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The problem of robust nonfragile synchronization is investigated in this paper for a class of complex dynamical networks subject to
semi-Markov jumping outer coupling, time-varying coupling delay, randomly occurring gain variation, and stochastic noise over
a desired finite-time interval. In particular, the network topology is assumed to follow a semi-Markov process such that it may
switch from one to another at different instants. In this paper, the random gain variation is represented by a stochastic variable
that is assumed to satisfy the Bernoulli distribution with white sequences. Based on these hypotheses and the Lyapunov-Krasovskii
stability theory, a new finite-time stochastic synchronization criterion is established for the considered network in terms of linear
matrix inequalities. Moreover, the control design parameters that guarantee the required criterion are computed by solving a set of
linearmatrix inequality constraints. An illustrative example is finally given to show the effectiveness and advantages of the developed
analytical results.

1. Introduction

During the past twenty years, the investigation of complex
dynamical networks (CDNs) that consist of a huge number
of interacting dynamical nodes has received a great deal of
attention from various science and engineering areas, such as
social networks, ecological prey-predator networks, protein
networks, power grids, and ecosystems [1, 2]. It should be
mentioned that the analysis of dynamical behaviors of CDNs
has become a hot research topic in recent years. Among
many dynamical behaviors, synchronization phenomenon
is the most important behavior and several interesting and
efficient methodologies have been developed in the literature
to solve the synchronization problem of various kinds of
CDNs; for instance, see [3–7]. In [4], the problem of inner

synchronization of a CDN has been investigated by consider-
ing two different types of guaranteed cost dynamic feedback
controllers, where the control gains corresponding to two
feedback controllers have different dimensions subject to the
topological structure of the CDN. In [5], the problem of
outer synchronization between two hybrid-coupled delayed
dynamical networks has been discussed by using the aperiod-
ically adaptive intermittent pinning control, where a simple
and elegant pinned-node selection scheme is proposed to
achieve the required result. It is worth mentioning that the
CDN representing real-time systems is generally affected by
external noise factors or stochastic disturbances [8]. Thus,
the consideration of external noise factors in the study of
synchronization of CDNs is of great importance in the
viewpoints of both theoretical and practical. By taking this
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fact into account, in recent years, research communities
have eagerly investigated the problems of synchronization of
CDNs with external stochastic disturbances, see for exam-
ple [9–12]. Sakthivel et al. [10] presented some sufficient
conditions that ensure the synchronization and solve the
state estimation problem of discrete-time stochastic complex
networks in the presence of uncertain inner couplings, where
the interval matrix approach is employed to characterize the
uncertainties encountered in the inner coupling terms. Li
et al. [11] developed a new synchronization criterion for a
class of discrete-time stochastic complex networks subject to
partial mixed impulsive effects, where by using the Lyapunov
stability theory and the variation of parameters formula, the
required criterion is obtained.

It should be pointed out that the interconnection topol-
ogy among the nodes of CDNs plays a significant role in the
study of synchronization problem. In the existing literature,
there have been two reported kinds of interconnection
topologies, which are constant/fixed topology [13] and time-
varying topology [14]. In [14], it has been illustrated that the
time-varying interconnection topology is more general than
the fixed one. Nevertheless, in most of the real networks, the
connectivity of the network topology might be unfixed or
randomly changing due to new creation or link failures. In
order to tackle these types of issues, it is more appropriate
to model the CDNs with randomly switching topologies that
are governed by a Markov process. Based on this scenario
and following the seminal works reported in [15, 16], some
interesting and significant results about synchronization of
CDNs with Markov jump topologies have been discussed;
see [17–19]. Specifically, in [18], the problem of nonfrag-
ile synchronization for a class of discrete-time complex
networks subject to Markov jumping switching topology
has been investigated in a unified framework that includes
the nonfragile H∞ synchronization control and nonfragile
l2–l∞ synchronization control problem as its special cases.
However, it is worth pointing out that the aforementioned
papers have considered constant transition rates in the
Markov process. It should be mentioned that the Markov
process might consist of time-varying transition rates when
modeling practical systems. Such kind of process is known
as semi-Markov process and few interesting results regarding
semi-Markov jump systems have been addressed in recent
literature [20–23]. Interestingly, in [21], by employing the
supplementary variable technique and plant transformation,
the state estimation and sliding mode control problems
have been investigated for semi-Markovian jump systems
in the presence of mismatched uncertainties. Apparently,
semi-Markov jump systems are comparatively more general
than the traditional Markov jump systems [24]. Following
the aforementioned seminal works, the concept of semi-
Markov process has further been employed in the network
topology to obtain the synchronization criteria for CDNs (see
[25, 26] and the references therein). However, only very few
results about the synchronization ofCDNswith semi-Markov
jump topology have been reported in the literature, which
stimulates us to do this present work.

It is worth mentioning that most of the available con-
troller design approaches have a predominant assumption

that the designed controller can be implemented accurately.
But in some real situations, such an assumption is not always
true as the controllers are often very sensitive or fragile to
their parameters’ variations. Furthermore, it should be noted
that a small perturbation in controllers may lead to undesir-
able oscillatory behavior or even instability [27]. Hence, it is
desirable as well as necessary to ensure the insensitivity of the
controller to certain parameter perturbations without loss of
the robust stability and thus, the investigation of nonfragile or
resilient controller design that has been capable of tolerating
some level of controller parameter gain variations has been
enormously increased in recent years [28–31]. To mention a
few, in [28], a robust resilient control problem of discrete-
time Markov jump nonlinear systems has been solved by
employing the linearmatrix inequality and stochastic analysis
techniques; in [29], based on the dissipative theory and
the event-triggered sampling scheme, the nonfragile control
design problem for a class of network-based singular systems
with input time-varying delay and external disturbances has
been addressed. Therefore, it is reasonable to consider the
nonfragile control design in the study of synchronization
of CDNs. It is noteworthy that only few research papers
regarding the nonfragile control design for achieving the
synchronization of CDNs have been published; see [32, 33].
On the other hand, it is worth mentioning that most of the
existing results based on the classical control theory dealt
with the asymptotic property of control system trajectories
over an infinite-time interval and did not possess any restric-
tion to the system states. But in many practical problems, it
is required that the described system state does not exceed
a certain bound during a fixed finite-time interval [34].
According to this fact, a great number of interesting results
on finite-time control design have been proposed for the
synchronization of various CDNs; for instance, see [35–38].
To the best of our knowledge, however, the problem of robust
nonfragile synchronization has not been fully investigated for
a class of CDNs over a prescribed finite-time interval.

Motivated by the above analysis, in this paper, we focus
on the finite-time nonfragile synchronization problem is
investigated for a class of CDNs subject to semi-Markov jump
topology and stochastic noises. More precisely, a new delay-
dependent sufficient condition under which the considered
CDNs are synchronized to the target network within a given
finite-time interval is developed in terms of linear matrix
inequalities by utilizing the Lyapunov stability theory and
the stochastic analysis techniques. Subsequently, based on
the developed condition, a design algorithm of the proposed
nonfragile state feedback controller that can ensure the finite-
time stochastic synchronization of the addressed network
is presented. Eventually, a numerical example is shown to
illustrate the effectiveness of the proposed theoretical results.

The rest of this paper is organized as follows: in Section 2,
the problem formulation of the network model under study
and the preliminaries required to obtain the main results
are given.Thefinite-time stochastic synchronization criterion
for the considered network model is presented in Section 3.
A numerical example and its simulations are provided in
Section 4. Conclusion of this paper is given in Section 5.
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2. Problem Formulation and Preliminaries

In this paper, we consider a class of complex dynamical
networks (CDNs) with semi-Markov jump outer coupling
and stochastic noise, which consists of 𝑁 identical nodes
and is defined over the Wiener process probability space(Ω,F,P), where Ω is the sample space, F is the algebra of
events andP is the probability measure defined onF. Such a
network model can be described in the following form:

𝑑𝑥𝑖 (𝑡) = [[
𝐴𝑥𝑖 (𝑡) + 𝑓 (𝑡, 𝑥𝑖 (𝑡))

+ 𝜆 𝑁∑
𝑗=1

𝑇𝑖𝑗 (𝜎 (𝑡)) Λ𝑥𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑢𝑖 (𝑡)]]
𝑑𝑡

+ 𝜌 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,
𝑥𝑖 (𝑡) = 𝜙𝑖 (𝑡) , ∀𝑡 ∈ [−𝜏2, 0] , 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥𝑖(𝑡) ∈ R𝑛 denotes the state vector of the 𝑖th node;𝐴 is a known real constant matrix with suitable dimension;𝑓(⋅, ⋅) ∈ R𝑛 represents a nonlinear vector-valued function;
the constant 𝜆 > 0 is the coupling strength of network;𝑇𝑖𝑗(𝜎(𝑡)) are the elements of the outer couplingmatrix𝑇(𝜎(𝑡))
which describes the network topological structure and is
assumed to follow a semi-Markov process 𝜎(𝑡) which to be
defined later. In particular, 𝑇𝑖𝑗(𝜎(𝑡)) is defined as follows:
if there exists a connection between node 𝑖 and node 𝑗,
then 𝑇𝑖𝑗(𝜎(𝑡)) > 0; otherwise, 𝑇𝑖𝑗(𝜎(𝑡)) = 0. Further, the
diagonal elements of the outer coupling matrix are given
as follows: 𝑇𝑖𝑖(𝜎(𝑡)) = −∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑇𝑖𝑗(𝜎(𝑡)); Λ represents the
inner coupling matrix and is a positive diagonal matrix with
appropriate dimension; 𝑢𝑖(𝑡) ∈ R𝑛 is the control input of the𝑖th node which to be defined later; the function 𝜌(⋅, ⋅, ⋅) : R ×
R𝑛 × R𝑛 → R𝑛 is the noise intensity vector-valued function;𝑤(𝑡) is a 1-dimensional Brownian motion defined on the
probability space (Ω,F,P) with E{𝑤(𝑡)} = 0, E{𝑤2(𝑡)} = 1
and E{𝑤(𝑠)𝑤(𝑡)} = 0 for 𝑠 ̸= 𝑡, where E is the mathematical
expectation; 𝜏(𝑡) is the time-varying delay function satisfying0 ≤ 𝜏1 ≤ 𝜏(𝑡) ≤ 𝜏2 < ∞ and ̇𝜏(𝑡) ≤ 𝜇 < 1, where 𝜏1, 𝜏2, and 𝜇
are known scalars; and 𝜙𝑖(𝑡) denotes the initial value of the 𝑖th
node’s state and is assumed to be a continuous vector-valued
function.

Now, let us define the semi-Markov jump process of
the outer coupling matrix. The process {𝜎(𝑡), 𝑡 ≥ 0} is a
continuous-time homogeneous semi-Markov process with
right continuous trajectories and takes values in a finite set
S = {1, 2, . . . ,N}. More precisely, 𝜎(𝑡) is associated with the
transition probabilitymatrixΠ = [𝜋𝑝𝑞(ℎ)]N×N which is given
by the following transition rates:

Prob {𝜎 (𝑡 + ℎ) = 𝑞 | 𝜎 (𝑡) = 𝑝}
= {{{

𝜋𝑝𝑞 (ℎ) ℎ + 𝑜 (ℎ) , if 𝑝 ̸= 𝑞,
1 + 𝜋𝑝𝑝 (ℎ) ℎ + 𝑜 (ℎ) , if 𝑝 = 𝑞,

(2)

where ℎ > 0 is the sojourn time, limℎ→0(𝑜(ℎ)/ℎ) = 0 and𝜋𝑝𝑞(ℎ) ≥ 0 for𝑝 ̸= 𝑞 is the transition rate frommode𝑝 at time
𝑡 to mode 𝑞 at time 𝑡 + ℎ and 𝜋𝑝𝑝(ℎ) = −∑N

𝑞=1,𝑞 ̸=𝑝 𝜋𝑝𝑞(ℎ). For
notational simplicity, we hereafter denote the semi-Markov
process parameter 𝜎(𝑡) by 𝑝. For example, 𝑇(𝜎(𝑡)) is denoted
by 𝑇𝑝.

To synchronize all the 𝑁 identical nodes in the network
(1) to a common value, let us define the synchronization error
vector as 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑠(𝑡), where 𝑠(𝑡) ∈ R𝑛 is the state
vector of the unforced isolated node that can be expressed as𝑑𝑠(𝑡) = [𝐴𝑠(𝑡) + 𝑓(𝑡, 𝑠(𝑡))]𝑑𝑡 and is assumed to be noise-free,
that is, 𝜌(𝑡, 𝑠(𝑡), 𝑠(𝑡 − 𝜏(𝑡))) = 0. Based on this error vector,
we now choose a robust state feedback controller to achieve
the synchronization of network (1), which is insensitive to the
uncertain perturbations or gain fluctuations and of the form:

𝑢𝑖 (𝑡) = (𝐾𝑝 + 𝛼 (𝑡) Δ𝐾𝑝 (𝑡)) 𝑒𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (3)

where 𝐾𝑝 is the feedback controller gain matrix that is to
be determined in the forthcoming section, Δ𝐾𝑝(𝑡) is a time-
varying matrix representing the controller gain fluctuations,
and 𝛼(𝑡) is a stochastic variable describing the randomly
occurring controller gain fluctuations. It is here assumed
that Δ𝐾𝑝(𝑡) takes the form Δ𝐾𝑝(𝑡) = 𝑀𝑝Γ𝑝(𝑡)𝑁𝑝, where𝑀𝑝 and 𝑁𝑝 are known real constant matrices and Γp(𝑡) is
an unknown time-varying matrix satisfying Γ𝑇𝑝 (𝑡)Γ𝑝(𝑡) ≤ 𝐼.
Further, it is assumed that the stochastic variable 𝛼(𝑡) obeys
the Bernoulli distribution with the following probability
rules: (i) Prob{𝛼(𝑡) = 1} = E{𝛼(𝑡)} = 𝛼 and (ii) Prob {𝛼(𝑡) =0} = 1 − E{𝛼(𝑡)} = 1 − 𝛼, where 𝛼 ∈ [0, 1].

Then, by using (1) and (3), the closed-loop form of the
error system can be obtained as follows:

𝑑𝑒𝑖 (𝑡) = [[
(𝐴 + 𝐾𝑝 + 𝛼 (𝑡) Δ𝐾𝑝 (𝑡)) 𝑒𝑖 (𝑡) + 𝑔 (𝑡, 𝑒𝑖 (𝑡))

+ 𝜆 𝑁∑
𝑗=1

𝑇𝑖𝑗𝑝Λ𝑒𝑗 (𝑡 − 𝜏 (𝑡))]]
𝑑𝑡

+ 𝜌 (𝑡, 𝑒𝑖 (𝑡) , 𝑒𝑖 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,
𝑝 ∈ S, 𝑖 = 1, 2, . . . , 𝑁,

(4)

where 𝑔(𝑡, 𝑒𝑖(𝑡)) = 𝑓(𝑡, 𝑥𝑖(𝑡)) − 𝑓(𝑡, 𝑠(𝑡)) and 𝜌(𝑡, 𝑒𝑖(𝑡), 𝑒𝑖(𝑡 −𝜏(𝑡))) = 𝜌(𝑡, 𝑥𝑖(𝑡), 𝑥𝑖(𝑡 − 𝜏(𝑡))) − 𝜌(𝑡, 𝑠(𝑡), 𝑠(𝑡 − 𝜏(𝑡))). By
using the Kronecker product properties and mathematical
manipulations, the error system (4) can be written in the
following compact form:

𝑑𝑒 (𝑡) = [((𝐼𝑁 ⊗ 𝐴) + (𝐼𝑁 ⊗ 𝐾𝑝)
+ 𝛼 (𝐼𝑁 ⊗𝑀𝑝Γ𝑝 (𝑡)𝑁𝑝)
+ (𝛼 (𝑡) − 𝛼) (𝐼𝑁 ⊗𝑀𝑝Γ𝑝 (𝑡)𝑁𝑝)) 𝑒 (𝑡) + 𝐺 (𝑡, 𝑒 (𝑡))
+ 𝜆 (𝑇𝑝 ⊗ Λ) 𝑒 (𝑡 − 𝜏 (𝑡))] 𝑑𝑡 + 𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡
− 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(5)
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where 𝑒(𝑡) = [𝑒𝑇1 (𝑡), 𝑒𝑇2 (𝑡), . . . , 𝑒𝑇𝑁(𝑡)]𝑇, 𝐺(𝑡, 𝑒(𝑡)) = [𝑔𝑇(𝑡,𝑒1(𝑡)), 𝑔𝑇(𝑡, 𝑒2(𝑡)), . . . , 𝑔𝑇(𝑡, 𝑒𝑁(𝑡))]𝑇, and 𝜌(𝑡, 𝑒(𝑡), 𝑒(𝑡−𝜏(𝑡))) = [𝜌(𝑡, 𝑒1(𝑡), 𝑒1(𝑡 − 𝜏(𝑡))), 𝜌(𝑡, 𝑒2(𝑡), 𝑒2(𝑡 − 𝜏(𝑡))), . . .,𝜌(𝑡, 𝑒𝑁(𝑡), 𝑒𝑁(𝑡 − 𝜏(𝑡)))]𝑇.
In order to develop the main results, the following

assumptions and definition are required.

Assumption 1. For the nonlinear function 𝑓(⋅, ⋅), there exists
a known real constant matrix G such that ‖𝑓(𝑡, 𝑥𝑖(𝑡))‖ ≤
G‖𝑥𝑖(𝑡)‖ for any 𝑥𝑖(𝑡) ∈ R𝑛.
Assumption 2. The noise intensity function 𝜌(⋅, ⋅, ⋅) : R+ ×
R𝑛 × R𝑛 → R𝑛 is uniformly Lipschitz continuous in
terms of the following inequality of trace inner prod-
uct: trace{𝜌𝑇(𝑡, 𝑥𝑖(𝑡), 𝑥𝑖(𝑡 − 𝜏(𝑡)))𝜌(𝑡, 𝑥𝑖(𝑡), 𝑥𝑖(𝑡 − 𝜏(𝑡)))} ≤𝜂𝑖𝑥𝑇𝑖 (𝑡)𝑥𝑖(𝑡) + 𝜁𝑖𝑥𝑇𝑖 (𝑡 − 𝜏(𝑡))𝑥𝑖(𝑡 − 𝜏(𝑡)), where 𝜂𝑖 and 𝜁𝑖 (𝑖 =1, 2, . . . , 𝑁) are known nonnegative constants.

Assumption 3. For each 𝑝 ∈ S, all the real parts of
eigenvalues of 𝑇(𝜎(𝑡)) are negative except an eigenvalue 0
withmultiplicity 1, whichmeans that the reverse of the graph
generated by the matrix 𝑇(𝜎(𝑡)) contains a rooted spanning
directed tree for every 𝑝 ∈ S.
Definition 4 (see [34]). The considered network (1) is said
to be stochastically synchronized in finite-time with respect
to (𝑐1, 𝑐2, 𝜏2, 𝑇∗, 𝑍𝑝) if there exist positive definite matrix𝑍𝑝 (𝑝 ∈ S) and positive constants 𝑇∗, 𝑐1, 𝑐2 with 𝑐2 > 𝑐1 such
that the following condition holds:

E {𝑥𝑇 (𝑡0) (𝐼𝑁 ⊗ 𝑍𝑝) 𝑥 (𝑡0)} ≤ 𝑐1
󳨐⇒ E {𝑥𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑍𝑝) 𝑥 (𝑡)} < 𝑐2,

𝑡0 ∈ [−𝜏2, 0] , 𝑡 ∈ [0, 𝑇∗] .
(6)

3. Main Results

Based on the Lyapunov-Krasovskii stability theory, this sec-
tion aims to develop a new set of delay-dependent sufficient
conditions that can guarantee the stochastic synchronization
of the considered network model (1) over a finite-time
interval. Moreover, based on these conditions, a design of the
robust nonfragile state feedback control (3) for the network
model under consideration is provided in terms of linear
matrix inequalities (LMIs).

Theorem5. Consider the networkmodel (1) with Assumptions
1–3. For given positive scalars 𝑐1, 𝑐2, 𝑇∗, 𝛿, 𝜇, 𝜆, 𝛼 ∈ [0, 1],𝜏1, 𝜏2, symmetric matrix 𝑍𝑝 (𝑝 ∈ S), and diagonal matrices𝑅3,𝑅4, the considered network (1) is stochastically synchronized
in finite-time under the nonfragile controller (3), if there exist
symmetric matrices 𝑃𝑝 > 0 (𝑝 ∈ S), 𝑄𝑙 > 0 (𝑙 = 1, 2, 3),𝑅V > 0 (V = 1, 2) and positive scalars 𝜅𝑝 (𝑝 ∈ S), 𝜖1 such that
the following matrix inequalities hold:

𝑃𝑝 − 𝜅𝑝𝐼𝑁 < 0, 𝑝 ∈ S, (7)

Ω𝑝 (ℎ) = [[[
[

[Ω𝑝𝑖𝑗 (ℎ)]7×7 𝜖1𝜗𝑝 𝜐𝑇𝑝∗ −𝜖1𝐼𝑁 0
∗ ∗ −𝜖1𝐼𝑁

]]]
]
< 0, (8)

𝑐1𝑒𝛿𝑇∗ (𝜆1 + 𝜏1𝜆2 + 𝜏2𝜆3 + 𝜏2𝜆4 + 𝜏31𝜆5 + 𝜏312𝜆6)
− 𝜆7𝑐2 < 0, (9)

where

Ω𝑝11 (ℎ) = (𝐼𝑁 ⊗ 𝑃𝑝) (𝐼𝑁 ⊗ 𝐴)
+ (𝐼𝑁 ⊗ 𝐴)𝑇 (𝐼𝑁 ⊗ 𝑃𝑝)𝑇
+ (𝐼𝑁 ⊗ 𝑃𝑝) (𝐼𝑁 ⊗ 𝐾𝑝)
+ (𝐼𝑁 ⊗ 𝐾𝑝)𝑇 (𝐼𝑁 ⊗ 𝑃𝑝)𝑇 + (𝐼𝑁 ⊗ 𝑄1)
+ (𝐼𝑁 ⊗ 𝑄2) + (𝐼𝑁 ⊗ 𝑄3)
+ 𝜏21 (𝐼𝑁 ⊗ 𝑅1) + 𝜅𝑝 (𝐼𝑁 ⊗ 𝑅3)
+ (𝐼𝑁 ⊗G) (𝐼𝑁 ⊗G)𝑇
+ N∑
𝑞=1

𝜋𝑝𝑞 (ℎ) (𝐼𝑁 ⊗ 𝑃𝑞) ,
Ω𝑝13 = (𝐼𝑁 ⊗ 𝑃𝑝) 𝜆 (𝑇𝑝 ⊗ Λ) ,
Ω𝑝15 = (𝐼𝑁 ⊗ 𝑃𝑝) ,
Ω𝑝22 = − (𝐼𝑁 ⊗ 𝑄1) − 𝜏212 (𝐼𝑁 ⊗ 𝑅2) ,
Ω𝑝33 = − (1 − 𝜇) (𝐼𝑁 ⊗ 𝑄2) + 𝜅𝑝 (𝐼𝑁 ⊗ 𝑅4) ,
Ω𝑝44 = − (𝐼𝑁 ⊗ 𝑄3) ,
Ω𝑝55 = − (𝐼𝑁 ⊗ 𝐼𝑁) ,
Ω𝑝66 = − (𝐼𝑁 ⊗ 𝑅1) ,
Ω𝑝77 = − (𝐼𝑁 ⊗ 𝑅2) ,
𝜗𝑝 = [[

𝛼 (𝐼𝑁 ⊗ 𝑃𝑝) (𝐼𝑁 ⊗𝑀𝑝) 0 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
6

]
]
𝑇

,

𝜐𝑝 = [[
(𝐼𝑁 ⊗ 𝑁𝑝) 0 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

6

]
]
,

𝜆1 = max {𝜆max (𝐼𝑁 ⊗ 𝑃̃𝑝) , 𝑝 ∈ S} ,
𝜆2 = max {𝜆max (𝐼𝑁 ⊗ 𝑄1𝑝) , 𝑝 ∈ S} ,
𝜆3 = max {𝜆max (𝐼𝑁 ⊗ 𝑄2𝑝) , 𝑝 ∈ S} ,
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𝜆4 = max {𝜆max (𝐼𝑁 ⊗ 𝑄3𝑝) , 𝑝 ∈ S} ,
𝜆5 = max {𝜆max (𝐼𝑁 ⊗ 𝑅̃1𝑝) , 𝑝 ∈ S} ,
𝜆6 = max {𝜆max (𝐼𝑁 ⊗ 𝑅̃2𝑝) , 𝑝 ∈ S} ,
𝜆7 = min {𝜆min (𝐼𝑁 ⊗ 𝑃̃𝑝) , 𝑝 ∈ S} ,
𝜏12 = 𝜏2 − 𝜏1,

(10)

and the rest of elements of Ω𝑝𝑖𝑗(ℎ) are zero.
Proof. To develop the finite-time stochastic synchronization
criterion for the network model (1), it is enough to establish
the finite-time stochastic stability criterion for the closed-
loop error system (5). For this purpose, we select the
Lyapunov-Krasovskii functional as follows:

𝑉 (𝑒𝑡, 𝑡, 𝑝) = 3∑
𝑙=1

𝑉𝑙 (𝑒𝑡, 𝑡, 𝑝) , (11)

where

𝑉1 (𝑒𝑡, 𝑡, 𝑝) = 𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑃𝑝) 𝑒 (𝑡) ,
𝑉2 (𝑒𝑡, 𝑡, 𝑝)
= ∫𝑡
𝑡−𝜏
1

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑄1) 𝑒 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡−𝜏(𝑡)

𝑒 (𝑠) (𝐼𝑁 ⊗ 𝑄2) 𝑒 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡−𝜏
2

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑄3) 𝑒 (𝑠) 𝑑𝑠,
𝑉3 (𝑒𝑡, 𝑡, 𝑝)
= 𝜏1 ∫0

−𝜏
1

∫𝑡
𝑡+𝜃
𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑅1) 𝑒 (𝑠) 𝑑𝑠 𝑑𝜃

+ 𝜏12 ∫−𝜏1
−𝜏
2

∫𝑡−𝜏1
𝑡+𝜃

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑅2) 𝑒 (𝑠) 𝑑𝑠 𝑑𝜃,

(12)

with 𝑃𝑝 > 0, 𝑄𝑙 (𝑙 = 1, 2, 3), 𝑅V (V = 1, 2) and 𝜏12 = 𝜏2 − 𝜏1.
Based on Ito’s differential formula [9], the stochastic

derivative of 𝑉(𝑒𝑡, 𝑡, 𝑝) can be obtained as

𝑑𝑉 (𝑒𝑡, 𝑡, 𝑝)
= m𝑉 (𝑒𝑡, 𝑡, 𝑝)
+ 𝑉𝑒 (𝑒𝑡, 𝑡, 𝑝) 𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(13)

where m𝑉(𝑒𝑡, 𝑡, 𝑝) = m𝑉1(𝑒𝑡, 𝑡, 𝑝) + m𝑉2(𝑒𝑡, 𝑡, 𝑝) + m𝑉3(𝑒𝑡, 𝑡, 𝑝)
and 𝑉𝑒(𝑒𝑡, 𝑡, 𝑝) = 𝜕𝑉(𝑒𝑡, 𝑡, 𝑝)/𝜕𝑒.

Now, by calculating the time derivative of𝑉(𝑒𝑡, 𝑡, 𝑝) along
the solution trajectories of the error system (5), we can get

m𝑉1 (𝑒𝑡, 𝑡, 𝑝) = 2𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑃𝑝) [(𝐼𝑁 ⊗ 𝐴) + (𝐼𝑁
⊗ 𝐾𝑝) + 𝛼 (𝑡) (𝐼𝑁 ⊗𝑀𝑝Γ𝑝 (𝑡)𝑁𝑝) + (𝛼 (𝑡) − 𝛼)
× (𝐼𝑁 ⊗𝑀𝑝Γ𝑝 (𝑡)𝑁𝑝) 𝑒 (𝑡) + 𝜆 (𝑇𝑝 ⊗ Λ) 𝑒 (𝑡
− 𝜏 (𝑡)) + 𝐺 (𝑡, 𝑒 (𝑡))] + N∑

𝑞=1

𝜋𝑝𝑞 (ℎ) 𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑃𝑞)
⋅ 𝑒 (𝑡) + trace {𝜌𝑇 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) (𝐼𝑁 ⊗ 𝑃𝑝)
⋅ 𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)))} ,

(14)

m𝑉2 (𝑒𝑡, 𝑡, 𝑝) ≤ 𝑒𝑇 (𝑡) ((𝐼𝑁 ⊗ 𝑄1) + (𝐼𝑁 ⊗ 𝑄2) + (𝐼𝑁
⊗ 𝑄3)) 𝑒 (𝑡) − 𝑒𝑇 (𝑡 − 𝜏1) (𝐼𝑁 ⊗ 𝑄1) 𝑒 (𝑡 − 𝜏1) − (1
− 𝜇) 𝑒𝑇 (𝑡 − 𝜏 (𝑡)) (𝐼𝑁 ⊗ 𝑄2) 𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒𝑇 (𝑡
− 𝜏2) (𝐼𝑁 ⊗ 𝑄3) 𝑒 (𝑡 − 𝜏2) ,

(15)

m𝑉3 (𝑒𝑡, 𝑡, 𝑝) = 𝜏21𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑅1) 𝑒 (𝑡) + 𝜏212𝑒𝑇 (𝑡 − 𝜏1)
⋅ (𝐼𝑁 ⊗ 𝑅2) 𝑒 (𝑡 − 𝜏1) − 𝜏1 ∫𝑡

𝑡−𝜏
1

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑅1)
⋅ 𝑒 (𝑠) 𝑑𝑠 − 𝜏12 ∫𝑡−𝜏1

𝑡−𝜏
2

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑅2) 𝑒 (𝑠) 𝑑𝑠.
(16)

Further, by applying Jensen’s single integral inequality [6]
to the integral terms in (16), we can get the following
inequalities:

− 𝜏1 ∫𝑡
𝑡−𝜏
1

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑅1) 𝑒 (𝑠) 𝑑𝑠
≤ −∫𝑡
𝑡−𝜏
1

𝑒𝑇 (𝑠) 𝑑𝑠 (𝐼𝑁 ⊗ 𝑅1) ∫𝑡
𝑡−𝜏
1

𝑒 (𝑠) 𝑑𝑠,
− 𝜏12 ∫𝑡−𝜏1

𝑡−𝜏
2

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑅2) 𝑒 (𝑠) 𝑑𝑠
≤ −∫𝑡−𝜏1
𝑡−𝜏
2

𝑒𝑇 (𝑠) 𝑑𝑠 (𝐼𝑁 ⊗ 𝑅2) ∫𝑡−𝜏1
𝑡−𝜏
2

𝑒 (𝑠) 𝑑𝑠.

(17)

On the other hand, it follows from Assumption 2 and
condition (7) that

trace {𝜌𝑇 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡))) (𝐼𝑁 ⊗ 𝑃𝑝)
⋅ 𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)))} ≤ 𝜅𝑝
⋅ trace {𝜌𝑇 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)))
⋅ 𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏 (𝑡)))} ≤ 𝜅𝑝 (𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑅3)
⋅ 𝑒 (𝑡) + 𝑒𝑇 (𝑡 − 𝜏 (𝑡)) (𝐼𝑁 ⊗ 𝑅4) 𝑒 (𝑡 − 𝜏 (𝑡))) ,

(18)
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where 𝜅𝑝 (𝑝 ∈ S) are positive scalars and 𝑅3, 𝑅4 are known
constant matrices.

Moreover, according to Assumption 1, we can obtain the
following inequality:

𝑒𝑇 (𝑡) (𝐼𝑁 ⊗G) (𝐼𝑁 ⊗G)𝑇 𝑒 (𝑡)
− F𝑇 (𝑡, 𝑒 (𝑡)) F (𝑡, 𝑒 (𝑡)) > 0. (19)

Then, by combining (13)–(19) and taking mathematical
expectation, it can be obtained that

E {𝑑𝑉 (𝑒𝑡, 𝑡, 𝑝)}𝑑𝑡 ≤ E {m𝑉 (𝑒𝑡, 𝑝, 𝑡)} ≤ E {𝜉𝑇 (𝑡)
⋅ ([Ω𝑝𝑖𝑗 (ℎ)]7×7 + 𝜗𝑝Γ𝑝 (𝑡) 𝜐𝑝 + (𝜗𝑝Γ𝑝 (𝑡) 𝜐𝑝)𝑇)
⋅ 𝜉 (𝑡)} ,

(20)

where

𝜉 (𝑡) = [𝑒𝑇 (𝑡) 𝑒𝑇 (𝑡 − 𝜏1) 𝑒𝑇 (𝑡 − 𝜏 (𝑡)) 𝑒𝑇 (𝑡 − 𝜏2) F𝑇 (𝑡, 𝑒 (𝑡)) ∫𝑡
𝑡−𝜏
1

𝑒𝑇 (𝑠) 𝑑𝑠 ∫𝑡−𝜏1
𝑡−𝜏
2

𝑒𝑇 (𝑠) 𝑑𝑠]𝑇 (21)

and the elements of Ω𝑝𝑖𝑗(ℎ), 𝜗𝑝, and 𝜐𝑝 are defined in the
theorem statement. Moreover, based on Lemma 2 in [6],
for any positive scalar 𝜖1, the right-hand side of (20) can
equivalently be written as

[Ω𝑝𝑖𝑗 (ℎ)]7×7 + 𝜗𝑝Γ𝑝 (𝑡) 𝜐𝑝 + (𝜗𝑝Γ𝑝 (𝑡) 𝜐𝑝)𝑇
≤ [Ω𝑝𝑖𝑗 (ℎ)]7×7 + 𝜖1𝜗𝑝𝜗𝑇𝑝 + 𝜖−11 𝜐𝑇𝑝𝜐𝑝.

(22)

Based on the Schur complement, it is noted that (22) is
equivalent to the left-hand side of (8).Thus, it can be observed
that E{m𝑉(𝑒𝑡, 𝑡, 𝑝)} < 0 if the LMIs (7) and (8) hold.
Furthermore, if there exists a constant 𝛿 > 0, it yields
that E{m𝑉(𝑒𝑡, 𝑡, 𝑝)} < 𝛿E{𝑉(𝑒𝑡, 𝑡, 𝑝)}. From which, it can
be obtained that E{𝑒−𝛿𝑡𝑉(𝑒𝑡, 𝑡, 𝑝)} < E{𝑉(𝑒0, 0, 𝑝0)}, where𝑝0 = 𝜎(0). Next, define the following new parameters: 𝑃̃𝑝 =𝑍−1/2𝑝 𝑃𝑝𝑍−1/2𝑝 , 𝑄1𝑝 = 𝑍−1/2𝑝 𝑄1𝑍−1/2𝑝 , 𝑄2𝑝 = 𝑍−1/2𝑝 𝑄2𝑍−1/2𝑝 ,
𝑄3𝑝 = 𝑍−1/2𝑝 𝑄3𝑍−1/2𝑝 , 𝑅̃1𝑝 = 𝑍−1/2𝑝 𝑅1𝑍−1/2𝑝 , 𝑅̃2𝑝 =
𝑍−1/2𝑝 𝑅2𝑍−1/2𝑝 . Then, it follows from condition (11) and 0 ≤𝑡 ≤ 𝑇∗ that

E {𝑉 (𝑒𝑡, 𝑡, 𝑝)} < 𝑒𝛿𝑡 {𝑉 (𝑒0, 0, 𝑝0)}
≤ 𝑒𝛿𝑡 {𝑒𝑇 (0) (𝐼𝑁 ⊗ 𝑃𝑝) 𝑒 (0)
+ ∫0
−𝜏
1

e𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑄1) 𝑒 (𝑠) 𝑑𝑠
+ ∫0
−𝜏(0)

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑄2) 𝑒 (𝑠) 𝑑𝑠
+ ∫0
−𝜏
2

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑄3) 𝑒 (𝑠) 𝑑𝑠
+ 𝜏21 ∫0

−𝜏
1

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑅1) 𝑒 (𝑠) 𝑑𝑠
+ 𝜏212 ∫0

−𝜏
2

𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑅2) 𝑒 (𝑠) 𝑑𝑠}

= 𝑒𝛿𝑇∗ (max {𝜆max (𝐼𝑁 ⊗ 𝑃̃𝑝)}
+ 𝜏1max {𝜆max (𝐼𝑁 ⊗ 𝑄1𝑝)}
+ 𝜏2max {𝜆max (𝐼𝑁 ⊗ 𝑄2𝑝)}
+ 𝜏2max {𝜆max (𝐼𝑁 ⊗ 𝑄3𝑝)}
+ 𝜏31 max {𝜆max (𝐼𝑁 ⊗ 𝑅̃1𝑝)}
+ 𝜏312max {𝜆max (𝐼𝑁 ⊗ 𝑅̃2𝑝)})
× E {𝑒𝑇 (𝑠) (𝐼𝑁 ⊗ 𝑍𝑝) 𝑒 (𝑠)} ≤ 𝑐1𝑒𝛿𝑇∗ (𝜆1 + 𝜏1𝜆2
+ 𝜏2𝜆3 + 𝜏2𝜆4 + 𝜏31𝜆5 + 𝜏312𝜆6) ,

(23)

where 𝜆𝑎 (𝑎 = 1, 2, . . . , 6) are defined in the theorem
statement and 𝑐1 is given in Definition 4.

On the other hand, from (11), we can have

E {𝑉 (𝑒𝑡, 𝑡, 𝑝)} ≥ E {𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑃𝑝) 𝑒 (𝑡)}
= min {𝜆min (𝐼𝑁 ⊗ 𝑃̃𝑝)}E {𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑍𝑝) 𝑒 (𝑡)}
≥ 𝜆7E {𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑍𝑝) 𝑒 (𝑡)} .

(24)

Now, by combining the inequalities (23) and (24), we can
get

E {𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝑍𝑝) 𝑒 (𝑡)}
≤ 𝑐1 (𝜆1 + 𝜏1𝜆2 + 𝜏2𝜆3 + 𝜏2𝜆4 + 𝜏31𝜆5 + 𝜏312𝜆6)𝑒−𝛿𝑇∗𝜆7
< 𝑐2.

(25)

It is clear to see that the inequality (25) is the same as
that in (9) which is the desired condition. Hence, it can be
concluded that the closed-loop error system (5) is finite-
time stochastically stable which means that the considered
network model (1) is stochastically synchronized within
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a prescribed finite-time interval. Thus, the proof of this
theorem is completed.

Theorem6. Consider the networkmodel (1) withAssumptions
1–3. For given positive scalars 𝑐1, 𝑐2,𝑇∗, 𝛿,𝜇,𝜆,𝛼 ∈ [0, 1], 𝜏1, 𝜏2,
symmetricmatrix𝑍𝑝(𝑝 ∈ S) and diagonalmatrices𝑅3,𝑅4, the
considered network (1) is stochastically synchronized in finite-
time under the non-fragile state feedback controller (3), if there
exist symmetric matrices𝑋𝑝 > 0 (𝑝 ∈ S),𝑄𝑙𝑝 > 0 (𝑙 = 1, 2, 3),𝑅̂V𝑝 > 0 (V = 1, 2), any matrices 𝑌𝑝 (𝑝 ∈ S) with appropriate
dimensions and positive scalars 𝜅𝑝, (𝑝 ∈ S), 𝑟, 𝑎𝑙 (𝑙 = 1, 2, 3),𝑏V (V = 1, 2), 𝜖1 such that the following matrix inequalities
hold:

𝑋𝑝 − 𝜅𝑝𝐼𝑁 > 0, 𝑝 ∈ S, (26)

Ω̂𝑝 (ℎ) = [Ω̂𝑝𝑖𝑗 (ℎ)]12×12 < 0, (27)

𝑟𝑍−1𝑝 < 𝑋𝑝 < 𝑍−1𝑝 ,
0 < 𝑄𝑙𝑝 < 𝑎𝑙𝑍−1𝑝 ,
0 < 𝑅̂V𝑝 < 𝑏V𝑍−1𝑝 ,

(28)

[𝑐1 (𝜏1𝑎1 + 𝜏2𝑎2 + 𝜏2𝑎3 + 𝜏31𝑏1 + 𝜏312𝑏2) − 𝑒𝛿𝑇
∗𝑐2 √𝑐1∗ −𝑟 ]

< 0,
(29)

where

Ω̂𝑝11 (ℎ) = (𝐼𝑁 ⊗ 𝐴) (𝐼𝑁 ⊗ 𝑋𝑝) + (𝐼𝑁 ⊗ 𝑋𝑝) (𝐼𝑁
⊗ 𝐴)𝑇 + (𝐼𝑁 ⊗ 𝑌𝑝) + (𝐼𝑁 ⊗ 𝑌𝑝)𝑇 + (𝐼𝑁 ⊗ 𝑄1𝑝)
+ (𝐼𝑁 ⊗ 𝑄2𝑝) + (𝐼𝑁 ⊗ 𝑄3𝑝) + 𝜏21 (𝐼𝑁 ⊗ 𝑅̂1𝑝)
+ 𝜋𝑝𝑝 (ℎ) (𝐼𝑁 ⊗ 𝑋𝑝) ,

Ω̂𝑝13 = 𝜆 (𝑇𝑝 ⊗ Λ) (𝐼𝑁 ⊗ 𝑋𝑝) ,
Ω̂𝑝15 = (𝐼𝑁 ⊗ 𝐼𝑁) ,
Ω̂𝑝18 = 𝛼 (𝐼𝑁 ⊗𝑀𝑝) ,
Ω̂𝑝19 = (𝐼𝑁 ⊗ 𝑋𝑝) (𝐼𝑁 ⊗ 𝑁𝑝)𝑇 ,
Ω̂𝑝110 = (𝐼𝑁 ⊗ 𝑋𝑝)√(𝐼𝑁 ⊗ 𝑅3),
Ω̂𝑝111 = (𝐼𝑁 ⊗ 𝑋𝑝) (𝐼𝑁 ⊗G) ,
Ω̂𝑝112 = [√𝜋𝑝1(ℎ)𝑋𝑇𝑝 , . . . , √𝜋𝑝(𝑝−1)(ℎ)𝑋𝑇𝑝 ,
√𝜋𝑝(𝑝+1)(ℎ)𝑋𝑇𝑝 , . . . , √𝜋𝑝N(ℎ)𝑋𝑇𝑝] ,

Ω̂𝑝22 = − (𝐼𝑁 ⊗ 𝑄1𝑝) − 𝜏212 (𝐼𝑁 ⊗ 𝑅̂2𝑝) ,

Ω̂𝑝33 = − (1 − 𝜇) (𝐼𝑁 ⊗ 𝑄2𝑝) ,
Ω̂𝑝310 = (𝐼𝑁 ⊗ 𝑋𝑝)√(𝐼𝑁 ⊗ 𝑅4),
Ω̂𝑝44 = − (𝐼𝑁 ⊗ 𝑄3𝑝) ,
Ω̂𝑝55 = − (𝐼𝑁 ⊗ 𝐼𝑁) ,
Ω̂𝑝66 = − (𝐼𝑁 ⊗ 𝑅̂1𝑝) ,
Ω̂𝑝77 = − (𝐼𝑁 ⊗ 𝑅̂2𝑝) ,
Ω̂𝑝88 = −𝜖1 (𝐼𝑁 ⊗ 𝐼𝑁) ,
Ω̂𝑝99 = −𝜖1 (𝐼𝑁 ⊗ 𝐼𝑁) ,
Ω̂𝑝1010 = −𝜅𝑝 (𝐼𝑁 ⊗ 𝐼𝑁) ,
Ω̂𝑝1111 = − (𝐼𝑁 ⊗ 𝐼𝑁) ,
Ω̂𝑝1212 = − diag {𝑋1, . . . , 𝑋𝑝−1, 𝑋𝑝+1, . . . , 𝑋N} ,
𝜅𝑝 = −1𝜅𝑝 ,

(30)

and the remaining parameters of Ω̂𝑝𝑖𝑗(ℎ) are zero. Moreover, if
the obtained LMIs are feasible, then the desired state feedback
controller gain matrices in (3) are computed by𝐾𝑝 = 𝑌𝑝𝑋−1𝑝 .
Proof. Let 𝑋𝑝 = 𝑃−1𝑝 and pre- and postmultiply the matrix
Ω𝑝(ℎ) by diag{(𝐼𝑁 ⊗ 𝑋𝑝), . . . , (𝐼𝑁 ⊗ 𝑋𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

4

, (𝐼𝑁 ⊗ 𝐼𝑁), (𝐼𝑁 ⊗
𝑋𝑝), (𝐼𝑁 ⊗ 𝑋𝑝), (𝐼𝑁 ⊗ 𝐼𝑁), (𝐼𝑁 ⊗ 𝐼𝑁)}. Now, we introduce
the following new variables: 𝑋𝑝𝑄𝑙𝑋𝑝 = 𝑄𝑙𝑝 (𝑙 = 1, 2, 3),𝑋𝑝𝑅V𝑋𝑝 = 𝑅̂V𝑝 (V = 1, 2), and 𝑌𝑝 = 𝐾𝑝𝑋𝑝.

Moreover, from Theorem 5, it is noticed that 𝜆7 < (𝐼𝑁 ⊗𝑍−1/2𝑝 𝑃𝑝𝑍−1/2𝑝 ) < 𝜆1, 0 < (𝐼𝑁 ⊗ 𝑍−1/2𝑝 𝑄1𝑍−1/2𝑝 ) < 𝜆2, 0 <(𝐼𝑁⊗𝑍−1/2𝑝 𝑄2𝑍−1/2𝑝 ) < 𝜆3, 0 < (𝐼𝑁⊗𝑍−1/2𝑝 𝑄3𝑍−1/2𝑝 ) < 𝜆4, 0 <(𝐼𝑁 ⊗ 𝑍−1/2𝑝 𝑅1𝑍−1/2𝑝 ) < 𝜆5 and 0 < (𝐼𝑁 ⊗ 𝑍−1/2𝑝 𝑅2𝑍−1/2𝑝 ) < 𝜆6.
According to the congruence transformation, these relations
can be changed into 𝜆−11 (𝐼𝑁 ⊗ 𝑍−1𝑝 ) < (𝐼𝑁 ⊗ 𝑋𝑝) < 𝜆−17 (𝐼𝑁 ⊗𝑍−1𝑝 ), 0 < (𝐼𝑁 ⊗ 𝑄𝑙𝑝) < 𝜆−27 𝜆𝑙+1(𝐼𝑁 ⊗ 𝑍−1𝑝 ) (𝑙 = 1, 2, 3) and0 < (𝐼𝑁 ⊗ 𝑅̂V𝑝) < 𝜆−27 𝜆V+4(𝐼𝑁 ⊗ 𝑍−1𝑝 ) (V = 1, 2). Now, if we set𝜆7 = 1,𝜆−11 = 𝑟,𝜆𝑙+1 ≤ 𝑎𝑙 (𝑙 = 1, 2, 3) and𝜆V+4 ≤ 𝑏V (V = 1, 2),
then the constraints in (28) can easily be deduced. Moreover,
the conditions in (26), (27), and (29) can be obtained from (7),
(8), and (9), respectively, which are the desired conditions.
Hence, the proof is completed.

Remark 7. It should be mentioned that the constraints
in (27) are cannot be solved directly via MATLAB LMI
control toolbox due to the existence of the time-varying
terms ∑N

𝑞=1 𝜋𝑝𝑞(ℎ). To overcome this difficulty, the transition
rates 𝜋𝑝𝑞(ℎ) are assumed to be bounded and satisfy
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𝜋−𝑝𝑞 ≤ 𝜋𝑝𝑞(ℎ) ≤ 𝜋+𝑝𝑞, since they are partially measurable in
practice which is mentioned in [26]. Moreover, in this case,
the following assumptions are made as in [26]:

𝜋𝑝𝑞 (ℎ) = N∑
𝑘=1

𝛾𝑘𝜋𝑝𝑞,𝑘, N∑
𝑘=1

𝛾𝑘 = 1, 𝛾𝑘 ≥ 0,

𝜋𝑝𝑞,𝑘 =
{{{{{{{
𝜋−𝑝𝑞 + (𝑘 − 1) 𝜋

+
𝑝𝑞 − 𝜋−𝑝𝑞
N − 1 , 𝑝 ̸= 𝑞, 𝑞 ∈ S,

𝜋+𝑝𝑞 − (𝑘 − 1) 𝜋
+
𝑝𝑞 − 𝜋−𝑝𝑞
N − 1 , 𝑝 = 𝑞, 𝑞 ∈ S.

(31)

Now, we are able to present the sufficient conditions
guaranteeing the stochastic synchronization of the consid-
ered network (1) over a finite-time interval in terms of LMIs
in which all the elements are either constants or constant
matrices according to Remark 7. Thus, we have the following
theorem.

Theorem 8. For given positive scalars 𝑐1, 𝑐2, 𝑇∗, 𝛿, 𝜆, 𝜇, 𝛼 ∈[0, 1], 𝜏1, 𝜏2, symmetric matrix 𝑍𝑝 (𝑝 ∈ S) and diagonal
matrices 𝑅3, 𝑅4, the considered network (1) with Assumptions
1–3 is stochastically synchronized in finite-time under the non-
fragile controller (3), if there exist symmetric matrices 𝑋𝑝 >0 (𝑝 ∈ S), 𝑄𝑙𝑝 > 0 (𝑙 = 1, 2, 3), 𝑅̂V𝑝 > 0 (V = 1, 2), any
matrices 𝑌𝑝 (𝑝 ∈ S) with appropriate dimensions and positive
scalars 𝜅𝑝 (𝑝 ∈ S), 𝑟, 𝑎𝑙 (𝑙 = 1, 2, 3), 𝑏V(V = 1, 2), 𝜖1 such that
the following matrix inequality, (26), (28), and (29) hold:

[Ω̂𝑝𝑖𝑗,𝑘]12×12 < 0, 𝑘 = 1, 2, . . . ,N, (32)

where

Ω̂𝑝11,𝑘 = (𝐼𝑁 ⊗ 𝐴) (𝐼𝑁 ⊗ 𝑋𝑝) + (𝐼𝑁 ⊗ 𝑋𝑝) (𝐼𝑁 ⊗ 𝐴)𝑇
+ (𝐼𝑁 ⊗ 𝑌𝑝) + (𝐼𝑁 ⊗ 𝑌𝑝)𝑇 + (𝐼𝑁 ⊗ 𝑄1𝑝) + (𝐼𝑁
⊗ 𝑄2𝑝) + (𝐼𝑁 ⊗ 𝑄3𝑝) + 𝜏21 (𝐼𝑁 ⊗ 𝑅̂1𝑝) + 𝜋𝑝𝑝,𝑘 (𝐼𝑁
⊗ 𝑋𝑝) ,

Ω̂𝑝112,𝑘 = [√𝜋𝑝1,𝑘𝑋𝑇𝑝 , . . . , √𝜋𝑝(𝑝−1),𝑘𝑋𝑇𝑝 , √𝜋𝑝(𝑝+1),𝑘𝑋𝑇𝑝 ,
. . . , √𝜋𝑝N,𝑘𝑋𝑇𝑝] ,

(33)

and the remaining elements of Ω̂𝑝𝑖𝑗,𝑘 are the same as those
defined in Theorem 6. Further, the nonfragile state feedback
controller gain matrices in (3) are calculated by 𝐾𝑝 = 𝑌𝑝𝑋−1𝑝 .
Proof. Based on Remark 7, the time-varying element 𝜋𝑝𝑞(ℎ)
may take values in the interval [𝜋−𝑝𝑞, 𝜋+𝑝𝑞]. Then, by using (31)
and following the similar lines in the proof ofTheorem 6, it is
easy to obtain the inequality (32) which completes the proof.

Remark 9. It should be noted that, so far in the literature,
several control approaches have been proposed for the
synchronization problem of several CDNs [3–6], wherein the

interconnection topology among the nodes are assumed to
be fixed. However, in practice, this assumption is practically
difficult or even impossible. However, yet now, there were
no results reported in the existing literature for the synchro-
nization analysis of stochastic CDNswith switching topology.
According to this fact, in this paper, finite-time synchroniza-
tion problem of stochastic CDNs with switching topology is
investigated. Furthermore, due to random behavior in the
dynamics of stochastic CDNs, it is very difficult to determine
the exact fixed control value. Therefore, in this paper, the
feedback control gain is considered with uncertain terms,
which is more significant to reflect the realistic scenarios.

4. An Illustrative Example

This section provides an illustrative example to verify the
developed theoretical results in the previous section. For the
sake of simplicity, consider a class of CDNs in the form of
(1) with five identical nodes and the state vector of each node
being three-dimensional, that is,𝑁 = 5 and 𝑛 = 3.

Let us select the network matrix and the nonlinear
function as

𝐴 = [[
[

1 −1.4 0
−0.92 1.2 −0.5
0 2 −1.2

]]
]
,

𝑓 (𝑡, 𝑥𝑖 (𝑡)) = [[[
[

0.5 exp (−0.01𝑡) tanh (𝑥𝑖1 (𝑡))0.5 exp (−0.01𝑡) tanh (𝑥𝑖2 (𝑡))0.5 exp (−0.01𝑡) tanh (𝑥𝑖3 (𝑡))
]]]
]
.

(34)

It is clear to see that 𝑓(𝑡, 𝑥𝑖(𝑡)) satisfies Assumption 1 with
G = diag {0.5, 0.5, 0.5}. In this example, we consider the semi-
Markov jump topology with two modes, whose connectivity
graph is shown in Figure 1. The inner coupling matrix is
assumed to be Λ = diag {0.2, 0.5, 0.7} and the coupling
strength is chosen as 𝜆 = 0.5. The time-varying delay is taken
as 𝜏(𝑡) = 0.5 + 0.5 sin(𝑡) from which it can be obtained that𝜏1 = 0, 𝜏2 = 1 and 𝜇 = 0.5.

Based on Figure 1, the jumping coupling configuration
matrices 𝑇(𝜎(𝑡)) for 𝜎(𝑡) = 1, 2 can be expressed as

𝑇1 =
[[[[[[[[
[

0 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
1 0 0 −1 0
0 0 0 1 −1

]]]]]]]]
]
,

𝑇2 =
[[[[[[[[
[

−1 1 0 0 0
0 0 0 0 0
1 0 −1 0 0
0 0 1 −1 0
0 0 1 0 1

]]]]]]]]
]
.

(35)

Moreover, the elements 𝜋12(ℎ) and 𝜋21(ℎ) of transition rate
matrix are assumed to lie in the intervals [0.1, 2] and [0.8, 1.7],



Complexity 9

1 2

345

(a)

12

34 5

(b)

Figure 1: Connected topology of the considered CDNs.

respectively. So, in light of (31), the transition rates 𝜋12(ℎ)
and 𝜋21(ℎ) can be represented as 𝜋12(ℎ) = ∑2𝑛=1 𝛾𝑛𝜋12,𝑘 and𝜋21(ℎ) = ∑2𝑛=1 𝛾𝑛𝜋21,𝑘, respectively, with 𝜋12,1 = 0.1, 𝜋12,2 =2, 𝜋21,1 = 0.8, and 𝜋21,2 = 1.7. The stochastic variable
representing the controller gain fluctuations is chosen as𝛼(𝑡) = 0.25 + 0.25 sin(𝑡). Furthermore, the uncertain
parameter matrices in the control gain are taken as

𝑀1 = [[
[
0.01 0.01 0.02
0.02 0.02 0.01
0.02 0.01 0.10

]]
]
,

𝑀2 = [[
[
0.01 0.02 0.02
0.02 0.03 0.01
0.02 0.01 0.01

]]
]
,

𝑁1 = [[
[
0.01 0.02 0.03
0.01 0.03 0.01
0.02 0.02 0.01

]]
]
,

𝑁2 = [[
[
0.02 0.01 0.02
0.01 0.01 0.01
0.02 0.01 0.02

]]
]

(36)

and Γ𝑝(𝑡) = sin (𝑡). The rest of parameters involved in the
simulation are set to be 𝑐1 = 1, 𝑐2 = 2, 𝛿 = 0.01, and 𝑇∗ = 1.
Then, by solving the LMIs (26), (28), and (29) in Theorem 6
along with (32) in Theorem 8 with the aid of MATLAB LMI
control toolbox, we can get a set of feasible solutions from
which the nonfragile state feedback control gainmatrices can
be obtained as follows:

𝐾1 = [[
[
−17.7856 172.5392 −19.7897
−155.4332 −30.3290 66.8671
17.6228 −66.6954 −40.4541

]]
]
,

𝐾2 = [[
[
−19.2269 −2.5815 −51.2629
4.3104 −29.1095 −64.4932
39.9849 57.5098 −35.7536

]]
]
.

(37)

Here, our aim is to design the nonfragile state feedback
controller such that the considered network (1) is robustly
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Figure 2: State responses of first node.

synchronized with the target network within a desired finite-
time interval. For the simulation purposes, we set the initial
conditions for the states of the nodes and the isolated node as
follows: 𝑥1(0) = [10 11 10]𝑇, 𝑥2(0) = [9 11 10]𝑇, 𝑥3(0) =[11 10 9]𝑇, 𝑥4(0) = [10 9 10]𝑇, 𝑥5(0) = [10 11 10]𝑇,
and 𝑠(0) = [9 8 9]𝑇. The noise intensity function is taken
as 𝜌(𝑡, 𝑥𝑖(𝑡), 𝑥𝑖(𝑡 − 𝜏(𝑡))) = [0.1 sin(𝑥𝑖1(𝑡)) 0.1 sin(𝑥𝑖2(𝑡 −𝜏(𝑡))) 0.1sin(𝑥𝑖3(𝑡 − 𝜏(𝑡)))]𝑇.

Based on these values, simulations are drawn in Figures
2–12. Specifically, the state responses of the first, second,
and third nodes together with the isolated node are plotted
in Figures 2, 3, and 4, respectively, wherein the dotted line
represents the isolated node and the dashed lines denote the
five identical nodes. It can easily be observed from these
figures that the states of the nodes are exactly synchronized
with the states of the isolated node within short period
which shows the efficiency of the proposed nonfragile control
strategy. Moreover, the corresponding error state responses
and the control response curves are given in Figures 5–7
and Figures 8–10, respectively. Further, Figure 11 shows the
jumping mode of the semi-Markov switching topology. In
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Figure 3: State responses of second node.
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Figure 4: State responses of third node.

addition, to realize the finite-time synchronization, the time
evolution of 𝑒𝑇𝑖 (𝑡)𝑍𝑝𝑒𝑖(𝑡) (𝑖 = 1, 2, 3, 4, 5), (𝑝 ∈ S) is depicted
in Figure 12. It can be seen from Figure 12 that the states of the
error system do not exceed the prescribed threshold 𝑐2 = 2,
whichmeans that the synchronization of considered network
(1) is achieved within a given finite-time interval. Thus, it
can be concluded from the simulations that the designed
nonfragile control algorithm effectively works even in the
presence of stochastic noise and time-varying coupling delay.

5. Conclusion

In this paper, we have studied the robust finite-time non-
fragile synchronization problem for a class of CDNs with
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Figure 5: Error state responses of first node.
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Figure 6: Error state responses of second node.

semi-Markov jump outer coupling, time-varying coupling
delay, randomly occurring gain variation and stochastic
noise. In particular, we have considered the semi-Markov
switching topology to obtain the synchronization criterion.
Moreover, we have introduced a stochastic variable satis-
fying the Bernoulli distribution to represent the random
gain variations in the controller design. By employing the
Lyapunov-Krasovskii stability theory and some stochastic
analysis techniques, we then have developed a new finite-
time stochastic synchronization criterion for the considered
network in terms of linear matrix inequalities and have
presented a design algorithm for the proposed nonfragile
state feedback controller to a solution of the obtained set
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Figure 7: Error state responses of third node.
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Figure 8: Control input of first node.

of linear matrix inequalities. At last, we have provided a
numerical example to verify the obtained theoretical results.
In addition, it should be pointed out that one of the future
research topics would be to investigate the problem of finite-
time mixed 𝐻∞ and passivity synchronization of stochastic
singular CDNs with semi-Markov switching outer coupling
delay and actuator saturation.
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