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Abstract Kripke frames (and models) provide a suitable
semantics for sub-classical logics; for example, intuitionistic
logic (of Brouwer andHeyting) axiomatizes the reflexive and
transitive Kripke frames (with persistent satisfaction rela-
tions), and the basic logic (of Visser) axiomatizes transitive
Kripke frames (with persistent satisfaction relations). Here,
we investigate whether Kripke frames/models could provide
a semantics for fuzzy logics. For each axiom of the basic
fuzzy logic, necessary and sufficient conditions are sought
for Kripke frames/models which satisfy them. It turns out
that the only fuzzy logics (logics containing the basic fuzzy
logic)which are sound and completewith respect to a class of
Kripke frames/models are the extensions of the Gödel logic
(or the super-intuitionistic logic of Dummett); indeed this
logic is sound and strongly complete with respect to reflex-
ive, transitive and connected (linear) Kripke frames (with
persistent satisfaction relations). This provides a semantic
characterization for the Gödel logic among (propositional)
fuzzy logics.
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logic · Dummett logic · Kripke frames · Soundness ·
Completeness · Semantics

Communicated by V. Loia.

This a part of the Ph.D. thesis of the first author written under the
supervision of the second author at the University of Tabriz.

B Saeed Salehi
salehipour@tabrizu.ac.ir
http://saeedsalehi.ir

Parvin Safari
p_safari@tabrizu.ac.ir

1 Department of Mathematics, University of Tabriz, 29 Bahman
Blvd., P.O. Box 51666-17766, Tabriz, Iran

1 Introduction and preliminaries

Kripke frames provide a semantics for modal logics and
for some sub-classical logics such as intuitionistic logic (of
Brouwer and Heyting) and basic logic (of Visser). Visser
basic logic is sound and strongly complete with respect to
transitive Kripke frames (Visser 1981), and the intuition-
istic logic is sound and strongly complete with respect to
reflexive and transitive Kripke frames (Mints 2002). It could
be expected that a class of Kripke frames could provide a
suitable semantics for the basic fuzzy logic (introduced in
Hájek 1998). For each axiom of this logic, all the Kripke
frames/models that satisfy it will be investigated. We shall
see that the only (fuzzy) logics which contain the basic fuzzy
logic and are sound and strongly complete with respect to a
class of Kripke frames/models are extensions of the Gödel
logic, or equivalently the Dummett logic (cf. Dummett 1959;
Bendová 1999). This logic can be aximatized as the intuition-
istic logic plus the axiom (ϕ → ψ)∨ (ψ → ϕ) and is sound
and strongly complete with respect to reflexive, transitive,
and connected Kripke frames (with persistent satisfaction
relations).

Definition 1 (Kripke frames) A Kripke frame is a directed
graph, i.e., an ordered pair 〈K , R〉where R ⊆ K 2 is a binary
relation on K . In a Kripke frame 〈K , R〉, the members of K
are called nodes and the relation R is called the accessability
relation; if kRk′, then the node k′ is said to be accessible
from the node k.

Definition 2 (Reflexivity and transitivity) A binary relation
R ⊆ K × K is

– reflexive, when for any k∈K , kRk holds.
– transitive, when for any k, k′, k′′∈K , if kRk′ and k′Rk′′
hold, then kRk′′ holds.
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A Kripke frame is called reflexive/transitive, when the rela-
tion R is so.

Definition 3 (Transitive closure) For R ⊆ K × K and k ∈
K , let R1[k] = R[k] = {x ∈ K | kRx} be the image of {k}
under R, and let R2[k] = {x ∈ K | ∃y ∈ K (kRyRx)}, and
generally for any n ∈ N let

Rn[k] = {x ∈ K | ∃y1, . . . , yn−1 ∈ K (kRy1Ry2R · · · Ryn−1Rx)}.

The transitive closure of R on {k} is then R+[k] =
⋃∞

n=1 R
n[k]. Define also R++[k] = ⋃∞

n=2 R
n[k].

Definition 4 (Connectedness) A relation R ⊆ K × K is
called connected, when for any k∈K and any k′, k′′ ∈ R+[k],
either k′Rk′′ or k′′Rk′ holds (cf. Švejdar and Bendová 2000).

Definition 5 (Syntax of fuzzy logic) Formulas of Proposi-
tional fuzzy logic are built from the constant ⊥⊥ (for the
falsity) and the connectives &,→ (for conjunction and impli-
cation) together with a countably infinite set of atoms,
denoted Atoms.

Let us note that then the negation of a formula ϕ becomes
ϕ → ⊥⊥ in this language.

Definition 6 (Kripke models) A Kripke model is a triple
K = 〈K , R,�〉 where 〈K , R〉 is a Kripke frame and
�⊆ K × Atoms is a satisfaction relation. The satisfaction
relation can be extended to all the (propositional) formulas,
i.e., to � ⊆ K × Formulas, as follows (Formulas is the set
of all formulas):

– No node satisfies ⊥⊥, i.e., k � ⊥⊥ for all k∈K .
– The conjunction is satisfied if and only if each component
is satisfied, i.e.,

k � (ϕ&ψ) ⇐⇒ k � ϕ and k � ψ.

– The implication is satisfied if and only if whenever an
accessible node satisfies the antecedent then it also satis-
fies the consequent, i.e.,

k � (ϕ → ψ)

⇐⇒ for all k′ ∈K
(
if k R k′ and k′ � ϕ then k′ � ψ

)

⇐⇒ ∀k′ ∈ R[k](k′ � ϕ −→ k′ � ψ
)
.

Remark 1 (Truth) The formula ⊥⊥ → ⊥⊥ is always true and
holds in every node of any Kripke model (by definition). Let
us denote it by ��(= ⊥⊥ → ⊥⊥).

Definition 7 (Satisfaction) A formula is satisfied in a Kripke
model when it is satisfied in every node of that model. A
Kripke frame satisfies a formula when every Kripke model

with that frame satisfies the formula. A rule is said to be satis-
fied in aKripkemodel when the satisfaction of the premise(s)
of the rule in a node implies the satisfaction of its conclu-
sion in that node. A rule is said to be satisfied in a Kripke
frame when it is satisfied in every Kripke model with that
frame.

Definition 8 (Persistency) A satisfaction relation �⊆ K ×
Atoms is called to be (atom) persistent with respect to R ⊆
K×K (cf. Švejdar andBendová 2000)when for any k, k′ ∈K
and p∈Atoms, if k � p and kRk′, then k′ � p; this property
is called atom persistency. A satisfaction relation �⊆ K ×
Formulas is called to be (formula) persistent with respect to
R ⊆ K × K when for any k, k′ ∈ K and ϕ ∈ Formulas, if
k � ϕ and kRk′, then k′ � ϕ; this property is called formula
persistency.

Convention The restriction of a relation S ⊆ A × B to a
subset C ⊆ A is denoted by S|C , i.e., S|C = S ∩ (C × B).

Proposition 1 (Atom/formula persistency) In a Kripke mo-
del 〈K , R,�〉 if the restriction of R to R+[k], i.e., R|R+[k],
is transitive for some node k ∈K, then the atom persistency
in (every node of) R+[k] implies the formula persistency (in
R+[k]).

Proof By induction on the formula ϕ, we show that for every
k′, k′′ ∈ R+[k] if k′Rk′′ and k′ � ϕ, then k′′ � ϕ:

– For atomic formula ϕ, we have k′′ � ϕ by the assumption
(also by definition, k′′

� ⊥⊥ always holds).
– For ϕ = ψ&θ (ψ and θ are formulas) by definition,
k′ � ψ and k′ � θ , so by the induction hypothesis k′′ � ψ

and k′′ � θ , whence, k′′ � ψ&θ holds.
– For ϕ = ψ → θ , we show that k′′ � ψ → θ which is
equivalent to

∀k′′′ ∈ R[k′′] (
k′′′ � ψ �⇒ k′′′ � θ

)
.

So, let us assume that (1) R|R+[k] is transitive, (2) k′ �
ψ → θ , (3) k′′′ � ψ , and (4) k′Rk′′RK ′′′ for k′, k′′, k′′′ ∈
R+[k]. By (1) and (4), we have k′Rk′′′, and so by (2) and
(3), k′′′ � θ holds. ��

Lemma 1 (Transitivity lemma) In a Kripke frame 〈K , R〉,
if R is reflexive and for all k ∈ K, the restriction of R to
R+[k], i.e., R|R+[k], is transitive, then R is transitive.

Proof If R were not transitive, there would exist some
k1, k2, k3 ∈ K such that k1Rk2 and k2Rk3 but k1 �Rk3. Now,
trivially, k2, k3 ∈ R+[k1] and by the reflexivity of R we
also have k1 ∈ R+[k1]. But then R|R+[k1] is not transitive,
contradiction! ��
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1.1 The basic fuzzy logic

The axiom of basic logic (BL) are (cf. Hájek 1998)

(A1) (ϕ → ψ) → [(ψ → θ) → (ϕ → θ)]
(A2) (ϕ&ψ) → ϕ

(A3) (ϕ&ψ) → (ψ&ϕ)

(A4) (ϕ&[ϕ → ψ]) → (ψ&[ψ → ϕ])
(A5a) [ϕ → (ψ → θ)] → [(ϕ&ψ) → θ ]
(A5b) [(ϕ&ψ) → θ ] → [ϕ → (ψ → θ)]
(A6) [(ϕ → ψ) → θ ] → [([ψ → ϕ] → θ) → θ ]
(A7) ⊥⊥ → ϕ

and its (only) rule is Modus Ponens

(MP) A, A→B
B .

2 Basic fuzzy logic and Kripke frames/models

It immediately follows from the definitions that

Proposition 2 (Universality of A2, A3, A7, and ϕ → ϕ&ϕ)
The axioms (A2), (A3), (A7), and also ϕ → (ϕ&ϕ) are
satisfied in every Kripke frame. ��

It can also be easily checked that theModus Ponens (MP)

rule is satisfied in every reflexive Kripke frame. The converse
is also true (cf. Celani and Jansana 2001, Proposition 5.1).

Theorem 1 (MP and reflexivity) The only rule of the basic
fuzzy logic (MP) is satisfied in a Kripke frame 〈K , R〉 if and
only if R is reflexive.

Proof If the relation R is reflexive then for any node k ∈ K
we have k � ϕ, k � ϕ → ψ �⇒ k � ψ just because kRk.
Now, if R is not reflexive then there exists some k ∈ K such
that k �Rk. For atoms p, q let � be

(
K × {p}) ∪ (

R[k] × {q}).
Then k � p and k � p → q because for any k′ with kRk′ we
have k′ � q. But k � q because k /∈ R[k]. So, the rule (MP)

is not satisfied at node k. ��
The axiom (A1) is satisfied in every transitive Kripke

frame. The following theorem characterizes exactly the
frames in which this axiom is satisfied.

Theorem 2 (A1 and transitivity) The axiom (A1) is satisfied
in a Kripke frame 〈K , R〉 if and only if R|R+[k] is transitive
for all k∈K.

Proof Fix a k ∈ K and suppose that R|R+[k] is transitive.
We show k � (A1), or equivalently ∀k′ ∈ R[k] (k′ � (ϕ →
ψ) �⇒ k′ � [(ψ → θ) → (ϕ → θ)]). That is equivalent to
showing, for a fixed k′ ∈ R[k], that ∀k′′ ∈ R[k′] (

k′′ � ψ →
θ �⇒ k′′ � ϕ → θ

)
, assuming k′ � (ϕ → ψ), and this is in

turn equivalent to showing, assuming k′′ � ψ → θ for a fixed
k′′ ∈ R[k′], that ∀k′′′ ∈ R[k′′](k′′′ � ϕ �⇒ k′′′ � θ

)
. Thus, let

us assume that (1) R|R+[k] is transitive and kRk′Rk′′Rk′′′,
(2) k′ � ϕ → ψ , (3) k′′ � ψ → θ , and (4) k′′′ � ϕ. We
then show that k′′′ � θ : By (1), since k′′′, k′′, k′ ∈ R+[k], we
have k′Rk′′′ and so by (2) and (4) we can infer that k′′′ � ψ .
Whence, (3) implies that k′′′ � θ holds.

So, the if part of the theorem has been proved. For
the only if part, assume that for a node k0 ∈ K , in a
Kripke frame 〈K , R〉, the relation R|R+[k0] is not transitive;
i.e., there are k1, k2, k3 ∈ R+[k0] such that k1Rk2Rk3 but
k1�Rk3. For atoms p, q, r let the satisfaction relation � be(
K ×{p}) ∪ (

R[k1]×{q}) ∪ (
(R[k1] ∩ R[k2])×{r}). Since

we have k1, k2, k3 ∈ R+[k0], there are �1, . . . , �n ∈ K (for
some n � 0) such that k0R�1R · · · R�n Rk1Rk2Rk3 (when
n = 0, then �n = k0). We now show that the instance
(p → q) → [(q → r) → (p → r)] of (A1) is not
satisfied at �n . To see this, we note that k2 � p → r ,
because k2Rk3, k3 � p but k3 � r for k3 /∈ R[k1], and
k2 � q → r because for any k ∈ K if k2Rk � q, then
k ∈ R[k2] and k ∈ R[k1] so k � r . Hence, we conclude that
k1 � (q → r) → (p → r), but k1 � p → q because for
any k ∈ K if k1Rk � p, then k ∈ R[k1] and so k � q. Thus,
�n � (p → q) → [(q → r) → (p → r)]. ��

It can be seen that the axiom (A4) is satisfied in every
reflexive Kripke model whose satisfaction relation is (for-
mula) persistent (with respect to the accessibility relation).
Here, we give an exact characterizations for all the Kripke
models which satisfy this axiom.

Theorem 3 (A4 and reflexivity + Persistency) The axiom
(A4) is satisfied in every Kripke model 〈K , R,�〉 in which
for every k∈K the restricted relation R|R+[k] is reflexive and
� |R+[k] is formula persistent with respect to R. Conversely,
if (A4) is satisfied in a Kripke frame then for all k ∈ K
the relation R|R+[k] is reflexive and the restriction of the
satisfaction relations to the sets R+[k] (for every k ∈ K) on
those frames should be formula persistent with respect to R.

Proof For a fixed Kripke model 〈K , R,�〉 and fixed node
k ∈ K , suppose that R|R+[k] is reflexive and that � |R+[k]
has the formula persistency property. We show that k � (A4)

or equivalently ∀k′ ∈ R[k](k′ � ϕ&[ϕ → ψ] �⇒ k′ �
ψ&[ψ → ϕ]). Thus, it suffices to show that k′ � ψ and
∀k′′ ∈ R[k′](k′′ � ψ �⇒ k′′ � ϕ

)
, if kRk′ � ϕ&[ϕ →

ψ]. Whence, we assume that (1) R|R+[k] is reflexive and
kRk′Rk′′, (2) k′ � ϕ&[ϕ → ψ], (3) k′′ � ψ , and (4) � |R+[k]
is formula persistent; and show that k′ � ψ and k′′ � ϕ. By
(2) we have (5) k′ � ϕ and (6) k′ � ϕ → ψ . So, by (4) and
(1) we also have k′′ � ϕ. By (1) again, we have k′Rk′ which
by (5) and (6) implies that k′ � ψ holds.

Now, we suppose that the axiom (A4) is satisfied in a
Kripke frame 〈K , R〉, and show that for any k ∈ K the rela-
tion R|R+[k] is reflexive. If R|R+[k0] is not reflexive for some
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k0 ∈ K , then there are �1, . . . , �n ∈ K (n � 0) such that
k0R�1R · · · R�n Rk1�Rk1. Define the satisfaction relation � to
be 〈k1, p〉 for some atom p. We show that under this satisfac-
tion relation the instance (p&[p → q]) → (q&[q → p]) of
(A4) is not satisfied at �n . That is because k1 � p&(p → q)

by definition and the fact that for no k ∈ R[k1] we can have
k � p (by k1 �Rk1). On the other hand by definition k1 � q
and so k1 � q&(q → p).

Next, if � |R+[k0] is not formula persistent with respect
to R in a Kripke model 〈K , R,�〉 and node k0 ∈ K , then
there are two nodes k1, k2 ∈ R+[k0] and a formula ϕ such
that k1Rk2 and k1 � ϕ but k2 � ϕ. Also there are some
�1, . . . , �n ∈ K (n � 0) such that k0R�1R · · · R�n Rk1. We
show that the instance (ϕ&[ϕ → ��]) → (��&[�� → ϕ]) of
(A4) (see Remark 1 for the definition of ��) is not satisfied
in 〈K , R,�〉 at �n : because at k1 (for which �n Rk1 holds) we
have k1 � ϕ&[ϕ → ��] (since k � �� holds for any k) but
k1 � �� → ϕ since for k2 ∈ R[k1] we have k2 � ϕ (and of
course k2 � ��). ��

The axiom (A5a), too, is satisfied in every reflexive frame.
Here is an exact characterization.

Theorem 4 (A5a and reflexivity) The axiom (A5a) is satis-
fied in a Kripke frame 〈K , R〉 if and only if R|R2[k] is reflexive
for all k∈K.

Proof Fix a node k ∈ K in a Kripke frame 〈K , R〉 for which
R|R2[k] is reflexive. For showing k � (A5a), we show that
∀k′ ∈ R[k](k′ � ϕ → (ψ → θ) �⇒ k′ � (ϕ&ψ) → θ

)
,

which is equivalent to ∀k′′ ∈ R[k′] (
k′′ � (ϕ&ψ) �⇒ k′′ �

θ
)
, for some fixed k′ ∈ R[k] with k′ � ϕ → (ψ → θ).

Whence, we assume that (1) R|R2[k] is reflexive, (2) k′ �
ϕ → (ψ → θ), (3) k′′ � ϕ&ψ and (4) kRk′Rk′′, and show
that k′′ � θ : by (3) we have (5) k′′ � ψ ; the assumptions
(2) and (4) imply that (6) k′′ � ψ → θ . By the reflexivity
of R|R2[k] and k′′ ∈ R2[k] we have k′′Rk′′, and so it follows
from (5) and (6) that k′′ � θ holds. This proves the if part of
the theorem.

For the converse, the only if part, assume that for a node
k0 ∈ K in a Kripke frame 〈K , R〉, the restricted relation
R|R2[k0] is not reflexive; i.e., there is k ∈ R2[k0] such that
k �Rk. Let us note that for some k′ we have k0Rk′Rk. Let
� be

({k} × {p, q}) for atoms p, q, r . We show that the
instance [p → (q → r)] → [(p&q) → r ] of (A5a) is
not satisfied at k0: we have k′

� (p&q) → r because at
k ∈ R[k′] we have k � p&q but k � r . On the other hand
k′ � p → (q → r) because for any � ∈ R[k′] if � � p,
then � = k but then k � q → r since no node in R[k]
satisfies q (note that k /∈ R[k]). Concluding, it follows that
k0 � [p → (q → r)] → [(p&q) → r ]. ��

Similarly, we provide an exact characterizations for
Kripke models which satisfy the axiom (A5b).

Theorem 5 (A5b and transitivity + persistency) The axiom
(A5b) is satisfied in every Kripke frame 〈K , R〉 in which for
all k ∈ K the relation R|R+[k] is transitive and � |R++[k] is
formula persistent with respect to R. Conversely, if (A5b)
is satisfied in a Kripke frame 〈K , R〉, then for all k ∈ K
the relation R|R+[k] is transitive and the restriction of the
satisfaction relations to the sets R++[k] (for every k∈K) on
that frame should be formula persistent with respect to R.

Proof For aKripkemodel 〈K , R,�〉 and a node k∈K of it, if
R|R+[k] is transitive and � |R++[k] is formula persistent with
respect to R, thenwe show that k � (A5b)which is equivalent
to ∀k′ ∈ R[k](k′ � (ϕ&ψ) → θ �⇒ k′ � ϕ → (ψ → θ)

)

or equivalent to ∀k′′ ∈ R[k′] (
k′′ � ϕ �⇒ k′′ � ψ → θ

)
,

under the assumption kRk′ � (ϕ&ψ) → θ . This, in turn, is
equivalent to ∀k′′′ ∈ R[k′′] (

k′′′ � ψ �⇒ k′′′ � θ
)
assuming

that k′Rk′′ � ϕ. Whence, we assume that (1) the relation �
|R++[k] is atom persistent with respect to R, (2) the restricted
relation R|R+[k] is transitive and we have that kRk′Rk′′Rk′′′,
(3) k′ � (ϕ&ψ) → θ , (4) k′′ � ϕ and (5) k′′′ � ψ ; and
show that k′′′ � θ : from (1), (4) and (5), noting that k′′, k′′′ ∈
R++[k], we have (6) k′′′ � ϕ&ψ . Then from (2) we have
k′Rk′′′ and so (3) and (6) imply that k′′′ � θ holds.

Now, if for a node k0 ∈ K in a Kripke frame 〈K , R〉 the
restricted relation R|R+[k0] is not transitive, then there are
k1, k2, k3 ∈ R+[k0] such that k1Rk2Rk3, but k1�Rk3. Also,
there are�1, . . . , �n ∈K (n�0) such that k0R�1R · · · R�n Rk1.
Let the satisfaction relation � be defined as

(
R[k1] × {r}) ∪

{〈k2, p〉} ∪ {〈k3, q〉} for some atoms p, q, r . Now we show
that the instance [(p&q) → r ] → [p → (q → r)] of (A5b)
is not satisfied at �n : we have k1 � p&q → r because for no
k∈ R[k1] canwehave k � p&q.Also, k2 � q → r because at
k3∈ R[k2]we have k3 � q but k3 � r (notice that k3 /∈ R[k1]),
therefore, k1 � p → (q → r) because at k2∈ R[k1] we have
k2 � p but k2 � q → r . Now that we have k1 � p&q → r
and k1 � p → (q → r) we therefore infer the desired
conclusion �n � [(p&q) → r ] → [p → (q → r)].

Finally, if for a node k0∈K in a Kripke model 〈K , R,�〉
the restricted satisfaction relation � |R++[k0] is not formula
persistent (with respect to R), then there exist two nodes
k1, k2∈ R++[k0] and a formulaϕ such that k1Rk2, k1 � ϕ and
k2 � ϕ. Also, byDefinition 3, there are �1, . . . , �n ∈K (n�1)
such that k0R�1R · · · R�n Rk1. We show that the instance
[(ϕ&��) → ϕ] → [ϕ → (�� → ϕ)] of (A5b) (see Remark 1
for the definition of ��) is not satisfied in this model at �n−1;
let us recall that if n=1, then �n−1 = k0. To see this, firstly,
we note that for �n ∈ R[�n−1] we have �n � (ϕ&��) → ϕ

(indeed k � (ϕ&��) → ϕ holds for any node k). Secondly,
�n � ϕ → (�� → ϕ) because for k1 ∈ R[�n] we have k1 � ϕ

but k1 � �� → ϕ since at k2 ∈ R[k1] we have (of course
k2 � �� and also) k2 � ϕ. ��

Let us pause for a moment and see where we have got
from these results so far. By Proposition 2, the axioms (A2),
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Kripke semantics for fuzzy logics 843

(A3) and (A7) (and also Gödel’s Axiom ϕ → ϕ&ϕ) are
satisfied in all Kripke frames. By Theorem 1, only reflex-
ive Kripke frames can satisfy the (MP) rule. By Theorem 2
the axiom (A1) can be satisfied in a Kripke frame 〈K , R〉
if and only if R|R+[k] is transitive, for all k ∈ K . So, suit-
able Kripke frames for fuzzy logics should be reflexive and
transitive by Lemma 1. Moreover, the satisfaction relations
on those (reflexive and transitive) Kripke frames should be
(formula) persistent by Theorem 3, since Kripke models on
those frames should satisfy the axiom (A4) as well; Theo-
rem4 (for the axiom A5a) andTheorem5 (for the axiom A5b)
confirm this even more. So, one should necessarily consider
reflexive, transitive and persistent Kripke models for fuzzy
logics.

Unfortunately, we have been unable to find a good charac-
terizations for Kripke frame/models which satisfy the axiom
(A6). One candidate for a class of Kripke frames which sat-
isfy this axiom is the class of connected (Definition 4) Kripke
frames. Indeed, (A6) is satisfied in every (persistent and)
connectedKripkemodel (see Theorem6below). But the con-
verse does not hold: the Kripke model 〈{∅, {a}, {b}},⊆,∅〉
(with the empty satisfaction relation) is reflexive, transitive
and persistent but not connected (assuming a �= b), while it
satisfies (A6) and every classical tautology. Below (in Theo-
rem6), we show that if a reflexive and transitiveKripke frame
satisfies (A6) with persistent satisfaction relations, then it
must be connected.

Before proving Theorem 6 let us make a little note about
the linearity axiom (ϕ → ψ) ∨ (ψ → ϕ) which, over the
(propositional) intuitionistic logic, axiomatizes the Kripke
frames whose accessibility relations are linear orders. The
logic resulted by appending this axiom to the intuitionistic
logic is called Dummett logic (see Dummett 1959 and the
Conclusions below).

Lemma 2 (The connectedness axiom) The formula (ϕ →
ψ) ∨ (ψ → ϕ) is satisfied in all (formula) persistent and
connected Kripke models.

Proof For formulas ϕ,ψ , if k � (ϕ → ψ) ∨ (ψ → ϕ),
then there exist k′, k′′ ∈ R[k] such that k′ � ϕ but k′

� ψ ,
and k′′ � ψ but k′′

� ϕ. By connectedness (and k′, k′′ ∈
R+[k]) we have either k′Rk′′ or k′′Rk′. Now, if k′Rk′′, then
from k′ � ϕ we will have k′′ � ϕ by (formula) persistency;
a contradiction (since k′′

� ϕ). Similarly, a contradiction
follows from k′′Rk′. ��
Theorem 6 (A6 and connectedness, by reflexivity, transi-
tivity and persistency) The axiom (A6) is satisfied in every
connected and persistent Kripke model. Also, if a reflexive
and transitive Kripke frame satisfies (A6)with persistent sat-
isfaction relations, then it must be connected.

Proof Suppose 〈K , R,�〉 is connected and persistent. For a
node k ∈K , and formulas ϕ,ψ, θ , we show that k � [(ϕ →

ψ) → θ ] → [([ψ → ϕ] → θ) → θ ]. This is equivalent to
∀k′ ∈ R[k](k′ � (ϕ → ψ) → θ �⇒ k′ � ([ψ → ϕ] →
θ) → θ

)
. So, fix a k′ ∈ R[k] with k′ � (ϕ → ψ) → θ ; we

prove that ∀k′′ ∈ R[k′] (
k′′ � [(ψ → ϕ) → θ ] �⇒ k′′ � θ

)
.

Whence, we assume that (1) R is connected and kRk′Rk′′,
(2) � is formula persistent with respect to R, (3) k′ � (ϕ →
ψ) → θ , and (4) k′′ � (ψ → ϕ) → θ ; and show that
k′′ � θ . By Lemma 2 we have either (i) k′′ � ϕ → ψ or
(ii) k′′ � ψ → ϕ. In case of (i), from (1) and (3) we already
infer that k′′ � θ . In case of (ii), we note that k′′Rk′′ by (1)
(and that the connectedness of R implies the reflexivity of
R|R+[k]) and so from (4) we can conclude that k′′ � θ .

Now, assume (for the sake of contradiction) that theKripke
frame 〈K , R〉 is reflexive and transitive but not connected.
Then there must exist some nodes k, k′, k′′ ∈ K such that
kRk′, kRk′′, k′�Rk′′ and k′′�Rk′. Let us already note that then
k /∈ R[k′] ∪ R[k′′] and k′ /∈ R[k′′] also k′′ /∈ R[k′]. For atoms
p, q, r , define the satisfaction relation � on this frame to be
(R[k′]×{p})∪(R[k′′]×{q})∪([R[k]∩{�∈K | ��Rk}]×{r}).
By the transitivity of R, this satisfaction relation is atom
persistent (since, e.g., if � � r and �R�′, then from kR� and
��Rk, and the transitivity of R, we have kR�′ and also �′ �Rk
since otherwise if �′Rk, then from �R�′, and the transitivity
of R, we would have �Rk contradiction); thus � is formula
persistent (by the transitivity of R and Proposition 1). We
show that under this satisfaction relation the instance [(p →
q) → r ] → [([q → p] → r) → r ] of (A6) is not satisfied
at k. We firstly note that k � p → q (because at k′ ∈ R[k]
we have k′ � p and k′

� q) and also k � q → p (because
at k′′ ∈ R[k] we have k′′ � q and k′′

� p), and secondly that
k � (p → q) → r and k � (q → p) → r (because for any
�∈ R[k] if � � p → q or � � q → p then, by the persistency,
� �Rk and so � � r ). Finally, k � ([q → p] → r) → r since
k � [q → p] → r but k � r . ��

Finally, the main result of the paper is the following which
follows from all the previous results:

Corollary 1 (Kripke models for the basic fuzzy logic) A
Kripke model satisfies the axioms (and the rule) of the basic
fuzzy logic if and only if it is reflexive, transitive, and con-
nected, and the satisfaction relation is (formula) persistent
with respect to the accessibility relation. ��

This can indeed be seen as a negative result in the theory
of Kripke models, since it shows that no class of Kripke
frames can axiomatize exactly BL or the fuzzy logics that do
not contain Gödel logic. But it has also some positive sides
discussed in the next section.

3 Conclusions

Gödel fuzzy logic is axiomatized as BL plus the axiom
ϕ → (ϕ&ϕ) of idempotence of conjunction (cf. Bendová
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1999). Dummett (1959) showed that this logic can be com-
pletely axiomatized by the axioms of intuitionistic logic plus
the axiom (ϕ → ψ) ∨ (ψ → ϕ). Indeed, the Gödel–
Dummett logic is sound and strongly complete with respect
to reflexive, transitive, connected, and persistentKripkemod-
els. In Corollary 1, we showed that the only class of Kripke
models which could be sound and (strongly) complete for
a logic containing BL must contain the class of reflexive,
transitive, connected and persistent Kripke models. In the
other words, any logic that contains BL and is axiomatiz-
ing a class of Kripke frames/models must also contain the
Gödel–Dummett logic (cf. Proposition 2). So, a Kripke-
model-theoretic characterization of Gödel fuzzy logic is that
it is the smallest fuzzy logic containing the basic fuzzy logic
which is sound and complete with respect to a class of Kripke
frames/models. Also, the class of reflexive, transitive, con-
nected, and persistent Kripkemodels is the smallest class that
can be axiomatized by a propositional fuzzy logic.
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