
A methodology to create legal ontologies in a logic

programming based web information retrieval system

José Saias and Paulo Quaresma
Departamento de Informática,
Universidade de Évora,
7000 Évora, Portugal
jsaias|pq@di.uevora.pt

May 21, 2004

Abstract. Web legal information retrieval systems need the capability to reason
with the knowledge modeled by legal ontologies. Using this knowledge it is possible
to represent and to make inferences about the semantic content of legal documents.

In this paper a methodology for applying NLP techniques to automatically create
a legal ontology is proposed. The ontology is defined in the OWL semantic web
language and it is used in a logic programming framework, EVOLP+ISCO, to allow
users to query the semantic content of the documents. ISCO allows an easy and
efficient integration of declarative, object-oriented and constraint-based program-
ming techniques with the capability to create connections with external databases.
EVOLP is a dynamic logic programming framework allowing the definition of rules
for actions and events.

An application of the proposed methodology to the legal web information re-
trieval system of the Portuguese Attorney General’s Office is described.

Keywords: Ontologies, OWL, natural language processing, logic programming

1. Introduction

Modern web legal information retrieval systems need the capability
to represent and to reason with the knowledge modeled by legal on-
tologies. In fact, the creation of ontologies allow the definition of class
hierarchies, object properties, and relation rules, such as, transitivity or
functionality. Using this knowledge it is possible to represent semantic
objects, to associate them with legal documents, and to make inferences
about them.

OWL (Ontology Web Language) is a language proposed by the W3C
consortium (http://www.w3.org) to be used in the ”semantic-web” en-
vironment for the representation of ontologies. This language is based
on the previous DAML+OIL (Darpa Agent Markup Language - (W3C,
2000)) language and it is defined using RDF (Resource Description
Framework - (Lassila and Swick, 1999)).

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

ailaw_pq.tex; 28/05/2004; 20:11; p.1

2 José Saias and Paulo Quaresma

In this paper a methodology to automatically create an OWL on-
tology from a set of legal documents is proposed. The methodology is
based on the following steps:

− Definition of an initial top-level ontology;

− Identification of concepts referred in the legal documents and ex-
traction of its properties;

− Identification of relations between the identified concepts;

− Creation of an ontology using the identified concepts and relations;

− Merge of the created ontology with the initial ontology;

In the first step, an already existent top-level legal ontology was chosen.
At present we are using the legal ontology from the Portuguese At-
torney General’s Office, consisting of around 6,000 classes and having
around 10,000 relations (Quaresma and Rodrigues, 2002). However,
other top-level ontologies could be used, such as, the DOLCE proposal
(Guangemi et al., 2002) or the FOLaw and LRI-core proposal (Breuker
and Winkels, 2003) used in the context of the IST programs E-POWER
and E-COURT (Boer et al., 2002). In the future, we expect to use the
results of the e-Content project LOIS – Lexical Ontologies for legal
Information Sharing, which aims to create an european-wide top-level
legal ontology.

In the second step, identification of concepts and its properties,
several natural language processing techniques are used, namely, a
syntactical parser, and a semantic analyzer able to obtain a partial
interpretation of the documents. As it will be described in detail, the
semantic representation allows the identification of the set of concepts
that are referred in the documents and the extraction of some of their
properties.

In the third step, identification of relations between concepts, an
unsupervised method for acquiring word classes and relations is used
(Gamallo et al., 2002b; Gamallo et al., 2002a). This method, which has
some similarities with the work of (Lame, 2003), allows the identifica-
tion of related and more specific concepts (subclasses). Starting from
parsed documents, a subcategorisation analysis is performed and, for
each word, subcategorisation patterns are extracted. Finally, a statis-
tical analysis is performed identifying clusters of words with similar
subcategorisation patterns.

In the fourth step, the results of the previous two steps are integrated
in an ontology: concepts with their properties are new classes; class
hierarchies and relations are created accordingly with the statistical

ailaw_pq.tex; 28/05/2004; 20:11; p.2

A methodology to create legal ontologies in a LP based web IR system 3

analysis of subcategorization patterns (several examples will be shown
in the following sections).

Finally, in the fifth step, the initial top-level ontology is merged with
the new one. The proposed strategy is to search for common concepts in
the two ontologies and to merge the ontologies via these concepts. New
classes are inserted into the top-level ontology using the information
from the semantic analyser (animal, human, action, . . .).

At this stage it is important to point out that the proposed method-
ology is based on a bottom-up approach for the definition of the legal
low-level concepts: it allows the identification of the concepts and some
of the relations, but additional work will be necessary to fully integrate
these concepts with the upper legal ontology. We do not intend to
propose any kind of standard for legal ontologies; our aim is to define
a methodology to automatically create a base ontology from a specific
set of legal documents.

As referred, this work has some relations with the proposal of Lame
aiming to identify components of legal ontologies from the analysis
of legal texts (Lame, 2003). However, we believe our proposal has a
more ambitious goal: the identified components are used to create an
ontology and the initial documents are enriched with instances of this
ontology. This process allows the definition of semantic web agents able
to query the semantic content of these documents.

As stated before, after the creation of legal ontologies expressed in
OWL, documents are enriched with instances of legal classes.

Then, a logic programming based framework is used to support in-
ferences over the ontology. The logic programming framework is based
on ISCO (Abreu, 2001) and EVOLP (Alferes et al., 2002).ISCO is a
new declarative language implemented over GNU Prolog with object-
oriented predicates, constraints and allowing simple connections with
external databases. EVOLP is a dynamic logic programming language
that is able to describe actions and events, allowing the system to make
inferences about events, user intentions and beliefs and to be able to
have cooperative interactions.

This logic programming framework seems to be quite adequated to
represent and to make inferences over OWL ontologies. In fact, recent
advances in the semantic web technology support this claim: some part-
ners in the RuleML workgroup (http://www.ruleml.org) are adopting
logic programming as its inference engine and there already exists a
translator from RDFS to Prolog (Damásio, 2003). Moreover, in the
scope of this work, a translator of a subset of OWL to Prolog was also
built (correct accordingly with the OWL formal semantic description).

However, other inference engines could be chosen and used to answer
queries about the legal knowledge conveyed by the documents. One

ailaw_pq.tex; 28/05/2004; 20:11; p.3

4 José Saias and Paulo Quaresma

possible option might be to use the results of the Mandarax project
(http://mandarax.sourceforge.net), which already supports RuleML.

Section 2 describes the proposed architecture. Section 3 describes
the methodology for the creation of the ontology, namely, the natural
language processing techniques used to process the documents. Section
4 describes the NLP techniques used to create the OWL instances
associated with each document. Section 5 describes ISCO, the basic
logic programming framework. Section 6 describes EVOLP, the dy-
namic logic programming framework defined over ISCO and Prolog.
Section 7 describes the interaction manager and section 8 provides a
simple example. Finally, in section 9 some conclusions and future work
are pointed out.

2. Architecture

The system’s architecture is based on several independent and mod-
ular processes. Figure 1 shows graphically these processes and their
relations.

Figure 1. System’s architecture

The architecture may be divided in three major modules:

− Inference of an adequate OWL ontology of classes;

− Inference of OWL instances and document enrichment;

− Inference engine.

The first module, inference of an adequate OWL ontology of classes,
receives as input a top-level ontology and a set of legal documents.
After a syntactical and semantical analysis, it obtains a partial semantic
representation (a DRS – Discourse Representation structure (Kamp
and Reyle, 1993)) for each sentence. From the DRS of each sentence,

ailaw_pq.tex; 28/05/2004; 20:11; p.4

A methodology to create legal ontologies in a LP based web IR system 5

noun expressions and verbs are extracted, and they are used to define
legal classes. These classes will be clustered, classified, and merged with
the initial top-level ontology (section 3 describes this step in detail).

The second module, inference of OWL instances, receives as in-
put the DRS of each sentence and the inferred OWL ontology from
the first module. With this information, and using an abductive in-
ference mechanism, OWL instances are inferred. This step is usually
called pragmatic interpretation of natural language sentences (section
4 describes these processes in more detail).

Finally, OWL classes and OWL instances are used by an inference
engine, based in a logic programming framework, in order to answer
queries about the semantic content of documents (sections 5, 6 and 7
describe the logic programming framework).

3. OWL ontology creation

In order to be able to deal with documents from different domains,
a methodology to automatically create basic ontologies of concepts is
proposed. This methodology allows the definition of a base ontology
with the relevant concepts with some inferred relations. After having
defined this ontology, it may be necessary to develop manual work by
human experts in order to fully organize the set of extracted concepts.

The methodology is based on the following steps:

− Definition of an initial top-level ontology;

− Identification of concepts referred in the legal documents and ex-
traction of its properties;

− Identification of relations between the identified concepts;

− Creation of an ontology using the identified concepts and relations;

− Merge of the created ontology with the initial ontology;

3.1. Top-level ontology

As referred in section 1, an already existent top-level legal ontology
was chosen: the legal ontology from the Portuguese Attorney General’s
Office, consisting of around 6,000 classes and having around 10,000
relations (Quaresma and Rodrigues, 2002). As and example of some
concepts in this ontology we have:

− Tribunal Court ; properties: name, address, . . .

ailaw_pq.tex; 28/05/2004; 20:11; p.5

6 José Saias and Paulo Quaresma

− Tribunal Militar Military Court – subclass of Tribunal

− Supremo Tribunal Supreme Court – subclass of Tribunal

This legal ontology was merged with a general top-level ontology of
concepts defined by Eckhard Bick in the VISL project 1 (Bick, 2000),
which has around 150 top concepts: animal, human, place, vehicle,
concrete object, abstract object, food,

3.2. Identification of concepts and properties

The methodology to automatically identify the concepts and the prop-
erties referred in the documents is based on the output of natural
language processing tools:

− Text syntactical parsing. The documents are analyzed by the syn-
tactical parser PALAVRAS developed by E. Bick. This parser is
available for 21 different languages,including Portuguese.

− Partial semantic analysis.

− Entities extraction. From the semantic analysis output, entities
and properties are extracted and represented by ontology classes.

3.2.1. Syntactical analysis

The parser developed by E. Bick is based on the Constraint Gram-
mars (Karlsson, 1990) formalism and covers a major portion of the
Portuguese sentences. However, its output is in a non-standard format
and it was necessary to transform it into a structured form, like XML
and Prolog terms. A translation tool from the VISL output into XML
and Prolog terms was developed and it is available to the VISL users
(a detailed description of this tool was presented in (Gasperin et al.,
2003)).

As an example, suppose the following sentence:

O bombeiro Manuel salvou a criança. The fireman Manuel saved the

child.

This sentence has the VISL output:

STA:fcl

SUBJ:np

=>N:art(’o’ M S) O

=H:n(’bombeiro’ M S) bombeiro

1 http://visl.hum.sdu.dk/visl

ailaw_pq.tex; 28/05/2004; 20:11; p.6

A methodology to create legal ontologies in a LP based web IR system 7

==N<:prop(’Manuel’ M S) Manuel

P:v-fin(’salvar’ PS 3S IND) salvou

ACC:np

=>N:art(’a’ F S) a

=H:n(’criança’ F S) criança

As it can be seen, the subject, predicate and direct object were
correctly parsed. From this output, the XML translator produces three
files:

1. The first file links each word with a word tag with a specific id.

<!DOCTYPE words SYSTEM "words.dtd">

<words>

<word id="word_1">O</word>

<word id="word_2">bombeiro</word>

<word id="word_3">Manuel</word>

<word id="word_4">salvou</word>

<word id="word_5">a</word>

<word id="word_6">criança</word>

<word id="word_7">.</word>

</words>

2. The second file associates each word with its part-of-speech in-
formation.

<!DOCTYPE words SYSTEM "wordsPOS.dtd">

<words>

<word id="word_1">

<art canon="o" gender="M" number="S"/>

</word>

<word id="word_2">

<n canon="bombeiro" gender="M" number="S"/>

</word>

<word id="word_3">

<prop canon="Manuel" gender="M" number="S"/>

</word>

<word id="word_4">

<v canon="salvar">

<fin tense="PS" person="3S" mode="IND"/>

</v>

</word>

<word id="word_5">

<art canon="a" gender="F" number="S"/>

</word>

<word id="word_6">

ailaw_pq.tex; 28/05/2004; 20:11; p.7

8 José Saias and Paulo Quaresma

<n canon="criança" gender="F" number="S"/>

</word>

</words>

3. The third file has the parsing structure.

<!DOCTYPE text SYSTEM "text_ext.dtd">

<text>

<paragraph id="paragraph_1">

<sentence id="sentence_1" span="word_1..word_7">

<chunk id="chunk_1" ext="subj" form="np"

span="word_1..word_3">

<chunk id="chunk_2" ext="n" form="art" span="word_1">

</chunk>

<chunk id="chunk_3" ext="h" form="n" span="word_2">

</chunk>

<chunk id="chunk_4" ext="n" form="prop" span="word_3">

</chunk>

</chunk>

<chunk id="chunk_5" ext="p" form="v_fin" span="word_4">

</chunk>

<chunk id="chunk_6" ext="acc" form="np"

span="word_5..word_6">

<chunk id="chunk_7" ext="n" form="art" span="word_5">

</chunk>

<chunk id="chunk_8" ext="h" form="n" span="word_6">

</chunk>

</chunk>

</sentence>

</paragraph>

</text>

3.2.2. Semantic analysis

Each syntactical structure is translated into a First-Order Logic expres-
sion. The technique used for this analysis is based on DRS’s (Discourse
Representation Structures (Kamp and Reyle, 1993)) and it was de-
scribed in more detail in (Quaresma and Rodrigues, 2003). The partial
semantic representation of a sentence is a DRS built with two lists, one
with the rewritten sentence and the other with the sentence discourse
referents.

At present, we are only dealing with a restricted semantic analysis
and we are not able to handle every aspect of the semantics: our focus
is on the representation on concepts (nouns and verbs) and the correct
extraction of its properties (modifiers, agents, objects).

ailaw_pq.tex; 28/05/2004; 20:11; p.8

A methodology to create legal ontologies in a LP based web IR system 9

From the XML structure, using XSL transformations, it is possible
to obtain the semantic representation of each sentence.

The semantic representation of the example presented in the previ-
ous sub-section is:

sentence(doc1, [fireman(A), name(A,’Manuel’), child(B), save(A,B)], [ref(A),

ref(B)]).

This structure represents an instance of a fireman A, named ’Manuel’,
and an instance of a child B which are related by the action to save.

A general tool able to obtain similar semantic partial representations
for every sentence was developed and it was applied to the full set
of legal documents of the Portuguese Attorney General’s Office (7000
documents).

3.2.3. Entities extraction

From the sentence semantic representation, entities are extracted and
they are the basis for the creation of an ontology of concepts. In fact,
for each new concept, a new class, subclass of a top-class ’Entity’, is
created.

On the other hand, from the output of the semantic analyser it is
possible to identify some potential class properties:

− Modifiers, such as adjectives, are candidates to be properties of
nouns;

− Direct objects of transitive verbs are candidates to be properties
of the associated verbs;

For instance, for the expression the black cat it is possible to identify
color as a property of cat, because it is known that black is an instance
of a color (from the correspondent semantic tag in the dictionary).

In the referred example it would be possible to extract the following
entities:

− bombeiro fireman, with a property: ’name’

− salvar to save

− criança child

ailaw_pq.tex; 28/05/2004; 20:11; p.9

10 José Saias and Paulo Quaresma

3.3. Identification of relations between classes

As it was shown in the previous sub-section, the identification of con-
cepts does not allow the creation of relations, hierarchical or others,
between them.

Our approach is to use an an unsupervised method for acquir-
ing word classes and relations (Gamallo et al., 2002b; Gamallo et al.,
2002a). The goal is to learn, for each word, what kind of modifiers and
what kind of heads it subcategorises. For instance, the word republic

may appear as an head of a noun phrase, such as republic of Ireland,
republic of Portugal, or as a modifier, like president of the republic,
government of the republic. The obtained subcategorisation patterns
are clustered into classes and relations are extracted.

Using this approach it is possible to identify hierarchical relations,
such as the existent between republic and republic of Portugal and also
to identify other semantic relations, such as the ones between lei – law

and norma – norm. The strategy is to use statistical analysis to identify
clusters of words with similar subcategorisation patterns (words which
have similar modifiers and heads).

As methodology, we start from the parsed documents and, for each
word, subcategorisation patterns are extracted and clusters and re-
lations are identified. A detailed description of the methodology is
described in (Gamallo et al., 2002a).

Note that this approach has some limitations and it is not able to
identify correctly what kind of relations exist between two concepts.
For instance, two related concepts may be synonyms or the opposite.
A more deep knowledge-aware approach is needed to handle these kind
of problems.

The inferred relations are used to create an hierarchy of classes in
the ontology and to link them via a related relation.

3.4. Creation of the ontology

In the fourth step of the methodology, the results of the previous two
sub-sections are integrated into a new ontology:

− Concepts with their properties are new classes;

− Class hierarchies and relations are created accordingly with the
results of the previous sub-section;

For instance, using this approach to the previous example, republic

of Portugal will be a sub-class of republic.

ailaw_pq.tex; 28/05/2004; 20:11; p.10

A methodology to create legal ontologies in a LP based web IR system 11

3.5. Merge of the ontologies

Finally, in the fifth step, the initial top-level ontology is merged with
the new one.

In this process new classes are inserted into the top-level ontology
using their names and information from the semantic analyser:

− If a class exists with an equal name in the top-level ontology, then
the two classes are merged;

− Otherwise, a search is made in the top-level ontology for a class
with semantically compatible information and the new class is
created as a sub-class of the existent one.

For instance, if a new class named fireman is classified to be a human

concept by the NLP analysers, then the new class will be a sub-class
of the human top-level concept.

The overall strategy is to search for common concepts in the two
ontologies and to merge the ontologies via these concepts.

4. OWL instances creation

After having defined an ontology of classes, it is necessary to extract
and to represent instances of those classes and to associate them with
documents.

The proposed methodology tries to infer instances of those ontologies
using the following three steps:

− Translation of the OWL ontologies into a logic programming form;

− Definition of logic programming rules allowing the inference of
instances;

− Generation of OWL instances.

4.0.1. OWL translation

The first step, translation of OWL ontologies into Prolog, was im-
plemented in Java and it creates a Prolog term for each OWL class,
subclass, or property. The translation of this subset on OWL is correct
accordingly with the OWL formal semantic description (Saias, 2003).

For instance, suppose there exists a definition in OWL for a class
citizen and for a sub-class military. After the translation, we’ll have:

ailaw_pq.tex; 28/05/2004; 20:11; p.11

12 José Saias and Paulo Quaresma

class(citizen, ’external.owl#citizen’).

class(military, ’external.owl#military’).

subclass(’external.owl#military’, ’external.owl#citizen’).

Moreover, suppose class military has a property of having a rank,
which can have one of several possible values: general, colonel, . . .

In this situation, we’ll have the following Prolog terms:

property(rank, ’external.owl#rank’,

’external.owl#military’).

hasPossibleValue(’external.owl#rank’, general).

hasPossibleValue(’external.owl#rank’, colonel).

4.0.2. Prolog rules

In the second step of this methodology, logic programming rules are
defined allowing the inference of instances from the DRS representation
of each sentence and the Prolog representation of the ontology.

One of these rules allows the inference of class and properties from
values:

infer(Value, Class, Property) :-

hasPossibleValue(PropertyURI, Value),

property(Property, PropertyURI, ClassURI),

class(Class, ClassURI).

In this LP rule, Value is the name of an entity (input) and Class and
Property are identifiers of classes and properties that may have this
value (output).

For instance, the sentence

The colonel saved the child.

has the following DRS form:

sentence(d1, [colonel(X), child(Y), save(X,Y)],

[ref(X),ref(Y)]).

From this DRS form and, using the Prolog rules, it is possible to
infer the following new form (because colonel is a possible value for the
rank property of the military class):

sentence(d1, [military(X), rank(X,colonel), child(Y),

save(X,Y)], [ref(X),ref(Y)]).

ailaw_pq.tex; 28/05/2004; 20:11; p.12

A methodology to create legal ontologies in a LP based web IR system 13

This process is usually called, in the natural language processing
field, pragmatic interpretation of sentences and it can be seen as an
abductive process where properties (antecedents) are inferred from
values (consequents) (Hobbs et al., 1990).

Similar approaches can be applied to capture different natural lan-
guage sentences characteristics.

For instance it is possible to relate adjectives or prepositional phrases
with the head nouns:

The colonel from the army saved the child.

This sentence has the following DRS form:

sentence(d1, [colonel(X),

army(Z), rel(X,Z),

child(Y), save(X,Y)],

[ref(X),ref(Z),ref(Y)]).

From this DRS form and, using Prolog rules, it is possible to infer
the following new form:

sentence(d1, [military(X),rank(X,colonel),belong(X,army),

children(Y), save(X,Y)], [ref(X),ref(Y)]).

4.0.3. OWL generation

In the third step, the results of the pragmatic interpretation of each
sentence are transformed into correspondent OWL instances. For in-
stance, for the last example of the previous sub-section, the following
OWL instances would be created:

<pgr:Military rdf:ID="m11">

<pgr:rank rdf:resource="external.owl#Colonel"/>

<pgr:belong rdf:resource="external.owl#Army"/>

</pgr:Military>

<pgr:Child rdf:ID="c2">

</pgr:Child>

<pgr:ToSave rdf:ID="s5">

<pgr:subject rdf:resource="#m11"/>

<pgr:object rdf:resource="#c2"/>

</pgr:ToSave>

These instances define and relate a military (colonel and from the
army), a child, through the instance of the action to save.

ailaw_pq.tex; 28/05/2004; 20:11; p.13

14 José Saias and Paulo Quaresma

As a final result of this step, every document is enriched with the
OWL instances obtained from the pragmatic interpretation of its sen-
tences.

5. ISCO

In this section, the logic programming framework that is going to be
used as the inference engine for answering queries about the semantic
content of documents (OWL instances) is briefly described.

ISCO (Abreu, 2001) is a logic based development language im-
plemented in GNU Prolog that gives the developer several distinct
possibilities:

− It supports Object-Oriented features: classes, hierarchies, inheri-
tance.

− It supports Constraint Logic Programming. Specifically, it sup-
ports finite domain constraints in ISCO queries.

− it gives a simple access to external relational databases through
ODBC. It has a back-end for PostgreSQL and Oracle.

− It allows the access to external relational databases as a part of a
declarative/deductive object-oriented (with inheritance) database.
Among other things, the system maps relational tables to classes
– which may be used as Prolog predicates.

− It gives a simple database structure description language that can
help in database schema analysis. Tools are available to create an
ISCO database description from an existing relational database
schema and also the opposite action.

The proposed system uses ISCO’s capability to establish connections
from Prolog to relational databases in an efficient and simple way. For
example, the following SQL table:

CREATE TABLE "document" (

"number" int4 NOT NULL,

"title" text,

Constraint "number_pkey"

Primary Key ("number")

);

Maps into the following ISCO class definition (and vice-versa):

ailaw_pq.tex; 28/05/2004; 20:11; p.14

A methodology to create legal ontologies in a LP based web IR system 15

external(pgr,document) class document.

number: int. key.

title: text.

Taking this ISCO feature into account, a translator from OWL into
ISCO class definitions was developed. This translator was applied to
every OWL class described in the previous section and, as a conse-
quence, correspondent SQL tables and ISCO classes definitions were
obtained. Moreover, each OWL class instance was transformed into an
SQL table row and an ISCO logic programming fact. As an example,
the toSave presented previously is translated into the following fact:

toSave(ID=s5, subject=’#m11’, object=’#c2’).

For each defined class a set of Prolog predicates implementing the
four basic operations are created: query, insert, update and delete.

Variables occurring in queries are mapped to SQL and may carry
CLP(FD) constraints, which will be expressed in SQL, whenever pos-
sible. For example, suppose variable X is an FD variable whose domain
is (1..1000), the query

document(number = X, title = Y) (1)

will return all pairs (X, Y) where X is a document number and Y is the
document’s title. X is subject to the constraints that were valid upon
execution of the query, ie. in the range 1 to 1000.

ISCO class declarations feature inheritance, simple domain integrity
constraints and global integrity constraints.

6. EVOLP

As it was described in the previous section, ISCO allows a declarative
representation of ontologies and object instances. However, there is also
a need to represent actions and to model the evolution of the knowledge.

In (Alferes et al., 1999) it was introduced a declarative, high-level
language for knowledge updates called LUPS (Language of UPdateS)
that describes transitions between consecutive knowledge states. Re-
cently, a new language, EVOLP (Alferes et al., 2002), was proposed
having a simpler and more general formulation of logic program up-
dates. In this section a brief description of the EVOLP language will
be given. A detailed description of the language and of its formalization
is presented at the cited article.

EVOLP allows the specification of a program’s evolution, through
the existence of rules which indicate assertions to the program. EVOLP

ailaw_pq.tex; 28/05/2004; 20:11; p.15

16 José Saias and Paulo Quaresma

programs are sets of generalized logic program rules defined over an
extended propositional language Lassert, defined over any propositional
language L in the following way (Alferes et al., 2002):

− All propositional atoms in L are propositional atoms in Lassert

− If each of L0, . . . , Ln is a literal in Lassert, then L0 ← L1, . . . , Ln

is a generalized logic program rule over Lassert.

− If R is a rule over Lassert then assert(R) is a propositional atom
of Lassert.

− Nothing else is a propositional atom in Lassert.

The formal definition of the semantics of EVOLP is presented at
the referred article, but the general idea is the following: whenever the
atom assert(R) belongs to an interpretation, i.e. belongs to a model
according to the stable model semantics of the current program, then
R must belong to the program in the next state. For instance, the
following rule form:

assert(b← a)← c (2)

means that if c is true in a state, then the next state must have rule
b← a.

EVOLP has also the notion of external events, i.e. assertions that do
not persist by inertia. This notion is fundamental to model interaction
between agents and to represent actions. For instance, it is important
to be able to represent actions and its effects and pre-conditions:

assert(Effect)← Action, PreConditions (3)

If, in a specific state, there is the event Action and if PreConditions

hold, then the next state will have Effect.

7. Interaction Management

The interaction manager is built on the ISCO+EVOLP logic program-
ming framework.

As final goal, we aim to handle the following kind of questions:

− Situations where action A is performed

− Situations where action A is performed having subject S

− Situations where S is the subject of an action

ailaw_pq.tex; 28/05/2004; 20:11; p.16

A methodology to create legal ontologies in a LP based web IR system 17

Note that the inference engine needs to be able to deal with the on-
tology relations. For instance, the question ”situations where action
A is performed having subject S” means ”situations where action A
(or any of its sub-classes) is performed having subject S (or any of its
sub-classes)”.

The interaction manager is composed by the following main tasks:

− Query management

− Interaction management

7.1. Query management

The analysis of a natural language query is split in three subprocesses:
Syntax, Semantics, and Pragmatics.

7.1.1. Syntax

As syntactic analyser we are using the analyzer developed by E. Bick
and referred previously (Bick, 2000). The VISL output is translated into
Prolog facts by the same translator referred in section 3. This trans-
lation can be handled by the same translator because there is a direct
relation between the XML structure and the Prolog term structure.

As an example, the following query:

Quem salvou crian\c{c}as?

‘‘Who saved children?’’

Has the following syntactical structure:

sentence(syn(que(fcl,

subj(pron_indp(’quem’,’M/F’,’S’,’<interr>’),’Quem’),

p(v_fin(’salvar’,’PS’,’3S’,’IND’),’salvou’),

acc(n(’criança’,’F’,’P’,’<H>’),’crianças’, ’?’)))).

7.1.2. Semantics

As referred in section 3, each syntactical structure is translated into a
First-Order Logic expression (DRS). The semantic representation of a
sentence is a DRS built with two lists, one with the rewritten sentence
and the other with the sentence discourse referents. For instance, the
semantic representation of the sentence above is the following expres-
sion:

child(B), toSave(A,B),

ailaw_pq.tex; 28/05/2004; 20:11; p.17

18 José Saias and Paulo Quaresma

and the following discourse referents list:

A : [ref(A),ref(B)]

These structures represent instances of children B related with in-
stances of the toSave action.

Note that, at present, we are not able to deal with general unre-
stricted queries and to translate them from a syntactical into a semantic
structure. In fact this a quite complex NLP problem and we have
decided to deal only with specific subsets of the Portuguese language,
namely, with interrogatives about specific domains.

7.1.3. Pragmatic Interpretation

The pragmatic module receives the semantic query representation and
tries to interpret it in the context of the database information, which
was constructed from the translation of the OWL instances into ISCO
facts (as described previously in section 5).

In order to achieve this behavior the system tries to find the best
explanations for the sentence logic form to be true in the knowledge
base. As already referred, this strategy for interpretation is known as
“interpretation as abduction” (Hobbs et al., 1990) and this process was
described in detail in (Quintano et al., 2001).

From the description of the OWL (and ISCO) classes it is possible
to obtain the correspondent ISCO query:

child(id=B),

toSave(id=C, subject=A, object=B),

This query was obtained using additional logic programming rules
for the interpretation of actions in the context of the ontology class
descriptions:

assert action(id=C,subject=B,object=C) <-

action(A,B), entity(A), entity(B).

Note that the ontology hierarchy was used to infer that children are
entities and to save is an action.

The interpretation of the ISCO predicates is done by accessing the
knowledge base in order to collect (and constraint) all entities identi-
fiers:

- $A=_\#(104..109:156..157)$ -- A constrained to all

entities with the desired properties

ailaw_pq.tex; 28/05/2004; 20:11; p.18

A methodology to create legal ontologies in a LP based web IR system 19

The above expression contains the possible interpretations of the
query in the context of the knowledge base.

7.2. Interaction Management

The interaction manager has to represent the actions associated with
the queries (informs or request), and to model the user attitudes
(intentions and beliefs).

This task is also achieved through the use of the EVOLP language
(see (Quaresma and Rodrigues, 2001; Quaresma and Lopes, 1995) for a
more detailed description of these rules). For instance, the rules which
describe the effect of an inform, and a request speech act are:

assert(bel(A, bel(B, P)))← inform(B, A, P). (4)

assert(bel(A, int(B, Action)))← request(B, A, Action). (5)

These rules mean that if an agent A is informed of a property P , then
it will start to believe that the other agent believes in P ; additionally,
if B requests A to perform an action Action, then A starts to believe
that B intends Action to be performed.

In order to represent collaborative behavior it is also necessary to
model the transference of information between the agents:

assert(bel(A, P))← bel(A, bel(B, P)). (6)

assert(int(A, Action))← bel(A, int(B, Action)). (7)

These two rules means that if an agent A believes another agent
believes in P , then it will start to believe in P (it is a cooperative,
credulous agent); moreover, it will also adopt the intentions of the other
agents.

There is also the need for a rule linking the system intentions and
the accesses to the databases:

assert(inf(A, B, P))← int(A, inf(A, B, P)), isco(P). (8)

assert(not int(A, B, inf(A, B, P)))← inf(A, B, P). (9)

The first rule defines that, if the system intends to inform the user
about some property, then it will access the ISCO database and it will
perform an inform action. The second rule means that the inform action
will end the intention to perform the inform action!

ailaw_pq.tex; 28/05/2004; 20:11; p.19

20 José Saias and Paulo Quaresma

8. Examples

Considering the already presented query:

Quem salvou crianças?

‘‘Who saved children?’’

The interaction manager receives the query pragmatic interpreta-
tion:

Q = [child(id=B), toSave(id=C, subject=A, object=B)].

After having the sentence rewritten into its semantic representation
form, the speech act is recognized:

request(user, system, inform(user, system, Q))

Using the request and the transference of intentions rules the fol-
lowing property is supported:

int(system,inform(system, user, Q))

Now, using the rules presented in the previous section, the system
accesses the ISCO databases and it is able to obtain the final constraints
to the discourse referent variables:

- $A=_\#(104..109:156..157)$ -- A constrained to all

entities with the desired properties

Using the inferred constraints it is possible to obtain the set of
solutions to the user query and to answer:

m11: Military - rank: colonel; belong: army.

If, for instance, the user asked the more general query:

Quem salvou quem?

‘‘Who saved somebody?’’

The unique difference would be the pragmatic interpretation and (prob-
ably) the system’s answer:

Q = [save(id=C,subject=A,object=B)].

ailaw_pq.tex; 28/05/2004; 20:11; p.20

A methodology to create legal ontologies in a LP based web IR system 21

9. Conclusions and Future Work

A methodology to automatically create legal ontologies was proposed.
The methodology uses syntactical, semantical and pragmatical anal-

ysers to obtain sentence representations and to identify entities and en-
tity relations. The obtained ontologies are merged with other externally
defined top-level ontologies.

The obtained new ontology is used, with the semantic representation
of sentences, to infer class instances and to enrich documents with
this semantic information. The inference of the instances associated
with each sentence is done via an abductive process – interpretation as
abduction.

Ontologies and the inferred instances are represented in the OWL
language.

On the other hand, translators from OWL into ISCO/Prolog were
developed and a logic programming based interaction manager was
developed. The interaction manager uses many important features from
its base LP framework: objects, constraints, inheritance.

At present, the implementation of the system is in a prototype/test
phase and it needs work in many areas:

− Ontology creation. The ontology was created automatically but it
was not possible to identify many relations between the classes. In
order to be able to define these relations we intend to extend the
statistical analysis of word subcategorisation to take into account
semantic information from the dictionary and existent Wordnets.

− Normalisation of concepts. The parsing process was not able to
completely identify and eliminate duplicates and incorrections. A
more sophisticated analysis is needed.

− OWL translation into ISCO/Prolog. A full translation of the OWL
language needs to be implemented and its correction has to be
proved.

− Evaluation. The system needs to be fully evaluated and to be tested
by users. Moreover it should be applied to other legal documents,
such as, legislation.

References

Abreu, S.: 2001, ‘ISCO: A Practical Language for Heterogeneous Information System
Construction’. In: Proceedings of INAP’01. Tokyo, Japan, INAP.

ailaw_pq.tex; 28/05/2004; 20:11; p.21

22 José Saias and Paulo Quaresma

Alferes, J., A. Brogi, J. Leite, and L. Pereira: 2002, ‘Evolving Logic Programs’. In:
S. Flesca, S. Greco, N. Leone, and G. Ianni (eds.): JELIA’02 – Proceedings of
the 8th European Conference on Logics and Artificial Intelligence. pp. 50–61,
Springer-Verlag LNCS 2424.

Alferes, J. J., L. M. Pereira, H. Przymusinska, T. C. Przymusinski, and P. Quaresma:
1999, ‘Preliminary exploration on actions as updates’. In: M. C. Meo and
M. Vilares-Ferro (eds.): Procs. of the 1999 Joint Conference on Declarative
Programming (AGP’99). L’Aquila, Italy, pp. 259–271.

Bick, E.: 2000, The Parsing System ”Palavras”. Automatic Grammatical Analysis
of Portuguese in a Constraint Grammar Framework. Aarhus University Press.

Boer, A., R. Hoekstra, R. Winkels, T. van Engers, and F. Willaert: 2002, ‘Proposal
for a Dutch Legal XML Standard’. In: EGOV2002 – Proceedings of the First
International Conference on Electronic Government.

Breuker, J. and R. Winkels: 2003, ‘Use and reuse of legal ontologies in knowledge
engineering and information management’. Journal of Artificial Intelligence and
Law. In this issue.

Damásio, C.: 2003, ‘W4 – Well-founded semantics for the World Wide Web’. In: H.
Boley, G. Grosof, S. Tabet, and G. Wagner (eds.): Rule Markup Techniques for
the Semantic Web. Dagstuhl, Germany.

Gamallo, P., A. Agustini, and G. Lopes: 2002a, ‘Using co-composition for acquiring
syntactic and semantic subcategorisation’. In: ACL-SIGLEX’02. Philadelphy,
USA.

Gamallo, P., A. Agustini, P. Quaresma, and G. Lopes: 2002b, ‘Using semantic word
classes in text information retrieval systems’. In: S. Pinto (ed.): SBIE’2002 –
XII Simpósio Brasileiro de Informática na Educação, Workshop de Ontologias.
Porto Alegre, Brasil, pp. 593–597, Unisinos. ISBN 85-7431-133-2.

Gasperin, C., R. Vieira, R. Goulart, and P. Quaresma: 2003, ‘Extracting XML
syntactic chunks from Portuguese corpora’. In: TALN’2003 - Workshop on
Natural Language Processing of Minority Languages and Small Languages of the
Conference on ”Traitement Automatique des Langues Naturelles”. Batz-sur-Mer,
France.

Guangemi, A., N. Guarino, C. Masolo, A. Oltramari, and L. Schneider: 2002, ‘Sweet-
ening ontologies with DOLCE’. In: A. Gomez-Perez and V. R. Benjamins (eds.):
Proceedings of the EKAW’2002. pp. 166–181, Springer-Verlag.

Hobbs, J., M. Stickel, D. Appelt, and P. Martin: 1990, ‘Interpretation as Abduction’.
Technical Report SRI Technical Note 499, 333 Ravenswood Ave., Menlo Park,
CA 94025.

Kamp, H. and U. Reyle: 1993, From Discourse to Logic. Dordrecht: Kluwer.
Karlsson, F.: 1990, ‘Constraint grammar as a framework for parsing running

text’. In: H. Karlgren (ed.): 13th International Conference on Computational
Linguistics, Vol. 3. Helsinki, Finland, pp. 168–173.

Lame, G.: 2003, ‘Using text analysis techniques to identify legal ontologies’ com-
ponents’. In: Workshop on Legal Ontologies of the International Conference on
Artificial Intelligence and Law.

Lassila, O. and R. Swick: 1999, ‘Resource Description Framework (RDF) - Model
and Syntax Specification’. W3C.

Quaresma, P. and J. G. Lopes: 1995, ‘Unified logic programming approach to the
abduction of plans and intentions in information-seeking dialogues’. Journal of
Logic Programming 54.

Quaresma, P. and I. Rodrigues: 2001, ‘Using Logic Programming to model Multi-
Agent Web Legal Systems – An Application Report’. In: Proceedings of the

ailaw_pq.tex; 28/05/2004; 20:11; p.22

A methodology to create legal ontologies in a LP based web IR system 23

ICAIL’01 - International Conference on Artificial Intelligence and Law. St.
Louis, USA, ACM.

Quaresma, P. and I. P. Rodrigues: 2002, ‘PGR: Portuguese Attorney General’s Office
Decisions on the Web’. In: Bartenstein, Geske, Hannebauer, and Yoshie (eds.):
Web-Knowledge Management and Decision Support. Springer-Verlag.

Quaresma, P. and I. P. Rodrigues: 2003, ‘A natural language interface for information
retrieval on semantic web documents’. In: E. Menasalvas, J. Segovia, and P.
Szczepaniak (eds.): AWIC’2003 - Atlantic Web Intelligence Conference. Madrid,
Spain, pp. 142–154, Springer-Verlag.

Quintano, L., I. Rodrigues, and S. Abreu: 2001, ‘Relational Information Retrieval
through Natural Lanaguage Analysis’. In: Proceedings of INAP’01. Tokyo,
Japan, INAP.

Saias, J.: 2003, ‘Uma Metodologia para a construção automática de Ontologias e a
sua aplicação em Sistemas de Recuperação de Informação – A methodology for
the automatic creation of ontologies and its application in information retrieval
systems’. Master’s thesis, University of Évora, Portugal. In Portuguese.

W3C: 2000, ‘DAML+OIL – DARPA Agent Markup Language’. www.daml.org.

ailaw_pq.tex; 28/05/2004; 20:11; p.23

ailaw_pq.tex; 28/05/2004; 20:11; p.24

