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Pretopologies were introduced in [S] and there shown to give a complete semantics
for a propositional sequent calculus BL here called basic linear logic1, as well as for
its extensions by structural rules, ex falso quodlibet or double negation. Immediately
after the Logic Colloquium ’88, conversation with Per Martin-Löf helped me to see
how the pretopology semantics should be extended to predicate logic; the result now is
a simple and fully constructive completeness proof for first order BL and virtually all
its extensions, including usual, or structured, intuitionistic and classical logic. Such
a proof clearly illustrates the fact that stronger set-theoretic principles and classical
metalogic are necessary only when completeness is sought with respect to a special
class of models, such as usual two-valued models.

To make the paper self-contained, I briefly review in section 1 the definition of pre-
topologies; section 2 deals with syntax and section 3 with semantics. The completeness
proof in section 4, though similar in structure, is sensibly simpler than that in [S], and
this is why it is given in detail. In section 5 it is shown how little is needed to obtain
completeness for extensions of BL in the same language. Finally, in section 6 connec-
tions with proofs with respect to more traditional semantics are shortly investigated,
and some open problems are put forward.

The content of this paper, except the last section, was already contained in a lecture
given in March 1989 at the Department of Mathematics of the University of Stockholm;
I thank Prof. P. Martin-Löf for his kind invitation. Soon after, a first draft of this
paper was read by Prof. H. Ono, whose answers [O1] and [O2] in turn influenced
the chapter on algebraic semantics in Prof. A. S. Troelstra’s lectures [T]. So by now
the completeness proof for BL has partly lost its originality; I will thus stress on the
peculiarity of the approach via pretopologies.

The main advantage of pretopologies seems to be that of having a middle position:
so on one hand little effort is needed to show the completeness of the semantics of
pretopologies, as usual with algebraic semantics to which it is closely connected, but

1In [S] the same calculus BL was baptized ML, M for minimal; I now prefer to avoid using the word

minimal since its meaning is debatable in linear context. It is also debatable whether it is correct to
call basic a logic in which ⊗ is commutative; however, though commutativity is often not essential to

obtain many of the results to follow, I believe that assuming it makes basic ideas more perspicuous.
The reader can consult [T] for a recent survey and references on linear logic, keeping aware of some

differences in notation. Also, see [S2] for a short survey on pretopologies.



on the other hand, contrary to algebraic semantics, pretopologies can be given an
intuitive meaning which helps in forming a useful mental picture. A second advantage
is that they allow fully constructive definitions and proofs; by this we mean, more
specifically, that the set theory we need, unless otherwise stated, is a fragment of
intuitionistic type theory [ITT], even if its notation and terminolgy is not adopted
strictly here.

I thank Per Martin-Löf and Silvio Valentini for helpful conversations and encour-
agement.

1. Pretopologies.

A base S is here simply a commutative monoid (S, ·, 1). Elements of S are called
objects and denoted by a, b, c, ... ; the binary operation · is called combination. A
precover on S is a relation / between objects and subsets U , V , W , ... of S which
satisfies

reflexivity
a ∈ U

a / U

transitivity
a / U U / V

a / V

stability
a / U b / V

a · b / U · V

where2 U / V ≡(∀b ∈ U)(b / V ) and U · V ≡ {a · b : a ∈ U, b ∈ V }. A pretopology F is
a base SF provided with a precover /F (subscripts are almost always omitted).

The meaning of the definition of pretopology can be grasped from several different
points of view. First, the topological flavour of terminology is due to the fact that the
notion of pretopology was born from that of formal topology3, on which an intuition-
istic approach to pointfree topology is based (cf. [IFS], [S]); this is why we continue
to read a / U as “a is (pre)covered by U”.

However, pretopologies can be given an independent intuitive interpretation. We
think of SF as a universe of concretely produced objects, or occurrences of pieces of
information, which can be always combined by means of ·; then 1 is the object which
costs nothing to be produced. The “logical” structure of the universe is determined
by the infinitary relation /F , which is thought of as a generalized membership; then
a / U is read as “a is forced by /F to be an element of U” or “a is an F -element of
U”.

It is then natural to consider the operator on subsets which associates with each
subset U the subset FU of all its F -elements; formally,

FU ≡ {a ∈ S : a /F U}.

2Here and in the whole paper ≡ is the sign for definitional equality; when a definition is first given,
the definiendum will always be at the left and the definiens at the right.
3Cf. section 6 below for a definition.
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Intuitively, FU is the least property which “behaves well” with respect to the logic
given by / and which contains U .

A subset of the form FU for some U is called F -saturated. Any condition involving
/ can equivalently be expressed in terms of membership ∈ and F -saturated subsets;
let us call “rewriting” such a translation. So, by the definition, a / U is rewritten as
a ∈ FU , and hence U / V is rewritten as U ⊆ FV . If we apply this to the definition
of precover, we see that reflexivity is rewritten as U ⊆ FU and transitivity as U ⊆
FU ⇒ FU ⊆ FV ; it is easily seen that such two properties together are equivalent
to U ⊆ FU , U ⊆ V ⇒ FU ⊆ FV and FFU ⊆ FU , which are usually taken as the
definition of closure operator on PS. Stability is rewritten as FU · FV ⊆ F(U · V ),
namely a form of compatibility with combination.

Conversely, given any closure operator F compatible with combination, by putting

a / U ≡ a ∈ FU

we immediately obtain a precover /. The result is a biunivocal correspondence between
precovers and closure operators compatible with combination; we are thus free to use
either approach, according to convenience.

Obviously, the identity operator =U ≡ U trivially satisfies all the required condi-
tions; the corresponding infinitary relation is crude membership ∈, which then is the
trivial precover (note that stability is just the definition of U · V ); this confirms the
idea that / is a sort of generalized membership.

The third point of view is purely mathematical (for details, see [BS]). Given a base
S, the structure (PS, ·, 1,∪), where PS is the powerset of S, · is defined as above
on subsets and ∪ is set-theoretic union, is a (unital commutative) quantale (cf. e.g.
[T] or [R] for definitions); then pretopologies with base S can be seen as the shortest
description of its quotients. In fact, a precover / induces an equivalence between
subsets

U =F V ≡ (U / V & V / U)

which moreover respects the operations · and ∪, i.e. is a quantale congruence (or a
quantic nucleus, see [R], p. 29 and 32). Conversely, any quantale congruence θ on
(PS, ·, 1,∪) is induced in this way by a precover, namely the precover /θ obtained by
putting

a /θ U ≡ U ∪ {a} θ U,

and the correspondence can be shown to be biunivocal. So, for any pretopology F , the
quotient PS/=F

can be given the structure of a quantale (in the expected way: if [U ]
denotes the =F -equivalence class of U , put [U ] · [V ] ≡ [U ·V ] and

∨
i∈I

[Ui] ≡ [∪i∈IUi]);
moreover, any quantale can be presented in this way (and thus one can forget about
the abstract algebraic definition).

An even simpler description is obtained in terms of F -saturated subsets. In fact,
since U =F V iff FU = FV and since FFU = FU , the assignment [U ] 7→ FU de-
fines a bijection between PS/=F

and the collection of all F -saturated subsets, which
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we call Sat(F). Now, since F is a closure operator, Sat(F) is automatically pro-
vided with a complete lattice structure (as usual, put

∨
i∈I

FUi ≡ F(∪i∈IFUi) and∧
i∈I

FUi ≡ ∩i∈IFUi) and since moreover F is compatible with combination, after
providing Sat(F) with the operation ·F defined by FU ·F FV ≡ F(FU · FV ), the
assignment [U ] 7→ FU becomes an isomorphism of quantales.

We can now come back to the point of view of logic. Since F -saturated subsets are
thought of as “good” properties over S, it is quite natural to adopt them for the inter-
pretation of formulas. Consequence between F -saturated subsets is just inclusion, but
since FU ⊆ FV iff U / V , the precover relation / lends itself to be the interpretation
of consequence ` between formulas. The structure Sat(F) is rich enough with finitary
and infinitary operations to interpret all logical constants of first-order basic linear
logic (formally introduced in section 2 below). In fact, the complete lattice structure
gives an interpretation to (additive) conjunction & and disjunction ⊕, and to quanti-
fiers, while the operation ·F will be the interpretation of multiplicative conjunction ⊗.
In any pretopology, there are also three distinguished F -saturated subsets, the top S
and the bottom F∅ of Sat(F) and the F -saturation of the subset {1}: they will be the
interpretation of the constant atomic formulas >, 0 and 1 respectively. What about
implication? By stability of / (which corresponds to infinite distributivity of ∨ with
respect to ·F in the quantale Sat(F)), we can define it by putting, for any U, V ⊆ S
(and writing a · U as an abbreviation for {a} · U):

U →F V ≡ {a ∈ S : a · U / V }.

Equivalently, a ∈ U →F V iff a combined with any element of U gives an F -element of
V ; that is, the definition of →F is the closest one can get, within the universe of objects
with combination, to the usual intuitionistic semantic explanation of implication. The
definition of negation too, strictly follows Brouwer’s spirit: once we know the extension
⊥F of the property of being an “impossible” object in F , we define −FU as U →F ⊥F ,
that is a ∈ −FU iff the combination of a with any object in U is “impossible”.

Note that the definition of →F contains Girard’s linear implication −−◦ between
subsets as a particular case: in fact, −−◦ can be defined ([G], 1.10, p. 20) as

U −−◦ V ≡ {a ∈ S : a · U ⊆ V }

which is the same thing as U →= V , where = is the trivial operator. It is shown below
(lemma 3) that →F is indeed a well-defined operation on Sat(F) and that, like all
other operations, it can be described only in terms of the operator F and set-theoretic
notions (including −−◦).

After the introduction of the sequent calculus BL and a precise formulation of the
interpretation of formulas, we will rigourously see that the above semantics of logical
constants is complete, which is the last good reason for the introduction of pretopolo-
gies. To avoid fragmentation of proofs, all the immediate properties of pretopologies
needed in the paper are summed up in the following three lemmas.
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Lemma 1 (Properties of / on subsets). In any pretopology, the following hold
for any U , V , W , Z:

(1) U / U ,
U ⊆ V

U / V

(2)
U ′ ⊆ U U / V

U ′ / V
,

U / V V ⊆ V ′

U / V ′

(3)
W / U Z / V

W · Z / U · V
(4) U · (U → V ) / V

(5)
Z / U W / U → V

Z · W / V

(6)
W · U / V

W / U → V

Proof: Recalling the definition U / V ≡ (∀a ∈ U)(a / V ), (1) and (2) follow imme-
diately from reflexivity and transitivity, and (3) by stability. (4) is a reformulation of
the definition of →F , from which (5) follows by (3). Finally, (6) holds by the definition
of →F and reflexivity.

Lemma 2 (Equivalents of stability). The following are all equivalent to stability,
and hence hold in any pretopology:

(1)
Z / U W · U / V

Z · W / V
(cut)

(2) W · FU / W · U

(3) FU · FV ⊆ F(U · V ), F(FU · FV ) = F(U · V )

(4)
a / U

a · b / U · b
(localization)

Proof: (1) follows from (6) and (5) of lemma 1; applying (1) to FU /U we obtain (2),
from which (3) is obvious; now note that (3) is the “rewriting” of stability. Equivalence
of (4) with stability is obtained directly.

Lemma 3 (Properties of →F). The following hold in any pretopology, for any U ,
V , W , Z:

(1) W / U → V iff W · U / V , hence 1 / U → V iff U / V (→F is adjoint to ·)

(2) U →F V is F -saturated

(3) U =F U ′, V =F V ′ ⇒ U →F V = U ′ →F V ′ (→F respects =F )

(4) U →F V = U −−◦ FV

Proof: From W / U → V and (4) of lemma 1, it follows that W · U / V by cut; the
other direction of (1) is (6) of lemma 1. Then from a / U → V one has a ·U / V , that
is a ∈ U → V , so (2) holds. (3) and (4) are immediate consequences of the fact that,
by (2) of lemma 2, a ·U /V iff a ·FU /V and that a ·U /V iff a ·U /FV iff a ·U ⊆ FV
hold for any a, U , V .
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2. Basic linear logic and its extensions.

The language of predicate basic linear logic contains two symbols4 ⊗ and & for
conjunction, ⊕ for disjunction, −−◦ for implication, and four constants for atomic
formulas >, 1, 0 and ⊥, beside quantifiers ∃, ∀, individual variables x,y, ... , signs for
functions f , ... and for predicates R, ... as usual. Terms and formulas are defined as
usual, and denoted by s, t, t1 ... and A, B, C, ... respectively.

The behaviour of logical constants is governed by the following Gentzen-style se-
quent calculus, defining what we here call basic linear logic BL. Note the absence of
structural rules of weakening and contraction, which compels to pay more attention
than usual to the context of auxiliary formulas Γ, ∆, ...

Axioms A ` A

Exchange
Γ, A, B, ∆ ` C
Γ, B, A, ∆ ` C

Cut
Γ ` A ∆, A ` C

Γ, ∆ ` C

⊗L
Γ, A, B ` C

Γ, A ⊗ B ` C
⊗R Γ ` A ∆ ` B

Γ, ∆ ` A ⊗ B

&L
Γ, A ` C

Γ, A&B ` C
Γ, B ` C

Γ, A&B ` C
&R Γ ` A Γ ` B

Γ ` A&B

⊕L
Γ, A ` C Γ, B ` C

Γ, A ⊕ B ` C
⊕R Γ ` A

Γ ` A ⊕ B
Γ ` A

Γ ` B ⊕ A

−−◦L Γ ` A ∆, B ` C
Γ, ∆, A −−◦ B ` C

−−◦R Γ, A ` B
Γ ` A −−◦ B

1L Γ ` C
Γ, 1 ` C

1R ` 1

0 Γ, 0 ` C > Γ ` >

∀L
Γ, At ` C

Γ, ∀xAx ` C
∀R Γ ` Ax

Γ ` ∀xAx

∃L
Γ, Ax ` C

Γ, ∃xAx ` C
∃R Γ ` At

Γ ` ∃xAx

4To avoid adding further disorder, I refrain from proposing a variation in notation and rather adhere

strictly to Girard’s notation and terminolgy in [G].
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(where as usual t is any term free for x in A, and in ∀R and ∃L, x is not free in Γ and
C). Note that ⊥ is like any other formula, since no rules on it are assumed; it is there
solely to define negation by ¬A ≡ A → ⊥.

By adding suitable rules or axioms to the above calculus, we can obtain (equivalent
formulations of) several other logics. We will consider here the following possible
additions:

weakening, or w
Γ ` C

Γ, A ` C

contraction, or c
Γ, A, A ` C

Γ, A ` C

ex falso quodlibet, or ⊥-rule ⊥ ` A

double negation, or dn ¬¬A ` A

We will prove completeness of BL and of all its 11 extensions obtainable by adding
any combination of the above four assumptions5; such extensions include several logics
which already have a name, either traditional or recently introduced, as listed below:

(1) BL + ⊥-rule is here called IL, for Intuitionistic Linear logic (cf. [GL], [A], [S]);
(2) IL + w is called intuitionistic logic without contraction (cf. [OK]) and its

implicational fragment is equivalent to BCK-logic;
(3) IL + w + c is equivalent to intuitionistic logic I;
(4) BL + dn is equivalent to the exponential-free fragment of Girard’s linear logic

(cf. [G]), and is here called CL, for Classical Linear logic;
(5) CL + w is equivalent to direct logic (cf. [KW]);
(6) CL + w + c is equivalent to classical logic C.

All the proofs of such equivalences are syntactic routine, and are left to the reader
(with one warning: note that also in the extensions of BL all provable sequents have
exactly one formula on the right side).

Finally, we will also consider (end of section 5) the extension of each such system
obtained by introducing an equality = which satisfies the standard axioms.

3. The semantics of pretopologies.

The basic idea, as in section 1 and in [S], is that F -saturated subsets, for an arbitrary
pretopology F , act as generalized truth values of formulas. The interpretation of terms
is standard: the domain of interpretation for individual variables is a set D, while the
interpretation of a function sign is then an operation on D. The link between D
and F is given by the interpretation of atomic formulas Rt1 . . . tn, since they must be
given a truth value, i.e. an F -saturated subset, which depends on the interpretation
of t1, ..., tn. So, given an arbitrary pretopology F , we call D = (D, fD, ..., RD, ...) an
F-structure for the given language when:

(1) D is an arbitrary set, called the domain;

5Although the number of subsets of {w,c,⊥-rule,dn} is 16 = 24, the number of different extensions

reduces to 11 since it is easy to see that in presence of dn, w and ⊥-rule are equivalent.
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(2) for any n-ary function sign f in the language, fD is a function Dn → D;
(3) for any n-ary predicate sign R in the language, RD is a function Dn → Sat(F).

The interpretation tD of a term t is defined inductively as usual; given an assignment
σ to individual variables in D, and a term t with variables x1, ..., xn, we write tσ for
the element of D obtained by applying tD to σ(x1), ..., σ(xn). Then, given σ and
an arbitrary saturated subset ⊥F , the truth value of a formula A is the F -saturated
subset V σ(A) defined by induction as follows:

V σ(Rt1 . . . tn) ≡ RDtσ1 . . . tσn for any relation sign R

V σ(>) ≡ S, V σ(⊥) ≡ ⊥F V σ(1) ≡ F{1}, V σ(0) ≡ F∅

V σ(A ⊗ B) ≡ F(V σ(A) · V σ(B)) V σ(A&B) ≡ V σ(A) ∩ V σ(B)

V σ(A ⊕ B) ≡ F(V σ(A) ∪ V σ(B)) V σ(A −−◦ B) ≡ V σ(A) →F V σ(B)

V σ(∃xAx) ≡ F(
⋃

d∈D
V σ(Ad)) V σ(∀xAx) ≡

⋂
d∈D

V σ(Ad)

where V σ(Ad) is an abbreviation for V σd(Ax), σd differing from σ only in the value
of x, which is d.

Note that the above definitions include the standard (classical) ones as a particular
case, namely when F is the trivial pretopology on the trivial monoid on {1}; in fact, in
this case the saturated subsets are only ∅ and {1}, hence RD can be identified with a
relation on D in the usual classical sense, and finally, choosing ⊥F = ∅, V σ(A) = {1}
iff D |=σ A holds in the usual tarskian sense. Note also that, in this case, A ⊗ B and
A&B are given the same truth value.

For any F -structure D, a formula A is said to be valid in D for V σ if 1 ∈ V σ(A), and
valid in D if it is valid for any V σ, that is for any choice of σ and ⊥F . The valuation
V σ is extended to sequents by saying that Γ ` A is valid iff, for Γ = B1, . . . , Bn,
B1 ⊗ · · · ⊗ Bn −−◦ A is valid; by the definition of V σ and lemmas 3.1 and 2.3, this
means that Γ ` A is valid if V σ(B1) · . . . · V σ(Bn) / V σ(A) or equivalently, writing
V σ(Γ) for V σ(B1 ⊗ · · · ⊗ Bn), if V σ(Γ) / V σ(A).

Theorem 4 (Basic Validity). Every theorem of BL is valid in every F -structure.

Proof: It is a potentially routine matter to prove that axioms are valid, and that
rules are valid, in the sense that they preserve validity; actually, all rules except ∀R
and ∃L, preserve validity under a fixed V σ. However, here is an actual proof for
the convenience of the reader. To improve readability, let U ≡ V σ(A), V ≡ V σ(B),
W ≡ V σ(Γ) and Z ≡ V σ(C); then validity is shown as follows:

axioms: because U / U by lemma 1.1;
exchange: by commutativity of · ;
cut: by lemma 2.1;
⊗R: by lemma 1.3, namely stability for subsets;
⊗L: built in in the definition of V σ;
&R: from W / U and W / V , when U and V are F -saturated we have W ⊆ U and

W ⊆ V , hence W ⊆ U ∩ V and a fortiori W / U ∩ V ;
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&L and ⊕R: by lemma 1.2, since obviously W · (U ∩V ) ⊆ W ·U and U ⊆ F(U ∪V )
respectively;

⊕L: from W · U / Z and W · V / Z we have W · U ∪ W · V / Z, and hence, since
W ·U ∪W ·Z = W · (U ∪V ) by definition, also W · (U ∪ V ) / Z, from which the claim
by lemma 2.2;

−−◦R: by lemma 3.1;
−−◦L: because it is derivable from cut and A, A → B ` B, which is valid by lemma

1.5;
1R and 1L: because trivially 1 ∈ F{1} and W · 1 = W ;
>-rule and 0-rule: because trivially F∅ / W and W / S for any W ;
∀L and ∃R: like for &L and ⊕R respectively, since by definition V σ(∀xAx) ⊆ V σ(At)

and V σ(At) ⊆ V σ(∃xAx) for any term t.
To see that ∀R is valid, assume that Γ ` Ax is valid in the given F -structure, that is

V σ(Γ)/V σ(Ax) under any assignment σ. Since Γ does not contain x free, W ≡ V σ(Γ)
does not depend on the value given to x by σ, and hence W / V σ(Ad) for any d ∈ D.
Now proceed as for &R: since V σ(Ad) is saturated, we have W ⊆ V σ(Ad) and hence
W ⊆

⋂
d∈D

V σ(Ad), from which the claim by lemma 1.1.
Similarly, if Γ, Ax ` C is valid, then W · V σ(Ad) / Z for any d ∈ D, from which

W · F(
⋃

d∈D
V σ(Ad)) /Z by the same argument as in ⊕L, which shows validity of ∃L.

4. The basic completeness proof.

The proof of completeness is based on the construction of a canonical F -structure.
Let Frm be the set of formulas; like in the construction of Lindenbaum algebras, we
put

(A =BL B) ≡ (` A ◦−−◦B),

where A ◦−−◦B ≡ (A −−◦ B)&(B −−◦ A). Since A =BL B iff A ` B and B ` A, it is
immediate to check that =BL is an equivalence relation on Frm which moreover, by
⊗-rules, respects the operation ⊗, that is, A =BL A′ and B =BL B′ imply A⊗B =BL

A′⊗B′. Therefore, if [A] ≡ {B ∈ Frm : A =BL B}, we can define [A]⊗ [B] ≡ [A⊗B].
For any A, B, C, it is easily seen that A⊗(B⊗C) =BL (A⊗B)⊗C, A⊗B =BL B⊗A,
and, by 1-rules, 1 ⊗ A =BL A; hence FrmBL ≡ (Frm/=BL

,⊗, [1]) is a commutative
monoid, here called the Lindenbaum base on BL.

We now want to define on the Lindenbaum base a precover /Pr which is to be
connected with the derivability relation `BL. The simplest way is to require that
A ` C iff [A] /Pr [C], or equivalently to put

Pr[C] ≡ {[A] ∈ Frm/=BL
: A `BL C}.

Since when C =BL B obviously A ` C iff A ` B, this is a sound definition, and hence
omitting square brackets is harmless. We thus instead of [A] ∈ Pr[C] always write
A ` C or A ∈ PrC; note that then A ` C, A ∈ PrC, {A} ⊆ PrC, PrA ⊆ PrC are all
equivalent.
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To obtain a closure operator, it is enough to close the family {PrC : C ∈ Frm}
under arbitrary intersections, or equivalently to extend Pr to any subset Σ of FBL by
putting

PrΣ ≡ ∩{PrC : Σ ⊆ PrC}.

The equivalent formulation

B /Pr Σ ≡ (∀C)(Σ ⊆ PrC ⇒ B ` C).

will also be frequently used. Observe that notation is consistent, that is PrA = Pr{A},
because for any B, (∀C)(A ` C ⇒ B ` C) iff B ` A. Also, note that for any Σ1 and
Σ2, PrΣ1 = PrΣ2 is, by definition of Pr, equivalent to: for any formula C, Σ1 ⊆ PrC
iff Σ2 ⊆ PrC.

Lemma 5. The structure PrBL = (FrmBL, Pr) is a pretopology, called the Linden-
baum pretopology of BL.

Proof: By its definition, Pr is a closure operator. Moreover, it is automatically
compatible with combination, or equivalently, by lemma 2.4, it satisfies localization,
which in this case amounts to

(∀C)(Σ ⊆ PrC ⇒ A ` C)

(∀C)(Σ ⊗ B ⊆ PrC ⇒ A ⊗ B ` C)

In fact, let C be arbitrary. From the premiss applied to B −−◦ C, one has Σ ⊆
Pr(B−−◦C) ⇒ A ` (B−−◦C); but by −−◦-rules and cut, Σ⊗B ⊆ PrC iff Σ ⊆ Pr(B−−◦C),
and hence the conclusion.

Now we can easily define a Pr-structure T with domain T , the set of all terms. As
usual, the trick is that the interpretation fT of any function sign f is f itself. The
new trick is to interpret a predicate sign R in the function RT : Tn → Sat(Pr) defined
by

RT (t1, ..., tn) ≡ Pr(R(t1, ..., tn)).

The resulting Pr-structure is called the BL-canonical structure.

Lemma 6 (on the canonical valuation). If ι is the identity assignment on T (i.e.
ιx ≡ x for any variable x) and V ι(⊥) ≡ Pr⊥, then for any formula A,

V ι(A) = PrA.

V ι is called the canonical valuation.

Proof: By induction on formulas. For atomic formulas R(t1, ..., tn), the claim holds
by the definition of V σ and RT , and the fact that tι = t for any t ∈ T . By the
definition of valuation, the claim for > and 1 amounts to Pr> = Frm/=BL

, which
holds by the >-rule, and Pr{1} = Pr1 respectively; the claim for 0 is Pr0 = Pr∅, which
by definition of Pr means that 0 ∈ PrC iff ∅ ⊆ PrC for any C, which is trivial by
0-rule. Finally, recall that V ι(⊥) = Pr⊥ is assumed.

10



Now assume, by inductive hypothesis, that V ι(A) = PrA and V ι(B) = PrB. Then,
by the definition of valuation, the claim for connectives becomes:

Pr(A ⊗ B) = Pr(PrA ⊗ PrB), which, recalling that PrC = Pr{C} for any C and
that {A ⊗ B} = {A} ⊗ {B}, appears to be an equivalent formulation of stability, by
lemma 2.3;

Pr(A&B) = PrA ∩ PrB, which means C ∈ Pr(A&B) iff C ∈ PrA ∩ PrB, that is

for any formula C, C ` A&B iff C ` A and C ` B,

which is immediate by &-rules;
Pr(A ⊕ B) = Pr(PrA ∪ PrB), which, by the definition of Pr, means that for any

C, A ⊕ B ∈ PrC iff PrA ∪ PrB ⊆ PrC, which, since obviously PrA ∪ PrB ⊆ PrC iff
PrA ⊆ PrC and PrB ⊆ PrC, is equivalent to

for any formula C, A ⊕ B ` C iff A ` C and B ` C,

which is immediate by ⊕-rules;
Pr(A −−◦ B) = PrA →Pr PrB which, since PrA →Pr PrB = {A} →Pr PrB by

lemma 1.3, is equivalent to

for any formula C, C ` A −−◦ B iff C ⊗ A ` B,

which is immediate by rules for −−◦ and ⊗.
We now turn to quantifiers, assuming by inductive hypothesis that V ι(At) = Pr(At)

for every term t. Since by definition V ι(∀xAx) ≡
⋂

t∈T
V ι(At), the claim for ∀ then

reduces to Pr(∀xAx) =
⋂

t∈T
Pr(At), that is

for any formula C, C ` ∀xAx iff C ` At for every term t

which is obvious by ∀-rules (from right to left, if x is free in C, choose z not occurring
in C, so that from C ` Az we can derive C ` ∀zAz and hence the claim since
∀zAz ` ∀xAx).

Similarly, since V ι(∃xAx) ≡ Pr(
⋃

t∈T
V ι(At)), the claim for ∃ becomes Pr(∃xAx) =

Pr(
⋃

t∈T
Pr(At)), which by definition of Pr means that for every C, ∃xAx ∈ PrC iff⋃

t∈T
Pr(At) ⊆ PrC, that is:

for any formula C, ∃xAx ` C iff At ` C for every term t

which is obvious by ∃-rules (again, changing names to variables if necessary).
We now can easily conclude:

Theorem 7 (basic completeness). A formula is provable in basic linear logic iff
it is valid.

Proof: Validity was shown in section 3. Conversely, assume A is valid. Then in
particular A is valid under the canonical valuation, that is [1] ∈ V ι(A). By lemma 6
on the canonical valuation, [1] ∈ PrA, that is 1 ` A and hence ` A by 1R and cut.
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5. Completeness for extensions of BL.

Note that all the proofs in section 4 are completely constructive, and actually use
only positive arguments (that is, roughly speaking, the metalogic is minimal). At
least in this case, this is not just an ideological remark: it means that all arguments
continue to hold whatever information we add. In particular, whatever extension L
obtained by adding axioms or rules to the sequent calculus BL we consider, if we
define an L-canonical structure in the obvious way (simply consider `L in place of
`BL), lemmas 5 and 6 continue to hold for L. Therefore, to prove completeness for
such L, it is enough to:

1. characterize the class of models in which L is valid;
2. show that the L-canonical structure is in that class.
It is straightforward to work out task 1. for the extensions by weakening w, con-

traction c and ⊥-rule:

Lemma 8. a. The rule of weakening is valid in a pretopology F iff F satisfies one of
the following equivalent conditions:

(1)
W / Z

W · U / Z
(2) W · U / W
(3) a · b / a
(4) b / 1

b. The rule of contraction is valid in F iff F satisfies one of the following equivalent
conditions:

(1)
W · U · U / Z

W · U / Z
(2) U / U · U
(3) a / a · a

c. The ⊥-rule is valid under a valuation V on F iff V (⊥) = F∅; any such V is called
normal.

Proof: a. Condition (1) is a pedantic translation of weakening in terms of subsets.
Each of the remaining conditions is obtained as a particular case of the preceding one
(in detail, take in succession W = Z, W = {a} and U = {b}, a = 1). Finally, (1)
comes from (4) by stability.

b. Condition (1) is the translation of contraction, (2) and (3) are particular cases
(first take W = 1 and Z = U · U , then U = {a}). Conversely, (2) follows from (3)
since for any a ∈ U , {a · a} ⊆ U · U , and (1) comes from (2) by cut.

c. Obvious, since F∅ is the least saturated subset.

Dealing now with double negation dn, that is with a system in which, contrary to
BL, ⊥ is no longer an arbitrary formula, it is more convenient to fix the interpretation
of ⊥, that is enrich a pretopology with an F -saturated subset ⊥F and say that a
formula is valid in (F ,⊥F) if it is valid for all valuations V such that V (⊥) = ⊥F .
But then working out task 1. for dn brings us directly, and exactly, to Girard’s
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semantics for CL, namely phase spaces (cf. [G], p. 18). Given a base S = (S, ·, 1) and
an arbitrary subset ⊥, following [G] we write U⊥ for U −−◦ ⊥ ≡ {a ∈ S : a · U ⊆ ⊥}.
The claim is that the operator (−)⊥⊥ : U 7→ U⊥⊥ is a closure operator compatible
with ·, that is that U ⊆ U⊥⊥, U ⊆ V ⊥⊥ ⇒ U⊥⊥ ⊆ V ⊥⊥ and U⊥⊥ ·V ⊥⊥ ⊆ (U ·V )⊥⊥

hold for any U and V ; this could be verified by direct calculations (cf. [G], p. 18, 21
and 20 resp.), here we can obtain it as a corollary. In fact, if we think of the base S as
provided with the trivial precover =, then U →= ⊥ is exactly the same thing as U−−◦⊥,
or U⊥, so that for any valuation V such that V (⊥) = ⊥, we have V (¬¬A) = V (A)⊥⊥

for any formula A. The claim then follows immediately by validity of BL, simply by
checking that A ` ¬¬A, A ` ¬¬B ⇒ ¬¬A ` ¬¬B and ¬¬A ⊗ ¬¬B ` ¬¬(A ⊗ B)
respectively are derivable in BL (hint: first show that if Γ, A ` ⊥ is derivable in BL,
then also Γ,¬¬A ` ⊥).

So any subset ⊥ determines a pretopology on S, which is called the phase space on
S with dualizer ⊥ and is denoted by S⊥; its saturated subsets, i.e. subsets U which
satisfy U⊥⊥ = U , are called facts in [G]. Note that the dualizer is a fact (because
¬¬⊥ ` ⊥ is derivable in BL).

It is easy to see that double negation dn is valid in every phase space S⊥. In fact, if V
is any valuation on S⊥ with V (⊥) = ⊥, then for any formula A the definition V (¬A) ≡
V (A) →S⊥ V (⊥) gives V (¬A) = V (A)⊥, because V (A) →S⊥ ⊥ = V (A) −−◦ ⊥⊥⊥ by
lemma 3.4 and because ⊥⊥⊥ = ⊥; so V (¬¬A) = V (A)⊥⊥, but V (A)⊥⊥ = V (A) since
V (A) is a fact.

Moreover, we can immediately add that no other pretopology can make dn valid
(and this explains why, restricting to CL, the general notion of pretopology is inessen-
tial). In fact, the assumption that dn is valid in (F ,⊥) means that FU = (FU →F

⊥) →F ⊥ for any U ; but FU →F ⊥ = U →F ⊥ by properties of →F and U →F ⊥ =
U −−◦ ⊥ by lemma 3.4 because ⊥ is F -saturated. So FU = U⊥⊥ and hence, if S is
the base of F , F indeed is the phase space S⊥. Summing up:

Lemma 8. d. For any base S and any subset ⊥, dn is valid in the phase space S⊥.
Moreover, dn is valid in a pretopology (F ,⊥) with base S iff F is the phase space S⊥.

It is now easy to work out task 2., that is to check that canonical pretopologies
satisfy the respective conditions required by lemma 8:

Lemma 9. a. PrBL+w satisfies A / 1;
b. PrBL+c satisfies A / A ⊗ A;
c. the canonical valuation on PrBL+⊥rule is normal;
d. PrBL+dn is the phase space on the Lindenbaum base on CL with dualizer Pr⊥.

Proof: a. The claim is equivalent to A ∈ PrBL+w1, i. e. A `BL+w 1, which is
immediate from 1R by weakening.

b. The claim is equivalent to (∀C)(A ⊗ A ` C ⇒ A ` C), which is exactly what
contraction tells.

c. By definition V ι(⊥) = Pr⊥, and Pr⊥ = Pr∅ because Pr⊥ = Pr0 by the ⊥-rule.
d. It must be shown that PrΣ = (Σ−−◦Pr⊥)−−◦Pr⊥ for an arbitrary set of formulas

Σ. First note that, for any formula B, B ∈ Σ −−◦ Pr⊥ iff (∀D ∈ Σ)(B ⊗ D ` ⊥) iff
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(∀D ∈ Σ)(D ∈ Pr(¬B)) ≡ Σ ⊆ Pr(¬B). Then A ∈ (Σ −−◦ Pr⊥) −−◦ Pr⊥, which by
definition is A ⊗ (Σ −−◦ Pr⊥) ⊆ Pr⊥, that is (∀B)(B ∈ Σ −−◦ Pr⊥ ⇒ A ⊗ B ` ⊥),
becomes equivalent to (∀B)(Σ ⊆ Pr(¬B) ⇒ A ` ¬B) which, since any formula C is
equivalent to a formula of the form ¬B, is equivalent to (∀C)(Σ ⊆ PrC ⇒ A ` C),
which is the definition of A ∈ PrΣ.

The above lemmas 8 and 9 tell that BL extended by w, c, ⊥-rule or dn is complete
with respect to the corresponding class of models, defined by the condition in lemma
8 a., b., c. and d. respectively. Now note that again all arguments are positive, and
hence we can repeat them in any combination; so

Theorem 10 (Completeness of Extensions). All logics obtained from BL by
adding one or more of the four assumptions w, c, ⊥-rule and dn, are complete with
respect to the class of models which satisfy all the corresponding conditions (in lemma
8 a.,b.,c. and d. resp.).

We have thus achieved a completely constructive and uniform proof of complete-
ness, with respect to the semantics of pretopologies and its specifications, of all logics
mentioned in section 2.

Adding equality to the language and assuming the standard equality axioms, that
is

` t = t
s1 = t1, . . . , sn = tn ` fs1, . . . , sn = ft1, . . . , tn
s1 = t1, . . . , sn = tn, Rt1, . . . , tn ` Rs1, . . . , sn

for any s, t, f , R, it is natural to modify the definition of F -structure by adding a
function =D: D2 → Sat(F) and by requiring that it makes equality axioms valid, that
is, writing ‖c = d‖ for =D(c, d):

1 / ‖c = c‖

‖c1 = d1‖ · . . . · ‖cn = dn‖ / ‖fDc1, . . . , cn = fDd1, . . . , dn‖

‖c1 = d1‖ · . . . · ‖cn = dn‖ · R
D(d1, . . . , dn) / RD(c1, . . . , cn).

The trouble is that the addition of equality axioms to BL is not sufficient to derive
general substitutivity of equal terms, namely

s1 = t1, . . . , sn = tn, At1, . . . , tn ` As1, . . . , sn

for every formula A. It is easily seen, however, that the obvious induction on formulas
is in fact possible if we add also

weakening for equality
Γ ` C

Γ, s = t ` C

contraction for equality
Γ, s = t, s = t ` C

Γ, s = t ` C

This further extension is certainly syntactically consistent, and does not destroy the
peculiarities of BL; actually, to justify structural rules for equality one could argue
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that a proposition asserting identity of terms, that is of operations, can have no other
proof than an abstract verification, and hence reproducible and disposable ad libitum.
However, the next trouble is validity in the semantics of pretopologies. A simple way
out (as suggested by Silvio Valentini) is to require the valuation of formulas s = t to
be an F -saturated subset W which can be “weakened” and “contracted”, that is (by
lemma 8.a and b) which satisfies W / 1 and W / W · W . Then we put

Center(F) ≡ {W ∈ Sat(F) : W / 1 and W / W · W}

and say that D is an F-structure with equality if, beside being an F -structure, it is
equipped with a function =D: D2 → Center(F) which makes equality axioms valid.
Note that, since Center(F) always contains F∅ and F1, it becomes trivial only if the
valuations of 0 and 1 coincide in F .

With such setting, it is straightforward to apply the above method to prove com-
pleteness also to systems with equality (being careful to recall, in the proof of lemma
9, that Pr(s = t) must be shown to be in Center(Pr), which is obvious by structural
rules for equality). We thus have:

Theorem 11 (Completeness for logics with equality). Let L be BL or any of
the extensions considered in theorem 10, and let Le be obtained from L by adding the
sign =, equality axioms and structural rules for equality. Then Le is complete with
respect to the class of models of L which are based on F -structures with equality.

6. Some connections with traditional completeness proofs.

Having obtained a uniform method to prove completeness of several different logics,
it is quite natural to investigate on its connections with well established proofs. In
this final section, a few results and problems in this direction are given.

The closest connection is with standard algebraic semantics. In fact, it is immediate
to check that for any pretopology F , Sat(F) is a quantale (the only non-trivial prop-
erty is infinite distributivity, which, recalling the definition of operations in Sat(F),
follows from U · (∪i∈IVi) = ∪i∈I(U · Vi) by several applications of lemma 2.3). In
particular, Sat(PrBL) is a quantale. A locale, or complete Heyting algebra, can be
defined as a quantale in which a · b = a∧ b holds for any a, b; it is immediate to check
that a · b = a ∧ b holds for any a, b iff a · b ≤ a and a ≤ a · a hold for any a, b. So, by
lemma 8.a and 8.b, Sat(F) is a locale iff w and c are valid in F . Then Sat(PrI) is a
locale. Finally, a complete Boolean algebra, cBa for short, is a locale in which every
element is regular, that is − − a = a for any a (where −a ≡ a → 0). So, by lemma
8.c and 8.d, Sat(F) is a cBa iff w, c and dn are valid in F for all valuations V with
V (⊥) = V (0) = F∅, that is iff classical logic C is valid in (F ,F∅). Then, by lemma
9.c and 9.d, Sat(PrC) is a cBa.

Now note that the usual definition of valuation of formulas in an algebraic structure
(cf. e.g. [TvD], [T]) when applied to Sat(F) coincides with our definition. Thus the
theorems of section 5 give:

Corollary 12 (Connection with algebraic semantics). Basic linear (intu-
itionistic, classical) logic is complete with respect to the semantics given by structures

15



with truth values in a quantale (locale, cBa)6.

The above corollary obviously applies also to logics with equality. It is worthwhile
to note explicitly, however, that when w and c are valid in a pretopology F , then
Sat(F) is a locale, which of course coincides with Center(F); so F -structures with
equality include (also in view of theorem 13 below) the usual notion of Ω-structure
and Ω-set (cf. [TvD]).

The connection with algebraic semantics is actually much deeper than it appears
from the above corollary; in fact, not only Sat(F) is a quantale for any pretopology F ,
but also, conversely, any quantale Q = (Q,

∨
, ·, 1) is isomorphic to Sat(F) for some

pretopology F (see [BS] or work out the hint: for any U ⊆ Q, put FU ≡ {a ∈ Q :
a ≤

∨
U}). Consequently, any locale is isomorphic to Sat(F) for a pretopology F

satisfying FU ·F FV = FU ∩ FV for any U , V , a condition which is easily seen (cf.
[S], p. 265) to be equivalent to: U · V / U and U / U · U for any U , V . Any such
pretopology is here called a formal topology7, and the letter A instead of F is used to
denote it. We thus have:

Theorem 13 (Presentation of quantales and locales). Any quantale (locale)
can be isomorphically presented as Sat(F) for some pretopology F (Sat(A) for some
formal topology A).

By a similar argument and by lemma 9.d, we could also add: any cBa is isomorphic
to Sat(A) for some formal topology satisfying AU = U⊥⊥ for some subset ⊥. With
a little further work, however, one can obtain a more perspicuous characterization
of cBa’s, which seems to be new and of independent mathematical interest. For any

semilattice L = (L, ·, 1) and any X ⊆ L, let LX ≡ L∅
XX

; that is, LX is defined to be
the phase space with base L and with dualizer ∅XX (recall that Y XX ≡ (Y −−◦X)−−◦X
for arbitrary subsets X and Y ), which in turn is the least fact in the phase space with
dualizer X. Then:

Theorem 14 (Representation of complete Boolean algebras). For any
semilattice L = (L, ·, 1) and any subset X, if LX is defined as above, then Sat(LX) is
a cBa; conversely, for any cBa B, there is a semilattice L with a subset X such that
B is isomorphic to Sat(LX).

Proof: Putting together the arguments above, we can deduce that a quantale is in
fact a cBa iff it is presented as Sat(F) for a pretopology F in which classical logic C
is valid for all normal valuations. So it is enough to prove that:

(1) C is valid in LX for all normal valuations;
(2) if C is valid in F for all normal valuations, then Sat(F) ∼= Sat(LX) for some

semilattice L and some X ⊆ L.

The idea of the proof of (2) is quite simple, though details would be tedious. If w and
c are valid in F , then a · a =F a, and hence S/=F

is a semilattice; the precover of F

6Of course, we could state a similar corollary for all other extensions of BL, if we had names for the
corresponding algebraic structures.
7Note that in [IFS] a formal topology is defined as provided also with a positivity predicate.
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can easily be lifted to S/=F
, but the structure of saturated subsets remains exactly the

same. So we may assume, without loss of generality, that F is based on a semilattice
L. Now, by lemma 9.d, assuming dn to be valid in F for all normal valuations, that
is dn valid in (F ,F∅), means that F is the phase space L⊥ for ⊥ ≡ F∅; since by
definition F∅ = ∅⊥⊥, choosing X = ⊥ we have ⊥ = ∅XX , so that L⊥ is LX .

To prove (1), note that c is valid because a / a · a follows from a = a · a, and w

because it is derivable from dn by ⊥-rule. So it remains to be proved that dn is valid

for all normal valuations; since LX ≡ L∅
XX

, by lemma 9.d, dn is valid for all V with
V (⊥) = ∅XX . Then the proof is completed by showing that ∅XX is the least fact in

LX , i.e. that ∅XX = ∅(∅XX)(∅XX ) holds. To this aim, note that

Y Y
XX

= (Y XX )Y
XX

holds for any X, Y , because (by lemma 3, and writing →XX for implication in

the phase space with dualizer X) it is Y Y
XX

≡ Y −−◦ Y XX = Y →XX Y XX =

Y XX →XX Y XX = Y XX −−◦ Y XX ≡ (Y XX )Y
XX

. Such equation gives in par-

ticular ∅∅
XX

= (∅XX)∅
XX

, from which, applying the same “exponent” ∅XX , also

∅(∅XX)(∅XX ) = (∅XX)(∅
XX)(∅XX ); now the left member of this is equal to ∅XX (because

Y Y Y = Y for any Y ), so the claim is proved.

Also the construction itself of the L-canonical pretopology PrL is closely connected
to a well-known technique (which is used e.g. in [O2] and [T] to prove completeness).
In fact, simply by isolating the relevant assumptions, we can extract from the proofs
of lemma 5 and 6 a proof of the following more general result:

Theorem 15 (Dedekind–MacNeille completion). Let S be a base equipped
with a partial ordering ≤ and with a binary operation → such that a · b ≤ c iff
a ≤ b → c, for any a, b, c. Then, putting

a / U ≡ (∀c ∈ S)(U ≤ c → a ≤ c)

(where U ≤ c stands for (∀b ∈ U)(b ≤ c)) defines a precover on S, and a 7→ {b : b ≤ a}
is an embedding of S into the quantale of its saturated subsets, and such embedding
respects all existing infima and suprema.

In particular, if L is any of the logics considered above, this means that the Linden-
baum algebra of L is embedded in Sat(PrL). The lemma on the canonical valuation can
then be seen as a corollary of this embedding and of the fact that [∃xAx] =

∨
t∈T

[At]
and [∀xAx] =

∧
t∈T

[At] hold for any A in the Lindenbaum algebra of L.
This remark is relevant to connect our method with the usual Henkin style proof

of completeness of classical logic C with respect to two-valued models. As usual, we
say that a set of formulas H is a Henkin set if it is maximal consistent and if for any
formula A, there exists a term t such that ∃xAx → At ∈ H. The idea is to apply
directly to H the method developed in section 4. We thus define Γ `H A to mean
that H0, Γ `C A for some finite H0 ⊆ H; since H is closed under modus ponens,
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`H is closed under all propositional rules, and this is enough to put into action the
machinery of section 4. Since H is maximal consistent, Frm/=H

has exactly two
elements, namely [⊥] and [>]. So, putting PrHC ≡ {[A] : A `H C} as usual, it follows
that for any formula C either PrHC = PrH⊥ or PrHC = PrH>. Hence for any Σ,
reasoning classically, either PrHΣ = PrH⊥ (when Σ∩H = ∅) or PrHΣ = PrH> (when
Σ ∩ H 6= ∅); in other words, Sat(PrH) is isomorphic to {0, 1}. So the H-canonical
structure, together with the identity assignment ι, is just the well-known and usual
two-valued interpretation on terms, call it MH . The usual proof proceeds by showing
that for any A,

MH |= A iff A ∈ H,

but this is exactly what our lemma on the canonical valuation tells in this case, since
V ι(A) = 1 iff MH |= A (cf. a remark in section 3) and PrHA = 1 iff A ∈ H.
So it remains to be proved that V ι(A) = PrHA actually holds. Inductive steps for
connectives follow from the fact that `H is closed under all propositional rules. For
quantifiers, the assumption that H is Henkin is crucial. In fact, even if `H may fail to
be closed under ∃L or equivalently ∀R, the property that H is Henkin, or equivalently,
that ∃xAx ∈ H iff At ∈ H for some term t, that is [∃xAx] =

∨
t∈T

[At], is exactly
what is needed to prove the inductive step for ∃. Similarly for ∀, because since H is
Henkin, ∀xAx ∈ H iff At ∈ H for all terms t, that is [∀xAx] =

∧
t∈T

[At].
This gives a proof of the usual completeness theorem with respect to two-valued

semantics which shows clearly that non-constructivity is concentrated in the proof of
existence of Henkin sets. So, abandoning the classical conception of truth with only
two truth values, that is, technically, relaxing the requirement of maximality of H,
one is free to see that the above argument applies to any set of sentences, and thus
obtain a constructive proof of completeness not only for pure logics, but also for any
theory based on them, i.e. the so-called strong completeness.

In fact, let us say that a theory over a logic L (BL or any of the extensions considered
above) is just a set of sentences Σ; then there is no obstacle to define Γ `Σ A to mean
that Γ ` A is derivable by all the rules of L from axioms ` B for any B ∈ Σ (one must
be a bit careful here, since if L does not include structural rules, then Γ `Σ A is not
the same thing as Σ0, Γ `L A for some finite Σ0 ⊆ Σ, cf. [T]). If `Σ A, we say that
A is Σ-derivable over L. Since by definition `Σ is closed under all rules of L, all the
results of sections 4 and 5 apply to it. Hence we obtain an F -structure PrΣ which is
the canonical structure for Σ over L, that is, which satisfies: for any formula A, `Σ A
iff A is valid in PrΣ under the canonical valuation. Note that all formulas of Σ are
trivially valid in the Σ-canonical structure. So, defining A to be Σ-valid over L when,
in any F -structure which is a model for L, A is valid whenever all formulas of Σ are
valid, we immediately have:

Theorem 16 (strong completeness). For any of the pure logics L considered
above, any set of sentences Σ and any formula A, A is Σ-derivable over L iff A is
Σ-valid over L.

Clearly, in the case of structured logics the above definitions of Σ-derivability and
Σ-validity coincide with the usual ones; we thus have a constructive proof of strong
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completeness, even for classical logic! This makes clearer the fact that it is the use
of two-valued models which, in a completeness proof, is responsible for the need both
of set-theoretic principles and of classical metalogic; I believe that this shows how,
more generally, the relation between a logic and the metalogic needed to prove its
completeness is a topic open to research.

I conclude with a couple of technical problems which arise naturally from the work
done. First of all, one problem is whether PrL is the minimal completion of the
Lindenbaum algebra, or equivalently, of the Lindenbaum base for L. I have good
reasons to believe that an affirmative answer would bring also an affirmative answer
to a second problem, relative to classical logic, namely that of finding an intrinsic
mathematical characterization of the notion of Henkin set, in the following terms.
Given a completely prime filter F over the cBa Sat(PrC), it is easy to see how to obtain
a Henkin set HF : simply put A ∈ HF iff PrCA ∈ F . So the problem is whether the
converse holds, that is whether there is a biunivocal correspondence between Henkin
sets and completely prime filters, which in pointfree topology are defined to be the
(formal) points, of Sat(PrC).

Finally, I also leave open the problem of finding a satisfactory connection between
the semantics of pretopologies and more traditional semantics for intuitionistic logic,
based on topological spaces and Kripke models.
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