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Abstract: Based on de Broglie’s wave hypothesis and the covariant ether, the Three Wave Hypothesis 

(TWH) has been proposed and developed in the last century. In 2007, the author found that the TWH 

may be attributed to a kinematical classical system of two perpendicular rolling circles.  In 2012, the 

author showed that the position vector of a point in a model of two rolling circles in plane can be 

transformed to a complex vector under a proposed effect of partial observation. In the present project, 

this concept of transformation is developed to be a lab observation concept. Under this transformation 

of the lab observer, it is found that velocity equation of the motion of the point is transformed to an 

equation analogising the relativistic quantum mechanics equation (Dirac equation). Many other 

analogies has been found, and are listed in a comparison table. The analogy tries to explain the 

entanglement within the scope of the transformation. These analogies may suggest that both quantum 

mechanics and special relativity are emergent, both of them are unified, and of the same origin. The 

similarities suggest analogies and propose questions of interpretation for the standard quantum theory, 

without any possible causal claims. 
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1. Introduction  
 

At the end of the 1970’s and during the 1980’s, the Three Wave Hypothesis (TWH) was 

developed by Kostro (three-wave model) [1], Horodecki (Three Wave Hypothesis) [2, 3, 4, 5], 

and mentioned by Vigier [6, 7]. This hypothesis is based on two concepts [8]: 

 

1. The Paris school interpretation of quantum mechanics, which is related to de 

Broglie’s particle-wave duality [9-12], Vigier’s and others’ works, and  

2. Einstein's special relativity considered as a limitary case of Einstein's general 

relativity, in which the existence of a covariant ether is assumed [13-16].  

Horodecki presented TWH through a series of articles [2, 3, 4, 5].  His TWH implies 

that a massive particle is an intrinsically, spatially as well as temporally extended non-linear 

wave phenomenon [2]. This version is based on the assumption that, in a Lorentz frame, where 

the particle is at rest, it can be associated with an intrinsic non-dispersive Compton wave. When 
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the particle moves with velocity v (relative to the lab frame), it will be associated with the three 

waves: the superluminal de Broglie wave (of wavelength𝜆𝐵 ), a subluminal dual wave (of 

wavelength 𝜆𝐷), and a transformed Compton wave (of wavelength 𝜆𝐶) [2, 5]. In this hypothesis, 

there are two dispersion relations, the de Broglie wave and a proposed dual wave dispersion 

relation. This version of TWH suffers from a lack of experimental evidence.  

The TWH is based on both covariant ether and de Broglie’s wave concepts. Thus, it is a de 

Broglie wave- covariant ether model. However, for explaining the de Broglie wave-particle 

duality, a sub-medium (ether) has been postulated [17, 18, 19]. In this, the question arises: can 

the ether be an underpinning of quantum mechanics?  

Considering this system of waves (Horodecki’s TWH) in angular form and in a single 

representation of waves (instead of two dispersion relations of the de Broglie wave and dual 

wave) exhibits similarities with a system of two perpendicular circles [20, 21]. Thus, the 

combination of the three waves may form a classical kinematical bevel gear model, similar to 

that in Figure 1.  

In spite of this system (Figure 1) being of quantum and relativistic origin, this 

kinematic model looks as if it has no relationship with them. This rolling circles system is 

totally removed from  quantum mechanics, and has no experimental observation, akin to the 

TWH. Thus, it is either no more than a creature of a logical theoretical work, or might be of a 

hidden nature (unobservable).   The wave function is an abstract model in quantum mechanics, 

and is unphysical, so as to be unobservable.  

Here one may ask, does this real kinematical model, which is related originally to the 

de Broglie wave- covariant ether, stand behind the concept of complex form in quantum 

mechanics?; or is there any relationship between the system of the two rolling circles with the 

complex function? 

 
Figure 1 The bevel gear (de Broglie wave- covariant ether) [20].  

 

Based on the above concept of two rolling circles, in a non-quantum mechanics project, 

a mathematical relationship between the position vector of a point in two rolling circles system 

and a complex vector has been explained through a proposed transformation under partial 

observation effect [22]. The model was of two rolling circles in a real plane, as in Figure 2. 
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Figure 2 The rotation of point P in two rolling circles system in plane geometry [22]. 

 

The position vector (𝜻𝟏,𝟐) of a point P in the system (Figure2) is 

𝜻𝟏,𝟐 = 𝒓𝒄 {cos (𝜃 − 𝛽 − 𝜙) ±√−𝑠𝑖𝑛2(𝜃 − 𝛽 − 𝜙) + (
𝑎1
𝑟𝑐
)2},    (1) 

The  𝒓𝒄 , 𝜃, 𝛽, 𝜙, and  𝑎1 are shown in Figure 2. This work [22] dealt with the scalar form of Eq. 

(1).  

The concept of partial observation has been proposed to achieve a transformation to 

complex form. The partial observation is based on the inability of distinguishing the complete 

system due to resolution limit:   

𝑎1 ≪ 𝑑𝜆 ≪ 𝑎2  ,    (2) 

where 𝑑𝜆  is the spatial resolution. This concept is based on the Rayleigh criterion (spatial 

resolution). Examination of the system under partial observation ( 𝑎1 = 0 ) shows a 

transformation to complex function:  

(𝜻𝟏,𝟐)𝑎1=0
= 𝒓𝒄 {cos (𝜃 − 𝛽 − 𝜙) ±√−𝑠𝑖𝑛2(𝜃 − 𝛽 − 𝜙)} ,    

or 

(𝜻𝟏,𝟐)𝑎1=0
= 𝒓𝒄 exp±𝑖 (𝜃 − 𝛽 − 𝜙).   (3) 

 

Eq. (3) shows a complex phase factor (Euler form) in analogy to the wave function of quantum 

mechanics.  

The general concept of the rolling circles model is related to the TWH, and can be 

transformed to an abstract model under the partial observation. This model is based originally 

on de Broglie wave- covariant ether. It is worth mentioning that Dirac has introduced an ether 

model based on a stochastic covariant distribution of subquantum motions [23]. So, is it 

possible for the model of two rolling circles in the real plane, and under the partial observation 

to analogise relativistic quantum mechanics?   

However, relative to quantum physics, the above model (Figure 2) has two strange 

features, a real kinematics nature (rotations), and its classical nature.  

 

1.1 Hestenes’s kinematic system 

The above rolling circles system exhibits a classical kinematical model, and the 

kinematics feature may remain (somehow) appeared after the transformation (Eq. (3)) in the 

complex phase factor. The concept of the kinematical model that is related to the complex 

phase factor has been considered by Hestenes during the 1990’s. Within his geometric algebra, 

Hestenes proposed many concepts, like [24, 25, 26]: 

 

 The imaginary i can be interpreted as a representation of the electron spin.  

 Dirac’s theory describes a kinematics of electron motion. It is not necessary for the 

kinematical rotation to be related to the pair of positive and negative energy states. 

 The complex phase factor literally represents a physical rotation, the zitterbewegung 

rotation.  

 The complex phase factor is the main feature which the Dirac wave function shares with 

its non-relativistic limit. Schrödinger wave function inherits the relativistic nature.  
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The serious concept in Hestenes proposal is the kinematic origin of the complex phase factor 

and the physical rotation (Zitterbewegung), but there is no experimental evidence to support 

these ideas yet.    

    

1.2 Classical underpinning 

Related to the classical feature of the rolling circles system, the introduction of 

classical physics with the foundation of quantum mechanics is not new as well. The concept of 

the classical underpinning of quantum mechanics has attracted many researchers. Emergent 

quantum mechanics tries to find in classical underpinnings many approaches to reconstruct a 

quantum mechanical theory. It is worth mentioning that the works of classical underpinning 

are based on or influenced by the quantum mechanics postulates (fully or partially) with some 

classical concepts [27, 28, 29, 30, 31, 32, etc.].  In these attempts, the classical bases were 

imposed logically within the frame of quantum postulates. These theories look like hybrid 

theoretical works. Whereas in the above attempt the classical model of rolling circles did not 

impose or postulated, it is a result of reconsideration of TWH which is within the frame of 

relativistic quantum mechanics.  

 

1.3 Quantum mechanics postulates  

There is no unanimous agreement on the set of the quantum mechanics postulates. 
Nottale and C él érier consider the quantum postulates to be in two groups, main and secondary. 

The main postulates are five, while the number of secondary postulates varies from one author 

to another; they can be derived from the main postulates [33]. However, the main postulates 

are (Postulates of non-relativistic quantum mechanics) [33]: 

 

1. Complex state function (𝜓). Each physical system is described by a state function, 

which determines all that can be known about the system.  

2. Schrödinger equation. The time evolution of the wave function of a non-relativistic 

physical system is indicated by the time-dependent Schrödinger equation, Eq.1.  

              𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐻̂𝜓 . (4) 

3. Correspondence principle. To every dynamic variable of classical mechanics, there 

corresponds in quantum mechanics a linear, Hermitian operator, which, when operating 

upon the wave function associated with a definite value of that observable (the 

eigenstate associated with a definite eigenvalue), yields this value times the wave 

function. 

4. Von Neumann’s postulate. If a measurement of the observable A yields some value 𝑎𝑖, 
the wave function of the system just after the measurement is the corresponding 

eigenstate 𝜓𝑖. 

5. Born’s postulate: probabilistic interpretation of the wave function.  

 

For postulates of relativistic quantum mechanics, the above main postulates are exactly the 

same. The change is simply the free particle Hamiltonian (Dirac Hamiltonian) [34], and that is 

related to the second postulate above (Eq. (4)). 

However, in considering the underpinning, the first two postulates are quite serious. 

They reflect the main features of quantum mechanics, the complexity and the mechanics, 
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whereas the other three may look like mathematical techniques to deal with the physical 

problem of the complex function (wave function), and the physical interpretations. 

 

1.4 The aim of the work  

Above, we have asked these two questions:  

 

 Does this real kinematical model which is related originally to the de Broglie wave- 

covariant ether explain the wave (of complex form) concept as in quantum mechanics?  

 Is it possible for the model of two rolling circles in a real plane to analogise the 

relativistic quantum mechanics? 

After Born’s interpretation, the wave function has been interpreted as a probability amplitude. 

Our form (Eq. (3) can work as a probability amplitude as well [22] but is not a solution of the 

Schrödinger equation. It is not the conventional wave function. Eq. (3) exhibits an analogy for 

the wave function. If so, can this model to show an analogy for the relativistic quantum 

mechanics?  

The present work is an attempt to answer these questions. Accordingly, the above-

mentioned model (Figure 2) is considered. The concept of partial observation will be developed, 

and we try to derive analogies for the first and second postulates of the relativistic quantum 

mechanics (mentioned above), by using position vector with the concept of partial observation.  

At the end, we will try to demonstrate a compression table, to show the similarity of 

the relativistic quantum mechanics equations and the special relativity equations with obtained 

equations. In addition to that, we will try to exhibit analogies for some of the quantum 

mechanics phenomena.  

 

2. Mathematical model   

 

The position vector of a point on a circle is a solution of the quadratic general equation 

of a circle in a real polar coordinate system, like:   

 

𝑎1
2 = 𝒷2 + 𝑟2 − 2𝒷𝑟 𝑐𝑜𝑠(𝜗 − 𝛼) ,   (5) 

 

where  𝑎1 , 𝑟 ,𝒷 and (𝜗 − 𝛼) are the radius of the circle, the norm of the position vector of a 

point (𝑃) on the perimeter of the circle relative to the origin (0, 0), the norm of the position 

vector of the circle centre (𝐶1) , and the angle between 𝑟  and 𝒷  , respectively, (see Figure  3). 

The polar coordinates of the centre of the circle are (𝓫 , 𝜗) , and the coordinates of a point (𝑃) 

on the perimeter of the circle are (𝒓 , 𝛼)  (Figure  3). Figure 3 is another form of Figure 2.  

 

This circle is guided by another circle. The second circle is of radius 

𝑎2 = 𝒷 − 𝑎1 ,   (6) 

and its centre coordinates are (0,0). Then, the system is of two rolling circles (Figure 3).  

 

Considering the polar vector of point 𝑃(𝒓, 𝛼), the solution of the quadratic Eq. (5) for 𝒓 is  

𝒓 = 𝓫{cos (𝜗 − 𝜙 + 𝛽) ±√−𝑠𝑖𝑛2(𝜗 − 𝜙 + 𝛽) + (
𝑎1
𝒷
)2} .   (7) 
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where 𝒓 is the position vector of point 𝑃. This equation is Eq. (1). The appeared ratio in Eq.(7) 

is 

𝑋 ≡ (
|𝒂𝟏|

|𝓫|
)

2

= (
𝑎1
𝒷
)
2

.   (8) 

 

 
 

Figure 3 The real model. Rolling circles model. 

 

The variation of the two angles (𝜗and 𝛼) with time means in addition to the motion of 

point 𝑃 around 𝐶1 the centre of the circle (𝐶1) is variable (rotate around the coordinates origin 

(0,0)).  The circle of interest is that of radius 𝑎1  and the second circle is the guiding circle. 

Point 𝑄  is the point of contact between the two circles. For generality, let 𝑎1 < 𝑎2. Owing to 

the rolling of the circles, the motion of a point 𝑃 traces out an epicycloid (hypercycloid) curve 

trajectory. The ratio of the system is:  

𝑎2
𝑎1
=
𝜙

𝜗
=
𝜔1
𝜔2

= 𝜇 > 1 .   (9) 

Eq. (9) looks like a gear ratio.  

 

The above mentioned kinematical model (Figure 3) can be used to reformulate Eq. (7) 

in terms of circular motion. Let us consider these representations:  

𝑑𝜙

𝑑𝑡
= 𝜔1 , (10a) 

and  

𝜔𝛽 =
𝑑𝛽

𝑑𝑡
 . (10b) 

With the aid of Figure 3: 

𝑑𝛼

𝑑𝑡
= 𝜔𝛼 , (10c) 

and  

𝜔𝛼 = 𝜔1 − 𝜔𝛽 . (10d) 

The angle  



 

International Journal of Quantum Foundations 4 (2018) 173 - 198 

                             

179 

𝜗 =
𝒔

𝒂2
= 𝒌2 ∙ 𝒔 . (10e) 

In terms of, Eq. (6) can be rewritten as: 

𝓫 = 𝒂2 +𝓫√𝑋 . (10f) 

Then, in terms of kinematic parameters and  𝑋, Eq. (5) becomes,  

𝒓 = (𝒂2 +𝓫√𝑋){cos (𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡) ±√−𝑠𝑖𝑛2(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡) + 𝑋}. (11) 

where 𝒔 , 𝜔1,  and 𝜔𝛽   represent the arc length made by point 𝑄  , the angular velocity of point 

𝑃 , and 𝜔β = 𝑑𝛽 𝑑𝑡⁄ , respectively. Eq. (11) gives a full description of the location of the point 

due to movement.  

The time differentiation of Eq. (11) or the velocity equation of point 𝑃 is: 

𝜕𝒓(𝑟, 𝑡, 𝑋)

𝜕𝑡
=
𝜕(𝒂2 +𝓫√𝑋)

𝜕𝑡
{𝑐𝑜𝑠(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡)

± √−𝑠𝑖𝑛2(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡) + 𝑋} + (𝒂2

+𝓫√𝑋)

{
 

 

(𝜔1 − 𝜔𝛽) 𝑠𝑖𝑛(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡)

± 
(𝜔1 − 𝜔𝛽) 𝑠𝑖𝑛 (𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡)𝑐𝑜𝑠(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡) +

𝜕𝑋
𝜕𝑡

√−𝑠𝑖𝑛2(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡) + 𝑋 }
 

 

 

(12) 

The acceleration can be derived as well.  

 

2.1 Unit vectors 

 

There are two angular rotations 𝜔1 and 𝜔2, and the unit vectors of these rotations are 

𝒆̂𝜙 and  𝒆̂𝜗 respectively. The signs ± in Eqs. )7,11, and 12( are related to the two possibilities 

of rotation of the point; in other words, it is related to  𝒆̂𝜙. The signs show the direction of 

angular motion (𝜙) and the unit vector 𝒆̂𝜙 is the axis-angle vector.  

The dot product of 𝒆̂𝜗 with any perpendicular unit vector let 𝒆̂𝜑 is  

 

𝒆̂𝜗 ⋅  𝒆̂𝜑 + 𝒆̂𝜗 ⋅  𝒆̂𝜑 = 0 .   (13) 

The same for: 

𝒆̂𝜗 ⋅ 𝒆̂𝜗 + 𝒆̂𝜑 ⋅  𝒆̂𝜑 = 2.   (14) 

 

The square of the unit vectors  

𝒆̂𝜗 ⋅  𝒆̂𝜗 = 𝒆̂𝜙 ∙  𝒆̂𝜙 = 1 .   (15) 
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The 𝒆̂𝜙 and  𝒆̂𝜗  are non-commutative 

𝒆̂𝜗 × 𝒆̂𝜙 + 𝒆̂𝜙 × 𝒆̂𝜗 = 0 .   (16) 

 

3. Physical model (Empiricist approach) 

 

To deal with the system as a physical object, testing (measuring) in a lab is an essential 

approach to prove its physical existence (positivism).  It is the normal case for lab observer to 

deal with observables. Thus, this case does not take into account classical and quantum physics. 

In classical physics, the observable distinguishability is related to the optical resolution 

(Rayleigh criterion) [35]. The spatial resolution (𝑑𝜆) is the minimum linear distance between 

two distinguishable points [36], and the same for the angular frequency (𝜔𝜆 ).  The presented 

concept depends on using a monochromatic light (𝜆, 𝑓). 𝑑𝜆 is related to the wavelength so that 

𝜔𝜆  is related to the light frequency (𝑓). The system (Figure3) is fully observed when:  

𝑑𝜆 ≪ 𝑎1 ≪ 𝑎2  , (17) 

and according to the ratio (9): 

𝜔1 ≫ 𝜔2  ≫ 𝜔𝜆. (18) 

Within these conditions, the lab observer (in frame Σ  as shown in Figure 4) recognises a 

classical physical system (fully determined), and all the quantities of the system are said to be 

physical and can be measured.  

 

On the other hand, the system cannot be observed when 

𝑎1 ≪ 𝑎2  ≪ 𝑑𝜆, (19) 

and  

𝜔𝜆 ≫ 𝜔1 ≫ 𝜔2 . (20) 

Then the system cannot be the subject of physical study.  

 

 
Figure 4 The lab observer frame of reference (Σ), and the system frame of reference (Σ′). 

 

3.1 Partial observation 

 

The two cases of observation mentioned above are extreme cases. A concept of partial 

observation has been proposed in Ref. [22].  This case may be for a system of many parts, and 

some of these parts cannot be distinguished, whereas the other can be. Based on the resolution 

limit, the system (Figure 4) is partially resolved under the conditions:  
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𝑎1 ≪ 𝑑𝜆 ≪ 𝑎2  , (21a) 

and:  

𝜔1 ≫ 𝜔𝜆 ≫ 𝜔2  . (21b) 

According to the ratio (9), that implies 𝜇 ≫ 1.  

Thus for the lab observer, the partial observation may lead to the conclusion that  𝑎1 = 𝜔2 = 0 

and the zero quantity is a practical approximation. 

 

Inequalities (21a, 21b) describe the inability to resolve 𝑎1  and 𝜔2 (missing data), 

whereas 𝑎2   and 𝜔1can be resolved. Partial resolution refers to the inability to completely 

resolve the kinematical system.   Then, the quantities measured by the lab observer are:  

𝒂1 ≠ 𝒂1𝑚 = 0 , and 𝑋𝑚 = 0 , (22) 

and 

𝓫 → 𝒂2 = 𝒂2𝑚. (23) 

The subscript 𝑚  indicates resolved (measured) values. The ratio 𝜇 (Eq. (9)) is a big number 

(𝜇 ≫ 1).   

 

When 𝑎1 cannot be detected, then the angle  𝛽 can not be detected as well, then:  

𝜔𝛽𝑚 =
𝜕𝛽

𝜕𝑡
= 0 . (24) 

Since  𝛼 = 𝜙 − 𝛽, and Eq. (10d) then: 

𝜔𝜙𝑚 = 𝜔𝛼𝑚 = 𝜔1𝑚 . (25) 

Where the existence of angle 𝛽  is related to the recognition of the small circle of 𝑎1 , the 

frequency of the angular motion can be detected indirectly (not related to rotation, which is 

unobservable), and the angular frequency can be measured ( 𝜔 = 2𝜋𝑓).  

 

Substitution of Eqs. (22, 23 and 24) by Eq. (11) yields:  

𝓩 (𝒔, 𝑡, 0) = 𝒂2𝑚 {cos (𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡) ±√−𝑠𝑖𝑛2(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)}. (26) 

The real 𝒓 transforms into complex 𝓩. This form of Eq. (26) can be rewritten as (in Eulerian 

form):   

𝓩(𝒔, 𝑡, 0) = 𝒂2𝑚 exp±𝑖 (𝒌2𝑚 ∙ 𝒔−𝜔1𝑚𝑡). (27) 

The equations (26, 27) are for a complex vector (Zed complex vector).  Eq. (27) shows a 

combination of the real vector (𝒂2𝑚 ) and a complex phase factor (exp±𝑖 (𝒌2𝑚 ∙ 𝒔−𝜔1𝑚𝑡)) to 

form the z-complex vector.   

 

3.2 The system as seen by the lab observer  

 

What the lab observer can get according to Eqs. (26, 27) is no more than abstract 

forms. This z-complex vector has no physical meaning and has no macroscopic analogy. It is 

of an abstract nature. On the other hand, this vector can be interpreted mathematically by the 

lab observer in two forms, either as a position vector of a moving point as in Figure 5A, or as 

a sinusoidal wave (field) form as in Figure 5B in a complex plane. These two forms are 
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equivalents and indivisible (there is no point without a sinusoidal wave and there is no 

sinusoidal wave without a point in the complex plane). 

 The partial observation acts as a filter (see Figure 6). This filter makes a separation 

between two different worlds, the real full deterministic mathematical world (the real position 

vector) and the lab observer world. The lab observer faces difficulties of an abstract nature. 

Thus, the lab observer needs to deal with this complex mathematical function to obtain physical 

information. 

 

 

   

 

 

 

 

 

 

 

 

  

 

Figure 5 The z-complex vector representations. A- The point 𝑃 location representation (polar 

coordinate), and B- the sinusoidal wave projection, and the point location representations 

([37], with modifications). 

 

Due to the cases being of abstract nature and the two possible representations of the 

z-complex vector, the lab observer may face the same situation as that of quantum mechanics 

in dealing with the wave function (configuration space). Accordingly, the lab observer may use 

some of the quantum mechanics techniques (postulates) to achieve physical information (see 

Figure 6).  

 

 
 

Figure 6 The system and the lab observation. 

 

These techniques are the other postulates of quantum mechanics, like those mentioned above: 

 
 

A B 
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1- Born’s postulate (probabilistic interpretation of the wave function) 

2- Correspondence principle (operators technique) 

3- Von Neumann’s postulate (wave function collapse). 

and others, like: 

1- Expectation value. 

2- Expansion in eigenfunctions. 

3- Eigenvalues and eigenfunctions. 

The quantum mechanics techniques may lead the lab observer to consider the complex vector 

in two ways: 

1- The complex vector may refer to a position vector field (Eq. (27)). This expression leads 

to a concept of a field and its guided point together.    

2- Regard a complex function (𝜂) with complex phase (scaler) as: 

𝜂 = 𝐴
𝓩

𝒂2𝑚
= 𝐴 exp±𝑖 (𝒌2𝑚 ∙ 𝒔−𝜔1𝑚𝑡), (28) 

where 𝐴 is a real amplitude. This form may lead to the use of Born's rule (∫𝜂 𝜂∗ 𝑑𝑠 =

1  ), and shows a probabilistic location of a free point ( 𝐴 = 1/√2𝜋 𝑎2𝑚 ). The 

probability shows an expectation value, and that means that this point is restricted 

(guided) in probable locations (〈𝑟〉 = 𝑎2𝑚), as in Figure 7. Here too there is a point and 

its guide. The lab observer can recognise the observable system parameters (𝑎2𝑚, 𝜔1𝑚).    

It looks as if the system depicted in Figure 3 is reduced to a guided point (represented by 𝜔1) 

of statistical wave location (a guide is represented by 𝑎2), and both features (the point and its 

guide) are indivisible and of an equal footing (equivalents).  

 

The probable locations of the point are distributed in a circular form of an average 

radius 𝑎2𝑚  as shown in Figure 7. The  𝜔1𝑚 is attributed to the point, or is a characteristic 

quantity of the point (there is no recognition for an angular motion of  𝜔1𝑚 ). The observable 

velocity of the guided point is 𝑣𝑝 as shown in Figure 7. 

 

 
 

 

Figure 7 The observable system. The probable locations of the guided point (in real space).  

 

3.2.1 The kinematic equations  

 

For the lab observer who is assumed to be under the conditions of partial observation 

(Eqs. (22, 23, and 24)), the equation of velocity Eq. (12) transforms to (Appendix I):  
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𝑖
𝜕𝓩

𝜕𝑡
= (−𝑖 𝑣𝑨 ⋅ 𝜵 + 𝐵𝜔1𝑚)𝓩 , (29) 

where 𝑨 and 𝐵 are coefficients related to the rotation of the system (Appendix I). The lab 

observer cannot recognise the rotations of the system, and mathematically,  𝑨 and 𝐵 are not the 

normal unit vector. Thus, the properties of the rotation unit vectors mentioned above will not 

be considered by the observer as rotation vectors.  In reality, 𝑨 and 𝐵 are related to the rotations 

of the system, but are not unit vectors. Using the 𝑨 and 𝐵 instead of the  𝒆̂𝜗 and 𝒆̂𝜙 (in the 

above Eqs. (13, 14, 15, and 16)), one can find that:  

 

(±𝑖𝒆̂𝜗) ⋅  (±𝑖𝒆̂𝜑) + (±𝑖𝒆̂𝜗) ⋅  (±𝑖𝒆̂𝜑) = 0 . (30) 

The same for  

(±𝑖𝒆̂𝜗) ⋅ (±𝑖𝒆̂𝜗) + (±𝑖𝒆̂𝜑) ⋅  (±𝑖𝒆̂𝜑) = 2. (31) 

The square of 𝐵 is  

𝐵2 = 1 , (32) 

and for 𝑨   

𝑨2 = 𝑨 ∙ 𝑨 = ‖𝑨‖‖𝑨‖ = 1 . (33) 

Accordingly,  

𝑨2 = 𝐵2 = 1 . (34) 

Finally (since 𝐵 is not a vector, then in dealing with the 𝑨 and 𝐵 in matrix form), 

𝑨 × 𝐵 + 𝐵 × 𝑨 = 0, 
(35) 

But there is a problem, where 𝑨 and 𝐵 are not normal unit vectors. This mathematical problem 

can be solved by using Dirac coefficient techniques.  So these coefficients are explained by the 

observer in the same way as that of relativistic quantum mechanics. Accordingly, for the lab 

observer, the definitions of 𝑨 and 𝐵 may be changed to 𝑨′ and 𝐵′, and Equation (29) can be 

rewritten as:  

𝑖
𝜕𝓩

𝜕𝑡
= (−𝑖 𝑣𝑨′ ⋅ 𝜵 + 𝐵′𝜔1𝑚)𝓩 , (36) 

 

With the aid of the coefficients properties (as in relativistic quantum mechanics), the second 

time differentiation of Eq. (36) is 

 

𝜕2𝓩

𝜕𝑡2
= (−𝑣2 𝛻2 + 𝜔1𝑚

2 )𝓩 . (37) 

Eq. (37) looks like a complex acceleration equation for the complex velocity equation. We 

have to mention here that Eq. (29) can be derived from the system with the aid of partial 

observation, whereas Eq.(37) cannot, and only from Eq. (36).  

 

3.3 Lab observer system  
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As mentioned above, owing to the two possible interpretations of Eqs. (26, 27) that 

there are two equivalent and indivisible pictures for the partially observed system, viz., the 

guided point and the probability wave.  

The velocity of the probability wave (𝑣) for the lab observer is (Figure 7), note Eq. (3-A): 

𝑣 =
𝜕𝑎2𝑚′ 

𝜕𝑡
= 𝑎2𝑚′ ω𝑤′ . (38) 

The quantities with the prime symbol are the quantities observed by the lab observer due to the 

moving frame of reference. This velocity appears in Eqs. (36and 37).The guided point 

parameters are 𝑣𝑝  (the velocity of the observable guide point) and  𝜔1𝑚′  , whereas the 

parameters of the probability wave are 𝑎2𝑚′ (Eq. (38)) and ω𝑤′. Then, one can say that the lab 

observer deals with the following velocities: 

 

1. The complex velocity 𝜕𝓩 𝜕𝑡⁄ , that of Eq. (36). 

2. The velocity 𝑣 which appeared in Eqs. (36, and 37), and Eq. (3-A), which is 

related to the change of the touch point (𝑄) location (Figure 3). For the lab 

observer,  𝑎2𝑚 is attributed to the probability wave (Figure 7).  

3. The velocity of the guided point 𝑣𝑝.  

The observable parameters are shown in Table 1. 

 

Table 1 The observable parameters.  

Guided point 𝑣𝑝  𝜔1𝑚′  

Probability wave 𝑣  𝑎2𝑚′  

 

The equivalent and indivisible pictures of the the probability wave and the point 

(guided point),   can be formulated mathematically with aid of the guided point’s parameters 

(𝑣𝑝 & 𝜔1𝑚)  and the probability wave’s parameters (𝑣 & 𝑎2𝑚′ ) (shown in Table 1) as:  

  

𝑣𝑝 𝜔1𝑚′ ≡
𝑣2

𝑎2𝑚′
  . (39) 

In this equation, the left-hand side is related to the guided point form and the right side to the 

probability wave.   

With aid of Eq. (38), Eq. (39) can be reformulated as a ratio:  
𝑣

𝑣𝑝
=
𝑎2𝑚′ ω𝑤′

𝑣𝑝
=
𝜔1𝑚′
ω𝑤′

= 𝜇𝐿  .   (40) 

Eq. (40) may serve as a lab system (point-wave system) ratio.  

 

From Eq. (39) (20) and Eq. (38) one can say that the velocity of the point (point velocity) is 

𝑣𝑝 =
𝑣2

𝜔1𝑚′  𝑎2𝑚′
   , (41) 

or the guiding distance (Figure 7) of the guided point is 

 

𝑎2𝑚′ =
𝑣2

𝜔1𝑚′  𝑣𝑝
    , (42) 

and one can find as well 
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𝑣2 = 𝑣𝑝𝜔1𝑚′ 𝑎2𝑚′ = 𝑣𝑝 𝑣𝑝ℎ   , (43) 

where 𝑣𝑝ℎ is phase velocity and is related to the phase of Eq. (27). We have to mention here that 

the phase velocity can be calculated, but does not refer to any real wave.  

 

3.3.1 Lab transformations   

 

It has been mentioned above that the quantities with the prime symbol are the 

quantities observed by the lab observer due to the moving frame of reference. Now, we try to 

find the relationship between the lab observer’s measurements and the origin system quantities.  

The time variation of the function 𝓩  (Eq. (29), with aid of operator postulate, is:  

𝑖
𝜕𝓩

𝜕𝑡
=  𝜔𝓩 , (44) 

then,  

𝜔 = −𝑖 𝑣𝑨 ⋅ 𝜵 + 𝐵𝜔1𝑚 . (45) 

Same can be done for Eq. (37):   

ω2 = −𝑣2 𝛻2 + 𝜔1𝑚
2 = 𝜔1𝑚′

2  . (46) 

ω ≡ 𝜔1𝑚′ is because the lab observer cannot see only one angular frequency that is related to 

the system.  

For the lab observer, the point velocity is 𝑣𝑝 , and the measured angular velocity is 𝜔1𝑚′. 

The relationship between the 𝜔1𝑚 and 𝜔1𝑚′ can be obtained from Eq. (46) with the aide of Eqs. 

(43, 45, 42 and 6-A): 
𝜔1𝑚

√1 −
𝑣𝑝2

𝑣2

= 𝜔1𝑚′  . 
(47) 

 

Eq. (47) can be formulated as 

𝜔1𝑚′
2𝑣2 = 𝜔1𝑚′

2𝑣𝑝
2 + 𝜔1𝑚

2𝑣2   . (48) 

 

Substituting Eq. (47) in Eq. (42), yields   

𝑎2𝑚 √1 −
𝑣𝑝2

𝑣2
= 𝑎2𝑚′    , 

 

(49) 

where 

𝑎2𝑚 ≡
𝑣2

𝜔1𝑚  𝑣𝑝
   . (50) 

 

Substituting Eq. (47) in Eq. (39) shows that  
𝜔𝑤

√1 −
𝑣𝑝2

𝑣2

= 𝜔𝑤′   , 
(51) 

where 

ω𝑤 ≡
𝜔1𝑚  𝑣𝑝

𝑣
   . (52) 
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According to Eqs. (38), (51) and (53) 

𝑣 = 𝑎2𝑚′ ω𝑤′ = 𝑎2𝑚 √1 −
𝑣𝑝2

𝑣2
𝜔𝑤

√1 −
𝑣𝑝2

𝑣2

= 𝑎2𝑚𝜔𝑤 . 

 

(53) 

 

Thus, the velocity  𝑣 is invariant. From Eq. (47) the 𝜔1𝑚′ is a real quantity, then 𝑣𝑝 < 𝑣 <

𝑣𝑝ℎ .  

 

3.3.2 The system, and observable system ratios 
 

The system ratio as in Eq. (9) is:  

𝑎2
𝑎1
=
𝜙

𝜗
=
𝜔1
𝜔2

= 𝜇 > 1 .   (9) 

The lab system ratio as in Eqs. (40) and (53): 

 
𝑣

𝑣𝑝
=
𝑎2𝑚′  ω𝑤′

𝑣𝑝
=
𝜔1𝑚′

ω𝑤′
=
𝜔1𝑚
ω𝑤

= 𝜇𝐿 .   (54) 

 

To propose a relationship between 𝜇 and 𝜇𝐿 , let us assume that   

𝑣𝑝 = 𝑎1 𝜔1𝑚′ . (55) 

Then from Eqs. (9), (54) and (55) one can find that:  

𝜇 = 𝜇𝐿
2. (56) 

 

4. System of two guided circles 

 

The system shown in Figure 3 is for one guided circle.  A system like the one in Figure 

7 has two identical guided circles A and B.  

 
Figure 8 System of two identical guided circles.  

 

The resultant of the position vectors of the two points: 
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𝒓2 = 𝒓𝐴
2 + 𝒓𝐵

2 + 2 𝒓𝐴 𝒓𝐵 cos 𝜃𝑐 . (57) 

 

The lab observer recognises two correlated points, where he/she cannot recognise each point 

separately.  The lab observer’s expression leads to:  

 
1- 𝑋 = 0 

𝓩2 = 𝒂𝟐(𝑒𝑥𝑝±2𝑖𝜙𝐴 + 𝑒𝑥𝑝±2𝑖𝜙𝐵 + 2𝑒𝑥𝑝±𝑖𝜙𝐴  𝑒𝑥𝑝±𝑖𝜙𝐵 cos 𝜃𝑐) . (58) 

We can rewrite this equation in terms of probability density (𝜚): 

𝜚 = 𝜚𝐴 + 𝜚𝐵 + 2 𝜚𝐴,𝐵 cos 𝜃𝑐   . (59) 

 

2- The lab observer does not recognise separated parts of the system then: 

𝑒𝑥𝑝±𝑖𝜙𝐴 = 0  and   𝑒𝑥𝑝±𝑖𝜙𝐵 = 0 . (60) 

 

But two correlated points:  

𝓩2 = 𝒂𝟐(2𝑒𝑥𝑝±𝑖𝜙𝐴  𝑒𝑥𝑝±𝑖𝜙𝐵 cos 𝜃𝑐), (61) 

or 

𝓩2 = 𝒂𝟐2𝑒𝑥𝑝±𝑖(𝜙𝐴+𝜙𝐵)  cos 𝜃𝑐 . (62) 

 

The complex function is 

𝒵 = 𝑎√2𝑒𝑥𝑝±
1
2
𝑖(𝜙𝐴+𝜙𝐵) √cos 𝜃𝑐 , (63) 

or 

𝒵(𝑟𝐴, 𝑟𝐵, 𝜗𝐴, 𝜗𝐵, 𝑡) = 𝑎√2𝑒𝑥𝑝
±
1
2
𝑖(𝒌2A∙𝒔𝑨−𝜔1A𝑡𝐴+𝒌2B∙𝒔𝑩−𝜔1B𝑡𝐵) √cos 𝜃𝑐  . (64) 

 

It is obvious that the total dimensions of the system is 2N (N is the number of the guided circles 

in the plane, and 2 is related to 2 dimensions). The lab observer notes two separated points, 

then the dimension for the observer is 2N. 
 

5. Remarks and Comparisons  
 

 Comparisons  

The above sections (3 and 4) demonstrate the lab observer’s equations for the observed 

system. Table 2 compares these results with the conventional relativistic quantum mechanics 

forms in two sets of equations.  The quantum mechanics equations are presented without ℏ to 

show the kinematical forms.   
 

Table 2. Comparisons of the equations of conventional quantum mechanics and special relativity with 

the analogical model forms. 
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Conventional 

definition 

Conventional equations of 

quantum mechanics and 

special relativity 

Analogical model forms 

 
Analogical 

definition 

Dirac wave 

function 
𝜓𝐷 = 𝑢𝐷 exp 𝑖(𝒌 ⋅ 𝒙 − 𝜔𝑡) 𝓩 = 𝒂2𝑚 exp±𝑖(𝒌2𝑚 ∙ 𝒔−𝜔1𝑚𝑡) 

Z-complex 

vector 

Dirac equation  𝑖
𝜕𝜓

𝜕𝑡
= (−𝑖𝑐𝜶 ⋅ 𝛻 + 𝛽𝜔)𝜓 𝑖

𝜕𝓩

𝜕𝑡
= (−𝑖𝑣𝑨 ⋅ 𝛻 + 𝐵𝜔1𝑚)𝓩 

Complex 

velocity 

equation 

The coefficients 𝜶 and 𝛽 𝑨 and 𝐵 Coefficients 

Property 𝜶𝒊𝜶𝒋 + 𝜶𝒋𝜶𝒊 = 0 𝑨𝜃 ⋅ 𝑨𝜑 + 𝑨𝜑 ⋅ 𝑨𝜃 = 0    Property  

Property 𝜶𝒊𝜶𝒊 + 𝜶𝒊𝜶𝒊 = 2 𝑨𝜃 ⋅ 𝑨𝜃 + 𝑨𝜃 ⋅ 𝑨𝜃 = 2    Property 

Property 𝜶𝒊
2 = 𝛽2 = 1 𝑨2 = 𝐵2 = 1       Property 

Property 𝜶𝒊𝛽 + 𝛽𝜶𝒊 = 0 𝑨𝐵 + 𝐵𝑨 = 0                 Property 

Klein-Gordon 

equation 

𝜕2𝜓

𝜕𝑡2
= [−𝑐2𝛻2 +𝜔2]𝜓 

𝜕2𝓩

𝜕𝑡2
= [−𝑣2𝛻2 +𝜔1𝑚

2]𝓩   

Complex 

acceleration 

equation 

Light speed  𝑐 < 𝑣 

𝑐 is constant  

𝑣 < 𝑣𝑝 

𝑣 is constant  

Wave speed 

Lorentz factor 1

√1 −
𝑣2

𝑐2

 
1

√1 −
𝑣𝑝

2

𝑣2

 
Lab 

transformation 

Relativistic mass 

(angular 

frequency) 

×
ℏ

𝒄2
 

𝜔 =
𝜔°

√1 −
𝑣2

𝑐2

 𝜔1𝑚′ =
𝜔1𝑚

√1 −
𝑣𝑝

2

𝑣2

 
Lab 

transformation 

Length 

contraction ∆𝐿 = ∆𝐿°√1 −
𝑣2

𝑐2
 𝑎2𝑚′ = 𝑎2𝑚√1−

𝑣𝑝
2

𝑣2
 

 

Lab 

transformation 

Four-vector 

× (
ℏ

𝒄2
)
2

 

ω2𝑐2 = ω2𝑣2 +𝜔°
2𝑐2 

 
𝜔1𝑚′

2𝑣2 = 𝜔1𝑚′
2𝑣𝑝

2 +𝜔1𝑚
2𝑣2 

 

Lab space 

Phase and group 

velocities 
𝑐2 = 𝑣𝑣𝑝ℎ 

 

𝑣2 = 𝑣𝑝𝜔1𝑚𝑎2𝑚 

𝑣𝑝ℎ = 𝜔1𝑚𝑎2𝑚 

 

Lab system 

velocities 

de Broglie 

equation 

 

𝜆 =
ℏ

𝑚 𝑣
=
𝑐2

𝜔𝑣
 𝑎2𝑚′ =

𝑣2

𝜔1𝑚′𝑣𝑝
,  

Guiding point 

distance 

 

 The rest state of the point 

Equation (47) shows the observable angular frequency of the point (𝜔1𝑚′) and its 

relationship with the velocity of the point, relative to the lab observer (𝑣𝑝). Let us express this 

frequency as 
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𝜔1𝑚′ = 𝜔1 +𝜔𝑥 . (65) 

where 𝜔𝑥 is the additional quantity owing to the relative velocity (𝑣𝑝). From Eq. (47) , Eq(43),and Eq. 

(65), we can get the ratio (in terms of the phase velocity 𝑣𝑝ℎ): 

𝜔1
𝜔𝑥

=
1

1

√1 −
𝑣𝑝
𝑣𝑝ℎ

− 1
  . 

(66) 

Figure 9 shows this relationship. 

 

 
Figure 9 The relationship between the ratio 𝜔1 𝜔𝑥⁄  and the observable velocity of the point. 

 

From Eq. (66), we can find the observable velocity in terms of the ratio 𝜇 

𝑣𝑝𝜇 = [1 − (
𝜇

1 + 𝜇
)
2

] 𝑣𝑝ℎ   . (67) 

For the ratio  𝜔1 𝜔2⁄ = 𝜇, and due to the partial observation (𝜇 ≫ 1), then  

𝑣𝑝𝜇 ≈ [1 − (
𝜇

𝜇
)
2

] 𝑣𝑝ℎ = 0 . (68) 

This case may represent the rest state for the lab observer. The velocity 𝑣𝑝 is related to the 

guided point in lab observation.   

 

 The point trajectory 

The system may appear as in rest state, as shown above (Eq. (68)).  If the system (Figure 3) is 

in motion, and for simplicity, let us say in linear motion. In other words, the centre O (0,0) 

moves in the x direction (𝒙), then the trajectory (𝕿) of the point becomes: 

𝕿 = 𝒙 +  𝒓 ,  (69) 

𝒓 is described by Eqs. (7) or (11). The velocity of the point is 

𝒗𝑝 =
𝑑 𝕿

𝑑𝑡
= 𝒗𝑝𝑥 + 

𝑑 𝒓

𝑑 𝑡
 ,  (70) 

For the lab observer (when ≫ 𝑑𝜆 , or observable) the trajectory (𝓠) is 

𝓠 = 𝒗𝑝𝑥𝑡 +  𝓩 ,  (71) 
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where 𝒗𝑝𝑥 is the velocity of the centre O(0,0) in the x direction. The trajectory 𝓠 is a complex 

function (𝕿 → 𝓠). The velocity of the point (𝒗𝑝𝒬) is: 

𝒗𝑝𝒬 =
𝑑 𝓠

𝑑𝑡
= 𝒗𝑝𝑥 + 

𝑑 𝓩

𝑑 𝑡
 ,  (72) 

The complex velocity (𝑑𝓩 𝑑𝑡⁄ ) is described in Eq. (36). 𝒗𝑝𝒬 is a complex velocity.  

 Is the system a fine structure?   

If our terminology of lab observer corresponds to the relativistic observer, then any 

unobservable is meant to be out of the scope of special relativity. The classical electron radius 

(𝑟𝑒) is out of the scope of relativity, and our 𝑎1 is out of the scope of lab observation. Then we 

can assume that  

𝑟𝑒 = 2.81794092 × 10
−15 𝑚 ≡ 𝑎1  (73) 

 

For the ground state of the election in the hydrogen atom, Bohr radius (𝑟𝐵) is within the scope 

of relativity, and our 𝑎2 is observable for the lab observer. So, we can assume as well that:  

𝑟𝐵 = 0.529177249 × 10−10𝑚 ≡ 𝑎2 (74) 

 
Then, the system ratio (Eq, (7)) may be equal to:  

𝑎1
𝑎2
=
𝑟𝑒
 𝑟𝐵

= 5.325136191 × 10−5 = (0.00729735075)2 = 𝛼2 (75) 

where 𝛼 is the fine structure constant. and accordingly:  

1

𝛼2
= 𝜇 = 18778.87441  (76) 

This result may agree with the approximation of partial observation.  

 

 Electron velocity in ground state of the hydrogen atom (𝑣) may correspond to our 𝑣𝑝 

𝑣𝑝 ≡ 2.1876961417 × 106 𝑚 𝑠⁄   (77) 

The light speed (𝑐) may correspond to our 𝑣 as shown above. Then the lab ratio (Eq. (40)) is: 

𝑣𝑝

𝑣
=
2.1876961417 × 106

2.99792458 × 108
= 0.007297368838 (78) 

and  

𝑣𝑝

𝑣
=
1

𝜇𝐿
≡ 𝛼 (79) 

Then 𝜇𝐿 ≡ 137.0356936, which is equivalent to coupling constants of the electromagnetic 

force.  

 

 The analogy of the wave function 
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As shown in Table 2, the complex vector is an analogy for the Dirac wave function. The 

complex vector is related to the position vector of a point in two rolling circles, but the lab 

observer cannot recognise that. The usage of the quantum statistical technique by the lab 

observer does not mean that this complex vector is related to a medium of statistical nature or  

may be of an epistemic nature due to the abstract feature. This problem is similar to that of the 

interpretation of wave function in quantum mechanics.  

 Is there an explanation for the entanglement?  

Equation (64) shows a single complex function of many dimensions (2N). For the lab 

observer, this form may be analogous to the entanglement case.  This case looks like a system 

of  instantaneous action between two separated points. 

 

In the same way, one may suggest a case of coupled guiding circles with a guided 

circle as shown in Figure 9.   

 

 

 
 

Figure 10 System of two guiding circles. 

 

𝓩𝐴 = 𝒂𝐴𝑒𝑥𝑝
±𝑖𝜙𝐴   . (80) 

And  

𝓩𝐵 = 𝒂𝐵𝑒𝑥𝑝
±𝑖+𝜙𝐵   . (81) 

 

The guided point is defined by two complex vectors (𝓩𝐴 and 𝓩𝐵 ).  So the guided point has 

two identical wavelengths. For the lab observer, the guided point is trapped in a region and 

oscillates without energy (like an object located between two springs and oscillating due to the 

forces of the springs). Here, the probability of finding the guided point is in two regions, as 

shown in Figure 11. 

 

 
 

Figure 11 The probability of finding the guided point in two regions.  

 

 Is the mass a property of the system? 
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Using the analogies mentioned above, one may say that 

𝐸 ≡ ℏ 𝜔1𝑚 , and ≡ 𝑚 𝑣2 . (82) 

Then  

𝑚

ℏ
≡ 
𝜔1𝑚
𝑣2

=
𝜇

𝑎2𝑚𝑣
  (83) 

This form shows that the mass is related to the system ratio 𝜇. The mass looks like a property 

of the system.  

 

 The principle of complementarity 

Guiding and guided circles comprise a complete and indivisible system. For the lab 

observer, there is a reduced system of a guided point with a guide of the sinusoidal wave in the 

complex plane. These two features cannot be detected (observed) separately; in other words, 

both features must be associated. Neither of these features can exist without the other.   

 

If we try to look at the matter from the slit experiment point of view, the lab observer detects 

the two features simultaneously: 

 

1- The accumulation of points (light fringes) is related to the guided point feature (which-

way information). 

2- The separation of accumulations (dark fringes) is related to the guiding wave feature.   

Thus, the interference experiment shows the two features simultaneously. The concept of a 

guided point mentioned above is different from the concept of the particle and wave mentioned 

in Bohr’s principle of complementarity. The concept of a system of particle and wave has been 

imported from the macroscopic world, to be used in the microscopic world.  

This concept (equivalent and indivisible pictures) may agree with Afshar’s experiment [38].  

 

 Partial observation and Quantum observation 

Partial observation is behind the formation of the complex vector and is not related to 

the observation effects considered by quantum mechanics. The partial observation technique 

does not change the energy of the system (energy is conserved). Thus, there is no interaction 

with the system, and then we can regard the partial observation as an adiabatic process. This 

concept is closer to that of protective measurement, proposed within the framework of quantum 

mechanics by Aharonov and Vaidman [39, 40] than the weak measurement of small 

disturbances of the state [41, 42]. 

 

 Is relativistic quantum mechanics an emergent phenomenon? 

The obtained 𝒵 -complex vector, the complex velocity, and complex acceleration 

equations may perhaps throw light on the origin of the first and second postulates of quantum 

mechanics.  

 

 Are there Zitterbewegung, and real spin? 

The real rotations that are behind the complex vector is existed, as shown above in the 

kinematic system (Figure 3), but the lab observer cannot recognise that structure due to the 

partial observation problem. Both the quantum and relativity features may be based on the 
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system deformation (due to the partial observation); thus, recognition of the rotational motions 

will be violated in the lab observation.  

 Hidden variable or hidden system 

The complex vector obtained is a result of partial observation, which causes a partially 

hidden system.  The concept of hidden variable is based on the statistical thermodynamics 

frame. If the lab observer wants to establish a complete real discerption, he/she (it) should 

reconsider the complex vector and introduce the missing quantities without any influence of 

the applied statistics technique. The missing quantities are not like the hidden variables in the 

statistical thermodynamics.    

 

 Is the spacetime an emergent phenomenon?  

The analogy of the Lorentz factor is obtained due to the partial observation and the 

observer model. The similarity between the special relativity equations and the equations of 

the analogised model as shown in Table 2 may lead us to conclude that the spacetime is related 

to the same underpinning as that of quantum mechanics. Then, the spacetime is not just 

emergent, but is related to the same origin as quantum mechanics. The rolling circles model 

under the partial observation may show unification of the special relativity with quantum 

mechanics.  

 

 Where is the gravity?  

Within the approximation  𝑋 = 0 of the partial observation, one can get flat spacetime 

formalism, which leads to a concept singularity. Ether does not exist in special relativity, or the 

lab observer cannot deal with the ether, as he/she (it) cannot deal with the unobservable system.   

According to Kostro [43] “Einstein has created two models of ether: one of the "rigid" ether 

[15, 16] connected with his special relativity and another of the "non-rigid" one [15 ] connected 

with his general relativity (EGR). In the two models, not any state of mechanically conceived 

motion (immobility included) can be attributed to the real space as such. On the other hand 

(especially in the EGR model), the non-atomically and non-mechanically conceived material 

field is never passive or quiet.”  

 

The space of underpinning structure as shown above is a curvature space; here, one 

may ask, is gravity related to that deep underpinning space?   

 

 The quantum mechanics?  

Gerard ‘t Hooft expressed his opinion about a deep level for quantum mechanics thus: 

“To me, it seems extremely plausible that any reasonable theory for the dynamics at the Planck 

scale ….. It seems quite reasonable first to try a classical, deterministic theory for the Planck 

domain. One might speculate then that we call quantum mechanics today, may be nothing other 

than an ingenious technique to handle this dynamics statistically."[44].  

The present project is not in Planck scale but in a micro-scale level that cannot be 

detected completely. In spite of that, one may find in the present project some agreements with 

what has been mentioned by Gerard ‘t Hooft about a classical origin.   
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Appendix  

 

Differentiation of the function 𝒓(𝑥, 𝑡, 𝑋) (Eq.(11)) with respect to time is rate of change of real 

quantity (first order time differential equation) is:   

 
𝜕𝒓(𝑟, 𝑡, 𝑋)

𝜕𝑡

=
𝜕(𝒂2 +𝓫√𝑋)

𝜕𝑡
{𝑐𝑜𝑠(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡)

± √−𝑠𝑖𝑛2(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡) + 𝑋} + (𝒂2

+𝓫√𝑋)

{
 

 

(𝜔1 − 𝜔𝛽) 𝑠𝑖𝑛(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡)

± 
(𝜔1 − 𝜔𝛽) 𝑠𝑖𝑛 (𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡)𝑐𝑜𝑠(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡) +

𝜕𝑋
𝜕𝑡

√−𝑠𝑖𝑛2(𝒌2 ∙ 𝒔 − 𝜔1𝑡 + 𝜔𝛽𝑡) + 𝑋 }
 

 

. 

 

 

 

 

   (1-A) 

Under partial observation conditions ( = 0 and 𝜔𝛽𝑡 = 0 ) Eq. (1-A) becomes:   

𝜕𝒓(𝑟, 𝑡, 0)

𝜕𝑡
=
𝜕𝒂2𝑚
𝜕𝑡

{𝑐𝑜𝑠(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡) ± √−𝑠𝑖𝑛2(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)}

+ 𝒂2𝑚 {𝜔1𝑚 𝑠𝑖𝑛(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)

± 
𝜔1𝑚 sin (𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)𝑐𝑜𝑠(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)

𝑖 𝑠𝑖𝑛(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)
}. 

         (2-A) 

The vector differentiation is  

𝜕𝒂2𝑚
𝜕𝑡

= 𝑎2𝑚𝜔𝒆̂𝜗 = 𝑣 𝒆̂𝜗 . 
     (3-A) 

Then, Eq. (2-A) becomes 

𝑖
𝜕𝒓(𝑟, 𝑡, 0)

𝜕𝑡
= (𝑖 𝑣𝒆̂𝜗  ∙ 𝒌2𝑚) 𝒂2𝑜𝑚{ 𝑐𝑜𝑠(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)

± 𝑖 𝑠𝑖𝑛(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)}
+ 𝒂2𝑚𝜔1𝑚{𝑖  𝑠𝑖𝑛(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡) ± 𝑐𝑜𝑠(𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)}, 

   (4-A) 

 

In exponential form, Eq. (4-A) becomes:  

𝑖
𝜕𝒓(𝑟, 𝑡, 0)

𝜕𝑡
= (𝑖 𝑣𝒆̂𝜗  ∙ 𝒌𝟐𝒎) 𝒂2𝑚 exp 𝑖 ± (𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡)

+ 𝐵𝜔1𝑚𝒂2𝑚 exp 𝑖 ± (𝒌2𝑚 ∙ 𝒔 − 𝜔1𝑚𝑡) 

   (5-A) 

Regarding that   

±𝑖 𝜵 =
1

𝒂𝟐𝒎
= 𝒌𝟐𝒎 ,       (operator) 

𝐵 = ±1,  and 𝑨 = ∓ 𝑖 𝒆̂𝜗  , 

   (6-A) 

and with the aid of Eq. (6-A) then Eq. (5-A) becomes 

𝑖
𝜕𝓩

𝜕𝑡
= (−𝑖 𝑣𝑨 ⋅ 𝜵 + 𝐵𝜔1𝑚)𝓩 . 

   (7-A) 
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