an example. The difference between Analogy and Abstraction lies in having few
object attributes in the base and target domains. An example to the latter is: “The atom is a
central force system.”

The computational counterpart of the Structure Mapping Theory is the Structure Map-
ping Engine [8]. SME identifies three subprocesses of analogy-making. In access, a struc-
ture in long-term memory which is similar to the target is sought. In mapping and inference,
a structure in the target which is analogous to the base is built. In evaluation and use, an
evaluation regarding the quality of inferences found in the mapping process is made.

In SME, predicate calculus is used to represent the facts. There are individuals and
constants, attributes and relations to describe the state of affairs, which are composed into
description groups (called dgroup in the theory.)

SME consists of three parts. First it matches expressions and entities of the base and
target. Then it builds a set of candidate inferences, which are hypothesized to be holding
in the target domain. Finally a score indicating the quality of matching is determined by

302 Emre Sahin and Varol Akman

(defDescription simple-water-flow
entities (water beaker vial pipe)

expressions (((flow beaker vial water pipe) :name wflow)
pressure beaker) :name pressure-beaker)
pressure vial) :name pressure-vial)
greater pressure-beaker pressure-vial) :name >pressure)
greater (diameter beaker) (diameter vial)) :name >diameter)

lat-top water)

(
(
(
(
(cause >pressure wflow) :name cause-flow)
f
liquid water)))

(
(
(
(
(
(
(

Figure 2. SME water flow example (from [8].)

(defDescription simple-heat-flow
entities (coffee ice-cube bar heat)
expressions (((flow coffee ice-cube heat bar) :name hflow)
((temperature coffee) :name temp-coffee)
((greater temp-coffee temp-ice-cube) :name >temperature)
((flat-top coffee)
(ligquid coffee)))

Figure 3. SME heat flow example (from [8]).

structural properties. Note that there is no knowledge other than the syntactic relationships
of predicate calculus. The “analogy” is defined only in terms of these structural properties.

An example of SME may be given between the dgroups in Figures 2 and 3. First, SME
builds all corresponding predicates with identical arity between Figures 2 and 3. In this
case, (temperature ??7?) predicate of Figure 3 can match both (diameter ?7?7?)
or (pressure ?7?7?) of Figure 2, since both are unary.

In the second step, a series of candidates for global mapping between the base and
target dgroups are produced. In these mappings, there is a set of criteria which increases
or decreases the plausibility of mappings. If the mapping between different dgroups can
match identical predicates better, the mapping gains higher plausibility.

In the third step, the most plausible mapping between elements is selected. Factors
to determine the plausibility of a mapping are also supplied to the program, considering
whether the type of mapping is Literal Similarity, Analogy or Mere Appearance.

2.3. Copycat

For Copycat, the goal is to solve letter analogies like this one:

abc — abd

ijk — 7

There are several plausible answers here, as Hofstadter and Mitchell discuss in [11].
The most frequent answer is i/ (the relation between c and d is extended to k and [). Other
answers are ¢jd (convert the last element to d) and ijk (convert all ¢’s to d.)

Another example is as follows:

Analogy-Making in Situation Theory 303

abc — abd
ijjkkk — 7
The most obvious solution is to map c to kkk. In this case, the analogous string is 47 jll1.
Another grouping may be the last letter of each group, and in this case, the resulting analogy
is¢jjkkl. A related point is to have different types of similarity between these letter groups.
As abc are first three letters of the alphabet, and the number of letters in letter groups of
1j7kkk are also (1,2,3), one can build an analogy like ¢jjkkkk.

Copycat is able to solve problems such as these with a stochastic approach. For ex-
ample, 1000 runs of the second example above gives 731 ij5lll, 165 ¢jjkkl, 53 ikklll, 33
ijgkll, 7455ddd, 7 ijklll, 3 i55kkd and 1 ijjkkkk answers.

Copycat has three major components. Slipnet is the home of all predefined concepts
like the successorship relation between the letters a and b. Slipnet contains only the types
of concepts and not their instances. It is similar to the long-term memory (LTM) in other
analogical reasoning systems.

The second component is Workspace where all perceptual activity of Copycat takes
place. It resembles the short-term memory (STM) found in other systems. In Workspace,
instances of letters with their relations retrieved from Slipnet live together. These elements
are evolved by the third component of system, Coderack. In Coderack, many agents, each
having a precise task wait for their turn to work on the elements in Workspace. The schedul-
ing of these small agents (which are called codelets) is determined stochastically, thus al-
lowing different solutions to emerge.

3. The Microworld of SITAR

Throughout the history of scientific development, specific problems and solutions usually
predate general approaches, and reversing this order, in general, does not result in good
science. A well-known example is the Ptolemaic view of celestial objects, which defines
Earth as the center of the universe and explains all phenomena, at least superficially, in its
own terms. Since there was a partial explanation to the problems of celestial bodies, no
further investigation was made to scrutinize the foundations of the Ptolemaic theory and
thus, the theory (also due to particular social and political dynamics of the era) hindered the
development of a better understanding of the universe until Copernicus and Kepler came
along.

In our own work on analogical reasoning we proceed from the specific towards the
general. This characteristically means that we try out our ideas first on the so-called mi-
croworlds. Another reason stemming from practical needs to use microworlds may be tied
to the difficulty of analogy research in general. Theoretical computational limits, which are
not investigated thoroughly in analogy research, must be taken into consideration. As the
number of objects in a situation increases, the number of possible relations between objects
increases exponentially, thus making large scale figures inappropriate subjects for analogy
research, at least in light of current techniques.

The microworld of SITAR consists of basic geometric shapes which have the following
attributes:

304 Emre Sahin and Varol Akman

Figure 4. Elements in the SITAR domain.

Type The type of a geometric figure determines its shape. In the current version of the
project, for the sake of compatibility with Tarski’s World [1], we determined the
object types as cube, pyramid and dodecahedron. Note that in the illustrations below,
we’ll use 2D figures instead of these and denote cubes with squares, pyramids with
triangles and dodecahedra with circles.

LR I3

Size Each object can have an associated size. These are the values, “large”, “medium” or
3 2
small”.

Location In the microworld, each object has its own location on a grid. The grid is an
8 by 8 chessboard.

There are also a number of possible relations between objects. We use those relations
found in Tarski’s World [1]:

SameRow(a, b) If objects a and b have the same y value in their location attribute, this
relation holds.

SameColumn(a, b) If objects a and b have the same z value in their location attribute, this
relation holds.

SameSize(a, b) If a and b have the same size, this relation holds.

SameShape(a, b) If a and b have the same shape (square, triangle, etc.) this relation holds.
Larger(a, b) Holds if a is larger than b.

Smaller(a, b) Holds if a is smaller than b.

Adjoins(a, b) a and b are located on adjacent (but not diagonally) squares.

Analogy-Making in Situation Theory 305

LeftOf(a, b) a is located nearer to the left edge of the grid than b.
RightOf(a, b) a is located nearer to the right edge of the grid than b.
FrontOf(a, b) a is located nearer to the front of the grid than b.
BackOf(a, b) a is located nearer to the back of the grid than b.

Between(a, b, ¢) a, b and c are in the same row, column, or diagonal, and a is between b
and c.

Despite its misleading austerity, the microworld of SITAR is a considerably rich domain
for analogy problems. The following examples illustrate analogy problems that can be
formulated within this domain. Note that in these examples we use a 3-by-3 grid as opposed
to an 8-by-8.

Example 1 (Illustrating the role of attributes) This example is shown in Figure 5. In
a, the types of three figures are square, and all objects in b are turned to circle. When one
sees that there is a rule “squares ~~ circles” in the base situation, it is easy to select the
corresponding situation of ¢ as d. However, as in Copycat, there may be other options for
the analogy illustrating the role of relations.

Example 2 (Illustrating the role of relations) In Figure 6, the analogy between a and b
can be represented by the rule “objects in the same row ~~ objects in the same column” (or
more precisely, “middle row” and “middle column”). The type attributes of objects play no
role in the relation between a and b, so for the target situation d, a change in object types is
not playing a role in the analogy.

Note that, in examples 1 and 2, the difference of a and b is applied to the similarity of a
and c. In the first example, difference of a and b were object types, and similarity of a and
c were also object types and application of dissimilarity of a and b to similarity of a and ¢
was straightforward.

Adopting an idea found in [15], we can denote dissimilarity of two situations a and
b by Dis(a,b) and similarity of two situations a and ¢ by Sim(a,c). Dis(a,b) is a
relation of conjunction of relations that hold in b but not in a and Sim(a,c) is a rela-
tion of conjunction of relations that hold in both a and c. Therefore, in both examples,
d = Sim(a,c) N Dis(a,b) However, as we can see in these examples, relations Sim and
Dis do not always have a fixed order, namely, similarity or dissimilarity of relations can-
not be expressed always in first order, second order, ... terms. It is not straightforward to
represent similarity and dissimilarity of situations with a set of relations, since similarity or
dissimilarity may occur in higher order relations which require us to quantify over subsets,
subsets of subsets, ..., etc.

The kernel of this problem is to build algorithms that can check the most appropriate
levels for analogy in a given problem. For example, a figure that is a square composed
of squares is analogous to a triangle composed of triangles. The first level in this analogy
is the figures’ composition from identical elements. However, the interesting analogy in

306

Emre Sahin and Varol Akman

O

(a)

(b)

OO0

©

(d

Figure 5. Analogous Situations in Example 1.

Analogy-Making in Situation Theory

307

(a)

(b)

O

O

©

OO0

(d

Figure 6. Analogous situations in Example 2.

308 Emre Sahin and Varol Akman

these figures is not of this kind, but from a bird’s eye perspective. If we ask what would
be analogous to a figure consisting of a pentagon composed of pentagons, one reasonable
answer might be a square composed of squares.

4. Architecture of SITAR

In [14], it is reported that there are six processes that every analogical reasoning model
contains. The paper also states that there is currently no model that incorporates all of
these, but different models focus on different processes. The processes are:

Representation-building A system is supposed to produce its own representation from a
natural input. An example may be Copycat’s input of letter strings. At this level,
only the input elements but not their relations are fed to the system and the system is
expected to produce a representation from this input.

Retrieval This is the retrieving of the base analogy from a set of different situations. It is
best accomplished when shared objects, attributes and a theme exist between the base
and target of an analogy.

Mapping In this procedure, elements of the base situation are mapped onto elements of the
target situation. The mapping should preserve the semantics of particular elements
and might suffer from a combinatorial explosion if the search is not constrained.

Transfer This process transfers the knowledge from the base domain to target domain for
search. By way of transfer, new relations are sought in the target domain.

Evaluation This process checks whether the transferred knowledge is applicable to the
target domain.

Learning This is the process which focuses on the incorporation of transferred knowledge
to the target domain.

SITAR has an architecture which combines the first three processes above with a learn-
ing module. The evaluation is implicit in user response to the program and transfer of
knowledge from a domain to another is not applicable, since there is a single domain at
hand. In this manner SITAR is one of the few architectures that combine these processes.

Representation of a problem is one of the most important tasks in AI. Winston [16]
identifies the following criteria for a good analogical representation:

It makes important facts explicit;
It suppresses irrelevant detail;

It is perspicuous;

It exposes constraint;

It can be computed from a natural input.

Analogy-Making in Situation Theory 309

Due to the discrete nature of the microworld of SITAR, it is easier to represent situations
in symbolic notation instead of images. For this particular domain, a representation scheme
must also satisfy the following criteria:

e There must be a way to represent hierarchical situations. In pictures, there may be
higher level pictures which have a stronger alignment for analogies. An example
would be a square made up of circles. This situation must be represented both as a
square and a set of circles.

e The representation must satisfy partial groupings. There may be sub-situations in a
situation. Groupings must also be represented explicitly. Representation should be
permissive enough to add further information for groupings.

e The representation must have some means to represent transformation of base to tar-
get situations. There must be a facility about information flow and mapping between
the base and the target.

These considerations led us to Situation Theory as a representational framework. Since it
allows situations to be contained in other situations, and situations are used as any other
object in the language, first of these criteria is met. Second one is also met by this property
of the theory. For the third one, constructs of the theory called constraints can be used. They
represent information flow between different situations, hence making Situation Theory one
of the suitable candidates for the representation.

4.1. Situation Theory

Situation Theory is a pragmatic proposal, aiming to represent the world in a natural way.
It began its development in early 1980s. Since then, many enhancements were developed.
The account we give here is based on a recent article [5] of Devlin. For a rather detailed
formal account of the theory, the reader is referred to [4] and for an historical exposition
to [2].

Situation Theory is an information based theory. The initial motivation was to fill the
gap between everyday understanding of the world and its formal representation in logic.
As a beginning observation, Devlin [5] (p. 601) cites from Barwise and Perry’s 1980 paper
(The Situation Underground):

The world consists not just of objects, or of objects, properties and relations,
but of objects having properties and standing in relations to one another. And
there are parts of the world, clearly recognized (although not precisely indi-
viduated) in common sense and human language. These parts of the world
are called situations. Events and episodes are situations in time, scenes are vi-
sually perceived situations, changes are sequences of situations, and facts are
situations enriched (or polluted) by language.

Information (and truth) are evaluated in Situation Theory always with respect to a situation.

310 Emre Sahin and Varol Akman

A piece of information that can be supported by a situation is called an infon. An infon
consists of a relation which has n places to be filled, and a value called polarity (either 1 or
0), denoting truth or falsity. If a situation s supports an infon o, we write

skEo

where
o =<K relation, objecty, objects, . .., object,,, polarity >

Infons may be combined via conjunction, disjunction and quantification. An example may
be

s E < taller, Adam, Eve,1 > N < smarter, Adam, Eve,0 >

Situation Theory is strongly type-theoretic. Basic types in the theory include (but are
not limited to):

e IND : The type of an object (individual)

e RFEL™: The type of an n-ary relation

SIT: The type of a situation

INF': The type of an infon
e T'Y P: The type of a type

e PAR: The type of a parameter (described later)

Apart from these, there can be types for a given situation (or an infon). For example, a
situation can be of type meeting, hence making it a meeting situation.

Situations and infons can have parameters to denote the generalizations. An agent must
make generalizations and inference based on interrelated infons and situations, so that an
adaptive behavior with respect to changing situations can arise.

Parameters are of a type, hence restricting the available individuals that can fill a pa-
rameter. A parameter of type SIT can be shown like $, a parameter of type /N D can be
shown like 7. Within the infon,

< smarter, Adam, i, 1>

i denotes an individual whom Adam is smarter than. There are constructs called anchors
which instantiate parameters to specific objects. Anchors are functions which assign a
member of a set to a parameter. There are also restricted parameters, combining a parameter
with a condition and quantifying over a set with respect to a condition.

An important concept is type abstraction which is basically a way of inferring types
through situations or objects. For example

[m|m =< talking, a,b,1 > A < listening, b, a,1 >

defines a meeting situation of type m via a compound infon.

Analogy-Making in Situation Theory 311

Constraints define a way to build causality relations between situations. For example,
the sentence

Smoke means fire

describes a relationship between smoky situations and fiery situations. More generally the
expression

S =9

describes a causal relationship between the situation types S and S’. (S = S’ is read as “S
involves S”)

Constraints link not situations, but types; hence they are the common means to represent
any rule between situation types. Linking situation types, they can be instantiated for a
particular situation when the antecedent occurs. Therefore, when an agent sees a smoky
situation, she can infer that the situation is also a fiery situation. (Notice that her inference
is defeasible.)

Following remarks, which will be of importance in this work, are from Devlin [5] (p.
610):

It should be noted that the ontology of situation theory has no bottom layer;
every individual or situation can be subdivided into constituents, if desired.
This implies that it is possible to represent and analyze a domain at any degree
of granularity, to move smoothly up and down the granularity scale during
an analysis, and to “zoom” the granularity to investigate specific issues in an
analysis, while keeping the remainder of the representation fixed.

4.2. Representation

Basic Objects Basic objects in SITAR are represented with infons depicting the relations
they stand in. The existence of an object in a situation is stated by an infon in the form

< occupies, NAME,SHAPE ,SIZE, LOCATION,1 >
where NAME is the name of the object, SHAPE is whether it’s a pyramid, cube or
dodecahedron, SIZFE is whether it’s small, medium or large, and LOCATION is the

location in the situation where the object is positioned.
For example a large cube at point (3,3) is represented by:

< occupies, p1, cube, large, (3,3),1 >
A situation s like in Figure 5(a) can be represented as:

s | < occupies,pi, cube, medium, (1,2),1 >
A < occupies, pa, cube, medium, (2,2),1 >
A < occupies, ps, cube, medium, (3,2),1 >

312 Emre Sahin and Varol Akman

4.2.1. Relations and Groupings

Relations in SITAR which are described in Section 3. can be inferred from attributes of
objects. For instance, if there are two objects in a situation, one large and other small, then
there are smaller and larger relations holding between these two objects.

Such relations are represented with infons in the form

< RELNAME ,OBJECT1,0BJECT2,0BJECT3,1 >

where RELN AMF is one of the relations and OBJECT's are the names of the objects
standing in this relation. However, due to the arity of relations, there may be fewer objects
standing in a relation, and only those are written.

For example if there are two objects in a situation like

s | < occupies,pi,pyramid, small, (1,2),1 >
A < occupies, pa, pyramid, medium, (2,2),1 >

then the following relations can be inferred from these:

o K sameRow,pi,p2, 1>
e K sameShape,p1,p2,1 >
o K smaller,pi,p2,1 >

o K larger,pa,p1,1 >

o K adjoins,p1,pa, 1>

o KL rightOf,po,p1,1>

o K left0f7p17p27 1>

Hence, the situation can now be written as

< occupies, p1, pyramid, small, (1,2),1 >
< occupies, pa, pyramid, medium, (2,2),1 >
< sameRow, p1,p2,1 >

< sameShape, p1,p2,1 >

< smaller,p1,pa,1 >

< larger,ps,p1,1 >

< adjoins,p1,p2, 1 >

L rightOf,pa,p1, 1>

L leftOf,p1,p2, 1>

> > > > > > > >

Analogy-Making in Situation Theory 313

Along with these basic relations, analogy-making also depends on groupings of ele-
ments. Groupings are higher level structures in a situation. A grouping in SITAR is called a
gestalt. A gestalt can also be considered as a (sub)situation, supporting a generalized infon
that describes the interrelated position of its elements.

A situation can support an infon in the form

< gestalt, GESTALTTY PE,GESTALTNAME, 1 >

where GESTALTTY PE shows one of the possible types for groups and
GESTALTNAME is a name for this. It can also have infons representing which ob-
jects are in a particular group by

< belongsGestalt, NAME, GESTALTNAME,1 >

where N AM E is the name of an object and GEST ALT N AM FE is the name of the group
it belongs to.

For example, in the preceding situation s there is a very primitive gestalt consisting of
two pyramids. The higher level relation of this structure is a horizontal line segment.

s | < gestalt, horizontal Line, hly,1 >
A K belongsGestalt,p1, hly,1 >

A K belongsGestalt, po, hl1,1 >

A

The type of a gestalt can be one of the following types:

Same Type All of a gestalt’s elements have the same type.
Same Size All of a gestalt’s elements have the same size.
Horizontal Line Gestalt’s elements appear like a horizontal line.
Vertical Line Gestalt’s elements appear like a vertical line.

Square Frame Gestalt’s elements appear like a square, consisting of other objects. Inside
of the square is blank.

Rectangle Frame Gestalt’s elements appear like a rectangle, consisting of other objects.
Inside of the rectangle is blank.

Square Full A full square, which lacks a blank in it.
Rectangle Full A full rectangle, which lacks a blank in it.

All-R R is a relation from Section 3. In a gestalt of this kind, all elements satisfy some
relation (e.g. frontOf, between, larger).

314 Emre Sahin and Varol Akman

e i i |
i i i i
1 1 1 1
i i i i
1 1 1 1
i i i i
i i i i
1 1 1 1
i i i i
i i i i
i i i i
o e b promrmrmim e i
i i i i
1 1 1 1
i i i i
1 1 1 1
i i i i
i i i i
1 1 1 1
i i i i
i i i i
i i i i
'- ----------------------- !- ----------------------- I- ----------------------- i

Figure 7. A square composed of pyramids.

4.2.2. Representing Complex Gestalts

In SITAR, a situation is not always a collection of basic objects and their properties. Instead,
as we indicated about gestalts, a situation may cover only a part of these objects and may
include more information than attributes and relations of basic objects. Another implication
of this is to have situational relations among elements. In Situation Theory we can write
infons which contain situations as parameters.

Yet another obvious implication of this is to have multiple situations associated with
basic objects of a figure. These situations can be flat (not containing other situations) or
hierarchical (containing other situations). Situations containing other situations are not
allowed to make circular reference to themselves, thus permitting only a directed acyclic
graph representation.

One can represent the situation in Figure 7 in a number of ways. One example is

s | < gestalt,vertical Line,vly,1 >
< belongsGestalt, pi,vl1,1 >
< belongsGestalt, ps, vi1,1 >

< gestalt, horizontal Line, hly,1 >

> > > > >

hence representing the situation as a union of two vertical lines and two horizontal lines. (In
this case, pyramids in the corners will belong to both vertical and horizontal line gestalts.)
Another way to look at things is like

s | < gestalt, squareFrame,sf;, 1>
A K belongsGestalt, p1,sfi,1 >

Analogy-Making in Situation Theory 315

P3P3P3
P3__P3
P3P3P3

Figure 8. A square composed of pyramids, in input format.

A K belongsGestalt, pa, sfi,1 >
AN

and representing the situation as a single square frame.

There are two options in this case. One is representing such gestalts as hierarchical
gestalts, namely representing the square in Figure 7 as a combination of two horizontal
and two vertical lines. The other is to have independent gestalts, a square formed by basic
objects and a set of lines again formed by basic objects, but no relation between these
gestalts whatsoever (except the shared basic objects).

The way selected in SITAR is the former, hence seeing more complex gestalts as com-
binations of simpler gestalts. A square frame is formed by two horizontal and two vertical
lines, and for the cases when a situation supports more complex frames, like lines com-
posed of squares in turn composed of basic objects, gestalts are always represented in a
hierarchical manner.

4.3. Building a Representation

In human analogy-making, one of the most important phases is building an inner represen-
tation for the given problem. This phase of analogy-making is ignored by several projects in
the literature, except those of Copycat and its sisters, and some others like Evans’ ANAL-
OGY. SITAR is also one of the projects that contain a representation building phase.

The input given by the user to the program is not a situation description. Instead it
is more or less a “visual” representation of situations. From these situations the program
creates its inner representations as infons and situations, and infers the necessary relations
without the aid of the user.

The best way to illustrate the input format is through an example.

The example situation given in Figure 8 is the input format of the situation in Figure 7.
In the input format, a basic object is denoted by a letter and a digit. The letter, being one of
C, P, or D, shows the type of object, and the digit, being one of 1, 2, or 3, shows the size of
it. For blank locations ___ (double underscores) are used.

Once the situations are fed to the program in this format, it produces its inner infon
oriented format and builds gestalts and relations in a situation. However, since a situation
can be represented in a large number of ways, where most of these are irrelevant for the
problem, there must be a pruning process in representation building to prune irrelevant
relations and gestalts to be built.

This brings us to the heart of the problem, as the number of possible relations in situa-
tions causes combinatorial explosion and finding the relevant relations needs a well adjusted
architecture.

316 Emre Sahin and Varol Akman

situation a:

c2c2c2

situation b:

D2D2D2

situation c:
_C2
_C2
_C2

Figure 9. The problem in Figure 5, in input format.

In order to solve this problem, Copycat and related projects (and also AMBR [13])
employ a “microagent” approach where stochastic processing of situations leads to a com-
promise between finding a good solution and filtering irrelevant relations. Unlike these,
SITAR uses a monolithic approach where the processing of candidate relations are done by
a single agent.

In order to tackle the problem, SITAR architecture gathers as much information from
the context. To show this, we can use a problem just like in Figure 5. The input format
description of that problem (in an 8-by-8 setting) is shown in Figure 9. In the figure, first 3
situations, namely a, b and ¢, are shown and the program is asked to find situation d that is
analogous to c in terms of the analogy between a and b.

In this case, when the program is building representations, it must do this in a way to
minimize irrelevant paths of comparison. In order to achieve this, however, the program
should gather information not only from a single situation like b in Figure 9, but also from
other situations in the problem case and previous problem cases. In other words, while

Analogy-Making in Situation Theory 317

finding gestalts and relations in a single situation, the program should check whether these
gestalts and relations have counterparts in other situations. This way it can prevent irrelevant
gestalts and relations that lead to combinatorial explosion.

However, this also means that representation building, retrieval and mapping phases
of the program are to be merged. Since information from previous problems and other
situations are required while deciding grouping, the architecture must be flexible to pipe this
information from “higher” to “lower” levels. Other analogy-making projects like Copycat
and Tabletop solve this with hand-coded likelihood information without a retrieval module.
However, in our case the domain is large and we need to use previous cases as a launching
pad for representation building and mapping.

In the next two sections we’ll first discuss how retrieval and mapping work. Then an
engine that combines all these modules will be discussed.

4.4. Retrieval

Retrieval of previous cases in SITAR depends on indices created in the learning phase.
These indices use relations and arguments of infons to index problem cases and bring other
“possible” relations and gestalts for the problem at hand.

In the learning phase, where a problem and its solution are stored, indices of its “occu-
pies” and “gestalt” relations, as well as relations that take gestalts as arguments are created
and added to a central index. The central index includes all gestalt elements, basic objects,
gestalt relations and mapping relations (in other words, almost all problem case informa-
tion) and these are grouped together per case and per similarity.

Suppose we have, in our central index, the solution for the problem case in Figure 6.
The retrieval process finds higher level properties like lines with the cues derived from
lower level attributes like object type. In the problem case, situation (a) is a horizontal line
composed of cubes, hence when a cube is met in a new situation, program must check for
the availability of a horizontal line gestalt.

In order to do this, program must estimate the conditional probabilities of different types
of gestalt with lower level relations and when a lower level relation is met, the program
should consider the existence of a higher level relation. For example, intuitively we can
propose that there is a direct relationship between adjoins relation and lines. Although not
all relations can give clear cut cues for finding gestalts, at least there will be candidates to
focus the search in a more meaningful fashion.

4.5. Mapping

Mapping works between situations of a problem case. The most studied aspect of analogy-
making is mapping. For some (e.g. [9]), analogy-making is identical to mapping of relations
between different situations.

The mapping process in SITAR aims to find the most relevant mappings between situa-
tions’ elements. In order to achieve this, the mapping process should go hand in hand with
the representation building and retrieval processes.

Mapping establishes correspondences between groups, objects and relations of situa-
tions. There are three given situations, a, b and ¢ and the “meaningful” correspondences are

318 Emre Sahin and Varol Akman

difference correspondences between a and b and similarity correspondences between a and
c. For example, in Figure 6 mapping process should find that both a and ¢ have horizontal
lines, whereas a and b differ in type of line gestalt. The resulting situation d is obtained by
applying difference of a and b to similarity of a and c.

The quality of mapping, as discussed in [9], depends on the systematicity principle.
Systematicity principle states that robustness of a mapping established between two situ-
ations depends on the higher level relations mapped to each other. In SITAR, we don’t
have “higher level relations” as in SME. However, gestalt structures can be considered as
higher level relations and any relation (like “adjoins” or “between”) that uses these gestalt
structures can be considered as higher level.

Additionally we use this heuristic: more encompassing relations are better in mapping.
Unlike SME, SITAR tries to find a solution to a problem and looking from this perspective,
it tries to “assign” meaning to all elements in a situation. (This is also the human reac-
tion to such analogy questions. People try to establish correspondences that encompass all
elements in a situation, rather then considering some of the elements as noise.)

These two ideas are the guiding principles in the mapping process. In the next section,
we discuss how these three processes, representation building, retrieval and mapping, can
be unified.

4.6. The Unified Engine of Representation, Retrieval and Mapping

In analogy-making literature the common solution to unify representation, retrieval and
mapping processes is through micro agent based connectionist architectures. Both in Copy-
cat [11] and AMBR [13], the solution is to divide the problem into smaller chunks and
forward these to stochastic micro agents. These microagents then build a representation
along with retrieving necessary information from the LTM and perform a mapping.

Although such a model may work for our problem as well, we don’t see why such
a diversion is necessary in the first place. Microagents in these projects are not really
microagents working themselves; they are pieces of action waiting to be executed according
to their priority. We think naming things as they are actually results in a simpler design
compared to the alternative of delegating the problem to pseudo-microagents.

The logical foundation established by Situation Theory introduces a flexible architec-
ture for the relations between elements and situations. SITAR uses “hypons” and “factons”
to represent the information about situations and problem cases.

In the current architecture hypons are triples and factons are tuples and they differ in
their actuality. Hypons are hypothetical information about situations and problem cases,
and factons are factual.

Both hypons and factons employ an infon about the problem. This infon may be one of
the simplest, as in “occupies’” or a more complex one like “maps” (which is used to represent
mapping relations between situations) or “gestalt” to denote the groups in situations. Any
infon can be made into a hypon and a facton.

Along with infons, both hypons and factons have importance, which is a number. Im-
portance is determined in run time and, once determined, is fixed. The “importance” of
a hypon determines the likelihood that the engine will process it, and the importance of a
facton shows the generality of it.

Analogy-Making in Situation Theory 319

Additionally, hypons have an action part which is triggered when the hypon’s infon is
checked about correctness. This action may be retrieving some other situation from the
case library, creating another hypon, etc. A hypon whose infon is checked for validity
automatically creates a facton with an identical infon and importance.

All hypons and factons are stored in short term memory. Hypons wait their turn to
be checked and factons are used to find the most important relations about situations and
the problem. The case library, which is a repository for previous problem cases, contains
factons about cases. The importance metric provides an aid in finding the most relevant
relations about previous cases.

Supposing there are only “occupies” relations in situations, the engine works in the
following way:

1. Build factons from infons with “occupies” relations. Set importance of these to 1.

2. Retrieve a set of previous cases from the case library using the factons at hand. Use
their factons to create an initial set of hypons with importance 2.

3. In each step, select a hypon and check its infon’s validity. If the infon is true, perform
its action and create a facton from the hypon’s infon. Do this until there arises a
set of important factons which solve the mapping problem, or until a predetermined
number of steps (in which case “no solution” will be reported).

This architecture loads the problem to the shoulders of hypons. Hypons should lead to
relevant actions and these actions are supposed to search the solution space in a meaningful
fashion. However, through pattern matching of infons and scanning through important
information about the problem, we look forward to preventing the combinatorial explosion
in solving analogy problems.

The last step we didn’t mention above is the creation of situation d in problems. Once
the mapping between a, b and ¢ are found, creating d becomes the task of finding a situation
which satisfies the criteria we mentioned in section 3.

4.7. Learning

After finding a solution, SITAR saves it to its case library for future reference. All of the
case library is made up in this way gradually, using solutions.

What if no solution can be found? If no solution can be found or the solution of the
program seems incorrect, the user is expected to supply a valid solution to the system and
the system analyzes the solution and saves it like any other one. If the mapping could not
be established in the given solution, the user is requested to articulate the mapping and the
complete problem case in terms of factons and relations.

The learning phase in SITAR is thus integrated with the evaluation phase. Learning
occurs in any case after evaluation of the solution and the program’s ability to solve further
problems is a function of its case library.

When a solved problem case is inserted into the case library, it is indexed by relations
of infons, types of the gestalts, types of objects, size of objects. These indices are used to
retrieve the necessary elements from the case library.

320 Emre Sahin and Varol Akman

S. Summary

This work is an initial step towards having an analogical reasoning system built on Situation
Theory. Our motivation stems from various projects aiming at solving this problem. Three
representatives of these projects are Evans’ ANALOGY, Hofstadter and Mitchell’s Copy-
cat and Gentner and colleagues’ SME. First of these programs solves geometric analogy
problems found in I.Q. tests. The second one produces letter analogies. The third one is a
general analogy engine applicable to domains described in predicate logic.

Our model assumes a microworld composed as a chessboard having figures in places
of chessmen. Figures can have various attributes and can stand in various relations and
compose structures called gestalts. Gestalts are figure groups supporting a pattern.

We employed Situation Theory as a means to describe situations in this microworld.
Situation Theory allows nesting of situations which we will use extensively in future stud-
ies. It can model the information flow between different situations and thus a more natural
representation becomes possible.

Our system builds the representation of situations by itself. It produces the necessary
relations and discovers most important aspects of a situation by combining representation
building, retrieval and mapping. The evaluation of solutions is done by the user and a
solution for the problem is stored for learning (either the program’s successful solution or a
solution supplied by the user).

As an initial step towards an understanding of Analogical Reasoning in Situation The-
ory, this work naturally has omissions. We look forward to reporting our further findings in
our upcoming studies.

References

[1] Jon Barwise and John Etchemendy. Language, Proof and Logic. CSLI Publications.
2002

[2] Jon Barwise and John Perry. Situations and Attitudes. MIT Press. 1983

[3] Simon Ben-Avi. T.G. Evans 1.Q. test solver: ANALOGY.
http://www.aaai.org/aitopics/html/analogy.html

[4] Keith Devlin. Logic and Information. Cambridge University Press. 1991

[5S] Keith Devlin. Situation theory and situation semantics. In: Handbook of the History
of Logic. Dov Gabbay and John Woods (eds.). Volume 7. pp. 601-664. Elsevier. 2006

[6] Robert L. Goldstone. Douglas L. Medin and Dedre Gentner. Respects for similarity.
Psychological Review. 100(2):254-278. 1993

[7] Thomas G. Evans. A program for the solution of Geometric-Analogy Intelligence-Test

Questions. In: Semantic Information Processing. Marvin Minsky (ed.). MIT Press.
1969

[8] Brian Falkenheiner. Kenneth D. Forbus and Dedre Gentner. The structure-mapping
engine: Algorithm and examples. Artificial Intelligence. 41(1):1-63. 1989

Analogy-Making in Situation Theory 321

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Dedre Gentner. Structure Mapping: A theoretical framework for analogy. Cognitive
Science. 7:155-170. 1983

Dedre Gentner. Analogy. In: A Companion to Cognitive Science. William Bechtel and
George Graham (eds.) pp. 107-113. Blackwell. 1998

Douglas Hofstadter and Melanie Mitchell. The Copycat Project: A model of mental
Fluidity and Analogy-making. In: Fluid Concepts and Creative Analogies. Douglas
Hofstadter (ed.). pp. 205-269. Basic Books. 1995

Keith Holyoak and Paul Thagard. Mental Leaps: Analogy in Creative Thought. MIT
Press. 1995

Boicho Kokinov. A hybrid model of reasoning by analogy. In: Analogical Connec-
tions, Advances in Connectionist and Neural Computation Theory. Volume 2. Keith
Holyoak and John Barnden (eds.). pp. 247-320. Ablex. 1994

Boicho Kokinov and Robert M. French. Computational models of analogy-making.
In: Encyclopedia of Cognitive Science. Volume 1. Lynn Nadel (ed.). pp. 113-118.
Nature Publishing Group. 2003

Amos Tversky and Itamar Gati. Studies of similarity. In: Cognition and Categoriza-
tion. E. Rosch and B. B. Lloyd (eds.). pp. 79-98. Lawrence Erlbaum. 1978

Patrick Henry Winston. Learning and reasoning by analogy. Communications of the
ACM. 23(12):689-702. 1980

