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Abstract

We present an axiomatic framework for semantics that can be ap-
plied to natural and formal languages. Our main goal is to suggest a
very simple mathematical model that describes fundamental cognitive
aspects of the human brain and that can still be applied to artificial
intelligence. One of our main results is a theorem that allows us to
infer syntactical properties of a language out of its corresponding se-
mantics. The role of pragmatics in semantics in our mathematical
framework is also discussed.
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1 Introduction

How did you learn English so that you are able to read this paper? Did you
start with syntax?
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In this paper we develop a specific formal approach to the semantic coun-
terpart of natural and formal languages. By ‘semantics’ we understand a sys-
tematic correspondence between strings of a given language L and elements
from a domain ∆ that has no element in common with L. The intuition
behind this is that such a correspondence allows us to endow a string with a
specific meaning or class of meanings. We recognize that this understanding
of semantics is not precise. Nevertheless it is somehow in accordance with
the broad linguistic view that states: “semantics is the study of meaning in
language” (Hurtford et al., 2007). In this sense, language and meaning work
in two different domains, but somehow related through semantics.

The use of mathematical models for dealing with natural languages is
not new. It is well known that generative grammars are quite useful for
the study of syntax of natural languages (Chomsky, 1956; Chomsky, 1959;
Dougherty, 1994), computer science (Davis et al., 1994), and even music
(Steedman, 1989). Nevertheless, if we are interested in capturing formal as-
pects of natural languages, we cannot ignore either semantics or pragmatics.
There are some interesting approaches to the semantic aspects of natural lan-
guages (Chomsky, 1972; Heim & Kratzer, 1998; Thomason, 1974). Heim and
Kratzer’s book (1998), in particular, is based on Gottlob Frege’s vision about
semantics of natural language, which is strongly supported by the usual set-
theoretic approach to functions. At the end of this paper we briefly compare
our proposal to others.

Here we introduce an axiomatic system for semantics, without any im-
mediate concern with the pragmatic aspects of natural languages. We are
not suggesting that semantics can be fully understood without considering
pragmatics. After all, consider the following sentence: “Do you know what
time it is?” This can be interpreted either as a request for information or as
a request for someone to leave. The meaning of a such a sentence depends
on a social context characterized by the pragmatic dimension of natural lan-
guages. Nevertheless, at the end of this paper we sketch a possible way to
accommodate, at least in part, the pragmatic dimension of natural languages,
which is an endeavor we intend to pursuit in detail in the future. First we
need to establish the basics for our semantic approach, independently of any
pragmatics. One of our main goals is the future development of a computer
software that simulates social interactions among communicating individuals
without any human assistance.

There have been reported experimental evidences that some neurons in
the temporal cortex of the human brain are highly selective for object cat-
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egories such as faces and hands (Desimone et al., 1984) and even specific
people (Quiroga et al., 2005). Such results inspired the creation of a software
capable to build high-level, class-specific feature detectors from unlabeled
images (Le et al., 2012). The main result in (Le et al., 2012) was that such a
software was able to identify (from a database of images) cat faces and hu-
man bodies without the need for any programmer to label which images were
supposed to contain faces or bodies. In other words, machines are potentially
able to create object categories, just as the human brain does. According to
the terminology of the authors in (Le et al., 2012), their software “learns the
concept of faces”.

We propose the use of such object categories as an ingredient in an ax-
iomatic framework for semantics in natural languages. This may be an impor-
tant step toward the conception of machines that behave like human beings,
from the cognitive point of view. In other words, it is not enough that a
machine learns the concepts of faces or human bodies. It is necessary that
the machine be able to communicate what it learned, without any human
assistance.

2 Our Proposal

Let A be a finite set, called alphabet . The set of all words , or strings of
elements of A, is denoted by A∗. A language L on A is any subset of A∗.
We can understand the juxtaposition of words as a binary operation on A∗.
In this sense, A∗ endowed with such a binary operation is a free semigroup,
where the empty word ∅ is the neutral element. For the sake of abbreviation,
we say that L is a language if there is an alphabet A such that L is a
language on A. Now we can define a meaningful language, where we consider
that ∅ ∈ L.

Definition 1 Λ = ⟨L,∆, s⟩ is a meaningful language iff

ML1 L is a language.

ML2 ∆ ̸= ∅ and ∆ ∩ L = ∅.

ML3 s : L → ℘(∆) is a function, where ℘(∆) is the power set of ∆.

ML4 If α, β, γ, and αγβ are strings of L, then s(αγβ) ⊆ s(γ).
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ML5 s(∅) = ∆.

Particularly, L may be a language generated by a phrase-structure gram-
mar (Suppes, 2002) or even a set of strings of elements of a vocabulary in
the sense presented by (Mendelson, 1997). In either case we must admit that
the empty string ∅ belongs to L. The set ∆ is the domain of application of
the meaningful language Λ. Intuitively speaking, it corresponds to the set of
categories [in the sense of (Le et al., 2012; Desimone et al., 1984; Quiroga et
al., 2005)] of specific objects that endow meaning to a string of L. Within
the metamathematical framework, we can interpret the elements of ∆ as
“Barack Obama’s car”, “Hilary Clinton’s car”, “the reader’s favorite shirt”,
“the lion of MGM”, “Isaac Newton’s first toy”, and so on. The intuitive
interpretation of ∆ depends on the intended application of our framework.
Such a procedure is quite usual, e.g., in theoretical physics. In the axiomatic
system of classical particle mechanics discussed by Patrick Suppes (2002) we
may interpret particles as specific planets, bicycles or even apples. Never-
theless, according to axiom ML2 there is no element in common between
∆ and L. From now on we refer to the elements of ∆ as meanings . The
function s is the semantic function. Any string of L corresponds to one and
only one subset of ∆. For example, if the language L is English, then we
may have s(car) = {Barack Obama’s car, Hilary Clinton’s car, the car that
almost hit John Doe last month, ...}. If m ∈ s(α) we say that m is a possible
meaning for α, and that s(α) is the set of all possible meanings for α. Ax-
iom ML4 is the heart of our proposal. It simply states that longer strings
(obtained by adding strings either to the left or to the right) of a language
L never correspond to wider sets of meanings. For example, the string car
may correspond to a lot of meanings, as we illustrated above. But the longer
string blue car may correspond to a set that has all the elements of s(car)
except “the car that almost hit John Doe last month”. That would happen
if the car that almost hit John Doe last month was not blue, but red. Since
axiom ML4 does not demand that s(αγβ) be a proper subset of s(γ), then
we allow the possibility that s(αγβ) = s(γ). In this case we say that αγβ and
γ correspond to redundant meanings . Finally, the last axiom states that the
empty string corresponds to all possible meanings of ∆. Roughly speaking
it says that silence may mean anything.

We need to say something more about ∆. We speculate that all concepts
used in natural languages correspond to object categories in an extended
version of the usual sense in neuroscience (Quiroga et al., 2005) [and applied
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to computer science (Le et al., 2012)]. So, according to axiom ML3,

s : L → ℑ(s)

is a surjective function, where ℑ(s) is the image of function s. We call the
set ℑ(s) the class of all object categories of Λ.

Theorem 1 If α, β, γ, αγ, and γβ are strings of a language L in a mean-
ingful language Λ = ⟨L,∆, s⟩, then

1. s(αγ) ⊆ s(γ), and

2. s(γβ) ⊆ s(γ).

Proof: Item (1) is proved from axiom ML4, when β = ∅. Item (2) is proved
from axiom ML4 when α = ∅.

Before we state the next theorem, let us consider an example of a mean-
ingful language.

Example 1 Let L be the language of all possible strings with letters A, B,
and C, and ∆ = {1, 2, 3}. Then ⟨L,∆, s⟩ is a meaningful language if s(A) =
{1, 3}, s(B) = {2, 3}, s(C) = s(∅) = {1, 2, 3}, s(ACB) = s(AC) = s(CB) =
{3} and for the remaining strings α we have s(α) = ∅. The reader can easily
verify that all axioms ML1∼ML5 are satisfied. In this example, ℑ(s) =
{{1, 2, 3}, {1, 3}, {2, 3}, {3}, ∅}. This illustrates the fact that object categories
are not equivalence classes with respect to any binary relationship defined
between elements of ∆.

Theorem 2 Let Λ = ⟨L,∆, s⟩ be a meaningful language, where α, β, and
γ are strings from L. If there is a meaning (an element of ∆) m such that
m ∈ s(αγβ) but m /∈ s(αβ), then m ∈ s(α) ∩ s(β) ∩ s(γ) but m /∈ s(αβγ)
and m /∈ s(γαβ).

Proof: According to theorem 1 s(αγβ) ⊆ s(αγ) ⊆ s(α). Analogously,
s(αγβ) ⊆ s(γβ) ⊆ s(β). And, s(αγβ) ⊆ s(αγ) ⊆ s(γ). So, if
m ∈ s(αγβ), then m ∈ s(α) ∩ s(β) ∩ s(γ). Using again theorem 1,
we have that s(αβγ) ⊆ s(αβ) and s(γαβ) ⊆ s(αβ). So, if m /∈ s(αβ),
then m /∈ s(αβγ) and m /∈ s(γαβ).
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So, while theorem 1 states that longer strings, either to the left or to the
right, narrow sets of possible meanings, this last theorem considers the case
that the center-embedding of strings within strings does not necessarily nar-
row sets of possible meanings. Such a phenomenon is exactly what happens
in example 1. The meaning 3 belongs to s(ACB) but it does not belong to
s(AB) (since s(AB) is empty). In other words, s(ACB) is not a subset of
s(AB), despite the fact that ACB is longer than AB by the juxtaposition of
C between A and B. Although our approach is not limited to languages gen-
erated by regular grammars (Suppes, 2002) (generative grammars which do
not allow center-embedding of strings within strings), this last theorem states
that the dynamics of center-embedding of strings within strings is nonlinear
(in an intuitive sense) with respect to the semantic function s. For example,
in the case of English, the possible meaning m of the string “John kicks the
ball” is not necessarily a possible meaning for “John the ball”. And if that
is the case, m is not a possible meaning for “John the ball kicks” or “kicks
John the ball”, although m belongs to the classes of possible meanings of the
strings “John”, “kicks”, and “the ball”. Obviously we are considering that
α = “John”, γ = “kicks”, and β = “the ball”. Within this context, it seems
reasonable to interpret theorem 2 as a way to (at least) partially infer some
aspects of L’s syntax. Furthermore, theorem 2 has another advantage. Even
if function s is partially defined (we only know the images of some strings),
other images may be inferred from what we already know. But, of course,
this works only for the case in which some (previously unknown) images are
the empty set.

Note that if a meaning m does not belong to s(αβγ), then m does not
belong to s(δαβγε), which is the set of all possible meanings of a longer string
than αβγ (by the juxtaposition of strings δ and ε to the left and to the right,
respectively). One of the consequences of this is that a meaningless string
(a string α such that s(α) = ∅) cannot transform into a meaningful string
(a string β such that s(β) ̸= ∅) by the juxtaposition of new strings either to
the left or to the right.

The next theorem refers to the case in which longer strings obtained from
the center-embedding of strings within strings are associated to narrower sets
of possible meanings.

Theorem 3 Let Λ = ⟨L,∆, s⟩ be a meaningful language, where α, β, and γ
are strings from L. If s(αγβ) ⊆ s(αβ), then s(αγβ) ⊆ s(αβ) ∩ s(γ).

Proof: Straightforward from the hypothesis and axiom ML4.
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In other words, if the center-embedding of a string γ within αβ narrows
possible meanings for the new string αγβ, then all possible meanings of the
new string are common for both γ and αβ.

Before we discuss in more detail the syntax (grammars) in meaningful
languages, it is worth making some complementary remarks about our se-
mantic approach. In our mathematical framework, we can rigorously define
some concepts usually discussed in the literature about semantics in natural
languages. For example, a string α is meaningless iff s(α) = ∅. A string
α is meaningful iff s(α) ̸= ∅. Two strings α and β are synonyms iff there
are strings γ and δ such that s(γαδ) = s(γβδ). A meaningful string γ is
ambiguous iff there are meaningful strings α and β such that s(α) ⊆ s(γ),
s(β) ⊆ s(γ) and s(α) ∩ s(β) = ∅. So, auto-antonyms (e.g., in English, the
words fast , sanction, and stay) are particular cases of ambiguous strings.

Antonyms are a bit more tricky. First, our axiomatic framework ⟨L,∆, s⟩
does not say anything about logical connectives, such as conjunction, disjunc-
tion, material implication or negation in the language L. Second, antonyms
frequently depend on a given context. For example, the string “close” may
be an antonym for “open” if we are comparing the strings “close the door”
and “open the door”. Nevertheless the same strings “open” and “close” are
not antonyms if we are comparing the strings “you are close to me” and “you
are open to me”. We can admit that some languages do have special strings
corresponding to logical connectives. We can then define antonyms by using
such logical connectives. But besides the fact this maneuver would restrict
too much the conception of antonym for those languages with such special
strings, there still is the problem of context that was just noted. Moreover,
we should not forget that logical connectives cannot be translated into nat-
ural languages as easily as it may seem. For example, a double negation in a
natural language may be interpreted as an emphasis for a negation. So, the
most we can say (for now) is: one necessary condition for strings α and β to
be antonyms is that there are strings γ and δ such that s(γαδ)∩ s(γβδ) = ∅.
We do not dare (for now) to establish a sufficient condition for the relation-
ship “α and β are antonyms”.

Concerning logical connectives, it is worth remarking that in certain for-
mal languages there are no logical connectives, even in cases of formal lan-
guages that capture significant aspects of modern mathematics (Tarski &
Givant, 1987).

We can discuss the vagueness of strings of a given meaningful language
Λ = ⟨L,∆, s⟩ as well. Consider the set ℑ(s) of all images of the semantic
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function s. Each element of ℑ(s) is an object category. Nevertheless, there
are some concepts, quite usual in natural languages, that are well known to
be vague: “young”, “bald”, “tall”, and so on. One usual way to deal with
vague concepts is through fuzzy set theory (Lee, 2005). So, for each string
α we may define a fuzzy set fα : s(α) → [0, 1], in which [0, 1] is the set
of real numbers between 0 and 1. So, if m ∈ s(α), then fα(m) states how
fuzzy or how vague is the meaning m in the object category s(α). If fα is a
characteristic function (in the usual set-theoretic sense), then α is not vague.
Otherwise, α is said to be vague.

For example, the string α =“bald” can be associated to an object cate-
gory s(α), which can have many elements, including those corresponding to
people. Two possible meanings m1 and m2 in s(α) can correspond to, respec-
tively, “the actor Patrick Stewart” and “the President Barack Obama”. In
this case, we can have fα(m1) = 0.9 and fα(m2) = 0.1 in order to express the
idea that it is much more plausible to associate the string “bald” to Patrick
Stewart than to Barack Obama.

We do not intend to suggest from this brief discussion that the best way
to deal with vagueness is through fuzzy set theory. We’re just pointing out
that such an approach is compatible with our axiomatic system.

3 Grammars

Let V be a finite, nonempty set, V ∗ be the set of all finite sequences of
elements of V , and V + = V ∗ − {∅}. It is well known (Suppes, 2002) that:

Definition 2 G = ⟨V,N, P, S⟩ is a phrase-structure grammar iff

PSG1 V , N , and P are nonempty finite sets.

PFG2 N ⊆ V .

PSG3 P ⊆ V + × V ∗.

PSG4 S ∈ N .

N is called the set of nonterminal symbols of V , and VT = V −N is the set
of terminal symbols or words of V . P is the set of productions . If (α, β) ∈ P
we denote this by α → β. If γ and δ belong to V ∗ then γαδ ⇒G γβδ iff
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α → β. Finally, if γ1 and γm belong to V ∗, then γ1 ⇒∗
G γm iff ∃γ2 ... γm−1

such that γ1 ⇒G γ2, ..., γm−1 ⇒G γm.
So, the language generated by a phrase-structure grammar G is:

L(G) = {α/α ∈ V ∗
T ∧ S ⇒∗

G α}.

where V ∗
T is called the set of lexical strings.

Definition 3 Let A be an alphabet, A∗ be the set of all strings of elements
of A, and Λ = ⟨L,∆, s⟩ be a meaningful language. Then

1. If L is a proper subset of A∗ (L ⊂ A∗) such that ∅ ∈ L, and for all
α ∈ L we have s(α) ̸= ∅, then Λ = ⟨L,∆, s⟩ is a meaningful language
with a nontrivial grammar.

2. If for all α ∈ A∗ we have s(α) ̸= ∅, then Λ = ⟨A∗,∆, s⟩ is a meaningful
language with a trivial grammar.

Meaningful languages with either trivial grammars or nontrivial gram-
mars are called g-meaningful languages (g stands for grammar). It is easy
to verify that any meaningful language Λ = ⟨A∗,∆, s⟩ with a trivial gram-
mar can be associated to an extended version of phrase-structure grammar
G = ⟨V,N, P, S⟩, if A is a finite, nonempty set. If N = {S}, P = {(S, α)/α ∈
A∗}, and V ∗

T = A∗, then G generates A∗, if we generalize phrase structure
grammars in order to allow that P is infinite. Naturally we are not suggest-
ing that this is the only solution to the proposed problem. After all, it is
an unsolvable problem (Hopcroft & Ullman, 1969) whether or not a given
phrase-structure grammar generates the set of all strings that belong to V ∗

T ,
which, in this case, is equal to A∗.

Nevertheless it is highly difficult to solve the more interesting problem
of associating meaningful languages with nontrivial grammars to phrase-
structure grammars. If L is a language in a g-meaningful language Λ =
⟨L,∆, s⟩, then there is no effective procedure (Hopcroft & Ullman, 1969) to
ensure that a specific phrase-structure grammar G = ⟨V,N, P, S⟩ generates
L, since (according to axiom ML1) L is an arbitrary language. In the case
discussed in example 1 the relationship between our mathematical framework
and phrase-structure grammars is no mystery at all, as we can see in the next
example.
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Example 2 The ordered triple

⟨{∅, A,B,C,ACB,AC,CB}, {1, 2, 3}, s⟩
is a meaningful language with nontrivial grammar if s is the same function
given in example 1, restricted to the new set {∅, A,B,C,ACB,AC,CB}. So,
one corresponding phrase-structure grammar G = ⟨V,N, P, S⟩ is given by

V = {S,A,B,C,ACB,AC,CB},
and

P = {(S, ∅), (S,A), (S,B), (S,C), (S,ACB), (S,AC), (S,CB)}.

In this case, L(G) = {∅, A,B,C,ACB,AC,CB}.

For a more exciting example, with an infinite language L, consider the
following:

Example 3 Let Λ = ⟨L,∆, s⟩ be a meaningful language in which:

L = {∅, A,B,AB,ABB,ABBB,ABBBB, ...},
∆ is the set ω of all natural numbers, and s is given by

s(α) =

{
∆− {1, ..., length of α} if α ̸= ∅ and α ̸= B

∆ if α = ∅ or α = B

So, e.g., s(ABB) = {0, 4, 5, 6, 7, ...}. It is easy to verify that Λ is a mean-
ingful language with a nontrivial grammar (definition 3, where the alphabet
is given by the set {A,B}).

One natural phrase-structure grammar G = ⟨V,N, P, S⟩ that generates L
is given by

V = {S,X, Y,A,B},

N = {S,X, Y },

P = {(S, ∅), (S,A), (S,B), (S,XY ), (X,A), (Y,B), (X,XY )}.
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If {A,B}∗ is the set of all possible strings of elements of {A,B}, then
Λ′ = ⟨{A,B}∗,∆, s′⟩ is a meaningful language if

s′(α) =

{
s(α) if α ∈ L
∅ if α ∈ {A,B}∗ − L

in which L is the language in Λ. However, Λ′ is not a meaningful language
with a nontrivial grammar. Note that the function s in Λ is a restriction of
the function s′ in Λ′ to the domain L ⊂ {A,B}∗. Moreover, this particular
semantic function s can be recursively defined as follows:

First we establish that:

1. ∅ ∈ L, A ∈ L, and B ∈ L.

2. If α ∈ L and α ̸= ∅ and α ̸= B, then αB ∈ L.

Next, we define that

1. s(∅) = s(B) = ∆ and s(A) = ∆− {1}.

2. If α ∈ L and α ̸= ∅ and α ̸= B, then s(αB) = s(α)− {length of αB}.

So, from an intuitive point of view, what do we mean by the expression
“meaningful language with a nontrivial grammar”? In this case, we mean
that, for any string α from Λ′ (a natural extension of Λ) s′(α) ̸= ∅ iff α ∈
L(G), in which G is the phrase-structure grammar that generates the language
L of Λ.

However, in the general case, the expression “meaningful language with
a nontrivial grammar” means (loosely speaking) a meaningful language Λ =
⟨L,∆, s⟩ in which the set of all meaningful strings α ∈ L (those α such that
s(α) ̸= ∅) can be associated to some sort of syntax, as suggested by theorem
2. This syntax basically states that strings cannot be arbitrarily juxtaposed
in order to form longer strings and still have some meaning. Language L
from example 3 has clearly two categories of strings: {A} and {B}. String
A should always be the first one in any longer string, while string B never
is. At most, B is meaningful when it is alone.

So, while a phrase-structure grammar G, by itself, does not allow to infer
any information at all concerning the meaning of lexical strings of a language
L generated by G, our semantic approach to any arbitrary language L allows
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to derive some information concerning L’s grammar. This result is related to
the fact that children start learning their natural language (according to the
region where they mostly live) from the semantic and pragmatic points of
view. Syntax is the last studied subject in order to understand the basics of
any natural language. Even formal languages (in mathematics) are learned
this way. No working mathematician starts his/her studies from the point
of view of formal logic. The usual starting point is the study of calculus,
linear algebra, differential equations, geometry and other subjects that have
a strong connection with physical problems of the real world.

4 Pragmatics

In (Horn & Ward, 2006) pragmatics is referred to as the study of “context-
dependent aspects of meaning which are systematically abstracted away from
in the construction of content or logical form”. This notion of pragmatics
seems to be vaguer than the first concept of semantics we discussed in the
beginning of section 1. But we are inspired by this notion in the following
way. The meaning of strings of a given language depend on social interac-
tions among those individuals who share either elements of this language or
elements of the way such individuals perceive their surrounding and them-
selves. So, in this paper, we take pragmatics to be the study of this de-
pendence of the meaning of strings on social interactions. We interpret the
context-dependent aspects of meaning pointed out by (Horn & Ward, 2006)
as social interactions, and we discuss this point in more detail below.

We consider that meaningful languages correspond to some cognitive as-
pects of human beings and even machines (properly programmed). What
are those cognitive aspects? If a meaningful language Λ = ⟨L,∆, s⟩ is asso-
ciated to an individual, then L is the language known by such an individual
and ∆ corresponds to the way that the individual perceives the environ-
ment and oneself. In a future paper we intend to characterize pragmatics
through interactions among meaningful languages. If Λ1 = ⟨L1,∆1, s1⟩ and
Λ2 = ⟨L2,∆2, s2⟩ are two meaningful languages, we can (in principle) define
mathematical relations between Λ1 and Λ2, in the sense of formally support-
ing changes (the definition of new sets) in L1, ∆1, s1, L2, ∆2, and s2. These
mathematical relations among two or more meaningful languages character-
ize a social context.

Let Λ = ⟨L,∆, s⟩ be a meaningful language. Consider, for example, the
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string “Barack Obama’s car”, supposing that L is English. From the point
of view of our set-theoretic approach, there are at least two possible ways to
define the function s:

1. s(Barack Obama’s car) can be identified with a set of still images of
cars (or a specific category of cars); or

2. s(Barack Obama’s car) can be identified with the empty set.

Of course, there are other possibilities, but let’s stick to these two, for the
sake of argument.

The first case can be intuitively interpreted as Λ is “imagining” that any
car from s(Barack Obama’s car) can be Barack Obama’s car. The second
case can be interpreted as Λ “does not even ‘know’ what a car is or who is
Barack Obama”. Now, if we admit interactions among meaningful languages,
Λ may change the function s as follows:

s(Barack Obama’s car) = {A given category of Lincoln cars}.
In regard to the first case, the new function s can be interpreted as the
situation in which Λ “learned” that Barack Obama owns a Lincoln. With
respect to the second case, Λ gives its first step toward the comprehension
of what a car is.

However, there is a severe shortcoming in our vision of semantics if we are
interested in applying it to natural and formal languages. Our mathematical
framework is too general. And excessive generality can be easily understood
as a synonym for uselessness. Our main hope for the actual usefulness of our
mathematical model lurks exactly in pragmatics.

Consider L as English. Then s(blue) can correspond to everything that
is blue and everything that is not blue, as well; even if we restrict ourselves
to the notion that “blue” refers only to a color. For practical purposes, each
s(α) is a very large set, assuming that we are interested in applications of
meaningful languages to familiar natural languages. That is the main reason
why we did not define logical connectives in our approach.

We believe that such a limitation in our proposal is due to the fact that
natural languages are not just languages, in the usual sense described in
section 2. Natural languages are always endowed with some sort of rationale,
that is, some kind of logic (very broadly understood as certain inferential
procedures). And the main issue is that this rationale is not detached from
the natural language itself. Language and inference processes (rationale) are
entangled in one single “structure” usually referred to as natural language.
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In order to address this problem, we intend to define a thought function t,
which, intuitively speaking, corresponds to what an individual really means
by uttering a string α in a conversation.

Since ℘(∆) is a σ-algebra (in the usual sense of probability theory), then
we can define a probability function p : ℘(∆) → [0, 1], which we call the
propensity function. Such a function p may be restricted to domains ℘(s(α))
for each string α from language L. It is worth noting that for each α ∈ L we
have that ℘(s(α)) ⊆ ℘(∆). The thought function t is a function t : L → ℘(∆)
such that:

t(α) = {M ∈ s(α) / for all m ∈ s(α) we have p({M}) ≥ p({m})}.

Applied to a given string α, the thought function t is simply the collection
of all meanings with maximum value for the propensity function. Such a
propensity function applied to ℘(s(α)) tells the probability that α means m,
for each and every m that belongs to s(α).

In order to address (some aspects of) pragmatics, we note that a commu-
nicating individual I can be represented by an ordered pair ⟨Λ, t⟩, in which
Λ is a meaningful language and t is a corresponding thought function.

If t(α) has a single element M , we say that the individual I is thinking
of M when I either utters α or listens to the string α. If t(α) has two or
more elements, I is thinking that α can equally well correspond to either of
them. If t(α) is empty, we say that I does not understand α at all. Social
interactions will change not only the elements of a meaningful language, but
the thought function as well.

We believe that any rationale involved in a natural language should be
characterized by the thought function, and not by the language L as an
ingredient of a meaningful language Λ. Thus, the context-dependent aspects
of meaning mentioned in (Horn & Ward, 2006) are defined by the thought
function t. For example, if a communicating individual utters the word
“blue”, many people will expect the individual to be referring to something
that is blue, rather than something that is non-blue. In other words, it is
more probable that this communicating individual means something that is
blue. This expected value for the meaning of “blue” is directly associated
with pragmatics.
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5 Discussion

In a recent paper (Le et al., 2012), as noted above, researchers from Google
X Lab and Stanford University have reported an experiment in which a
computer network was able to identify cat faces in a database originated from
ten million YouTube stills. The most remarkable aspect of this experiment is
that the computer network was not programmed to look for cat faces. Such
machines have been described as having learned to identify this pattern of
images. From the point of view of our approach, this means that the Google
X Lab network of computers just created a small domain of application ∆.
So, our hope is that our proposal can be helpful for the future conception
of machines that are able to effectively “understand” strings from natural
languages. If someone utters the string “cat” (from English), then a computer
(in principle) may be able to associate such a string to a class of images
that intuitively correspond to cats. Naturally any definition of a domain ∆,
for practical purposes, demands much more than the classification of object
categories based only on still images. Some “meanings” are very difficult to
translate into images, such as the concepts of “tomorrow”, “there”, “dream”,
and “God”, among other examples. Other concepts are usually derived from
non-visual stimuli, such as the notions of “tasty”, “sweet”, “smelly”, and so
on. And other concepts, in turn, have no sensorial appeal whatsoever, such
as “sets”, “functions”, and “topological spaces”. Clearly, there is a lot of
work to do until programmers are able to implement any notion of semantics
in a machine, at least from the point of view presented in this paper, in order
to create a machine that can effectively dialogue with a human being as we
do.

Concerning human beings only, we consider that each person at each
instant of time can be associated to a particular meaningful language Λ =
⟨L,∆, s⟩. The learning process of any individual is just any change in either
L, ∆ or s, as well in the thought function, as described in section 4. In a
future paper, we intend to explore this possibility in detail.

In section 3, we made a brief comparison between our semantic approach
and generative grammars, at least from the point of view of phrase-structure
grammars, which allow to define a whole hierarchy of grammars well known
in the literature. A few additional remarks are in order. First, as noted
above, usually people learn languages invoking semantic and pragmatic con-
siderations. Syntax is (quite) usually the last step in any language learning
process. We may want to take the same path when we aim to understand
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formal aspects of natural languages. It is unclear why we should start these
formal studies from the syntactic point of view. Second, our axiomatic sys-
tem for semantics is partially based on the notion of function (the semantic
function s), a strategic set-theoretic concept that plays a fundamental role
not only in mathematics but in a huge variety of applications as well. For
a detailed discussion of the role of functions in pure and applied mathemat-
ics, see (Sant’Anna & Bueno, 2014). However, generative grammars, such as
phrase-structure grammars, are strongly based on a set of productions, which
is a relation, not a function. This fact certainly compromises the applicability
of generative grammars. Despite this fact, the semantic function properties
demanded by axiom ML4 also suggest a relation, since the behavior of s is
settled by the ⊆ relation between sets of possible meanings. We hope that the
appropriate use of further functions in a detailed formal picture of pragmatics
will make our proposal more easily adjusted for practical purposes. Third,
the vocabulary of a generative grammar includes several non-lexical strings,
which could be understood as elements from a metalanguage associated to
the generated language through the axioms of phrase-structure grammars. In
our approach, there is (in a sense) a metalinguistic ingredient as well, namely,
the domain of application ∆. In this context, we understand the semantic
function s as a systematic mean to promote the translation between strings
from a given a language and the way we feel and understand the world and
ourselves.

Finally, our axiomatic picture is quite different from other formal ap-
proaches to semantics in natural languages. The mathematical model dis-
cussed in (Heim & Kratzer, 1998), e.g., is truth-conditional, in the sense that
the authors understand the meaning of a string as something directly related
to its truth-conditions. Meaningful languages, however, have (in principle)
no concern with any notion of truth. We simply state that a communicat-
ing individual attributes some meaning to a string, when presented to it.
Our thought function, introduced in section 4, emphasizes that there can
be one (or a few) most probable meaning(s) chosen by the communicating
individual given some string. And we believe that the choice of a specific
meaning is related to the social context, as described in section 4. If the
social context is somehow related to a particular notion of truth (such as the
correspondence between the language and the world), then the communicat-
ing individual will have its thought function affected by the relevant social
context. However, since the present paper on meaningful languages focuses
on semantics without immediate concern for pragmatics, we prefer to leave
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the proper examination of the notion of social context for a future paper.
Some semantic approaches were specifically developed for generative gram-

mars (Chomsky, 1972; Schiffer, forthcoming). But, as we pointed out in
section 3, our semantic approach allows us to infer some information about
the syntax of the language under consideration. Moreover, our mathemati-
cal model is perfectly compatible with generative grammars, as we noted in
section 3. Stephen Schiffer (in a forthcoming paper) states the generative
grammar hypothesis as: “The ability of a speaker of a natural language L to
understand sentences of L requires her to have tacit knowledge of a genera-
tive grammar of L, that being a finitely specifiable theory of L that generates
one or more syntactic structures for each sentence of L and interprets those
structures both phonologically and semantically”. This is not the place to
discuss whether the tacit knowledge of a generative grammar is needed nor
not. But we do wonder whether this tacit knowledge is better understood
as an evolutionary consequence of mankind’s history of social interactions.
If this is correct, then social interactions can be understood as the proper
starting point for the development of human languages.

There is also a relation between our proposal and a much earlier attempt
at the use of formal methods in natural language semantics introduced by
Richard Montague (Thomason, 1974). According to Montague, it is possi-
ble to comprehend the syntax and semantics of both natural and artificial
languages (studied by logicians) within a single mathematical theory. The
main obvious difference between our axiomatic method and Montague’s the-
ory, however, is the fact that the latter depends on higher-order predicate
logic and the lambda calculus. We propose that a simple and quite usual set-
theoretic framework is good enough for dealing with this important problem.
After all, if someone wanted to use a formal framework as a starting point for
computer simulations of communicating individuals, we do not believe that
Montague’s approach would provide the proper setting. A simpler mathe-
matical model would be recommended. And we hope that our approach is
up to the task.

6 Conclusions

Our main results may be summarized as follows:

• Our semantic approach is applicable to any language in a very broad sense,
including natural and formal languages. In the case of natural lan-
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guages, our mathematical model is applicable as long as all (or, at
least, most) of the concepts used in natural languages correspond to
object categories, in an extended formulation of the usual sense in-
voked in neuroscience (Quiroga et al., 2005). In the case of formal
languages, our approach is applicable as long as machines in the future
are able to create object categories in an extended formulation of the
sense presented by artificial intelligence researchers in (Le et al., 2012).

• Phrase-structure grammars do not allow, by themselves, to infer semantic
aspects of generated languages. But our semantic approach to arbitrary
languages allows one to infer some basic syntactic properties of such
languages.

• Our semantic approach allows one to define rigorously concepts that are
usually referred to in semantics, such as ‘synonym’ and ‘ambiguity’.
Nevertheless, it does not seem to allow to define what are ‘antonyms’.
Moreover, our approach is compatible with the use of fuzzy set theory
for dealing with the notion of vagueness.

• Our axiomatic system seems to allow for future studies of the influence of
pragmatics in the meaning of strings of any language as long as we are
able to separate purely linguistic elements of natural languages from
their logical aspects.
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