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Abstract. The inversion principle for logical rules expresses a relationship between introduction
and elimination rules for logical constants. Hallnäs and Schroeder-Heister (1990/91) proposed the
principle of definitional reflection, which embodies basic ideas of inversion in the more general
context of clausal definitions. For the context of admissibility statements, this has been further
elaborated by Schroeder-Heister (2007). Using the framework of definitional reflection and its admis-
sibility interpretation, we show that, in the sequent calculus of minimal propositional logic, the left
introduction rules are admissible when the right introduction rules are taken as the definitions of the
logical constants and vice versa. This generalises the well-known relationship between introduction
and elimination rules in natural deduction to the framework of the sequent calculus.

§1. Inversion Principle. The idea of inverting logical rules can be found in a well-
known remark by Gentzen: “The introductions are so to say the ‘definitions’ of the sym-
bols concerned, and the eliminations are ultimately only consequences hereof, what can
approximately be expressed as follows: In eliminating a symbol, the formula concerned –
of which the outermost symbol is in question – may only ‘be used as that what it means
on the ground of the introduction of that symbol’.”1 The inversion principle itself was
formulated by Lorenzen (1955) in the general context of rule-based systems and is thus
not restricted to logical rules. It is based on the idea that if we have certain defining rules
for some α , e.g.

β 1
1 , . . . ,β 1

n1

α
. . .

β k
1 , . . . ,β k

nk

α

then a rule with premiss α and conclusion γ

α

γ

is justified if for each defining condition Γi of α , where Γi = β i
1, . . . ,β

i
ni

, the rule

Γi
γ

1 Our translation of: “Die Einführungen stellen sozusagen die ,,Definitionen“ der betreffenden
Zeichen dar, und die Beseitigungen sind letzten Endes nur Konsequenzen hiervon, was sich etwa
so ausdrücken läßt: Bei der Beseitigung eines Zeichens darf die betreffende Formel, um deren
äußerstes Zeichen es sich handelt, nur ,,als das benutzt werden, was sie auf Grund der Einführung
dieses Zeichens bedeutet“.” Gentzen (1935, p. 189).

c© Association for Symbolic Logic
1 doi:

To appear in: The Review of Symbolic Logic.
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is justified (cf. Schroeder-Heister (2007; 2008)). Formulated as a natural-deduction-style
rule schema, this corresponds to the pattern

α

β 1
1 , . . . ,β 1

n1. . . . .
.

γ

. . .
β k

1 , . . . ,β k
nk. . . . .

.

γ

γ

which is related to the formulation of generalised elimination rules in natural deduction
as proposed by Prawitz (1979), Schroeder-Heister (1984) and von Plato (2001). However,
we will not work in a natural-deduction-style framework with assumptions that may be
discharged, but in a sequent-style framework, as this allows for an elegant treatment of
admissibility statements.

Whereas in the context of natural deduction, the idea of inversion has been intensively
discussed following Prawitz’s (1965) adaptation of Lorenzen’s term ‘inversion principle’ to
explicate Gentzen’s remark2, there has been no comparable investigation of the relationship
between right introduction and left introduction rules of the sequent calculus. The present
investigation is a step towards filling this gap. We show that the left introduction rules are
inverses of the right introduction rules in the precise sense of being admissible given the
right introduction rules as primitive. In order to show this admissibility, we use the principle
of definitional reflection proposed by Hallnäs and Schroeder-Heister3 in the admissibility
interpretation given to it by Schroeder-Heister (2007). We can also show the converse
direction, viz. that the right introduction rules are admissible given the left introduction
rules as primitive. This is due to the inherent symmetry of the sequent calculus. This
symmetry is not present in natural deduction, which makes the formulation of an inversion
principle based on elimination rules rather than introduction rules quite difficult.

In this paper, we confine ourselves to minimal propositional logic, i.e., to the single
succedent sequent calculus for conjunction, disjunction and implication. In Section 2 we
present and discuss the version of definitional reflection we are going to use in our in-
vestigation. Section 3 explains the admissibility interpretation of definitional reflection. In
Section 4, which is the core part of our investigation, we show the mutual admissibility
of right introduction and left introduction rules. As our meta-linguistic framework we use
a calculus of so-called f-sequents, whose antecedents and succedents consist of object-
linguistic sequents, called o-sequents, where f-sequents are interpreted as admissibility
statements concerning o-sequents. The concluding Section 5 discusses the role played by
the structural rules at the object-linguistic and the meta-linguistic level.

§2. Definitions and Definitional Reflection. In the following, lowercase Greek letters
denote atoms. Expressions of the form α⇐β i

1, . . . ,β
i
ni

are called definitional clauses, for
n ≥ 0, where the body β i

1, . . . ,β
i
ni

is the defining condition of the head α . A certain finite

2 See, for example, the discussion in Negri and von Plato (2001, p. 6f.), where unfortunately
Lorenzen is not mentioned, though he is explicitly referred to in Prawitz’s (1965) discussion. For
a discussion of the relationship of proof-theoretic notions of validity proposed in proof-theoretic
semantics and admissibility notions underlying Lorenzen’s inversion principle cf. Moriconi and
Tesconi (2008) and Schroeder-Heister (2008).

3 Cf. Hallnäs (1991), Hallnäs and Schroeder-Heister (1990/91) and Schroeder-Heister (1993).
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set D of these clauses

D


αp⇐Γp

...
αs⇐Γs

is a definition, where each Γi = β i
1, . . . ,β

i
ni

is the body of the i-th clause, for p ≤ i ≤ s.
We observe that clauses may have an empty body. In that case, the atom defined does not
depend on any condition. Such clauses are also called facts. Let

Dqr


α⇐Γq

...
α⇐Γr

be a subcollection of D containing all clauses in D with same head α . These clauses are
the defining clauses of α with respect to definition D, and D(α) is used to represent the set
of defining conditions of α , i.e. D(α) = {Γq, . . . ,Γr}. Since here we are concerned with
logical constants and their role in propositions, atoms in definitional clauses will be taken
as propositions.

The consequences of α will be those which are at the same time consequence of each
body of Dqr. This is what Hallnäs and Schroeder-Heister (1990/91) call the principle of
definitional reflection (D`). This principle can be stated by means of a sequent calculus
inference:

∆,Γq`γ . . . ∆,Γr`γ
(D`)

∆,α `γ
(definitional reflection)

It then takes the form of a left introduction rule for atoms α defined by definitional clauses
with bodies Γq, . . . ,Γr, and it is thus a way of stating the inversion principle for definitions.4

This principle complements the principle of definitional closure (`D), for each body Γi =
β i

1, . . . ,β
i
ni

in D(α):

∆`β i
1 . . . ∆`β i

ni (`D)
∆`α

(definitional closure)

It is the right introduction rule for atoms α under defining condition Γi = β i
1, . . . ,β

i
ni

. We
say that those two principles are part of the framework of the respective definition. They
are principles that can be used to reason about the definition. It is natural to extend this
framework by other sequent calculus inferences.

Indeed, when both principles are added as inference principles for atoms to a given
logical system L, we obtain an extended system L(D), which is a definitional logic based
on definition D. If the reasoning principles of L present a symmetry pattern similar to the
left/right pattern of sequent calculus systems, then this symmetry pattern is preserved in
L(D). The definitional clauses are then the basis for sequent-style right introduction and
left introduction inferences. We assume for our present purposes that the underlying system

4 Notice that this rule is non-monotonic in the sense that it has to be altered if D is extended
with a further clause for α . — The idea of inversion does not have to be restricted to logic or
logical constants only but can be used for many kinds of definitions. It is then used as a general
principle of definitional reasoning (cf. Hallnäs (1991), Hallnäs and Schroeder-Heister (1990/91)
and Schroeder-Heister (1993)). Nonetheless, here we present it taking assertions or propositions
as atoms, since our main interest is in definitions of logical constants, and each definitional clause
can be interpreted as relating assertions.
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L consists of the structural inferences identity (Id), thinning (Thin) and cut (Cut):5

(Id)
A`A

∆`A
(Thin)

B,∆`A
∆`C C,Σ`A

(Cut)
∆,Σ`A

where A, B and C are variables for formulas. The assumed framework is arguably accept-
able from a constructivist point of view, at least inasmuch as the principles of definitional
closure and definitional reflection are.

Albeit our characterisation above used atoms unspecified, variables should be admitted
in order to strengthen definitions: even a representation of minimal propositional logic by
clauses requires the use of variables and substitution of variables. For substitutions σ of
variables by terms (in a term structure) the principle of definitional closure is

∆`(β i
1)

σ . . . ∆`(β i
ni
)σ

(`D)
∆`ασ

and the principle of definitional reflection is

{∆,(Γi)σ `γ | δ⇐Γi ∈D and α = δ σ}
(D`)

∆,α `γ

where for the correct handling of variables by means of substitution we have to observe the
following proviso:

For any substitution σ of variables by terms, the application of defini-
tional reflection is restricted to the cases where D(ασ )⊆ (D(α))σ .

In other terms, the set of defining conditions of ασ should be a subset of the set of defining
conditions obtained by applying the substitution σ to the defining conditions of α .6

One consequence of the proviso is that definitional reflection cannot be applied if for
ασ definitional clauses would have to be taken into account that are not relevant for
α . For example, for the definition consisting of the two definitional clauses α(t)⇐ and
α(x)⇐β the sequent α(x)`β would be derivable from β `β by (D`) if the proviso
is not respected (for σ = [x/t] we have D(α(x)σ ) = D(α(t)) = {β σ ,>} = {β ,>} 6⊆
(D(α(x)))σ = {β σ} = {β}), but α(t) can be obtained in the definition while β cannot.
Another consequence is that definitional reflection cannot be applied to clauses having
variables in the body which are not in the head. For example, for the definition consisting
of the two definitional clauses β (t)⇐ and α(t ′)⇐β (x) the sequent α(t ′)`β (t ′) would be
derivable from β (t ′)`β (t ′) by (D`) if the proviso is not respected (for σ = [x/t ′] we have
D(α(t ′)σ ) = D(α(t ′)) = {β (x)} 6⊆ (D(α(t ′)))σ = {β (x)σ} = {β (t ′)}), but α(t ′) can be
obtained in the definition while β (t ′) cannot. Hence, the proviso is not a restriction on
definitions, but only a condition for the applicability of definitional reflection.

If for a given definition D the set of defining conditions for an atom α (i.e. the set D(α))
is understood as being the set of those Γi for which the clauses α⇐Γi are substitution
instances of definitional clauses in D, then the principle of definitional reflection can again
be stated as it was done for unspecified atoms, but with the proviso that D(ασ )⊆ (D(α))σ

5 We abstain from using exchange and contraction in order to avoid unnecessary syntactical detail.
The left side of a sequent can be interpreted as a set composed of the formulas listed.

6 This proviso is part of the formulation of definitional reflection proposed in Hallnäs and
Schroeder-Heister (1990/91). For other variants of definitional reflection and their relationship
to the inversion principle cf. Schroeder-Heister (2007).
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for any substitution σ . In what follows, the principle of definitional reflection will be used
in this form.

As an example for the application of the principles of definitional reflection and defini-
tional closure consider the following definition for assertions involving conjunctions and
disjunctions, where A and B are variables for formulas:

D1


A∧B⇐A,B

A∨B⇐A

A∨B⇐B

Relative to D1, the instances of definitional reflection are

∆,A,B`C
(D1`)

∆,A∧B`C

for conjunction and
∆,A`C ∆,B`C

(D1`)
∆,A∨B`C

for disjunction. They correspond to the sequent calculus left introduction rules for con-
junction and disjunction. The instances of definitional closure are

∆`A ∆`B (`D1)
∆`A∧B

for conjunction and

∆`A (`D1)
∆`A∨B

∆`B (`D1)
∆`A∨B

for disjunction. They correspond to the sequent calculus right introduction rules for con-
junction and disjunction.

§3. Admissibility and Logical Constants. A definitional tree for a given definition
D is a production of the root α from (possibly empty) leaves β1, . . . ,βn by applications of
definitional clauses in D. If there is such a tree, then α is producible in D from β1, . . . ,βn,
short: β1, . . . ,βn D α . We speak of closed definitional trees if every leaf is empty, i.e.,
if every branch is started by the application of a fact. For example, if the definition D is
given by the clauses (1) β1⇐, (2) β2⇐β1, (3) β3⇐β1 and (4) α⇐β2,β3, then e.g. the
following closed definitional tree

(1)
β1

(2)
β2

(1)
β1

(3)
β3

(4)
α

can be constructed from D, and α is thus producible in D, i.e. D α . An open definitional
tree is a definitional tree which has at least one leaf that is not empty.

Concerning a given rule R and a given definition D, rule R is admissible in D if the
relation of being producible for D is not enlarged by adding R to D, yielding the extended
system D+ R. Let D+R α denote the producibility of α in definition D with added rule
R. Then R is admissible in D, if for every α the implication

if D+R α, then D α
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holds.7 A rule R = (α⇐β1, . . . ,βn) is derivable in a definition D if there is an open
definitional tree from β1, . . . ,βn to α , i.e. if β1, . . . ,βn D α holds. Every derivable rule
is admissible, but not vice versa.

The principles of definitional reflection and definitional closure can be interpreted as
principles for admissibility (cf. Schroeder-Heister (2007)) if sequents β1, . . . ,βn`α are
interpreted as stating the admissibility of rules α⇐β1, . . . ,βn relative to a given definition
D. For definitional reflection

∆,Γq`γ . . . ∆,Γr`γ
(D`)

∆,α `γ

consider the rule γ⇐α,∆ which corresponds to the conclusion of definitional reflection.
In this case, α was produced by a rule α⇐β i

1, . . . ,β
i
ni

, for some i, in the last step, and
β i

1, . . . ,β
i
ni

were produced in previous steps (likewise for ∆). Thus, if the rules γ⇐Γi,∆, i.e.,
γ⇐β i

1, . . . ,β
i
ni
,∆ (corresponding to the premisses of definitional reflection) are admissible,

then the rule corresponding to the conclusion of definitional reflection is admissible as well
since all consequences γ producible from β i

1, . . . ,β
i
ni
,∆ should be consequences of α . For

definitional closure
∆`β i

1 . . . ∆`β i
ni (`D)

∆`α

consider the rule α⇐β i
1, . . . ,β

i
ni

of the given definition D. Since the rules β i
1⇐∆, . . . ,

β i
ni
⇐∆ (corresponding to the premisses of definitional closure) are assumed to be admis-

sible and α can be produced by using α⇐β i
1, . . . ,β

i
ni

, the rule α⇐∆ (corresponding to the
conclusion of definitional closure) is admissible as well by the construction of definitional
trees.8

Inside the logical framework, using the above principles of definitional reflection and
definitional closure, we can derive sequents representing natural deduction rules if the
turnstile ‘`’ is interpreted as an inference bar. The derivation of the sequent representing
the natural deduction conjunction introduction rule is

(Id)
A`A(Thin)

A,B`A

(Id)
B`B(Thin)

A,B`B
(`D1)A,B`A∧B

and the sequents representing the conjunction elimination rules are derived as follows:

(Id)
A`A(Thin)

A,B`A
(D1`) A∧B`A

(Id)
B`B(Thin)

A,B`B
(D1`) A∧B`B

7 In a constructive framework as Lorenzen’s, we would expect that this implication is established by
giving a procedure by means of which every application of R can be eliminated from derivations
in D+R. Lorenzen here speaks of an ‘elimination procedure’ (cf. Lorenzen (1955, §3)).

8 It should be emphasised that the admissibility interpretation of definitional reflection used in the
present investigation is a particular interpretation of this principle. More general interpretations
include partial inductive definitions, which allow for implications in the bodies of clauses and
where definitions are not necessarily well-founded (cf. Hallnäs (1991)).
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Finally, the derivations of the sequents representing disjunction introduction rules are

(Id)
A`A (`D1)A`A∨B

(Id)
B`B (`D1)B`A∨B

However, a sequent representing the natural deduction disjunction elimination rule cannot
be derived because the discharging of assumptions in this rule cannot be expressed by
means of a simple sequent.

The preceeding clauses D1 for logical constants were based on the natural deduction
introduction rules. Maybe it is possible to define the logical constants also by means of
clauses representing natural deduction elimination rules. For example, could the following
be taken as a definition of conjunction?

D2

{
A⇐A∧B

B⇐A∧B

Here the problem is that a sequent representing conjunction introduction cannot be derived
because the proviso on variables forbids the use of definitional reflection on clauses that
have variables in the body, which do not occur in the head.

Having considered definitions of conjunction and disjunction, we now turn to the prob-
lem of defining implication. In natural deduction, the implication introduction rule involves
discharging of assumptions, which would lead to the problem of how to capture discharging
of assumptions in a clausal definition.

One possibility for characterising implication that avoids the problem of how to dis-
charge assumptions is to make appeal to the elimination rule and axioms. In axiomatic
systems, implication can be characterised by the two following axiom schemata plus an
elimination rule:

Axioms Modus Ponens
1. A→(B→A) A A→B

B2. (A→(B→C))→((A→B)→(A→C))

These schemata suffice to prove the deduction theorem, i.e. implication introduction, thus
providing a sufficient characterisation of implication. A corresponding clausal definition
would be the following:

D3


A→(B→A)⇐
(A→(B→C))→((A→B)→(A→C))⇐
B⇐A,A→B

However, in the last clause the variable A occurs only in the body and not in the head.
Again, this violates the proviso on variables of definitional reflection.

There still remains another possibility of representing more complex objects by means
of clauses and to characterise implication by means of these objects. The structure of
clauses suggests that they could be interpreted as inference rules involving assertions in
which the body of a clause are the premisses, and the head is the conclusion. Indeed,
sequents can be seen as assertions if the sequent symbol is interpreted as a relation of
deductive consequence holding between the antecedent and the succedent of a sequent.
Clausal definitions of sequents may thus provide a way of explaining the behaviour of
logical constants and of implication in particular. Besides, in sequent calculus we do not
have to consider the problem of the discharging of assumptions.
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§4. Logical Constants Defined by Sequents. For the clausal definition of sequents
we introduce the following representation for object language sequents s, called o-sequents:

Ω5
A

We read it as: A follows from Ω. This should not be confused with the sequents in the
framework, which from now on will be called f-sequents and are expressed with the turn-
stile ‘`’.9 Finite sets of o-sequents will be denoted by S.

Our aim is to represent minimal propositional logic, i.e., sequent calculus for minimal
propositional logic. This is why o-sequents have exactly one formula at the bottom; it
corresponds to the succedent of sequents. What is written on top (corresponding to the
antecedent of sequents) is either a (possibly empty) finite multiset of formulas or a comma-
separated list of such sets, the comma representing multiset union.10 Singletons are written
without braces. The proposed notation resembles schematic representations of natural de-
duction derivations. Therefore, the triangle ‘5’ can be used either to represent the relation
of deductive consequence or to represent derivations in natural deduction. We concentrate
on the first reading, where the sequent symbol ‘5’ represents the relation of deductive
consequence.11

The basic properties of the relation of deductive consequence are the following: First,
any formula A is a deductive consequence of itself. Second, if A is a consequence of Ω,
then A is a consequence of Ω∪B. Third, the relation of logical consequence is usually
assumed to be transitive (at least, it is so in minimal logic). These properties of the usual
deductive consequence relation are captured in sequent calculus by the inferences identity,
thinning and cut. The following rules (o-Id), (o-Thin) and (o-Cut) express these properties
for o-sequents and are added to the framework:12

(o-Id)

`
A5
A

S`
Ω5
A (o-Thin)

S`
Ω,B5

A

S1`
Ω5
C

S2`
C,Ψ5

A (o-Cut)

S1,S2`
Ω,Ψ5

A

We use framework rules instead of definitional clauses corresponding to the structural rules
for o-sequents because we are interested in inversion for logical rules only, and definitional
clauses for structural rules would add nothing to the definition of logical constants. If
definitional clauses were given instead, they would have to be restricted to definitional
closure.

9 For example,
Ω5
A

,
Ω5
B
`

Ω5
A∧B

is an f-sequent having the two o-sequents
Ω5
A

and
Ω5
B

in the antecedent

and the o-sequent
Ω5

A∧B
in the succedent.

10 This way, we do not need exchange for antecedents, i.e., for the top of o-sequents.
11 As pointed out by Prawitz (1965, p. 90f.), the sequent calculus can be conceived as a meta-

calculus for the deductive consequence relation in a corresponding calculus of natural deduction.
Therefore, the sequent symbol stands for a deductive consequence relation and sequents can be
understood as assertions about this relation.

12 Multisets require contraction. We do not give it here as a rule because it is not needed in the
following.
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4.1. Admissibility of Left Introduction Rules. Next we are going to show that having
clauses for right introduction rules, i.e., clauses for the introduction of a logical constant
in the bottom of an o-sequent, we can derive framework sequents of the form S`s re-
presenting the left introduction rules, i.e., clauses for the introduction of a logical constant
in the top of an o-sequent, inside the logical framework by using definitional reflection.13

We thereby show that each left introduction rule is admissible if the corresponding right
introduction rule is given by definition.

We do this by using the following context-independent versions of definitional reflection

∆q,Γq`γ . . . ∆r,Γr`γ
(D`)

∆q, . . . ,∆r,α `γ

and definitional closure
∆1`β1 . . . ∆n`βn (`D)

∆1, . . . ,∆n`α

together with the structural rules for f-sequents (Id), (Thin), (Cut)14 and the structural
rules for o-sequents (o-Id), (o-Thin), (o-Cut) already presented. The resulting framework
is equivalent to the framework with context-sharing versions, as can be seen by considering

∆q,Γq`γ
(Thin)

∆q, . . . ,∆r,Γq`γ . . .

∆r,Γr`γ
(Thin)

∆q, . . . ,∆r,Γr`γ
(D`)

∆q, . . . ,∆r,α `γ

for definitional reflection and
∆1`β1

(Thin)
∆1, . . . ,∆n`β1 . . .

∆n`βn
(Thin)

∆1, . . . ,∆n`βn (`D)
∆1, . . . ,∆n`α

for definitional closure (double lines indicating multiple applications of structural infer-
ences). The context-sharing versions are then special cases of the context-independent
versions since the antecedents of f-sequents are interpreted as sets.15

In what follows, we first present the definition of the right introduction rule together with
the definitional reflection for this definition in the most general form. Then the framework
sequent for the corresponding left introduction rule is given and its derivation is shown.
Note that in the derivations the definitional reflection for the respective definition has not
to be used in its most general form.

13 We maintain sequent calculus terminology; i.e., we speak of ‘right introduction rules’ resp. ‘left
introduction rules’. Although for the o-sequents used here, it would be more appropriate to speak
of ‘bottom introduction rules’ resp. ‘top introduction rules’.

14 That is, the formulas resp. sets of formulas occurring in (Id), (Thin) and (Cut) are now o-sequents
resp. sets of o-sequents.

15 Proof systems for admissible rules have been investigated and developed, for example, by
Rybakov (1997), Iemhoff (2001; 2003), Jeřábek (2008) and Iemhoff and Metcalfe (2009). This
research tradition is concerned with characterising the rules that are admissible for a given logic
(for example intuitionistic or modal logic). In contrast, we are dealing here with the question
of whether by means of a general principle, such as definitional reflection, we can justify certain
inference rules (e.g. the left introduction rules, if the right introduction rules are assumed as given)
by showing them to be admissible. Apart from the inversion principle, we do not discuss here
further admissibility principles proposed by Lorenzen (1955), who coined the terms ‘admissible’
(‘zulässig’) and ‘admissibility’ (‘Zulässigkeit’) and developed a theory of admissible rules for
arbitrary atomic systems (cf. Schroeder-Heister (2008)).
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4.1.1. Definition of Right Conjunction and Admissibility of Left Conjunction. The right
conjunction introduction rule is given by the following definition D∧, which provides the
means for obtaining the left conjunction introduction rule by definitional reflection (D∧`):

D∧

{
Ω5

A∧B
⇐

Ω5
A

,
Ω5
B

S,
Ω5
A

,
Ω5
B
`s

(D∧`)

S,
Ω5

A∧B
`s

The f-sequent for the left conjunction introduction rule is

Θ,A5
C
`

Θ,A∧B5
C

respectively
Θ,B5

C
`

Θ,A∧B5
C

and its derivation is:

(o-Id)

`
A∧B5
A∧B

(Id)
A∧B5

A
`

A∧B5
A

(Id)
Θ,A5

C
`

Θ,A5
C (o-Cut)

A∧B5
A

,
Θ,A5

C
`

Θ,A∧B5
C(Thin)

Θ,A5
C

,
A∧B5

A
,
A∧B5

B
`

Θ,A∧B5
C(D∧`)

Θ,A5
C

,
A∧B5
A∧B

`
Θ,A∧B5

C (Cut)
Θ,A5

C
`

Θ,A∧B5
C

Likewise for
Θ,B5

C
`

Θ,A∧B5
C

.

4.1.2. Definition of Right Disjunction and Admissibility of Left Disjunction. The right
disjunction introduction rule is given by the following definition D∨, which provides the
means for obtaining the left disjunction introduction rule by definitional reflection (D∨`):

D∨



Ω5
A∨B

⇐
Ω5
A

Ω5
A∨B

⇐
Ω5
B

S1,
Ω5
A
`s S2,

Ω5
B
`s

(D∨`)

S1,S2,
Ω5

A∨B
`s

The f-sequent for the left disjunction introduction rule is

Θ,A5
C

,
Λ,B5
C
`

Θ,Λ,A∨B5
C
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and its derivation is:

(o-Id)

`
A∨B
5

A∨B

(Id)
A∨B
5
A
`

A∨B
5
A

(Id)
Θ,A
5
C
`

Θ,A
5
C (o-Cut)

A∨B
5
A

,
Θ,A
5
C
`

Θ,A∨B
5
C (o-Thin)

Θ,A
5
C

,
A∨B
5
A
`

Θ,Λ,A∨B
5
C

(Id)
A∨B
5
B
`

A∨B
5
B

(Id)
Λ,B
5
C
`

Λ,B
5
C (o-Cut)

A∨B
5
B

,
Λ,B
5
C
`

Λ,A∨B
5
C (o-Thin)

Λ,B
5
C

,
A∨B
5
B
`

Θ,Λ,A∨B
5
C(D∨`)

Θ,A
5
C

,
Λ,B
5
C

,
A∨B
5

A∨B
`

Θ,Λ,A∨B
5
C (Cut)

Θ,A
5
C

,
Λ,B
5
C
`

Θ,Λ,A∨B
5
C

4.1.3. Definition of Right Implication and Admissibility of Left Implication. The right
implication introduction rule is given by the following definition D→, which provides the
means for obtaining the left implication introduction rule by definitional reflection (D→`):

D→

{
Ω5

A→B
⇐

Ω,A5
B

S,
Ω,A5

B
`s

(D→`)

S,
Ω5

A→B
`s

The f-sequent for the left implication introduction rule is

Θ5
A

,
Λ,B5
C
`

Θ,Λ,A→B5
C

and its derivation is:

(o-Id)

`
A→B5
A→B

(Id)
Θ5
A
`

Θ5
A

(Id)
A→B,A5

B
`

A→B,A5
B

(Id)
Λ,B5
C
`

Λ,B5
C (o-Cut)

A→B,A5
B

,
Λ,B5
C
`

Λ,A→B,A5
C (o-Cut)

Θ5
A

,
Λ,B5
C

,
A→B,A5

B
`

Θ,Λ,A→B5
C(D→`)

Θ5
A

,
Λ,B5
C

,
A→B5
A→B

`
Θ,Λ,A→B5

C (Cut)
Θ5
A

,
Λ,B5
C
`

Θ,Λ,A→B5
C

4.2. Remarks. The definitional clause for right conjunction introduction D∧ has been
formulated with shared context Ω because the use of independent contexts would violate
the proviso on variables (viz. D(sσ ) ⊆ (D(s))σ for any substitution σ ) of definitional
reflection. A violation would occur for independent contexts irrespective of whether the top
of o-sequents is taken as set, multiset or list. The definitional clause for right conjunction
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introduction with independent contexts Ω and Ψ would be

D′∧

{
Ω,Ψ5
A∧B

⇐
Ω5
A

,
Ψ5
B

Then for multisets and σ = [Ω/A,Ψ/A] we would have

D

([
Ω,Ψ5
A∧B

]σ )
= D

(
A,A5
A∧B

)
=

{
5
A

,
A,A5
B

;
A,A5
A

, 5
B

;
A5
A

,
A5
B

}

⊃

(
D

(
Ω,Ψ5
A∧B

))σ

=

{
Ω5
A

,
Ψ5
B

;
Ψ5
A

,
Ω5
B

}σ

=

{
A5
A

,
A5
B

}

For sets and for lists a similar situation obtains.
Thus the proviso would be violated and the f-sequent corresponding to left conjunction

introduction would not be derivable. The formulation of right conjunction introduction with
shared contexts is, however, not an undue restriction since the rule for right conjunction
introduction with independent contexts can be shown to be admissible by deriving the
corresponding f-sequent with definitional closure on D∧:

(Id)
Ω5
A
`

Ω5
A

(o-Thin)
Ω5
A
`

Ω,Ψ5
A

(Id)
Ψ5
B
`

Ψ5
B

(o-Thin)
Ψ5
B
`

Ω,Ψ5
B (`D∧)

Ω5
A

,
Ψ5
B
`

Ω,Ψ5
A∧B

For right disjunction introduction D∨ and right implication introduction D→ the question
of whether to use shared or independent contexts does not arise.

Although the definitional clauses for the right introduction rules were treated separately
above, they can be combined to yield the definition of minimal propositional logic. Since
the o-sequents have only one formula in the bottom, only the defining conditions for
that formula have to be considered in applications of definitional reflection. Inversion by
definitional reflection for the given right introduction rules is in this sense local.

4.3. Admissibility of Right Introduction Rules. The reason for not taking the elimina-
tions to define conjunction and implication (see Section 3) was a problem with the proviso,
but in using o-sequents we avoided this problem.

Definitional clauses that are in accordance with the proviso can be given also for the left
introduction rules. And the following derivations show admissibility of the right introduc-
tion rules by using definitional reflection on those clauses.

4.3.1. Definition of Left Conjunction and Admissibility of Right Conjunction. The left
conjunction introduction rule is given by the following definition D∧, which provides
the means for obtaining the right conjunction introduction rule by definitional reflection
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(D∧`):

D∧



Ω,A∧B5
C

⇐
Ω,A5

C

Ω,A∧B5
C

⇐
Ω,B5

C

S1,
Ω,A5

C
`s S2,

Ω,B5
C
`s

(D∧`)

S1,S2,
Ω,A∧B5

C
`s

The f-sequent for the right conjunction introduction rule is

Θ5
A

,
Λ5
B
`

Θ,Λ5
A∧B

and its derivation is:

(o-Id)

`
A∧B5
A∧B

(Id)
Θ5
A
`

Θ5
A

(Id)
A5

A∧B
`

A5
A∧B (o-Cut)

Θ5
A

,
A5

A∧B
`

Θ5
A∧B

(o-Thin)
Θ5
A

,
A5

A∧B
`

Θ,Λ5
A∧B

(Id)
Λ5
B
`

Λ5
B

(Id)
B5

A∧B
`

B5
A∧B (o-Cut)

Λ5
B

,
B5

A∧B
`

Λ5
A∧B

(o-Thin)
Λ5
B

,
B5

A∧B
`

Θ,Λ5
A∧B(D∧`)

Θ5
A

,
Λ5
B

,
A∧B5
A∧B

`
Θ,Λ5
A∧B (Cut)

Θ5
A

,
Λ5
B
`

Θ,Λ5
A∧B

4.3.2. Definition of Left Disjunction and Admissibility of Right Disjunction. The left
disjunction introduction rule is given by the following definition D∨, which provides the
means for obtaining the right disjunction introduction rule by definitional reflection (D∨`):

D∨

{
Ω,A∨B5

C
⇐

Ω,A5
C

,
Ω,B5

C

S,
Ω,A5

C
,
Ω,B5

C
`s

(D∨`)

S,
Ω,A∨B5

C
`s

The f-sequent for the right disjunction introduction rule is

Θ5
A
`

Θ5
A∨B

respectively
Θ5
B
`

Θ5
A∨B
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and its derivation is:

(o-Id)

`
A∨B5
A∨B

(Id)
Θ5
A
`

Θ5
A

(Id)
A5

A∨B
`

A5
A∨B (o-Cut)

Θ5
A

,
A5

A∨B
`

Θ5
A∨B(Thin)

Θ5
A

,
A5

A∨B
,

B5
A∨B

`
Θ5

A∨B(D∨`)
Θ5
A

,
A∨B5
A∨B

`
Θ5

A∨B (Cut)
Θ5
A
`

Θ5
A∨B

Likewise for
Θ5
B
`

Θ5
A∨B

.

4.3.3. Definition of Left Implication and Admissibility of Right Implication. The left
implication introduction rule is given by the following definition D→, which provides
the means for obtaining the right implication introduction rule by definitional reflection
(D→`):

D→

{
Ω,A→B5

C
⇐

Ω5
A

,
Ω,B5

C

S,
Ω5
A

,
Ω,B5

C
`s

(D→`)

S,
Ω,A→B5

C
`s

The f-sequent for the right implication introduction rule is

Θ,A5
B
`

Θ5
A→B

and its derivation is:

(o-Id)

`
A→B5
A→B

(Id)

5
A
` 5

A

(Id)
Θ,A5

B
`

Θ,A5
B

(Id)
B5

A→B
`

B5
A→B (o-Cut)

Θ,A5
B

,
B5

A→B
`

Θ,A5
A→B (o-Cut)

Θ,A5
B

, 5
A

,
B5

A→B
`

Θ5
A→B(D→`)

Θ,A5
B

,
A→B5
A→B

`
Θ5

A→B (Cut)
Θ,A5

B
`

Θ5
A→B
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4.4. Remarks. The definitional clauses for the left introduction rules were again trea-
ted separately. If they were combined to yield a definition of minimal propositional logic by
left introduction rules, then the top of the o-sequents would have to be restricted to lists of
formulas instead of multisets of formulas. Otherwise, the proviso of definitional reflection
would be violated and the f-sequents representing the right introduction rules would not
be admissible. The restriction to lists has the effect that in applications of definitional
reflection only that one definitional clause (resp. the two clauses in the case of conjunction)
has to be used that contains the logical constant in question in the rightmost formula in the
top of its head o-sequent. The restriction to lists demands an additional rule for exchange
(o-Ex) and a rule for contraction (o-Contr) in the top of o-sequents:16

S`
Ω,A,B,Ψ5

C (o-Ex)

S`
Ω,B,A,Ψ5

C

S`
Ω,A,A5

C (o-Contr)

S`
Ω,A5

C

Then, for the combined clauses with lists, the definitional reflections remain as formulated
for separate clauses, and inversion by definitional reflection for the given left introduction
rules is again local.

The clauses D∨ and D→ have been formulated with shared contexts to prevent proviso
violations. However, corresponding rules with independent contexts can be shown to be
admissible by deriving the f-sequents for them with definitional closure on D∨:

(Id)
Ω,A5

C
`

Ω,A5
C

(o-Thin)+(o-Ex)
Ω,A5

C
`

Ω,Ψ,A5
C

(Id)
Ψ,B5

C
`

Ψ,B5
C

(o-Thin)+(o-Ex)
Ψ,B5

C
`

Ω,Ψ,B5
C (`D∨)

Ω,A5
C

,
Ψ,B5

C
`

Ω,Ψ,A∨B5
C

respectively with definitional closure on D→:

(Id)
Ω5
A
`

Ω5
A

(o-Thin)
Ω5
A
`

Ω,Ψ5
A

(Id)
Ψ,B5

C
`

Ψ,B5
C

(o-Thin)+(o-Ex)
Ψ,B5

C
`

Ω,Ψ,B5
C (`D→)

Ω5
A

,
Ψ,B5

C
`

Ω,Ψ,A→B5
C

Therefore, albeit the formulation of definitional clauses with shared contexts instead of
independent contexts is necessary for inversion by definitional reflection, the use of shared
contexts is not a restriction of the logic defined.

16 Contraction is required also for multisets, but the rule was not needed before and hence not given.
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4.5. Inversion versus Eliminability of (Cut). Besides definitional reflection on the
given definitional clauses, the structural rules for o-sequents (o-Id), (o-Thin), (o-Cut) as
well as the structural rules for f-sequents (Id), (Thin) and (Cut) had to be used both in
the derivations showing admissibility of the left introduction rules and in the derivations
showing admissibility of the right introduction rules.

Next, we show that (Cut) cannot be eliminated from those derivations, and is therefore
not eliminable in general, if only clauses for either left or right introduction rules are given.

In order to prove that (Cut) is not eliminable in the derivations showing admissibility of
the left introduction rules when definitional clauses are given only for the right introduction
rules, we need the following lemma.

LEMMA 1. In a (Cut)-free derivation of `
Θ
5
A

, where A is atomic, A has to be an element

of Θ.

Proof. Since the derivation is (Cut)-free and the antecedent of the end f-sequent is empty,
the derivation does not contain applications of (Id), (Thin) or definitional reflection. It
can only contain applications of (o-Id), (o-Thin), (o-Cut), (o-Contr) and applications of
definitional closure. Then A has to be in Θ, by induction on rule applications. �

THEOREM 2. (Cut) is not eliminable in the derivations showing admissibility of the left
introduction rules.

Proof. If (Cut) were eliminable in the above derivations that show admissibility of the
left introduction rules in their most general form, then (Cut) would be eliminable in any
derivation of a special case of these rules. Let A be atomic and different from B, then the

f-sequents `
A∧B5

A
, `

A∨A5
A

and `
B,B→A5

A
are such special cases that are derivable by using

particular cases of the admissibility derivations for the left conjunction, left disjunction and
left implication introduction rules. Thus, by Lemma 1, if there were a (Cut)-free derivation
of them, then A would be an element in the top multisets of the respective o-sequents. But
it is not. So there is no (Cut)-free derivation of these three f-sequents. As all of them are
special cases of the derived f-sequents for the left introduction rules, the instances of (Cut)
in the derivations showing admissibility of the left introduction rules are not eliminable. �

COROLLARY 3. (Cut) is not eliminable in general if only clauses for right introduction
rules are given.

In order to prove that (Cut) is not eliminable in the derivations showing admissibility of
the right introduction rules when definitional clauses are given only for the left introduction
rules, we need the following two lemmas.

LEMMA 4. In a (Cut)-free derivation of `
Θ
5
A

, Θ cannot be empty.

Proof. (Cut)-free derivations of this f-sequent contain only applications of (o-Id), (o-Thin),
(o-Cut), (o-Contr) and applications of definitional closure. Any derivation starts with
(o-Id), where Θ is not empty. And the rules (o-Thin), (o-Cut), (o-Contr) and definitional
closure have a conclusion in which the top of the o-sequent in the succedent is not empty
if the tops of the o-sequents in the succedents of all premisses are not empty. �
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LEMMA 5. In a (Cut)-free derivation of `
A, . . . ,A
5
B

, where only and at least once the

atomic formula A occurs in the top, B has to be A.

Proof. Since the derivation is (Cut)-free and the antecedent of the end f-sequent is empty,
the derivation does not contain applications of (Id), (Thin) or definitional reflection. It
can contain only applications of (o-Id), (o-Thin), (o-Cut), (o-Contr) and applications of
definitional closure. Then B is A by induction on rule applications, where Lemma 4 is used
for the cases (o-Thin) and (o-Cut). �

THEOREM 6. (Cut) is not eliminable in the derivations showing admissibility of the right
introduction rules.

Proof. If (Cut) were eliminable in the above derivations that show admissibility of the
right introduction rules in their most general form, then (Cut) would be eliminable in any
derivation of a special case of these rules. Let A be an atomic formula, then the f-sequents

`
A5

A∧A
, `

A5
A∨B

and `
A5

B→A
are such special cases that are derivable by using particular

cases of the admissibility derivations for the right conjunction, right disjunction and right
implication introduction rules. Thus, by Lemma 5, if there were a (Cut)-free derivation of
them, then the bottom formula would be A. But it is not. So there is no (Cut)-free derivation
of these three f-sequents. As all of them are special cases of the derived f-sequents for the
right introduction rules, the instances of (Cut) in the derivations showing admissibility of
the right introduction rules are not eliminable. �

COROLLARY 7. (Cut) is not eliminable in general if only clauses for left introduction
rules are given.

The rule (Cut) would be eliminable, however, if the structural rules for o-sequents (o-Id),
(o-Thin), (o-Cut) and (o-Contr) were added as definitional clauses to the definitions of left
resp. right introduction rules instead of being given as framework rules. But then inversion
by definitional reflection would fail because the bodies of the definitional clauses for the
structural rules are additional defining conditions that would have to be taken into account
in applications of definitional reflection. The definitional clause for (o-Cut), however, has
a variable in its body that is not in the head, which violates the proviso on variables of the
principle of definitional reflection, and thereby prevents the application of the principle. If
not only definitional clauses for either left or right introduction rules are considered, but if
the whole system of definitional clauses for left and right introduction rules is given (i.e.,
D∧, D∨ and D→ together with D∧, D∨ and D→), then the inversions of the respective
rules are already given as definitional clauses, and inversion by definitional reflection can
be dispensed with. In this case (Cut)-eliminability can be easily demonstrated.

§5. Conclusion. The inversion principle was first given in a form resembling gener-
alised elimination rules in natural deduction. Then definitional clauses were introduced
and the principle of definitional reflection was presented; it states the inversion principle
for definitions. Adding definitional closure as well as the structural rules (Id), (Thin)
and (Cut) yields a sequent-style framework for reasoning about definitions. The prin-
ciples of definitional reflection and definitional closure can be interpreted as principles
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for admissibility, which opens the possibility to show admissibility of logical rules by
reasoning about given definitions for logical constants in the framework. Defining logical
constants by use of simple formulas lead to problems, however. They were resolved by
using clausal definitions for sequents in the form of o-sequents. The o-sequents can be read
as assertions involving the relation of deductive consequence between the top formulas and
a bottom formula. The formulas themselves can be interpreted as propositions or assertions,
although we did not give a specific interpretation to them. That o-sequents involve the
relation of deductive consequence is determined by the structural rules (o-Id), (o-Thin)
and (o-Cut), which express the central features of the usual deductive consequence relation.
These rules were added to the framework. The logical rules were then given by definitional
clauses using o-sequents, i.e., the logical constants of minimal propositional logic were
defined in the context of the relation of deductive consequence.

For given definitions of right introduction rules the respective left introduction rules were
shown to be admissible by using definitional reflection. In addition, it could be shown that
for given definitions of left introduction rules the respective right introduction rules are
admissible. The definitional clauses had to be formulated with shared contexts to comply
with the proviso on variables of definitional reflection. Independent contexts would violate
the proviso and thereby render definitional reflection inapplicable. However, the restriction
to shared contexts is not a limitation of the logic defined since corresponding rules with
independent contexts are admissible by definitional closure. If the definitional clauses are
not treated separately but together as a logical system, then lists instead of multisets have
to be used in the top of o-sequents in definitions of left introduction rules, and the rules
(o-Ex) as well as (o-Contr) have to be added to the framework to handle those lists. Apart
from these rules, the rules (o-Id), (o-Thin) and (o-Cut) for o-sequents and the rules (Id),
(Thin) and (Cut) for f-sequents had to be used in the derivations. It was shown that (Cut)
is not eliminable in any of the derivations that show the admissibility of logical rules. Thus,
inversion by definitional reflection for logical rules cannot be accomplished without (Cut).

Given the admissibility results shown above, it seems questionable that the right intro-
duction rules have any kind of privilege over the left introduction rules concerning the
definition of logical constants or vice versa. Since the division into introduction rules
and elimination rules in natural deduction is carried over to sequent calculus with its
respective right introduction rules and left introduction rules, we can restate Gentzen’s
remark according to our context of sequents by saying that the left introduction rules are
ultimately only consequences of the right introduction rules when the latter are taken as
definitions of the logical constants concerned. As a consequence of the above results,
we can furthermore complement this remark by saying that the left introduction rules
are the definitions of the logical constants concerned, and the right introduction rules
are ultimately only consequences hereof. The logical constants of minimal propositional
logic can be defined by right introduction rules as well as by left introduction rules. If
the right introduction rules are given as definitions, then the left introduction rules are
consequences of them in the sense of being admissible relative to the given definitions, and
if the left introduction rules are given as definitions, then the right introduction rules are
consequences of them in the same sense of being admissible.
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