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Abstract: The “somewhat vague, intuitive” notion from computability theory of an effective pro-

cedure (method) or algorithm can be fairly precisely defined, even if it does not have a purely

mathematical definition—and even if (as many have asserted) for that reason, the Church–Turing

thesis (that the effectively calculable functions on natural numbers are exactly the general recursive

functions), cannot be proved. However, it is logically provable from the notion of an effective pro-

cedure, without reliance on any (partially) mathematical thesis or conjecture concerning effective

procedures, such as the Church–Turing thesis, that the class of effective procedures is undecidable,

i.e., that there is no effective procedure for ascertaining whether a given procedure is effective. The

proof does not even appeal to a precise definition of ‘effective procedure’. Instead, it relies solely and

entirely on a basic grasp of the intuitive notion of such a procedure. Though the result itself is not

surprising, it is also not without significance. It has the consequence, for example, that the solution

to a decision problem, if it is to be complete, must be accompanied by a separate argument that the

proposed ascertainment procedure is, in fact, a decision procedure, i.e., effective—for example, that it

invariably terminates with the correct verdict.

Keywords: algorithm; Church’s thesis; Church–Turing thesis; computability; decidability; decision

problem; effective procedure; Turing

1. Effectiveness

The notion of an algorithm (in one sense)—an effective or mechanical procedure or
method of calculation—is fundamental to computability theory. The basic idea is that of
a finite, mechanical, step-by-step, automatic, and infallible procedure for accomplishing
some specific purpose, especially for solving some specific problem. There are alternative
characterizations of an effective procedure, but no characterization is universally accepted

by experts.1 This situation raises questions. Is there, nevertheless, a generally intended
notion? If so, can it be fully captured by a reasonably precise, sense-preserving definition?
If so, does the definition provide or yield an effective procedure for determining of any
given procedure whether it is effective?

The general recursive functions are the very functions on the natural numbers that are
computable by a Turing machine and the λ-definable functions on the natural numbers, as
well as the functions that satisfy certain other precise mathematical definitions. General
recursive functions are paradigms of effectively, i.e., mechanically or algorithmically, calcu-
lable functions. The Church–Turing thesis is the proposition that all effectively calculable
functions on natural numbers are general recursive. In effect, it is the conjecture that the
effectively calculable functions on natural numbers are exactly the general recursive func-
tions and, equivalently, exactly the so-called Turing-computable functions on the natural

numbers.2

Computability theorists have accepted the Church–Turing thesis even in the absence
of proof. A once standard view, enshrined in authoritative encyclopedia articles and the
like, is that the Church–Turing thesis, even if correct, is not susceptible to proof, because
the central notion of an effective procedure is not sufficiently formal and precise as to
belong to mathematics, in a narrow sense excluding the theory of effectiveness, or to
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lend itself to proof of equivalence to a mathematical notion. In 1934, Gödel said of a
thesis very close to what would come to be known as ‘Church’s thesis’ that it ‘cannot be
proved, since the notion of finite computation is not defined, but it serves as a heuristic
principle’. [4] (p. 44n3). In advancing his thesis, Church characterized the notion of an
effectively calculable function as a ‘somewhat vague intuitive notion’ in contrast to the

mathematical notion of a recursive function.3 Richard Jeffrey said, ‘This thesis is not
susceptible of mathematical proof, for there is no limit to the variety of forms that clerical
routines [effective procedures] might assume, and thus no general, precise definition of
the term “clerical routine” of the sort we would need in order to prove the Church–Turing
thesis’. [14] (p. 105) László Kalmár said, ‘Church’s thesis is not a mathematical theorem
which can be proved or disproved in the exact mathematical sense, for it states the identity
of two notions only one of which is mathematically defined while the other is used by
mathematicians without exact definition’. [15] (p. 72) Similarly, Stephen Kleene said, ‘Since
our original notion of effective calculability of a function (or of effective decidability of a
predicate) is a somewhat vague intuitive one, the thesis cannot be proved’. [16] (p. 317).
Later, he said, ‘This is a thesis rather than a theorem, in as much as it proposes to identify a
somewhat vague intuitive concept with a concept phrased in exact mathematical terms,
and thus is not susceptible of proof’. [17] (p. 232). Hartley Rogers said that the concept
of a recursive function is ‘one way of making precise the informal mathematical notion of
function computable “by algorithm” or “by effective procedure” . . . . The claim that each
of the standard formal characterizations provides satisfactory counterparts to the informal
notions of algorithm and algorithmic function cannot be proved’. [2] (pp. 1,20). Joseph
Shoenfield said, ‘Unfortunately, no one has given a proof of Church’s thesis . . . , or even
isolated the properties of calculable functions which would be needed in such a proof’. [18]
(p. 120). Alan Turing wrote, ‘No attempt has yet been made to show that the “computable”
numbers [i.e., the numbers whose decimal expansion are Turing–computable] include all
numbers which would naturally be regarded as computable. All arguments which can
be given are bound to be, fundamentally, appeals to intuition, and for this reason rather
unsatisfactory mathematically’. [19] (p. 135) The Wikipedia entry on ‘effective method’ says
of the Church–Turing thesis, ‘As this is not a mathematical statement, it cannot be proven
by a mathematical proof’.

Turing is properly credited with proof that there is no computational procedure for
determining of any given computational procedure, whether it eventually terminates or
‘halts’. However, the proof invokes the proposed Church–Turing definition or identification

of a calculable function in terms of a recursive or Turing-computable function.4 One
might conclude from the remarks just quoted that the notion of an effective procedure, in
contrast to the notion of a general recursive or Turing-computable function, is insufficiently
mathematically precise to be amenable to an actual proof of anything about it. Keeping to
the spirit of the existing widespread agreement that the notion of an effective procedure is
excessively vague or intuitive to lend itself to the mathematical proof of the Church–Turing
thesis, Elliott Mendelson said, ‘Of course, because of the vagueness of the intuitive notions
of effectively computable functions and algorithm, it is impossible to prove the validity
of Church’s Thesis’. [20] (p. 239). However, in 1990, Mendelson made a more nuanced
observation, arguing that even if the converse is not provable, it is, in fact, rigorously
provable that all general recursive functions are effectively calculable. He wrote:

The assumption that a proof connecting intuitive and precise mathematical no-
tions is impossible is patently false. In fact, half of CT (the ‘easier’ half), the
assertion that all partial-recursive functions are effectively computable, is ac-
knowledged to be obvious in all textbooks in recursion theory. A straightforward
argument can be given for it. . . . This simple argument is as clear a proof as I
have seen in mathematics, and it is a proof in spite of the fact that it involves the
intuitive notion of effective computability. [9], (pp. 232–233)

A result similar to but broader than Turing’s is similarly provable from the notion of an
effective procedure itself, without defining or identifying the notion in other computability–
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theoretic terms and without invoking any conjecture or ‘thesis’ providing such a definition
for effectiveness.

2. Some Preliminaries

Among procedures (methods) for performing tasks (for accomplishing some end)
are procedures for producing or constructing something, including (but not limited to)
procedures for producing correct answers to wh-questions of a certain class—answers to
definite who–what–when–where–which–whether–why questions of that class. Among
task-performing procedures are thus general procedures for determining the wh-facts. Let
us call such a procedure an ascertainment procedure for that class. For example, placing an
object onto a bathroom scale is a ‘what weight’ ascertainment procedure for determining
the weight of middle-sized objects. A valuation procedure for a function is a ‘what value’
ascertainment procedure for determining the value of that function for a given argument.
A judgment procedure for a class of propositions is a procedure for ascertaining whether a
proposition of that class is the case, yes or no. A genuine judgment procedure includes
steps (at least one) for concluding truth and steps for concluding falsity, even if some of
these steps will not be executed. A judgment procedure is representable by a valuation

procedure for a corresponding function to {0, 1}.5

Consider how one might go about ascertaining, given an arbitrary entity of kind
K, whether it has a particular property F. Let us call any ascertainment procedure for
determining whether a given input of kind K has property F or instead lacks it a judgment
procedure for property F applicable to (things of) kind K (‘a judgment procedure for Fness of
Ks’). An example of a judgment procedure is the classical ‘she loves me; she loves me not’
method, applicable to females, of determining whether one is loved by a particular female

by establishing the oddness or evenness of the number of petals on an associated flower.6

Let us also say that a judgment procedure for F applicable to K certifies all and only those
things of kind K that it deems to have property F.

As a special case, a judgment procedure might be applicable to judgment procedures (i.e., it
might be itself of a kind for which it is a judgment procedure). As a very special case, a judgment
procedure applicable to judgment procedures—a judgment meta-procedure—might have its
own target property. For example, a judgment meta-procedure consisting of an odd number
of steps could consist of an odd number of steps. More typically, a judgment procedure will
either be inapplicable to itself or lack its target property (or both). A judgment procedure
for being a so-called perfect number is not itself a number (rather, it is a procedure), let
alone a perfect number. Let us say that a judgment procedure is self-certifying iff it certifies
itself and that it is non-self-certifying iff it is not self-certifying.

A valuation procedure for a function may be infallible, in the sense that it never
delivers a wrong value for a given argument, and automatic or deterministic, in that it
never calls for (or even permits) initiative or creative choice (‘ingenuity’), and furthermore a
priori, while still failing to be effective or algorithmic. To be effective, a valuation procedure
must also invariably eventually deliver the right value after a finite number of steps in a
finite duration. An (effective) calculation procedure for a function is an effective valuation
procedure for the function, i.e., an algorithm for calculating the function. A function is
effectively calculable iff there exists a (known or unknown) effective calculation procedure
for it.

A decision procedure (or a test) for property F applicable to things of kind K (a ‘decision
procedure for Fness of Ks’) is an effective judgment procedure for Fness of Ks. That is, it
is a step-by-step procedure for ascertaining, through algorithmic calculation, concerning
any input of K, the correct true/false verdict, whether it has F or instead lacks it (See
note 1). Decision procedures are not restricted to mathematical properties of natural
numbers. To take an example from music theory, there is a decision procedure for the
property of being a chord tone in a given musical key. The method of truth tables not only
defines propositional-calculus validity (tautological validity) of logical arguments but also
provides a decision procedure. A decision procedure can be provided by representing it



Philosophies 2023, 8, 27 4 of 8

as a general recursive function of a specific kind. A decision procedure for a property F
(effectively) decides a class G iff G is the class of things having the decision procedure’s target
property F. The method of truth tables thus decides the class of arguments that are derivable
(deducible) in the propositional calculus. There are judgment procedures for validity in
full first-order logic. However, assuming the Church–Turing thesis, by Church’s theorem
(and Gödel’s completeness theorem), there can be no decision procedure for validity in full
first-order logic.

We say that a class G is (effectively) decidable (or that ‘the Gs are decidable’) iff there
exists a (known or unknown) decision procedure that decides G; otherwise, G is undecidable.
The decision problem for a property F and a kind K is the problem of producing a decision
procedure for the Fness of Ks. A decision problem (as the term is used here) is not to be
confused with the relevant yes/no questions themselves about each appropriate input; it
is a demand for an algorithm for ascertaining the answers to those questions. A decision
problem is solved by providing a step-by-step decision procedure, or at least by establishing
an effective method for producing a decision procedure. A decision problem is said to
be solvable iff there exists a (known or unknown) decision procedure that solves it, and

unsolvable otherwise.7

3. A Theorem about Effectiveness

Insofar as there is a generally intended notion of an effective procedure or algorithm,
it is almost certainly definable to a reasonably high degree of precision (See note 1). I
submit that whereas the notion of effective calculability belongs to computability theory, it
is ultimately epistemic in content and is thereby not a notion of mathematics proper in a
narrower sense. The logical notion of a proof is also partly epistemic in content, concerning
an a priori and distinctly mathematical kind of epistemic justification. Mathematics, in
the narrower sense, consists of what is epistemically justified by means of mathematical
proofs, and of the justifications, the proofs, themselves, but not of the very notion of
epistemic justification and its cognates. The latter belong to meta-mathematics or to the
philosophy of mathematics, specifically to the epistemology of mathematics. Likewise,
effective calculability concerns a distinctly mechanical, computational method of obtaining
information and ascertaining the facts. It thereby invokes the philosophically rich and
puzzling notions of knowing which or knowing what. Effective calculability is thus unlike the
notion of a general recursive function, which is not a notion special to the epistemology
of arithmetic. It is also noteworthy that effective procedures are a priori methods applied

to inputs.8

Suppose a decision procedure is proposed as a solution to a decision problem, but it is
questioned whether the proposed procedure is, in fact, effective. Is there a general recipe
for effectively calculating whether a given candidate is, or is not, an effective or algorithmic
calculation procedure? In particular, can a precise, sense-preserving definition for ‘effective
procedure’ (assuming there is such) yield such a general recipe? This is, in effect, the decision
problem for effective procedures. To be sure, there is something circular about the idea of
ascertaining by means of an effective procedure whether a given procedure is effective,
but it is not unreasonable merely on that ground to seek such a procedure. No vicious
circularity is involved in the search. Given a solution to the decision problem for effective
procedures, one need only apply that decision procedure to establish whether a proposed
solution to a decision problem is effective. On the other hand, the mere nonexistence of
known counter-instances is no proof that a proposed decision procedure is effective. If
there is no effective recipe for deciding effectiveness, then (unless the effectiveness of a
procedure is known immediately and non-inferentially) if a solution to a decision problem
is to be definitive, it should be accompanied by proof of its effectiveness for the question
at hand (even if that proof is trivial). It might be demonstrated, for example, that the
procedure parallels the standard calculation of a recursive function. In actual practice,
the effectiveness of a decision procedure is typically beyond a reasonable doubt, making
proof of effectiveness otiose. Still, strictly speaking, if the effectiveness of a procedure is
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undecidable, then the very endeavor to solve a decision problem seems to require proof of
effectiveness in order for the solution to be definitive. This requires at least a grasp of a
reasonably precise, generally intended notion of effectiveness.

Insofar as the Church–Turing thesis, which invokes the notion of effective calculabil-
ity, is a definite proposition, there are indeed substantive theorems primarily concerning
effective calculation in general—including effective non-numeric calculation, such as a
music-theoretic calculation of whether a given note is, or is not, a chord tone in the key of
A♭m. In particular, it is logically provable solely and directly from the notion of an effec-
tive procedure—informal, imprecise, and ill-defined though it may be—that the decision
problem for effective procedures is unsolvable, i.e., that there is no effective procedure for

determining whether any given procedure is indeed effective.9

Theorem: The class of effective procedures is undecidable.

As a corollary, the notion of an effective procedure cannot be encoded by means of a general
recursive function.

The result itself is closely related to the proof that no Turing-computable function
solves every case of the halting problem for Turing machines. There are differences, how-
ever. The latter result concerns ascertaining whether a given Turing program terminates.
The former is concerned more broadly with ascertaining whether a given task-performing
procedure is effective, including procedures such as the effective procedure for bisecting
an angle in Euclidean geometry using only a compass and a straightedge. While all effec-
tive procedures terminate, not all terminating procedures are effective. Additionally, the
present result is that no effective procedure—whether a Turing program or not—decides
the effectiveness of a given procedure—whether a Turing program or not. (It is Turing’s
thesis or conjecture that all effectively calculable functions from natural numbers to natural
numbers are Turing-computable.)

That effectiveness of procedures is not itself decidable is not surprising. (Cf. Rice’s
theorem). What is noteworthy is that the result is provable directly from the ‘somewhat
vague intuitive’ notion of an effective step-by-step procedure. The proof proceeds primarily
by applying Cantor’s method of diagonalization directly to the relation of certification by
a decision procedure. No appeal is made to any lemma, conjecture, or thesis invoking
recursiveness or Turing computability. In particular, the proof does not invoke the Church–
Turing thesis or anything similar. In fact, there is no reliance on anything very mathematical.
The undecidability of effectiveness belongs to computability theory, more specifically, to
the theory of effective procedures. However, the proof does not even appeal to a precise
definition of ‘effective procedure’. Instead, it relies solely and entirely on a basic grasp of
the intuitive notion of such a procedure. The only non-logical observation employed in the
proof is not subject to any real doubt.

Specifically, the proof may be regarded as invoking a principle stating a conditional
relationship regarding the composition of an effective decision procedure out of effective
sub-procedures, perhaps something like the following:

If a judgment procedure PK
F, for Fness of Ks, consists of a finite sequence of steps

such that:

(i) Each of the steps is individually effectively executable (executable by an effective
procedure);

(ii) The first step is applied to an initial input I;
(iii) Any input to a successor step is the result of an earlier step, or else is the initial input

I; and
(iv) For any initial input I′ to PK

F, if I′ is of K, then: I′ has F iff invariably when the sequence

of steps is fully implemented, PK
F culminates in a finite duration in certifying I′,

then the result of replacing each effectively executable step of PK
F with its corresponding

effective procedure is a decision procedure for the Fness of Ks.
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This principle is not merely a conjecture but presumably a theorem concerning effectiveness.
Unlike the Church–Turing thesis, it is a trivial and obvious analytic truism concerning
effective procedures. (Cf. [22] (p. 52n118)).

Although the notion of an effective procedure is not itself susceptible to a decision
procedure, as noted above, the generally intended notion is evidently definable with a
reasonably high degree of precision. In fact, an appropriate definition provides a checklist
of necessary and sufficient conditions, which in turn yields a judgment procedure for
the effectiveness of judgment procedures. However, the judgment procedure does not
qualify as a decision procedure. In particular, the requirement that the procedure invariably
eventually culminate in the correct verdict (‘halts’) after finitely many steps in a finite
duration is not always decidable. In fact, it is a corollary of the undecidability of effec-
tiveness that any proposed definition for ‘effective procedure’ that is itself decidable does
not correctly capture the intended notion. There is thus a kernel of truth in the claim that
the notion of an effective procedure is not precisely definable. While the intended notion
can evidently be defined reasonably precisely, effectiveness is not a notion of mathematics
proper (excluding computability theory), and no definition, however precise, can provide a
decision procedure for it. A definition that provides a correct checklist without providing
a test is the best of all possible worlds. This situation is not unfamiliar. The definition of
a theorem of first-order logic, although precise, does not generate a decision procedure
for first-order logical provability. Likewise, the definition of a general recursive function,
although precise, does not generate a decision procedure for recursiveness. Otherwise,
theoretically, Church’s theorem that the class of first-order-logical validities is not recursive

could be proved by an effective calculation.10

This situation poses a difficulty in seeking solutions to decision problems. The effec-
tiveness of a proposed judgment procedure may be questioned, and there are no certain

means by which all such challenges may be effectively either validated or invalidated.11

However, the difficulty is surmountable. It does not follow from the undecidability of
effectiveness that it is unknowable whether some judgment procedures are effective. Rather,
no general algorithm is possible for resolving in every case whether a given ascertainment
procedure is effective. If one is interested in the question of whether a proposed procedure
is effective, in at least some cases, some creative initiative may be required to determine the

answer.12 In particular, if a procedure is proposed as a solution to a decision problem, its
effectiveness must be established without the aid of an effective recipe for doing so in all
cases. (The present result notwithstanding, special subclasses of effective procedures are
decidable, and indeed recursive.)

The undecidability of effectiveness echoes the proof that no Turing machine solves the
halting problem for Turing valuation procedures. (See note 12 above.) The present result,
however, does not specifically concern computer programs or recursive functions. The
undecidability of effectiveness applies more broadly to judgment procedures for properties
of any sort—mathematical or otherwise—including judgment procedures for properties not
known to be representable by means of a mathematical function, such as some procedures
for ascertaining which course of action among options will best serve one’s interests in
the long run. Indeed, the undecidability of effectiveness applies to the full range of task-
performing procedures.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: I am grateful to Harry Deutsch, Melvin Fitting, Gary Mar, Oron Shagrir, and

Teresa Robertson Ishii for their reactions, discussion, and encouragement. I am deeply indebted to

Alonzo Church for his masterful tutelage.

Conflicts of Interest: The author declares no conflict of interest.



Philosophies 2023, 8, 27 7 of 8

Notes

1 For one such attempt at a precise definition see [1], §1. Cf. [2], at pp. 2–3.
2 The thesis was first advanced in [3]. (Turing-computable functions are not restricted to functions on the natural numbers.)
3 In [5], Church explicitly put forward his proposal not as a “thesis,” but as a “definition” of ‘effectively calculable’, “so far as

positive justification can ever be obtained for the selection of a formal definition to correspond to an intuitive notion” (§7). He also

said, “The adequacy of this technical definition to represent the intuitive notion of effective calculability . . . is not immediately

clear, but is . . . beyond any real doubt”, in [6] (p. 199). Church obviously did not regard the proposed “technical definition” as

sense-preserving, since he was explicit that the two notions differ (one being “intuitive”, the other “formal”). This historical, and

historic, fact is sometimes overlooked, for example by Robert Irving Soare [7] (p. 250), Cf. [8] (p. 199). Cf. [9]; and [10]. (I recall

Church asserting in lecture about the thesis that bears his name that it is unprovable because the technical notion of a general

recursive function is formal whereas the intuitive notion of an effectively calculable function is informal.) The Church-Turing

“thesis” might better be termed a conjecture. Indeed it was largely confirmed. Cf. [11]. Kripke’s proof may be seen as reducing the

Church-Turing thesis to Hilbert’s thesis that the steps of any mathematical deduction can be given in the language of first-order

logic. The proofs mentioned below do not appeal to Hilbert’s thesis. Cf. also [12,13].
4 The relevant result is that the class of pairs of automatic valuation procedures, or “programs”, executable by a Turing machine

and inputs for which the valuation procedure eventually terminates is not computed by any Turing machine—in effect, that

the binary relation Turing-valuation program x computes the value of its singulary function for y as argument is not Turing-decidable.

Cf. [16] (p. 382). [2] (pp. 24–25), provides a “proof” that relies on Church’s thesis.
5 In personal correspondence Gary Mar proposed for consideration the following automatic procedure: 1. Determine whether

4 is a Goldbach number. 2. When it is determined that a given even number n is a Goldbach number, determine whether

the next even number n + 2 is a Goldbach number. 3. When it is determined that a given even number is not a Gold-

bach number, conclude that Goldbach’s conjecture is incorrect.This procedure terminates iff Goldbach’s conjecture is in-

correct. If the procedure 1–3 is a judgment procedure (a “whether” ascertainment procedure), then it is effective iff Gold-

bach is incorrect. If effectiveness of judgment procedures were decidable, Goldbach would be thereby decidable (albeit

perhaps non-constructively if Goldbach is incorrect). However, procedure 1–3 does not qualify as a genuine judgment pro-

cedure, as the term is used here, since no step in the procedure has one conclude that the conjecture is true, assuming it is.

There is a related genuine judgment procedure for Goldbach’s conjecture: 1′. Determine whether the preceding procedure 1–3

terminates. 2′. If it terminates, then conclude that Goldbach’s conjecture is incorrect. 3′. If it does not terminate, then conclude

that the conjecture is correct. By contrast with procedure 1–3, procedure 1′–3′ includes a non-vacuous step for concluding that

Goldbach is correct. However, given the result about the halting problem and Turing’s thesis, procedure 1′–3′ is not effective.
6 Some judgment procedures are more reliable than others. (Some advice: If you are tempted to implement the flower-petal routine,

the most likely explanation is that she loves you not).
7 The terminology of ‘decides’ and ‘effective’ is not ideal for the concepts under discussion. I endeavor to respect the use of the

term ‘decidable’ in recursion/computability theory to the greatest extent possible. This objective has guided my choice of terms.
8 This point is often phrased in terms of reliance on no instruments other than a writing utensil and paper. Such devices are not

actually part of the effective procedure itself, which are in principle executable “in one’s head”, but merely facilitate real-world

implementation by limited creatures. Likewise, a compass and a straightedge are no more part of the actual effective procedure

for dissecting an angle than are the pencil and paper to which they are applied. They are devices that facilitate real-world

implementation of the sub-procedures of constructing such-and-such a circle or line.
9 For details see [21].

10 Given the Church-Turing thesis, the class of effectively calculable functions on the natural numbers is effectively enumerable.
11 Cf. Church’s defense, in [22] (pp. 52–53), of the demand that the notion of well-formedness be effective.
12 In deriving the Church-Turing thesis from Hilbert’s thesis in [11] (p. 80), Kripke argues that an effective calculation (“computa-

tion”) of a function for a given argument is “a special form of mathematical argument . . . In particular, the conclusion of the

argument follows from the instructions as given and perhaps some well-known and not explicitly stated mathematical premises.”

By the present result, there is no algorithm for determining whether a given set of instructions (a given procedure) for valuating a

function is of the specialized form in question. It does not follow that the specialized form is undefinable, or that it is unknowable

whether a given set of instructions is indeed of the right form.
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