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Abstract 

Marr’s seminal work laid out a program of research by specifying key questions for 

cognitive science at different levels of analysis. Because Dynamic Systems Theory 

focuses on time and interdependence of components DST research programs come to 

very different conclusions regarding the nature of cognitive change. We review a 

specific DST approach to cognitive-level processes: Dynamic Field Theory. We review 

research applying dynamic field theory to several cognitive-level processes: object 

permanence, naming hierarchical categories, and inferring intent, that demonstrate the 

difference in understanding of behavior and cognition that results from a DST 

perspective. These point to a central challenge for cognitive science research as 

defined by Marr—emergence. We argue that appreciating emergence raises questions 

about the utility of computational level analyses and opens the door to insights 

concerning the origin of novel forms of behavior and thought (e.g., a new chess 

strategy). We contend this is one of the most fundamental questions about cognition 

and behavior. 
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Introduction 

Marr’s landmark book Vision (1982) has had numerous lasting influences on the 

field of cognitive science. Most notably, Marr defined a research program for the field of 

vision but more generally, his tri-level approach created key questions for cognitive 

science at different levels of analysis: what abstract problem is the system designed to 

solve, what algorithm does it use on what representations, and how is this implemented 

in the brain. While these questions enable explanations at each level that are relatively 

independent, Marr emphasized that an understanding of any complex system at only 

one level is ultimately insufficient—“…one must be prepared to contemplate different 

kinds of explanation at different levels of description that are linked, at least in principle, 

into a cohesive whole…” (Marr, 1982 pp. 20). Similarly, he wrote, “To understand fully a 

particular machine carrying out a particular information-processing task, one has to 

[understand both hardware and information processing]. Neither alone will suffice,” 

(Marr,1982 pp. 5). Nevertheless, Marr stressed the computational level and stressed the 

necessity of analyzing the task presented to the system as critical to defining the scope 

of the research question.   

We argue that compared to other approaches, the focus on time and integration 

across system components that are central to Dynamic Systems Theory (DST) lead to 

different answers to Marr’s questions and, critically, suggests that starting with the 

computational-level analysis can lead to serious misunderstandings of behavior (see 

also, McClelland et al., 2010; other papers in this topic). Below we present an overview 

of the DST approach, focusing on Dynamic Field Theory (Schöner et al., in press; 

Spencer, Perone & Johnson, 2009), which translates DST concepts into formal models 
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that integrate neural, cognitive and behavioral levels. We then provide three examples 

that demonstrate the contrast in conclusions reached when the research question is 

defined by an abstract computational-level analysis versus an DST analysis focused on 

behavioral change. We highlight the role of formal dynamic systems approaches like 

DFT for grounding our understanding of cognitive phenomena, real-time processes and 

neural population dynamics. We close by considering the implications of these 

examples for the question for this topic: what is the role of process-oriented theories 

and cognitive constructs in understanding brain/behavior relationships? 

Dynamic Systems Theory 

Dynamic Systems Theory focuses on the processes of change over time in 

complex systems. It views behavior, including cognition, as emerging from the 

interaction of multiple softly assembled components that are mutually influential and 

evolve over multiple embedded timescales (Beer, 2000; Fischer & Bidell, 1998; Kelso, 

1995, 2000; Lewis & Liu, 2011; Newell & Molenaar, 1998; Port & Van Gelder 1995; 

Thelen & Smith, 1994; ; Spivey 2007; van der Maas & Molenaar, 1992, van Gelder, T., 

1998). Appreciating that behavior is emergent and softly assembled means 

understanding that behavior is the product of multiple components brought together in a 

moment of time based on the particular context, task, and history of the organism. The 

interaction of these components is not pre-specified or deterministic; thus, the particular 

assembly and resulting behavior are unique and variable from moment-to-moment and 

across specific contexts. For example, the particular muscles and joint angles used to 

pick up your coffee cup will change based on many factors including the starting point of 

the reach, the introduction of obstacles in the path, or the weight of a new watch on your 
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wrist (see also Spencer et al., 2006, Thelen & Smith, 1994 for additional examples). The 

implication of this is that identical behavioral outputs can be the result of very different 

specific processes in different contexts or in organisms with different histories. Mutual 

interactivity means interactions proceed in both directions; not only does attentional 

selection influence the contents of visual working memory, but the contents of visual 

working memory reciprocally influence selective attention (Hollingworth et al. in press; 

Schneegans, et al. 2014; Schneegans et al., in press). Viewing timescales as 

embedded means appreciating that the different timescales cognitive science often 

considers are not independent and cannot be studied without recourse to each other.  

The application of dynamic systems to psychological phenomena has its origins 

in motor control and perception-action (see for discussion Spencer & Schöner, 2003), 

but these approaches are often criticized for being overly metaphorical and not 

applicable to cognitive-level processes (Griffiths, Chater, Kemp, Perfors & Tenenbaum, 

2010). Dynamic Field theory (DFT, Schöner, Spencer, & the DFT Research Group, in 

press) has emerged as a response to such critiques. DFT is an embodied, dynamic 

systems approach to cognitive-level processes based on an understanding of brain 

function at the level of neural population dynamics (Erlhagen, Bastian, Jancke, Riehle, 

& Schöner, 1999; Jancke, et al., 1999). The basic building block of formal Dynamic 

Neural Field models is a field of metrically-organized neurons, that is neurons in this 

field are structured such that those close together have receptive fields that  respond to 

similar feature values while those farther apart have receptive fields tuned to very 

different feature values (Schöner, Spencer, & the DFT Research Group, in press. These 

neurons interact according to a local excitation/lateral inhibition function (Spencer, 
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Austin & Schutte, 2012), a common form of interaction in neural models of cortical 

function (Durstewitz, 2000). Neural fields, like local neural populations in the brain 

(Cohen & Newsome, 2009; Amari, 1977; Fuster, 2003), move into and out of attractor 

states, reliable patterns of activation that the neural population maintains in the context 

of particular inputs. For instance, when presented with visual input, neural populations 

in visual cortex create stable ‘peaks’ of activation representing a location and set of 

features.  

Whereas DST provides a set of theoretical tools, mathematical formalizations, 

and empirical approaches for understanding complex systems (Lewis & Granic, 2000; 

Newell & Molenaar, 1998; Port & van Gelder, 1995; Thelen & Smith, 1994). DFT adds a 

formal approach for analyzing and understanding cognitive-level processes. 

Furthermore, because DFT links cognitive-level processes to both neural population 

dynamics and behavior, and focuses on how behavior evolves over time, it explicitly 

integrates brain and behavior and provides a formal method for understanding both 

behavior and behavior change. Critically, as we demonstrate in the following examples, 

explicitly linking cognitive-level processes to neural population dynamics and behavior, 

radically changes how phenomena are analyzed and our understanding of cognition.  

The A-not-B error 

The A-not-B error refers to the finding that infants (and adults under the right 

circumstances, Spencer & Hund, 2002) will continue to search for a hidden object in the 

place it has been previously found even after observing it being hidden in another 

location. Thus, the computational analysis suggested that the task was to remember 

that something existed even when it is out of sight (see for discussion McClelland et al, 
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2010; Thelen & Smith, 1994, Smith & Thelen, 2003), and the behavioral change was 

explained at the algorithmic and representational level in terms of a deficit in cognitive 

processing. Ten-month-old infants, who make the error reliably, were said to lack a 

specific representation called the “object concept” (Piaget, 1954) and did not 

understand that the object continued to exist after it was hidden. In contrast, 12-month-

old infants, who are typically able to search correctly, were said to represent the object 

mentally even when it was not visually available.  

In contrast, a DST analysis of this phenomenon revealed critical influences of the 

motor system and body by recognizing the role of infants’ ability to stabilize and repeat 

a reach to the same location (Thelen & Smith, 1994). Later research supported this 

analysis, demonstrating that the number of reaches to A, the posture of the infant, and 

the use of wrist-weights to change the specifics of the reaching trajectory all determined 

whether infants made the error (Smith, Thelen, Titzer & McLin, 1999). Likewise, a 

formal DNF model of developmental changes in the A-not-B error captured the relation 

between the body and neural populations that represent reaching direction (Smith et al., 

1999; Thelen et al.; 2001) and made predictions about behavioral conditions that could 

both increase and decrease the likelihood of the behavior. Subsequent studies have 

supported the DNF models’ predictions for infants (e.g., Clearfield et al., 2009), toddlers 

(Spencer, Smith, & Thelen, 2001) and school-aged children (Hund and Spencer, 2003).  

The final blow to the computational-level analysis that object permanence was 

the goal, and the algorithm-level explanation of a missing representation, however, was 

the demonstration that hidden toys were not even needed to produce the error—infants 

will make the error even when reaching to visible objects (Smith et al., 1999). Clearly, 
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the A-not-B error cannot be about a failure to represent an object’s existence if the 

object is in full view. Rather, DST behavioral analysis suggests that changes in motor 

components at two different timescales affected behavioral change: reaches made over 

the course of an experiment, and motor stability over the course of development. Thus, 

this work demonstrates that the behavior is not just about cognitive-level processes but 

about the body as well—the representation of things in the world is tightly coupled to the 

dynamics of the body (see also Eerland, Guadalupe & Zwaan, 2011; Zwaan & 

Kaschack, 2009 for related results in adults and Zwaan, van der Stoep, Guadalupe & 

Bouwmeester, 2012 for discussion). This has been recently demonstrated by 

instantiating the DNF model in an autonomous robot and quantitatively simulating 

experimental data from infants (Schöner, et al., in press).  

Thus, this program of work demonstrates how a computational level analysis that 

defined the research question with respect to a cognitive-level process only—a missing 

representation—missed the crucial influence of the integrated body-brain system that is 

the basis of the A-not-B error. Some might argue that the dynamics apparent in this 

example reflect the motor system used in the behavioral response rather than cognitive-

level processes. To counter this argument, we next turn to recent research on adults’ 

and children’s acquisition of names for hierarchical categories. This program of work 

has applied a DST perspective to a phenomenon—the suspicious coincidence effect 

(SCE)—previously thought to reflect abstract reasoning about category membership. A 

dynamic systems approach has integrated the SCE with the trajectory of vocabulary 

development and with lower-level processes such as perceptual comparison and 

working memory. In addition, this perspective grounds the SCE in neural population 
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dynamics via dynamic field theory.  

Generalization of names for hierarchical categories 

 The challenge in learning names for hierarchically-nested categories is in 

inferring the correct level of application of a novel word based on limited exposure. For 

example, when the novel word “Fep” is heard in association with a single Dalmatian, its 

meaning is ambiguous. Does “Fep” refer to only that particular dog, or to other 

Dalmatians, or even to other breeds of dog or other species of animal? Both children 

and adults must resolve these ambiguities when learning words for anything that might 

be part of a taxonomy.  

Xu and Tenenbaum (2007) analyzed this generalization problem at an 

exclusively computational level, focusing only on Bayesian inductive reasoning as an 

overall explanation of learners’ strategy and logic, without respect to dynamics that 

might occur during the task or timescales beyond that of the task itself. Xu and 

Tenenbaum explicitly separated Marr’s levels in their approach, stating “Our analysis of 

word learning focuses on what Marr (1982) called the level of computational theory. We 

have tried to elucidate the logic behind word learners’ inductive inferences, without 

specifying how that logic is implemented algorithmically in the mind or physiologically in 

neural hardware,” (pp. 270). 

Xu and Tenenbaum (2007) presented adults and children with one or more 

exemplars of a category and a novel label. The exemplars were either identical (multiple 

Dalmatians), members of the same basic level category (different breeds of dog), or 

members of a superordinate category (different species of animal). Participants were 

then asked whether the novel word generalized to test objects chosen from different 



	
   10 

taxonomic levels. Based on their computational-level analysis, Xu and Tenenbaum 

made a novel prediction—the “suspicious coincidence effect”— that both preschoolers 

and adults would generalize the novel words more narrowly when they were presented 

with three identical exemplars rather than just one. The idea is that it would be highly 

unlikely to hear the same word applied to three identical but separate instances of a 

category unless that word referred to that level of the category. This is what Xu and 

Tenenbaum found: “Fep” applied to one Dalmatian led to generalization to all dogs, 

whereas “Fep” applied to three identical Dalmatians led to generalization only to other 

Dalmatians. Xu and Tenenbaum suggested that rational Bayesian statistical reasoning 

was the basis for children’s and adults’ ability to quickly learn names. They presented a 

formal Bayesian model that fit the results from both adults and children. Furthermore, 

they convincingly argued that their model was the only one that would predict the 

suspicious coincidence effect and the only one to account for the data.  

Subsequent research, however, suggests that details of the neural and 

behavioral process by which novel names are perceived, remembered, and generalized 

matter greatly in the suspicious coincidence effect, and change our understanding of the 

computational-level task. Spencer, Perone, Smith, and Samuelson (2011) examined the 

influence of stimulus presentation in the word generalization task. Their motivation was 

decades of research suggesting that generalization depends critically on variability in 

the presented instances and contexts of exposure, as well as whether exemplars are 

presented together (allowing direct comparison) or in sequence (forcing more global 

similarity analysis, see Spencer et al., 2011). In addition, prior work had shown a 

narrowing of representations in a visual working memory study when similar objects 
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appeared near one another in time and space (Johnson, Spencer, Luck, & Schöner, 

2009), a finding captured by a dynamic field model of visual working memory. In 

particular, these interactions produce narrowing of activated representations when 

multiple similar stimuli are seen close in time and space (see Fig. 1). Based on this prior 

work then, Spencer et al. (2011) presented adults with either three subordinate-level 

exemplars at once or sequentially and found that that the SCE was eliminated in the 

sequential condition. Furthermore, Spencer et al. (2011) were able to eliminate the SCE 

entirely by presenting six exemplars—an amount predicted to overwhelm working 

memory—sequentially. Thus, the DST analysis of the suspicious coincidence effect led 

to both a demonstration of when it does not occur and a critical contradiction of the 

rational analysis—more exemplars produced a reversal of the effect rather than the 

strengthening predicted by the Bayesian account. We have recently captured these 

data in a formal DNF model (Jenkins, Samuelson & Spencer, 2014; Samuelson, 

Spencer & Jenkins, 2013), thereby grounding the suspicious coincidence effect in 

neural population dynamics.  

---------------------------- Insert Fig. 1 about here ---------------------------- 

In addition to these effects which emerge in real-time in the task, we have also 

found changes in the SCE over developmental timescales. In a series of studies, we 

have examined the relation between the category knowledge children bring to the SCE 

task and the strength of the effect they demonstrate. According to the Bayesian account, 

more knowledge should lead to a stronger suspicious coincidence effect. In contrast, 

Jenkins, Samuelson, Smith & Spencer (in press; see also Samuelson, Spencer & 

Jenkins, 2013) showed that children who had less knowledge of the familiar categories 
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used in Xu and Tenenbaum’s task showed a strong suspicious coincidence effect, 

whereas children entering with more knowledge of the English categories showed no 

effect. Thus, the suspicious coincidence follows a nonlinear, U-shaped curve over the 

developmental timescale of category learning.  

Similar to Spencer et al. (2011), the discontinuity between the Bayesian model’s 

predictions of category representations at the algorithmic level and the U-shaped curve 

of suspicious-coincidence behavior suggests that separating these levels of analysis 

leaves much of what is critical for understanding the behavior unexamined (see also 

Jenkins, Samuelson & Spencer, 2011). Rather, grounding the suspicious coincidence 

effect in neural population dynamics and time-dependent processes via the DNF model 

revealed critical influences that were not detectable when the abstract levels of analysis 

were explicitly separated. Thus, this work again highlights how a DST analysis results in 

a more integrated and grounded understanding of even a very high-level, abstract 

behavior.  

Our final example focuses on another behavior that has been taken to represent 

one of the most abstract and potentially ungrounded abilities that humans 

demonstrate—inferring the thoughts of others. This work demonstrates how a DST 

analysis appreciating that behavior happens in the here and now of space and time 

creates an integrated neural, cognitive and perceptual-motor understanding of early 

referent selection.  

Using space to infer reference 

A central question in the field of early word learning is how is it that young 

learners are so good at inferring the meaning of novel words given that the possible 
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referents in a naming situation can range from the objects present in the visual scene to 

properties of those objects, ongoing actions, and so on. Answers to this question range 

from the proposal that internal constraints limit the possibilities the child considers at the 

moment of naming (i.e., the whole object assumption, the taxonomic assumption and 

mutual exclusivity; see Markman, 1992 for review); to attentional biases such as the 

shape bias that direct children’s focus to the most critical object features based on their 

prior word learning history (e.g., Landau, Smith & Jones, 1988). Also popular are social-

pragmatic theories that suggest children use knowledge of speakers’ intentions to 

determine the meaning of novel words.  

Consider a seminal study by Baldwin (1993) examining young children’s ability to 

read the referential intent of a speaker. A schematic of the task is presented in the far 

left column of Fig. 2. A novel object is presented to a 20-month-old child for exploration 

and manipulation on one side of a table. This object is then removed and a second 

novel object is presented on the other side of the table and the child is again allowed to 

reach for, grasp and explore the object. This is repeated for a set of familiarization trials. 

Both objects are then placed in separate opaque buckets on either side of the table. 

The experimenter looks into one bucket and says “Modi!” The object from the other 

bucket is then taken out and placed on its side of the table. It is removed after the child 

examines it and the other object is placed on the table. After examination, this item is 

also removed. Both objects are then placed on a tray on the center of the table. The tray 

is pushed toward the child, and the experimenter asks, “Can you get me the modi?” 

Children retrieve the object that was in the bucket the experimenter was looking in when 

she said the novel word .70 of the time. Baldwin interpreted this result as suggesting 
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children understood the pragmatic use of eye gaze as an intentional cue (Baldwin, 

1993).  

---------------------------- Insert Fig. 2 about here ---------------------------- 

In contrast, we have used a DST analysis and a formal Dynamic Neural Field 

model to demonstrate that children’s word-referent mappings in Baldwin’s task are 

based instead on the neural encoding of the objects’ spatial locations and the recall of 

those locations at the point of naming (Samuelson, et al., 2011). That is, during the 

familiarization trials, the children’s behaviors—looking at the objects, reaching for them, 

manipulating them and attending as each is removed—create associations between 

each of the novel objects and their unique locations in the space of the task. Thus, 

when the experimenter looks into a bucket placed at one of those unique locations and 

says the name the child’s memory of the object previously seen and acted on at that 

location is recalled and bound to the novel name. Thus, the child is able to link the novel 

name to the correct object via the space in which her body, her attention, her actions 

and the object itself occur.  

---------------------------- Insert Fig. 3 about here ---------------------------- 

We have tested several predications of this account (Figs. 2 and 3) and 

quantitatively simulated children’s behavior with the same DNF model used to capture 

the suspicious coincidence effect. This work demonstrates, for instance, that children 

can bind the novel word to the correct object even in when the experimenter points to 

an empty location on the table. We have also demonstrated that space is special in 

facilitating these mappings: associating the potential referents with unique colors and 

providing the name in the presence of one of these colors does not support mapping. 
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Furthermore, children learn words better when their parents keep objects in consistent 

spatial locations when teaching them. Thus, a nonobvious factor—the history of where 

objects have been placed in a task—matters in young children’s early word learning. 

This initially surprising finding fits with research showing that both adults and children 

will look back to the location in which a fact or sound was previously presented when 

trying to recall that information (Richardson & Spivey, 2000; Richardson & Kirkham, 

2004). It is also consistent with the use of space for reference in sign languages and in 

gestural communication. A computational-level analysis that defines the task as 

inference from the intentions of another person does not predict the connection between 

space and word learning. Thus, a DST analysis again provides fundamentally different 

view on cognition and an integrated understanding of behavior grounded in terms of 

both neural dynamics and sensori-motor processes.   

Conclusion 

Each of the examples above show how a DST approach results in a radically 

different view of cognition compared to research that starts with a computational level 

analysis. We do not think these differences are a coincidence. Rather, they reflect a 

deep challenge in trying to infer a computational-level theory from an inherently non-

linear, complex, and emergent system (see also McClelland et al., 2010). Emergence—

the idea that behavior arises through the interaction of many components over time 

without recourse to explicit coding and without needing to be hardwired—played a key 

role in each of the examples we reviewed. For instance, according to Thelen et al. 

(2001), A-not-B errors are reduced when excitatory neural interactions increase 

sufficiently to support a qualitatively new attractor state—the self-sustaining state where 



	
   16 

neural activation patterns are actively maintained even in the absence of input. Recent 

work demonstrates how this new attractor state can arise through a variant of Hebbian 

learning as infants repeatedly reach to different locations in space (Schöner, et al., in 

press; Perone & Spencer, 2013). Thus, Hebbian learning gives rise to a new emergent 

ability—the ability to actively and flexibly remember a cued target location. 

Of course, viewing cognition and behavior as the emergent product of a complex, 

time-extended system presents challenges for how we do our science. One of the 

lasting influences of Marr’s seminal work was to lay out a framework for cognitive 

research and a method of analysis that enabled investigators to define the scope of the 

problem in a tractable way that was rigorous but not reductionist. Fortunately, DST also 

provides organized ways of analyzing a system and defining the scope of a research 

question. Specifically, if components are strongly coupled, we have to care about them 

and their interactions as a set because they all matter for the behavior or cognition in 

question. If, however, components are weakly coupled, then we can study each more 

independently (at least within context). A “subsystem” in DST, therefore, is defined as a 

collection of strongly coupled components that function as an integrated system, 

actively resisting perturbations from, for instance, external inputs, and showing only 

weak coupling to other components (Schöner, 1995). Thus, while scientific examination 

requires carving the system into analyzable sub-systems, the joints used to carve a 

dynamic system are defined relative to the specific behavior or phenomenon under 

examination; they are the places where a behavioral analysis suggests weak coupling 

among components. Such joints are not always readily apparent. For instance, one 

might think that learning names for hierarchically nested categories might be immune to 
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perceptual-level processes, but this was not the case with the suspicious coincidence 

effect. 

Viewing cognition and behavior as the product of a complex, time-extended 

system also means that the major unit of analysis and subject of study is defined in 

terms of a process of change and the trajectory of behavior over time (Beer, 1995, 

2000; van Gelder & Port, 1995; Spivey, 2007). DST approaches strive to understand the 

next state of the system based on its current state. They recognize the history of the 

system as a critical influence on its current and future states. Thus, to understand 

cognition, we must examine thinking with respect to that history and over multiple 

timescales. This is evident in the referent selection example, where a child’s history of 

past events enables the mapping of novel words to referents without having to read the 

minds of social partners. This DST focus on time and trajectories opens the door to both 

developmental approaches, defined not as the study of children but as the study of the 

system at multiple points in time (Smith & Thelen, 2003; Thelen & Smith, 2006), and to 

an appreciation of individual differences (see, e.g., Hollenstein & Lewis, 2006). 

It is, of course, possible to do a computational level analysis that incorporates 

some of the critical components of a dynamic systems perspective—for example 

agent/environment interactions or the influence of the body. What we have argued, 

however, is that the concept of emergence is fundamentally at odds with a 

computational-level analysis because such analyses start by defining the agent’s 

behavior in terms of goals that are independent of the neural, physical, and historical 

processes that produce behavior. This does not mean that computational-level thinking 

cannot still be impactful. It is clear that Marr’s Vision has provided great benefit to 
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cognitive science, and that computational analyses have led to advancements in many 

areas of cognitive science (see papers in Perception v41, 2012 for review and 

commentary). Nevertheless, the specific examples reviewed here demonstrate that a 

dynamic systems perspective provides a valuable alternative framework for cognitive 

science, because it appreciates that the neural-behavioral system is complex, non-

linear, and emergent (see also McClelland et al., 2010).  

Furthermore, taking emergence seriously opens the door to answers to one of 

the most critical questions concerning cognitive-level processes: where do new forms of 

behavior and thought such as riding a bicycle or a new chess strategy, come from (see 

also Poggio, 2012)? This is a question that other approaches to cognition typically 

ignore, sometimes going so far as to build in miniature pre-formed versions of new 

behaviors (Smith & Pereira, 2009; Smith, 2001; McClelland, 2010). In contrast, a DST 

perspective suggests that new behaviors can emerge organically as subtle changes in 

the components of the system—the strength of a muscle that stabilizes a reach, the 

presentation of objects sequentially in time, the association of an object with a specific 

location—softly assemble and produce changes in cognition and action. But does 

emergence require that we throw up our hands and say everything matters? No, we can 

(and should) be analytical about our research question. DST offers a way to determine 

a unit of study, that is, what a ‘subsystem’ is and how to separate one subsystem from 

another. And DST identifies the focus of study—trajectories of behavior and behavioral 

change through time. The examples here illustrate the comparative utility of this 

perspective, and how changing our focus can lead to a deeper understanding about the 

organization of behavior and how behavior changes over learning and development. 
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Fig. Captions 
 
Fig. 1. The narrowing effect revealed by Johnson et al., 2009. The two peaks on the 

right that are in close proximity in the dynamic neural field are narrower than the peak 

on then left even though the original inputs (lighter curves) were the same widths. This 

narrowing is caused by the inhibitory interactions of the field.   

Fig. 2 Schematic of experimental tasks in Samuelson et al., 2011; including a replication 

of Baldwin, 1993 (far left column). 

Fig. 3. Performance of children and model in  Samuelson et al. 2011 Experiments 1-5. 

Children’s percent of correct choices for each experiment (black bars) with standard 

deviations (range of error bars). *s indicate performance significantly above chance (.50 

in a two item forced-choice task). The mean performance of the Dynamic Neural Field 

model (across 12 batches of simulations) for all experiments is also shown (white bars). 

Error bars show the standard deviation of the model’s performance (across 12 batches 

of simulations) per condition, relative to the target means. 

 
 

	
  

 


