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1 Introduction

Information is a key component of most types of economic behavior. When we
make our investment decisions, choose what career to follow, decide what type
of health insurance coverage we want to have, when to retire, or what is the best
schooling district for our kids, we are faced and have to process a wide variety
of information and data that may come from published sources, past personal
experience, or advice from relatives, friends and experts.
Research in psychology suggests that many individuals are more sensitive to

positive than to negative information. According to Matlin and Gawron:

Many individuals (...) recognize pleasant stimuli faster; they
judge pleasant stimuli to be more frequent; they use pleasant words
more often; they supply a greater number of free associates to pleas-
ant stimuli; they recall pleasant items more accurately, they recall
pleasant items earlier in a list; and they process pleasant information
more rapidly. (Matlin and Gawron, 1979, pp. 41)

There is also evidence that other individuals are more sensitive to negative
than to positive information. According to Lewicka, Czapinski, and Peeters,
these individuals have:

(...) stronger cognitive curiosity manifested for negative than
for positive stimuli (Fiske, 1980), higher linguistic sophistication for
negative than for positive category labels (Clark and Clark, 1977),
higher informativeness of negative than of positive personality trait
labels (Czapinski, 1986), more rational and normatively appropriate
character of inferences applied to negative than to positive targets
(Lewicka, 1989). (Lewicka, Czapinski, and Peeters, 1992, pp. 426)

This papers incorporates asymmetries in information processing in a Bayesian
decision-theory model and explore its consequences in terms of decisions and
payoffs. I assume that while some people are endowed with positive-responsive
information processing technologies (from now abbreviated to IPTs) others are
endowed with negative-responsive IPTs. This assumption is my main departure
from standard decision-theory. Individuals endowed with positive-responsive
IPTs have an advantage in processing favorable information while those en-
dowed with negative-responsive IPTs have an advantage in processing unfavor-
able information.
The model does not assume that individuals suffer from biased information

processing or that they are boundedly rational. An information processing
technology (IPT) can be thought of as a filter that acts on the sensory system.
Just as some individuals have more delicate senses of taste, smell, touch, sight, or
sound, than others, individuals endowed with more negative-responsive IPTs are
relatively more sensitive to unfavorable information than individuals endowed
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with more positive-responsive IPTs. Thus, individuals endowed with these types
of IPTs are not systematically mistaken, they just happen to have different
characteristics that determine the way they view the world.
I propose precise definitions of more positive-responsive distribution of be-

liefs and more positive-responsive information structures. I show that in mono-
tone decision problems decision-makers with more positive-responsive (negative-
responsive) information structures are always better off, ex-ante, when they face
problems where payoffs are relatively more sensitive to the action chosen when
the state of nature is favorable (unfavorable).
Just as a person with a highly sensitive sense of sound has an advantage in

music (and may turn out to be a music performer or a composer) or a person
with a highly sensitive sense of taste has an advantage in cooking (and may turn
out to be a chef), an individual with a positive-responsive (negative-responsive)
information structure has an advantage in decision problems where payoffs are
relatively more sensitive to the action chosen when the information about the
state of nature is favorable (unfavorable).
The paper proceeds as follows. Section 2 sets-up of the decision problem.

Section 3 explains how information structures can be compared. Section 4 in-
troduces the positive-responsive order for posterior beliefs. Section 5 introduces
the set of incremental return functions associated with the positive-responsive
order for posterior beliefs. Section 6 describes the main result and an economic
application. Section 7 concludes the paper. Proofs of propositions are in the
Appendix.

2 Set-up

Consider a Bayesian decision-theory framework where a decision-maker must
choose an action or control variable (effort, output, prices) in order to maximize
expected utility, which depends of both the control variable and of a random
variable, or state of nature, that is not controlled by the decision-maker. Before
choosing the control variable the decision-maker obtains information concerning
the random variable. This information leads the decision-maker to update her
beliefs about the state of nature and therefore make better decisions by com-
parison with a situation where the decision maker is only in possession of his
prior probability assessment of the realization of each state of nature.
The timing of the model is as follows:

1. Nature draws a state realization unobservable by the decision-maker;

2. Nature draws an imperfect signal about the true state realization;

3. The decision-maker processes the signal according to her information pro-
cessing technology;

4. The decision-maker updates her beliefs about the state of nature and
chooses the optimal action;

3



5. The payoff to the decision-maker is determined jointly by the action chosen
and the state of nature realization.

Thus, for any two decision-makers endowed with different information pro-
cessing technologies that face the same signaling technology, the one endowed
with a “more positive-responsive” information processing technology processes
signals in such a way that she ends up with a “more positive-responsive” in-
formation structure than the decision-maker endowed with the “less positive-
responsive” information processing technology. That is, decision-makers en-
dowed with positive-responsive IPTs have positive-responsive information struc-
tures and decision-makers endowed with negative-responsive IPTs have negative-
responsive information structures. Since, for all purposes, all that matters for
individuals to make decisions is their information structures I do not need to
model information processing technologies.1

The decision problem is composed of the following five elements.

1. A probability space (Ω,B, µ), where Ω is the set of possible realizations of
the state of nature, with Ω = [a, b] ⊂ <, B is the Borel σ-field of Ω and µ
is a probability measure on (Ω,B), with µ (Ω) = 1.

2. Two real-valued random variablesX andW, whereX is the signal function
with typical realization x ⊂ X , with X =[c, d] ⊂ <, and W is the state of
nature function with typical realization ω ⊂ Ω.

3. A joint probability distribution, F : Ω×X → [0, 1], that will be called the
decision-maker’s information structure and has generic element F (W =
ω,X = x) or, in condensed notation, F (ω, x). Note that the two random
variables, X andW , are fully characterized by F since from F one can ob-
tain (1) the marginal probability distribution of the signal, FX : X →[0, 1],
with generic element FX(X = x) or, in condensed notation, FX(x), (2)
the decision maker’s prior beliefs or the marginal probability distribution
of the state of nature, FW : Ω→ [0, 1], with generic element FW (W = ω) ,
or, in condensed notation FW (ω), and (3) the decision maker’s posterior
beliefs after observing a signal realization X = x or the conditional dis-
tribution of W given X = x, FW (·|x) : Ω → [0, 1], with generic element
FW (W = ω|X = x) or, in condensed notation, FW (ω|x).

4. A set of actions, A, with typical element a ∈ A.

5. A payoff function, w(ω, a), w : Ω×A→ <.2

1Alternatively, I could have modelled an information system composed of three elements:
(1) a signaling technology (2) an information processing technology, and (3) an information
structure. The information processing technology transforms signals into other signals, is
unknown to and out of the control of the decision-maker. This approach is less parcimonious
as the one I use here.

2To provide a better understanding of the payoff function I compare it to the von Neumann-
Morgenstern utility function. Let X be the set of consequences, outcomes or prizes, and let
x ∈ X be a typical element of X. Let ρ denote the outcome function, a mapping from Ω×A
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Given these five elements I can define a the decision problem as the tuple
D = (F,w, FW ). I am now in a position where I can define the interim value of
the decision problem D given a signal realization X = x and the ex ante value
of a decision problem D. The interim value of the decision problem D given a
signal realization X = x is given by the expression

max
a∈A

Z

Ω

w (ω, a) dFW (ω|x) .

The ex ante value of the decision problem D is defined as

V (D) =

Z

X

⎡
⎣max
a∈A

Z

Ω

w (ω, a) dFW (ω|x)

⎤
⎦ dFX(x). (1)

Let W denote the set of all payoff functions and let FW denote the set of all
prior probability distributions. A family of decision-makers will be defined by
a pair (FW ,W

P ) where FW ∈ FW and WP stands for a set of payoff functions
that have in common a certain property P . Furthermore, define the incremental
return function as

r (ω) = w(ω, a0)− w (ω, a) , ∀a0 > a.
Most of the analysis that follows will focus on the incremental return function
and not on the payoff function directly. However, both functions are intimately
related since the payoff of any action for any typical state of nature ω can be
written as a sum of incremental returns. Consider the case where A is a finite
set, A = {a1, a2, . . . , an} , then we have

w (ω, ak) = w (ω, a1) + [w (ω, a2)− w (ω, a1)] + . . .+ [w (ω, ak)− w (ω, ak−1)]

= w (ω, a1) +
kX

i=2

ri (ω) . (2)

Following Athey and Levin (1997) I let

R = {g : Ω→ <, g bounded and measurable} ,

and consider that a payoff function w has an RQ incremental return function if
for any a0 > a we have r (ω) = w (ω, a0)− w (ω, a) ∈ RQ ⊂ R.
The set of payoff functions with a RQ incremental return function will be

denoted by WRQ . For example, if the incremental return function is nonde-
creasing, then the set of payoff functions whose incremental return functions
are nondecreasing will be denoted by WRND .

to X. The outcome function specifies the consequence, outcome, or prize resulting from each
state-action pair, x = ρ (ω, a) . Let u denote the von Neumann-Morgenstern utility function,
a mapping from X to <. The payoff function is equivalent to the successive application of
the outcome function and the von Neumann-Morgenstern utility function. That is, w (ω, a) ≡
u [ρ (ω, a)] = u (x) . Thus, the payoff function is a combined expression of an individual’s
preferences and of her explanation of the outcome as determined by her action and the state
of nature.
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3 Comparison of Information Structures

Blackwell (1951,1953) has defined a partial order (we will denote it by %BL) on
the set of all information structures that says that an information structure, F 0,
is “more informative” than another, F, if and only if, for any payoff function
and any prior distribution, the ex ante value of the decision problem when the
decision-maker uses F 0 is at least as large as the ex ante value of the decision
problem when the decision-maker uses F, that is

F 0 %BL F ⇔ V (F 0, w, FW ) ≥ V (F,w, FW ), ∀w ∈W, ∀FW ∈ FW .

This partial ordering of information structures says that more variable beliefs
are desirable for any decision-maker, regardless of her attitude towards risk,
since greater variability of beliefs means that signal realizations convey more
information about the true state of nature.
The problem we face is of a different kind since we wish to find out in

what types of economic environments does an individual with a more positive-
responsive information structure outperform an individual with a less positive-
responsive information structure. To answer this question we need to find the
appropriate “more positive-responsive” order of information structures (we will
denote it by %PR) and the right property of the incremental return function
(we will denote it by RPR), such that

F 0 %PR F ⇔ V (F 0, w, FW ) ≥ V (F,w,FW ), ∀w ∈WRPR , ∀FW ∈ FW .

We need a notion of valuable information that is related to concrete economic
environments and that necessarily does not hold across all economic environ-
ments as Blackwell’s notion does. Thus, my “more positive-responsive” order
will necessarily have to rank information structures that are not comparable
using Blackwell’s “more informative” order.
Athey and Levin (1997) present a framework that provides conditions for

decision makers with different payoff functions to rank two information struc-
tures according to stochastic orders tailored for specific economic environments.
Their approach rests in three steps. First, they specify a property of the in-
cremental returns function that induces a stochastic order on posterior beliefs.
Second, they restrict their analysis to monotone decision problems. Third, they
propose a monotone information order for ranking information structures. My
approach only differs from Athey and Levin’s approach in the sense that my
starting point is the specification of a stochastic order on posterior beliefs that
tries to capture the idea of one distribution of posterior beliefs being “more
positive-responsive” than another. After having specified the adequate order on
posterior beliefs I search for the appropriate property of the incremental returns
function that induces it. Finally, I use Athey and Levin’s monotone information
order to rank information structures as more or less positive-responsive.
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4 PR Order for Posterior Beliefs

The PNA theory suggests that decision-makers endowed with negative-responsive
IPTs are relatively more sensitive to perceiving unfavorable information than
those endowed with positive-responsive IPTs. I need to turn this statement into
an operational definition.
One possible interpretation is that a decision-maker endowed with a negative-

responsive IPT is able to distinguish more accurately between different degrees
of unfavorable information and is not able to distinguish as accurately between
different degrees of favorable information when compared with a decision-maker
endowed with a positive-responsive IPT. This interpretation has a direct transla-
tion in terms of the dispersion of posterior beliefs: a “more positive-responsive”
posterior distribution must have a greater dispersion of beliefs in favorable states
of nature and a smaller dispersion of beliefs in unfavorable states than a “less
positive-responsive” posterior distribution.
This suggests that an appropriate transfer of dispersion from the right to

the left in a “more positive-responsive” posterior distribution will give us a “less
positive-responsive” posterior distribution. However, this transfer of dispersion
must be balanced. If we reduce the dispersion in the right side by a very small
amount and increase the dispersion in the left side by a large amount it is
most likely that the obtained (less positive-responsive) posterior distribution is
overall more informative (in Blackwell’s sense) than the initial (more positive-
responsive) posterior distribution. So, we wish that the transfer of dispersion in
a distribution is done in such a way that it does not change its overall dispersion
but simply changes the placement of dispersion.
One possible approach that obeys this criteria is to take as measure of over-

all dispersion of a distribution its variance and restrict attention to comparing
distributions that have the same mean and variance and differ only in terms of
placement of dispersion. Basically, this approach says that a posterior distri-
bution of beliefs is more positive-responsive than another if it has more upside
dispersion of beliefs, or, a posterior distribution of beliefs is more negative-
responsive than another if it has more downside dispersion of beliefs.
This approach parallels the one adopted by Menezes, Geiss, and Tressler

(1980) for the characterization of increasing downside risk. Thus, my definition
of a “more positive-responsive” distribution of posterior beliefs mirrors Menezes,
Geiss, and Tressler’s concept of a “more upside risky” distribution of payoffs.3

Definition 1 The distribution of posterior beliefs FW (·|x0) is more positive-
responsive than FW (·|x) if FW (·|x) can be obtained from FW (·|x

0) by a se-
quence of mean-variance-preserving transformations that shift dispersion of be-
liefs from the right to the left.

Menezes, Geiss, and Tressler introduced to the economics literature the con-
cept of a mean-variance-preserving transformation (MVPT): a combination of a

3A more negative-responsive (positive-responsive) distribution of posterior beliefs in my
setting is the counterpart to a more downside (upside) risky distribution of payoffs in Menezes,
Geiss, and Tressler’s setting.
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mean-preserving spread (MPS) and a mean-preserving contraction (MPC) that,
when applied to a distribution, preserves its variance. In a MVPT the MPS is
applied everywhere before or after the MPC.4

Example: Table I illustrates a single MVPT that transforms fW (·|x0) , the
more positive-responsive distribution, into fW (·|x) , the less positive-responsive
distribution, by shifting dispersion of beliefs from the right to the left.

Table I

ω = 0 ω = 1 ω = 2 ω = 3 ω = 4
A 18/80 18/80 16/80 2/80 26/80
B 22/80 10/80 20/80 2/80 26/80
C 22/80 10/80 16/80 10/80 22/80

Line A shows the probability mass function fW (·|x0) Line B is obtained after
applying a 3-point MPS to the left of fW (·|x0) .5 Line C shows the probability
mass function fW (·|x) . Line C is obtained after applying a 3-point MPC to the
right of the probability mass function represented in line B. It is easy to check
that E [W |x0] = E [W |x] = 2 and V [W |x0] = V [W |x] = 196/80.

Menezes, Geiss and Tressler’s Theorem 1 gives us an alternative way of
characterizing the more positive-responsive order: one can say that FW (·|x0) is
more positive-responsive than FW (·|x) if and only if

E (W |x0) = E (W |x) (3)

V (W |x0) = V (W |x) (4)

ωZ

a

tZ

a

FW (z|x
0) dzdt ≥

ωZ

a

tZ

a

FW (z|x) dzdt,∀ω ∈ [a, b] . (5)

5 RPR Incremental Return Functions

Having specified the more positive-responsive order on posterior beliefs we are
now in a position were we can search for the appropriate property of the incre-
mental return function that induces it. The first thing to note is that inequality
(5) is related to third-order stochastic dominance. To see this let us recall that
the three stochastic dominance orders most commonly used in economics are
first, second and third-order stochastic dominance, FOSD, SOSD, and TOSD,
respectively. These three orders, in our context, are defined as follows:

FOSD: FW (·|x
0) %FOSD FW (·|x) if FW (·|x

0) 6= FW (·|x)

and FW (·|x0) ≤ FW (·|x) ,∀ω ∈ [a, b]
4 I will use the term MPS (and MPC) as defined by Landsberger and Meilijson’s (1990).

Their definition of a MPS avoids the drawbacks of Rothschild and Stiglitz’s (1970) definition.
5See Rasmusen and Petrakis (1992) for an illustration of the differences between a 4-point

MPS, the one used by Rothschild and Stiglitz (1970), and a 3-point MPS.

8



SOSD: FW (·|x0) %SOSD FW (·|x) if FW (ω|x0) 6= FW (ω|x)

and
ωR

a

FW (t|x0) dt ≤
ωR

a

FW (t|x) dt,∀ω ∈ [a, b]

TOSD: FW (·|x0) %TOSD FW (·|x) if FW (ω|x0) 6= FW (ω|x) , E [W |x0] ≥ E [W |x]

and
ωR

a

tR

a

FW (z|x
0) dzdt ≤

ωR

a

tR

a

FW (z|x) dzdt,∀ω ∈ [a, b] .
Thus, given conditions (3), (4), and (5) we see that if FW (·|x0) .is more

positive-responsive than FW (·|x) , then FW (·|x0) is dominated by FW (·|x) by
TOSD, that is

FW (·|x
0) %PR FW (·|x)⇒ FW (·|x) %TOSD FW (·|x0) . (6)

However, it is easy to see that the reverse is not true, that is,

FW (·|x) %TOSD FW (·|x0); FW (·|x
0) %PR FW (·|x) . (7)

Now, consider the following three classes of incremental return functions:
R1 = {r (ω) ∈ R : rω (ω) > 0}
R2 = {r (ω) ∈ R1 : rωω (ω) ≤ 0}
R3 = {r (ω) ∈ R2 : rωωω (ω) ≥ 0} .
The theorems that relate these three classes of incremental return functions

with first, second, and third-order stochastic dominance can be stated as follows:

FW (·|x
0) %FOSD FW (·|x)⇔ E [r (W ) |x0] ≥ E [r (W ) |x] ,∀r (ω) ∈ R1

FW (·|x
0) %SOSD FW (·|x)⇔ E [r (W ) |x0] ≥ E [r (W ) |x] ,∀r (ω) ∈ R2

FW (·|x
0) %TOSD FW (·|x)⇔ E [r (W ) |x0] ≥ E [r (W ) |x] ,∀r (ω) ∈ R3

I am looking for a result that is similar to the third theorem.6 Defining

RPR = {r (ω) ∈ R : rωωω (ω) ≤ 0} ,

I can state the following result.

Proposition 1 The distribution of posterior beliefs FW (·|x0) is more positive-
responsive than FW (·|x) if and only if E [r (W ) |x0] ≥ E [r (W ) |x] for all in-
cremental return functions in RPR, or

FW (·|x0) %PR FW (·|x)⇔ E [r (W ) |x0] ≥ E [r (W ) |x] ,∀r (ω) ∈ RPR.
6See Hadar and Russel (1969) and Whitmore (1970). The third theorem says that if

FW (·|x0) dominates FW (·|x) by TOSD then the expected incremental returns under FW (·|x0)
are weakly greater than the expected incremental returns under FW (·|x) for all incremental
return functions increasing, concave and with a convex first derivative.
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The proof of this proposition is the proof of Theorem 2 in Menezes, Geiss
and Tressler’s adapted to this context. To illustrate clearly the role that the
imposition of equal means and equal variances plays I will show only how the if
part is proved, that is how

FW (·|x0) %PR FW (·|x)⇒ E [r (W ) |x0] ≥ E [r (W ) |x] ,∀r (ω) ∈ RPR.

By definition of expectation and using integration by parts one obtains7

E [r (W ) |x0]−E [r (W ) |x] = −rω (b) [E (W |x)−E (W |x0)]

+
1

2
rωω (b) {[V (W |x

0)− V (W |x)]
+ [E (W |x)−E (W |x0)] [2b−E (W |x0)−E (W |x)]}

−
bZ

a

rωωω (ω)

⎧
⎨
⎩

ωZ

a

tZ

a

[FW (z|x
0)− FW (z|x)] dzdt

⎫
⎬
⎭ dω

(8)

Using the fact the more positive-responsive order imposes equal means, E (W |x0) =
E (W |x), and equal variances, V (W |x0) = V (W |x) , (8) simplifies to

E [r (W ) |x0]−E [r (W ) |x]

= −
bZ

a

rωωω (ω)

⎧
⎨
⎩

ωZ

a

tZ

a

[FW (z|x
0)− FW (z|x)] dzdt

⎫
⎬
⎭ dω. (9)

If the posterior distribution FW (·|x0) is more positive-responsive than FW (·|x)
we know by (5) that the term in curly brackets in the right hand side of (9)
is always nonnegative. So, for any r (ω) ∈ RPR we have that E [r (W ) |x0] ≥
E [r (W ) |x].
To give some intuition on the economic meaning of the sign of the third

derivative of the incremental return function I introduce an example.

Example: Let the payoff function be given by

w (ω, a) = 51.5a− a
2

2
(5− ω)

1.5
, with ω ≤ 5.

Its incremental return function is given by r (ω) = wa (ω, a) = 5
1.5−a (5− ω)

1.5
.

We see that this incremental return function belongs to the set RPR since
rωωω (ω) = −38a (5− ω)−1.5 ≤ 0.
Let Ω = {0, 1, 2, 3, 4} and A =

n
1, (5/4)1.5 , (5/3)1.5 , (5/2)1.5 , 51.5

o
. In table II

I represent the payoffs associated with these actions and states

7The proof of equation 7 is relegated to the Appendix.
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Table II

ω = 0 ω = 1 ω = 2 ω = 3 ω = 4
a = 1 5.6 7.1 8.6 9.8 10.7

a = (5/4)
1.5

4.7 7.8 10.6 12.9 14.6

a = (5/3)
1.5 −1.8 5.5 12.0 17.5 21.7

a = (5/2)1.5 −43.2 −18.3 3.6 22.1 36.4
a = 51.5 −573.8 −375.0 −119.8 −51.8 62.5

In table III I represent the incremental returns of the form

r (ω; a∗ (ω) , a) = w (ω, a∗ (ω))− w (ω, a) , where a∗ (ω) = max
a∈A

w (ω, a) .

Table III

ω = 0 ω = 1 ω = 2 ω = 3 ω = 4
0 0.7 2 12.3 51.8
0.9 0 1.4 9.2 47.9
7.4 2.3 0 4.6 40.8
48.8 26.1 8.4 0 26.1
579.4 382.8 131.8 73.9 0

By looking at the pattern of incremental returns in table III we see that if a
decision-maker faces this problem and has noisy information about the state of
nature it is worse not taking the no-noise optimal action when the state of nature
is favorable (ω high) than when the state of nature is unfavorable (ω low). For
example, when ω = 0 the incremental return of taking action a = 1 instead of
taking action a = (5/4)1.5 is only 0.9 while when ω = 1 the incremental return

of taking action a = (5/4)
1.5
instead of taking action a = (5/3)

1.5
is 2.3. As

the state of nature becomes more favorable the incremental returns of taking
the no-noise optimal actions increase. So, in this problem it is advantageous
to have more accurate posteriors for high realizations of ω rather than for low
realizations of ω, that is, a decision-maker faced with this problem will be better
off with a more positive-responsive information structure.
The previous example shows that the set of payoff functions with incremental

return functions with nonpositive third derivative can be interpreted as the set of
payoff functions whose payoffs are relatively more sensitive to the action chosen
when the state of nature is favorable, in other words, payoff functions where the
cost of not taking the no-noise optimal actions is higher in favorable states than
in unfavorable states.

6 PR Order for Information Structures

We have already defined the more positive-responsive order for posterior beliefs
and we know the set of incremental return functions under which a decision-
maker with a more positive-responsive posterior is better off than a decision-
maker with a more negative-responsive posterior. However, we still have to
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define a more positive-responsive order for information structures. For this
purpose I introduce the following definition.

Definition 2 An information structure F is positive-responsive ordered if %PR
is a complete order on {FW (·|x)}x∈X , that is, for any x

0 > x, FW (·|x0) %PR
FW (·|x) .

Example: The posterior matrix shown in table IV induces a positive-responsive
ordered information structure.

Table IV
x = .2 x = .4 x = .6 x = .8 x = 1

ω = 0 27/80 26/80 22/80 18/80 17/80
ω = 1 0/80 2/80 10/80 18/80 20/80
ω = 2 16/80 16/80 16/80 16/80 16/80
ω = 3 20/80 18/80 10/80 2/80 0/80
ω = 4 17/80 18/80 22/80 26/80 27/80

I restrict my attention to information structures that are positive-responsive
ordered. By imposing this somewhat strong requirement the decision problem
becomes monotone. This result is state formally in the next proposition.

Proposition 2 If w ⊂ WRPR and an information structure F is positive-
responsive ordered then there exists a decision rule α (x) that is nondecreasing
in x.

This proposition tells us that if a decision-maker with a payoff function
w ⊂ WRPR has a positive-responsive ordered information structure she has an
optimal decision rule that is monotone, that is, a decision rule where higher
signals (more positive-responsive posteriors) lead to higher actions. The addi-
tional structure of monotone decision problems enables us to derive necessary
and sufficient conditions for decision-makers in certain economic environments
to prefer more or less positive-responsive information structures.8

Before stating the main result of the paper I just have to define what a more
positive-responsive information structure is.

Definition 3 Information structure F 0 is more positive-responsive than infor-
mation structure F, F 0 %PR F, if (i) F

0 and F come from the same prior, (ii)
F 0 and F are both positive-responsive ordered and (iii) for X 0 and X being the
two signals associated with information structures F 0 and F, respectively, we
have

F 0W (·|X 0 ≥ x) %PR FW (·|X ≥ x) , ∀x ∈ [0, 1] . (10)

Condition (10), the monotone information order in Athey and Levin’s (1997),
tells us that information structure F 0 is more positive-responsive than informa-
tion structure F if, on average, the more positive-responsive posterior beliefs

8Examples of monotone decision problems arise in many economic relevant contexts, such
as production under uncertainty, financial and capital investments, auctions, contracting,
adverse selection, and search. See Athey and Levin (1997) for more examples.
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(the ones induced by higher signal realizations) of information structure F 0 are
more dispersed than the more positive-responsive posterior beliefs of informa-
tion structure F. I am now ready to state my main finding.

Proposition 3 Information structure F 0 is more positive-responsive than in-
formation structure F if and only if, for any payoff function in WRPR and any
prior distribution, the ex ante value of the decision problem when the decision-
maker uses F 0 is at least as large as the ex ante value of the decision problem
when the decision-maker uses F, or

F 0 %PR F ⇔ V (F 0, w, FW ) ≥ V (F,w,FW ) , ∀w ∈WRPR ,∀FW ∈ FW .

This proposition tells us that decision-makers with more positive-responsive
information structures are always better off, ex-ante, when they face problems
where payoffs are relatively more sensitive to the action chosen when the state
of nature is favorable. Similarly, it tells us that decision-makers with more
negative-responsive information structures are always better off, ex-ante, when
they face problems where payoffs are relatively more sensitive to the action
chosen when the state of nature is unfavorable.
To illustrate Proposition 3, consider a monopolist who faces cost uncertainty

and that has a payoff function given by w (ω, q) = P (q) q − C (ω, q) . The ex
ante value of the monopolist’s decision problem is given by

V (D) =

Z

X

⎡
⎣max
q≥0

Z

Ω

[P (q) q − C (ω, q)] dFW (ω|x)

⎤
⎦ dFX(x).

Differentiating the payoff function with respect to output we obtain the incre-
mental return function r (ω) = MR (q) −MC (ω, q) . Differentiating the incre-
mental return function with respect to the state of nature three times we get
rωωω (ω) = −MCωωω (ω, q) . Proposition 3 tells us that if MCωωω (ω, q) ≥ 0,
then a monopolist with a more positive-responsive information structure is al-
ways better off ex ante than if he has a more negative-responsive information
structure.

7 Conclusion

This papers assumes that positive-negative asymmetries in information process-
ing come from “cold” cognitive differences among people and not from “warm”
biases in information processing (e.g., some individuals recall positive informa-
tion better than negative information whereas others have the same rate of
recall for both types of information). The paper finds that individuals who are
better at processing positive (negative) information have an absolute advantage
in decision problems where payoffs are relatively more sensitive to the action
chosen when the state of nature is favorable (unfavorable).

13
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8 Appendix

Proof of Equation (8): By definition of expectation we know that

E [r (W ) |x0]−E [r (W ) |x] =

bZ

a

r (ω) [dFW (ω|x0)− dFW (ω|x)]

=

bZ

a

r (ω) [fW (ω|x0)− fW (ω|x)] dω

Integrating by parts we obtain

E [r (W ) |x0]−E [r (W ) |x] = |r (ω) [FW (ω|x0)− FW (ω|x)]|
b

a

−
bZ

a

rω (ω) [FW (ω|x0)− FW (ω|x)] dω.

Since FW (a|x
0)− FW (a|x) = 0 and FW (b|x0)− FW (b|x) = 0 we have

E [r (W ) |x0]−E [r (W ) |x] = −
bZ

a

rω (ω) [FW (ω|x0)− FW (ω|x)] dω.

Integrating by parts once again we have

E [r (W ) |x0]−E [r (W ) |x] = −

¯̄
¯̄
¯̄rω (ω)

ωZ

a

[FW (t|x0)− FW (t|x)] dt

¯̄
¯̄
¯̄

b

a

+

bZ

a

rωω (ω)

⎛
⎝

ωZ

a

[FW (t|x0)− FW (t|x)] dt

⎞
⎠ dω.

Integrating by parts the second term on the left hand side of the above equation
we have

E [r (W ) |x0]−E [r (W ) |x] = −

¯̄
¯̄
¯̄rω (ω)

ωZ

a

[FW (t|x0)− FW (t|x)] dt

¯̄
¯̄
¯̄

b

a

+

¯̄
¯̄
¯̄rωω (ω)

ωZ

a

⎛
⎝

tZ

a

[FW (z|x
0)− FW (z|x)] dz

⎞
⎠ dt

¯̄
¯̄
¯̄

b

a

−
bZ

a

rωωω (ω)

⎛
⎝

ωZ

a

tZ

a

[FW (z|x0)− FW (z|x)] dzdt

⎞
⎠ dω.
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The above expression can be simplified to

E [r (W ) |x0]−E [r (W ) |x] = −rω (b)
bZ

a

[FW (ω|x0)− FW (ω|x)] dω

+ rωω (b)

bZ

a

⎛
⎝

ωZ

a

[FW (t|x0)− FW (t|x)] dt

⎞
⎠ dω

−
bZ

a

rωωω (ω)

⎛
⎝

ωZ

a

tZ

a

[FW (z|x0)− FW (z|x)] dzdt

⎞
⎠ dω.

(11)

note that

bZ

a

[1− FW (ω|x0)] dω = −a+E (W |x0)

and

bZ

a

[1− FW (ω|x)] dω = −a+E (W |x) ,

imply that

bZ

a

[FW (ω|x
0)− FW (ω|x)] dω = E (W |x)−E (W |x0) . (12)

Also,

bZ

a

⎛
⎝

ωZ

a

FW (t|x0) dt

⎞
⎠ dω = b2

2
− bE (W |x0) + 1

2
E
¡
W 2|x0

¢
,

and

bZ

a

⎛
⎝

ωZ

a

FW (t|x) dt

⎞
⎠ dω = b2

2
− bE (W |x) + 1

2
E
¡
W 2|x

¢
,

imply that

bZ

a

⎛
⎝

ωZ

a

[FW (t|x0)− FW (t|x)] dt

⎞
⎠ dω

= −b [E (W |x0)−E (W |x)] + 1
2

£
E
¡
W 2|x0

¢
−E

¡
W 2|x

¢¤
.
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Using the definition of variance we can write the above equation as

bZ

a

⎛
⎝

ωZ

a

[FW (t|x
0)− FW (t|x)] dt

⎞
⎠ dω

=
1

2
{[V (W |x0)− V (W |x)]

+ [E (W |x)−E (W |x0)] [2b−E (W |x0)−E (W |x)]} . (13)

Substituting (12) and (13) into (11) we obtain (8). Q.E.D.

Proof of Proposition 2: This proof is a particular case of the proof of
Lemma 1 in Athey and Levin’s (1997). Define U (x, a) =

R
Ω
w (ω, a) dFW (ω|x)

and let the optimal action for signal realization X = x be defined as α (x) =
argmaxa∈A U (x, a) . We wish to show that if w ⊂ WRPR and an information
structure F is positive-responsive ordered then there exists an optimal decision
rule, α (·) , that is nondecreasing in x. We know from Shannon’s (1995) that if
X is a partially ordered set and U : X × A→ <, where A ⊂ <, we have that
argmaxa∈A U (x, a) is nondecreasing in x if and only if U (x, a) satisfies the
single crossing property in a. Thus, since X ⊂ <, to prove this proposition we
just need to show that U (x, a) satisfies the single crossing property in a.
Let a0 > a. We know that since w ⊂ WRPR then r (ω) = w(ω, a0) − w (ω, a) ∈
RPR. Given that F is positive-responsive ordered we also have that ∀x0 > x,
FW (·|x0) %PR FW (·|x) . By Proposition 1, FW (·|x0) %PR FW (·|x) implies

E [r (W ) |x0] ≥ E [r (W ) |x]
Z

Ω

r (ω) dFW (ω|x0) dω ≥
Z

Ω

r (ω) dFW (ω|x) dω

Z

Ω

[w(ω, a0)− w (ω, a)] dFW (ω|x0) ≥
Z

Ω

[w(ω, a0)− w (ω, a)] dFW (ω|x)

U (x0, a0)− U (x0, a) ≥ U (x, a0)− U (x, a)

The last inequality implies that ∀a0 > a, U (x, a0)− U (x, a) ≥ 0⇒ U (x0, a0)−
U (x0, a) ≥ 0, ∀x0 > x, that is, U (x, a) satisfies the single crossing property in
a. Q.E.D.

Proof of Proposition 3: This proof is a particular case of the proof of The-
orem 3 in Athey and Levin’s (1997). Suppose A = {a1, . . . , ai, . . . , an} and
Ω = {ω1, . . . ,ωj , . . . ,ωJ} , that is the action space and the space of state of
nature realizations is finite.9 We need to show that for any optimal monotone
decision rule based on observing signal X, α (·) , there is an alternative opti-
mal monotone decision rule based on observing signal X 0, α0 (·) , that makes a
decision-maker ex-ante at least as well.

9The proof holds if either A , Ω, or both, are compact sets. See Athey and Levin (1997).
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By Lemma 2 in Athey and Levin we know that (10) holds if and only if for all
x ∈ [0, 1] and r ∈ RPR
Z

Ω

r (ω) dF 0W (ω|X 0 ≥ x) Pr (X 0 ≥ x) ≥
Z

Ω

r (ω) dFW (ω|X ≥ x) Pr (X ≥ x) ,

or

EW [r (ω) |X 0 ≥ x] Pr (X 0 ≥ x) ≥ EW [r (ω) |X ≥ x] Pr (X ≥ x) . (14)

Let the optimal monotone decision rule associated with information structure
F be defined by a set of cut points: x1 ≤ x2 ≤ . . . ≤ xn+1, with α (x) = ai
when xi < x < xi+1. The ex-ante expected payoff of using α (·) with information
structure F is given by

V (F,w, FW ,α) =
mX

j=1

nX

i=1

w (ωj,α (xi)) f (ωj , xi)

=
mX

j=1

nX

i=1

w (ωj, ai) f (ωj , xi)

=
mX

j=1

[w (ωj , a1) f (ωj , x1) + . . .+ w (ωj , an) f (ωj , xn)] .

Making use of (2) we have that

V (F,w, FW ,α) =
mX

j=1

{w (ωj , a1) f (ωj , x1) + [w (ωj , a1) + r2 (ωj)] f (ωj , x2)

+ [w (ωj , a1) + r2 (ωj) + r3 (ωj)] f (ωj , x3) + . . .

+ [w (ωj , a1) + r2 (ωj) + . . .+ rn (ωj)] f (ωj , xn)} (15)

Collecting terms (15) becomes

V (F,w, FW ,α) =
mX

j=1

{w (ωj , a1) [f (ωj , x1) + f (ωj , x2) + . . .+ f (ωj , xn)]

+ r2 (ωj) [f (ωj , x2) + f (ωj , x3) + . . .+ f (ωj , xn)]

+ r3 (ωj) [f (ωj , x3) + . . .+ f (ωj, xn)] + . . .+ rn (ωj) f (ωj , xn)

or

V (F,w, FW ,α) =
mX

j=1

(

w (ωj , a1)
nX

i=1

f (ωj , xi) + r2 (ωj)
nX

i=2

f (ωj , xi)

+r3 (ωj)
nX

i=3

f (ωj , xi) + . . .+ rn (ωj) f (ωj , xn)

)
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or

V (F,w, FW ,α) =
mX

j=1

⎧
⎪⎪⎨
⎪⎪⎩
w (ωj , a1) f (ωj) + r2 (ωj)

nP

i=2

f (ωj , xi)

Pr (X ≥ x2)
Pr (X ≥ x2)

+r3 (ωj)

nP

i=3

f (ωj , xi)

Pr (X ≥ x3)
Pr (X ≥ x3) + . . .+ rn (ωj)

f (ωj , xn)

Pr (X ≥ xn)
Pr (X ≥ xn)

⎫
⎪⎪⎬
⎪⎪⎭

or

V (F, u, FW ,α) =
mX

j=1

u (ωj , a1) f (ωj) +
mX

j=1

r2 (ωj)

nP

i=2

f (ωj , xi)

Pr (X ≥ x2)
Pr (X ≥ x2)

+
mX

j=1

r3 (ωj)

nP

i=3

f (ωj , xi)

Pr (X ≥ x3)
Pr (X ≥ x3)+. . .+

mX

j=1

rn (ωj)
f (ωj , xn)

Pr (X ≥ xn)
Pr (X ≥ xn)

or

V (F,w, FW ,α) = E [w (W,a1)] +E [r2 (W ) |X ≥ x2] Pr (X ≥ x2)
+ E [r3 (W ) |X ≥ x3] Pr (X ≥ x3) + . . .+E [rn (W ) |X ≥ xn] Pr (X ≥ xn)

or, finally,

V (F,w, FW ,α) = E [w (W,a1)] +
nX

i=2

E [ri (W ) |X ≥ xi] Pr (X ≥ xi) . (16)

Let the optimal monotone decision rule associated with information structure
F 0 be defined by the set of cut points: x01 ≤ x02 ≤ . . . ≤ x0n+1, with α0 (x) = ai
when x0i < x < x

0
i+1. The ex-ante expected payoff of using α

0 (·) with information
structure F 0 is given by

V (F 0, w, FW ,α
0) = E [w (W,a1)] +

nX

i=2

E [ri (W ) |X
0 ≥ xi] Pr (X 0 ≥ xi) . (17)

Subtracting (16) from (17) we obtain

V (F 0, w, FW ,α
0)− V (F,w, FW ,α) =

nX

i=2

E [ri (W ) |X
0 ≥ xi] Pr (X 0 ≥ xi)

−
nX

i=2

E [ri (W ) |X ≥ xi] Pr (X ≥ xi)

We see that (14) implies V (F 0, w, FW ,α
0) ≥ V (F,w, FW ,α) . Q.E.D.
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