Skip to main content
Log in

Expansions of Semi-Heyting Algebras I: Discriminator Varieties

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

This paper is a contribution toward developing a theory of expansions of semi-Heyting algebras. It grew out of an attempt to settle a conjecture we had made in 1987. Firstly, we unify and extend strikingly similar results of [48] and [50] to the (new) equational class DHMSH of dually hemimorphic semi-Heyting algebras, or to its subvariety BDQDSH of blended dual quasi-De Morgan semi-Heyting algebras, thus settling the conjecture. Secondly, we give a criterion for a unary expansion of semi-Heyting algebras to be a discriminator variety and give an algorithm to produce discriminator varieties. We then apply the criterion to exhibit an increasing sequence of discriminator subvarieties of BDQDSH. We also use it to prove that the variety DQSSH of dually quasi-Stone semi- Heyting algebras is a discriminator variety. Thirdly, we investigate a binary expansion of semi-Heyting algebras, namely the variety DblSH of double semi-Heyting algebras by characterizing its simples, and use the characterization to present an increasing sequence of discriminator subvarieties of DblSH. Finally, we apply these results to give bases for “small” subvarieties of BDQDSH, DQSSH, and DblSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abad, M., J. M. Cornejo, and J. P. Diaz Varela, ‘The variety of semi-Heyting algebras satisfying the equation (0 → 1)* ∨ (0 → 1)** ≈ 1’, Reports on Mathematical Logic, accepted to appear in 2011.

  2. Abad, M., J. M. Cornejo, and J. P. Diaz Varela, ‘The variety generated by semi-Heyting chains’, Soft Computing, accepted to appear in 2011.

  3. Abad, M., and L. Monteiro, ‘Free symmetric boolean algebras’, Revista de la U.M.A., 207–215, 1976.

  4. Abbott J.C.: ‘Implicational algebras’. Bull. Math. de la Sc. Math. de la Rep. Soc. de Romainie 11, 3–23 (1967)

    Google Scholar 

  5. Abbott, J. C., ‘Semi-Boolean algebras’, Matematicki Vennik, 177–198, 1967.

  6. Adams M., Katrinǎk T.: ‘A note on subdirectly irreducible distributive double p-algebras’. J. Australian Math. Soc. (Ser. A) 35, 46–58 (1983)

    Article  Google Scholar 

  7. Balbes R., Dwinger Ph.: Distributive lattices. Univ. of Missouri Press, Columbia (1974)

    Google Scholar 

  8. Beazer R.: ‘The determination congruence on double p–algebras’. Algebra Univ. 6, 121–129 (1976)

    Article  Google Scholar 

  9. Beazer R.: ‘Subdirectly irreducible double Heyting algebras’. Algebra Univ. 10, 220–224 (1980)

    Article  Google Scholar 

  10. Berman J.: ‘Distributive lattices with an additional unary operation’. Aequationes Math. 16, 165–171 (1977)

    Article  Google Scholar 

  11. Bialynicki-Birula A.: ‘Remarks on quasi-Boolean algebras’. Bull. Acad. Pol. Sci 5, 615–619 (1957)

    Google Scholar 

  12. Bialynicki-Birula A., Rasiowa H.: ‘On thr representation of quasi-Boolean algebras’. Bull. Acad. Pol. Sci 5, 259–261 (1957)

    Google Scholar 

  13. Birkhoff, G., Lattice Theory, Amer. Math. Soc., 1940.

  14. Birkhoff, G., Lattice Theory, 2nd Ed., Amer. Math. Soc., 1948.

  15. Birkhoff, G., Lattice Theory, 3rd Ed., Amer. Math. Soc., 1967.

  16. Blyth, T. S., and J. C. Varlet, Ockham algebras, Oxford Science Publications, 1994.

  17. Burris S.: ‘Discriminator Varieties and Symbolic Computation’. J. Symbolic Computation 13, 175–207 (1992)

    Article  Google Scholar 

  18. Burris, S., and R. McKenzie, Decidability and Boolean Representations, Mem. Amer. Math Soc. no. 246, 1981.

  19. Burris S., Sankappanavar H.P.: A course in universal algebra. Springer–Verlag, New York (1981)

    Google Scholar 

  20. Burris S., Werner H.: ‘Sheaf constructions, and their elementary properties’. Trans. Amer. Math Soc. 248, 269–309 (1979)

    Article  Google Scholar 

  21. Curry H.B.: Foundations of Mathematical Logic. McGra–Hill, New York (1963)

    Google Scholar 

  22. Davey, B., and H. Priestley, Introduction to lattices and order, second edition, Cambridge University Press, 2002.

  23. Epstein G.: ‘The lattice theory of Post algebras’. Trans. Amer. Math. Soc. 95, 300–317 (1960)

    Article  Google Scholar 

  24. Epstein G., Horn A.: ‘P–algebras, an abstraction from Post algebras’. Algebra Univ. 4, 195–206 (1974)

    Article  Google Scholar 

  25. Grätzer G.: Lattice Theory. W.H.Freeman and Co., San Francisco (1971)

    Google Scholar 

  26. Grätzer G.: Universal Algebra. Springer, New York (2008)

    Book  Google Scholar 

  27. Halmos, P., ‘Algebraic Logic I’, Compositio Math., 12:216–249, 1954–60.

  28. Hilbert, D., and P. Bernays, Grundlagen der Mathematik, Berlin, 1939.

  29. Horn A.: ‘The seperation theorem of intuistionistic propositional calculus’. J. Symbolic. Logic 27, 391–399 (1962)

    Article  Google Scholar 

  30. Horn A.: ‘Logic with truth values in a linearly ordered Heyting algebras’. J. Symbolic. Logic 34, 395–408 (1969)

    Article  Google Scholar 

  31. Horn A.: ‘Free L-algebras’. J. Symbolic. Logic 34, 475–480 (1969)

    Article  Google Scholar 

  32. Jónsson B.: ‘Algebras whose congruence lattices are distributive’. Math. Scand. 21, 110–121 (1967)

    Google Scholar 

  33. Jonstone P.T.: Stone spaces. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  34. Kaarli, K., and A. Pixley, Polynomial completeness in algebraic systems, CRC Press, 2001.

  35. Kalman J.A.: ‘Lattices with involution’. Trans. Amer. Math. Soc. 87, 485–491 (1958)

    Article  Google Scholar 

  36. Katrinǎk T.: ‘The structure of distributive double p-algebras, regularity and congruences’. Algebra Univ. 3, 238–246 (1973)

    Article  Google Scholar 

  37. Katrinǎk T.: ‘Subdirectly irreducible double p-algebras’. Algebra Univ. 10, 195–219 (1980)

    Article  Google Scholar 

  38. Köhler P.: ‘A subdirectly irreducible double Heyting algebra which is not simple’. Algebra Univ. 10, 189–194 (1980)

    Article  Google Scholar 

  39. McKinsey J.C.C., Tarski A.: ‘On closed elements in closure algebras’. Annals of Math. 47, 122–167 (1946)

    Article  Google Scholar 

  40. McKinsey J.C.C., Tarski A.: ‘Some theorems about the sentencial calculi of Lewis and Heyting’. J. Symbolic. Logic 13, 1–15 (1948)

    Article  Google Scholar 

  41. Meskhi V.Yu.: ‘A discriminator variety of Heyting algebras with involution’. Algebra i Logika 21, 537–552 (1982)

    Google Scholar 

  42. Monteiro A.: ‘Sur les algèbres de Heyting symetriques’. Portugaliae Mathemaica 39, 1–237 (1980)

    Google Scholar 

  43. McCune, W., Prover9 and Mace 4, http://www.cs.unm.edu/mccune/prover9/

  44. Rasiowa H.: An algebraic approach to non-classical logics. North–Holland Publ.Comp., Amsterdam (1974)

    Google Scholar 

  45. Rasiowa, H., and R. Sikorski, The Mathematics of Metamathematics, Warszawa, 1970.

  46. Romanowska A.: ‘Subdirectly irreducuble pseudocomplemented De Morgan algebras’. Algebra Univ. 12, 70–75 (1981)

    Article  Google Scholar 

  47. Sankappanavar, H. P., ‘A characterization of principal congruences of De Morgan algebras and its applications’, in Mathematical Logic in Latin America, North Holland Publ. Comp., 1980, pp. 341–349.

  48. Sankappanavar H.P.: ‘Heyting algebras with dual pseudocomplementation’. Pacific J. Math. 117, 405–415 (1985)

    Google Scholar 

  49. Sankappanavar H.P.: ‘Pseudocomplemented Okham and De Morgan algebras’. Zeitschr. f. math. Logik und Grundlagen d. Math. 32, 385–394 (1986)

    Article  Google Scholar 

  50. Sankappanavar H.P.: ‘Heyting algebras with a dual lattice endomorphism’. Zeitschr. f. math. Logik und Grundlagen d. Math. 33, 565–573 (1987)

    Article  Google Scholar 

  51. Sankappanavar H.P.: ‘Semi-De Morgan algebras’. J. Symbolic. Logic 52, 712–724 (1987)

    Article  Google Scholar 

  52. Sankappanavar, H. P., ‘Semi-Heyting algebras: An abstraction from Heyting algebras’, Actas del IX Congreso Dr. A. Monteiro, 2007, pp. 33–66.

  53. Sankappanavar, H. P., ‘Semi–Heyting algebras II’. In Preparation.

  54. Sankappanavar, H. P., ‘Expansions of Semi-Heyting algebras. II’. In Preparation.

  55. Sankappanavar N.H., Sankappanavar H.P.: ‘Quasi-Stone algebras’. Mathematical Logic Quarterly 39, 255–268 (1993)

    Article  Google Scholar 

  56. Stone, M., ‘Topological representation of distributive lattices and Brouwerian logics’, Cas. Pest. Math., 1–25, 1937.

  57. Werner, H., Discriminator algebras, Studien zur Algebra und ihre Anwendungen, Band 6, Academie–Verlag, Berlin, 1978.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Sankappanavar.

Additional information

Dedicated to My mother Yankawwa and My father Pandappa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankappanavar, H.P. Expansions of Semi-Heyting Algebras I: Discriminator Varieties. Stud Logica 98, 27–81 (2011). https://doi.org/10.1007/s11225-011-9322-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-011-9322-6

Keywords

Mathematics Subject Classification

Navigation